
Efficient Homomorphic Conversion
Between (Ring) LWE Ciphertexts

Hao Chen1, Wei Dai1, Miran Kim2, and Yongsoo Song1

1 Microsoft Research, Redmond, USA
{haoche,wei.dai,yongsoo.song}@microsoft.com

2 UT Health Science Center at Houston, USA
miran.kim@uth.tmc.edu

Abstract. In the past few years, significant progress on homomorphic encryption (HE) has
been made toward both theory and practice. The most promising HE schemes are based on the
hardness of the Learning With Errors (LWE) problem or its ring variant (RLWE). In this work,
we present new conversion algorithms that switch between different (R)LWE-based HE schemes
to take advantage of them. Specifically, we present and combine three ideas to improve the key-
switching procedure between LWE ciphertexts, transformation from LWE to RLWE, as well as
packing of multiple LWE ciphertexts in a single RLWE encryption. Finally, we demonstrate an
application of building a secure channel between a client and a cloud server with lightweight
encryption, low communication cost, and capability of homomorphic computation.

Keywords: Homomorphic encryption · Learning with Errors · Key switching.

1 Introduction

In recent years, there have been remarkable advances in cryptographic primitives for se-
cure computation without compromising data privacy. Specifically, homomorphic encryption
(HE) [26] has been considered as one of the most attractive solutions due to its conceptual
simplicity and efficiency. HE is a cryptosystem which supports arithmetic operation on en-
crypted data, so that any computational task can be outsourced to a public cloud while data
provider does not need to either perform a large amount of work or stay online during the
protocol execution. In addition, the concrete efficiency of HE has been improved rapidly by
theoretic and engineering optimizations [5, 14, 39]. Recent studies demonstrated that this
technology shows reasonable performance in real-world tasks such as biomedical analysis and
machine learning [31, 32, 19].

Currently, all the best-performing HE schemes, such as BGV [9], BFV [7, 21], TFHE [17]
and CKKS [15], are based on the hardness of Learning with Errors (LWE) or its ring variant
(RLWE). In particular, ring-based HE systems have shown remarkable performance in real-
world applications due to the efficient use of the ciphertext packing technique [41]. Each
HE scheme has its own pros and cons, but it has been relatively less studied how to take
advantage of various HE schemes by converting ciphertexts of different types [6].

Our Contribution. In this paper, we provide a toolkit to transform (R)LWE-based cipher-
texts and generate another ciphertext under a new key or of a different structure. Specifically,
we present three conversion methods: (1) to perform a new key-switching (KS) operation be-
tween LWE ciphertexts; (2) to transform an LWE ciphertext into an RLWE-based ciphertext;
and (3) to merge multiple LWE ciphertexts into a single RLWE ciphertext. The first two con-
versions (from LWE to LWE/RLWE) have quasi-linear complexity Õ(N) where N denotes
the dimension of (R)LWE. The last packing algorithm is a generalization of LWE-to-RLWE
conversion which achieves a better amortized complexity. Our algorithms are almost optimal
in the sense that their complexities are quasi-linear with respect to the size of input cipher-
text(s). Moreover, there is no reduction of ciphertext level (modulus) because all building
blocks (e.g. homomorphic automorphism) are depth-free. The proposed methods have wide



applications in the literature: for example, our LWEs-to-RLWE packing method can improve
the performance of [6, 10] which present a hybrid framework between different HE schemes.
In addition, our basic algorithms are easily generalizable to design the key-switching between
(R)LWE ciphertexts with different dimensions, or more generally, Module LWE [9, 33] based
schemes with different parameters.

Finally, we present experimental results to demonstrate that our techniques achieve better
asymptotic and concrete performance than previous works [37, 16]. Moreover, we provide a
secure outsourcing solution of storage and computation to a cloud with low communication
cost. A client encrypts data via an LWE-based symmetric encryption on a lightweight de-
vice. On receiving LWE ciphertexts, the public server transforms or packs them into RLWE
encryptions to provide better functionality for homomorphic arithmetic. Compared to prior
works based on block or stream ciphers [25, 3, 35, 20], our approach has advantages in terms
of flexibility, functionality and efficiency.

Technical Overview. Let N be the dimension and q the modulus of an LWE problem. An
LWE ciphertext with secret s ∈ ZN is of the form (b,a) ∈ ZN+1

q and its phase is defined as
µ = b+ 〈a, s〉 (mod q). It is also called ‘half decryption’ since the phase of a ciphertext is a
randomized encoding of the encrypted plaintext with a small error. Similarly, in the case of
RLWE over R = Z[X]/(XN + 1) and its residue ring Rq = R/qR, the phase of an RLWE
ciphertext (b, a) ∈ R2

q of secret s is defined as µ = b+ as (mod q).
Suppose that we are given some ciphertexts of a cryptosystem (which is not necessarily

an HE scheme) and wish to publicly transform them into ciphertexts of another HE scheme
for secure computation. In general, this task can be done by evaluating the decryption circuit
of the initial cryptosystem using an HE system if a homomorphically encrypted secret key is
given. Furthermore, the conversion can be more efficient if input ciphertexts are encrypted
by an LWE-based cryptosystem because it suffices to homomorphically evaluate the phase,
instead of performing the full decryption which usually includes expensive (non-arithmetic)
operations such as bit extraction or rounding [24, 12].

We remark that this approach can be still inefficient in some cases. For example, if we aim
to convert an LWE encryption (b,a) ∈ ZN+1

q under secret s ∈ ZN into an RLWE ciphertext,
the secret key owner should generate and publish an RLWE ‘encryption’ of s as the evaluation
key, and the conversion can be done by computing the phase µ = b+ 〈a, s〉 over an RLWE-
based HE system. In fact, the evaluation key consists of N key-switching keys from individual
s[i] to the RLWE secret and the conversion requires N RLWE KS operations. Consequently,
the total complexity grows quadratically with the security parameter. The techniques we
present in this work do not follow the existing framework of the phase evaluation.

Our first idea is to embed elements of ZNq or Zq into Rq. Given an LWE ciphertext
(b,a) ∈ ZN+1

q of the phase µ0 = b+ 〈a, s〉, we consider the RLWE ciphertext ct = (b, a) ∈ R2
q

for a =
∑

i∈[N ] a[i] ·Xi and the secret s =
∑

i∈[N ] s[i] ·X−i ∈ R. The ciphertext ct is not a
completely valid RLWE ciphertext but its phase µ = b+as (mod q) contains µ0 = µ[0] in its
constant term. We use this idea to accelerate the KS procedure between LWE ciphertexts. For
another LWE secret s′, we first perform a RLWEKS procedure from s to s′ =

∑
i∈[N ] s

′[i]·X−i.
Then the phase of the output ciphertext is approximately equal to µ in R, so it is enough to
extract an LWE ciphertext from the ciphertext.

Our second algorithm is an efficient conversion from LWE to RLWE. In the example
above, the RLWE ciphertext ct cannot be directly used for further homomorphic computation
because the phase µ contains invalid values in its coefficients except the constant term. We
observe that the field trace function TrK/Q of the number field K = Q[X]/(XN +1) zeroizes
all the monomials Xi for 0 6= i ∈ [N ] but keeps the constant term (scaled by a factor of
N). We homomorphically evaluate the trace function to obtain an RLWE ciphertext whose
phase is approximately equal to the constant polynomial N · µ0 (the extra factor N can be

2



Type
Previous works [37, 16] This work
Complexity Storage Complexity Storage

LWE-to-LWE O(dN2) dN2 O(dN logN) 2dN

LWE-to-RLWE O(dN2) 2dN2 O(dN log2 N) 2dN logN

nLWEs-to-RLWE O(dN2 logN) 2dN2 O(dN logN(n+ log(N/n))) 2dN logN

Table 1: Computational costs (number of scalar operations) and storage (number of Zq elements to store a
switching key) of conversion algorithms. N denotes the dimension of (R)LWE, n denotes the number of input
LWE ciphertexts to be packed in an RLWE ciphertext, and d denotes the gadget decomposition degree.

easily removed). To minimize the conversion complexity, we present a recursive algorithm
that includes only logN automorphism evaluations, based on the tower of number fields.
Furthermore, our algorithm reduces the number of the key-switching keys to logN compared
to N of the previous method.

Finally, we present a packing algorithm that takes at mostN LWE ciphertexts as the input
and returns a single RLWE ciphertext. Suppose that we are given n ≤ N input ciphertexts
of phases µj ∈ Zq. A naive solution is to perform our LWE-to-RLWE conversion on each
LWE ciphertext and adds up the output RLWE ciphertexts into a single ciphertex, which
requires n logN homomorphic automorphisms. We can improve the complexity by performing
the FFT-style ciphertext packing algorithm. The first step is a tree-based algorithm which
generates an RLWE ciphertext of phase µ ∈ Rq such that µ[(N/n) · j] ≈ n · µj for all j ∈ [n],
i.e., it collects the phases µj ’s in an element

∑
j∈[n] µj · Y j of Kn = Z[Y ]/(Y n + 1). In the

following step, we evaluate the field trace TrK/Kn
to annihilate the useless coefficients µ[i] for

(N/n) - i and finally return an RLWE ciphertext of phase ≈ N ·
∑

j∈[n] µj · Y j . The whole
process requires (n−1)+log(N/n) homomorphic automorphisms, so we achieve an amortized
complexity of < 1 + n−1 · logN automorphisms per an LWE ciphertext.

Related Works. In [24, 23], the authors presented a method to switch the underlying field
of HE ciphertexts. In these works, ciphertexts were taken as the input of the trace function to
reduce the dimension of the base ring dynamically during computation purely for efficiency
reasons. Meanwhile, in our LWE(s)-to-RLWE algorithm, we utilize the trace function in a
totally different way for a different purpose. We homomorphically evaluate the field trace on
plaintexts (phases) to generate a valid RLWE ciphertext over a larger ring Rq from LWE
ciphertexts over Zq.

It has been studied in [16, 37] to convert multiple LWE ciphertexts into a single RLWE
ciphertext. Given n LWE ciphertexts {(bj ,aj)}j∈[n], it vertically stacks the i-th entries of all
ciphertexts in a polynomial by b =

∑
j∈[n] bj · Xj and ai =

∑
j∈[n] aj [i] · Xj for i ∈ [N ].

Then it homomorphically evaluates b+
∑

i ai · si over an RLWE-based HE scheme. Different
from our packing algorithm, this method has a fixed complexity of N RLWE KS operations,
independently from the number n of input ciphertexts. This implies that it needs to pack
Ω(N) many ciphertexts to achieve the minimal amortized complexity.

Boura et al. [6] presented various transformations between ciphertexts of different RLWE-
based HE schemes. Our work is in an orthogonal direction to [6] since we aim to switch
the secret key or change the type of ciphertexts (e.g. LWE, RLWE) while preserving their
phases (encoded plaintexts). In fact, we can improve the performance of [6] by replacing the
underlying KS methods by our conversion algorithms.

In Table 1, we provide the performance of previous works and analyze the computational
costs of our algorithms. Our LWE-to-RLWE conversion consists of several iterations in which
we evaluate an automorphism and add the resulting ciphertext to the original input. There
have been proposed a few algorithms [29, 11, 12, 13] which are technically similar to our con-

3



version algorithm. However, to the best of our knowledge, this is the first study to reinterpret
and apply this building block to the KS (conversion) of HE ciphertexts.

Recently, Gentry and Halevi [22] and Brakerski et al. [8] presented a new framework that
compresses multiple HE ciphertexts into a single ciphertext with nearly optimal rate 1−o(1).
Our approach solves an associated but fundamentally different problem. In our application,
we could build a lightweight and low-latency communication from the client to the cloud
because fresh ciphertexts are high-rate and extremely small. However, they should be packed
or converted into an RLWE ciphertext before computation. Meanwhile, previous works [22, 8]
aim to compress HE ciphertexts after computation and thereby minimize the communication
cost from the cloud to the client.

2 Background

We denote vectors in bold, e.g. u, and the i-th entry of a vector u will be denoted by u[i]. For
simplicity, we identify Z ∩ (−q/2, q/2] as a set of representatives of Zq and write the index
set [N ] = {0, 1, . . . , N − 1}. For a finite set S, U(S) denotes the uniform distribution on S.

2.1 Cyclotomic Field

Let ζ = exp(πi/N) for a power-of-two integer N . We denote by K = Q(ζ) the 2N -th
cyclotomic field and R = Z[ζ] the ring of integers of K. We will identify K (resp. R) with
Q[X]/(XN + 1) (resp. Z[X]/(XN + 1)) with respect to the map ζ 7→ X. The residue ring
of R modulo an integer q is denoted by Rq = R/qR. For a, b ∈ Z (or R, Rq), we informally
write a ≈ b (mod q) if a = b+ e for some small e ∈ Z (or R).

An element of K (resp. R, Rq) can be uniquely represented as a polynomial of degree less
than N with coefficients in Q (resp. Z, Zq). The i-th coefficient of a polynomial a(X) will be
denoted by a[i]. We use the map ι : a 7→

∑
i∈[N ] a[i] · Xi to identify a polynomial and the

vector of its coefficients.

2.2 (Ring) Learning with Errors

Given the dimensionN , modulus q and error distribution ψ over Z, the LWE distribution with
secret s ∈ ZN is a distribution over ZN+1

q which samples a← U(ZNq ) and e← ψ, and returns
(b,a) ∈ ZN+1

q where b = 〈a, s〉+ e (mod q). The (decisional) LWE assumption of parameter
(N, q, χ, ψ) is that it is computationally infeasible to distinguish the LWE distribution of a
secret s← χ from the uniform distribution U(ZN+1

q ).
The RLWE problem [34] is a variant of LWE which has been widely used to design

HE schemes, e.g. [9, 21, 17, 15]. The key s is chosen from the key distribution χ over R,
and an RLWE sample (b, a) ∈ R2

q by sampling random a and noise e from U(Rq) and the
error distribution ψ over R and computing b = as + e (mod q). The RLWE assumption
with parameter (N, q, χ, ψ) is that the RLWE distribution of a secret s ← χ and U(R2

q) are
computationally indistinguishable.

2.3 Gadget Decomposition

Let q be an integer and g = (g0, . . . , gd−1) be an integral vector. A gadget decomposition [36],
denoted by g−1 : Zq → Zd, is a map satisfying 〈g−1(a),g〉 = a (mod q) for all a ∈ Zq.
We can naturally extend its domain and define g−1 : Rq → Rd by a =

∑
i∈[N ] ai · Xi 7→∑

i∈[N ] g
−1(ai) ·Xi.

The base (digit) decomposition [9, 7] and prime decomposition [5, 14] are typical exam-
ples. This technique has been widely used to control the noise growth during homomorphic
computation such as key-switching, which will be described in the next section.

4



2.4 Key Switching

We describe a well known KS method for RLWE ciphertexts. The goal of KS procedure is
to transform a ciphertext into another ciphertext under a different secret key while approxi-
mately preserving its phase.

• KSKeyGen(s ∈ R, s′ ∈ R) : Sample k1 ← U(Rdq) and e← χd. Compute k0 = −s′ ·k1+s·g+e

(mod q) and return the KS key K = [k0|k1] ∈ Rd×2q .

• KeySwitch(ct;K) : Given an RLWE ciphertext ct = (c0, c1) ∈ R2
q and a KS key K ∈ Rd×2q ,

compute and return the ciphertext ct′ = (c0, 0) + g−1(c1) ·K (mod q).

Roughly speaking, a KS key consists of d RLWE ‘encryptions’ of s · gi under s′, i.e., K ·
(1, s′) ≈ s · g (mod q). For an RLWE ciphertext ct ∈ R2

q and a KS key K← KSKeyGen(s, s′),
the output ct′ ← KeySwitch(ct;K) satisfies that

〈ct′, (1, s′)〉 = c0 + g−1(c1) ·K · (1, s′)
= c0 + 〈g−1(c1), s · g + e〉 = 〈ct, (1, s)〉+ eks (mod q) (1)

for the KS noise eks = 〈g−1(c1), e〉 ∈ R.

2.5 Galois Group and Evaluation of Automorphisms

We recall that K ≥ Q is a Galois extension and its Galois group Gal(K/Q) consists of the
automorphisms τd : ζ 7→ ζd for d ∈ Z×2N , the invertible residues modulo 2N . The automor-
phisms τd ∈ Gal(K/Q) gives some distinctive functionalities to HE system. For example,
many of RLWE-based schemes such as BGV [9], BFV [7, 21] and CKKS [15] utilize the Dis-
crete Fourier Transform (DFT) to encode multiple plaintext values in a single polynomial, so
that the slots of a ciphertext can be permuted by evaluating an automorphism.

We describe a well-known method to homomorphically evaluate an automorphism τd :
a(X)→ a(Xd).

• AutoKeyGen(d ∈ Z×2N ; s ∈ R) : Run Ad ← KSKeyGen(τd(s), s).

• EvalAuto
(
ct ∈ R2

q , d ∈ Z×2N ;Ad

)
: Given a ciphertext ct = (c0, c1) ∈ R2

q , an integer d ∈ Z×2N
and an automorphism keyAd, compute and return the ciphertext ct′ ← KeySwitch ((τd(c0), τd(c1));Ad).

Security. The homomorphic automorphism algorithm is a simple application of KS, so its
security basically relies on the hardness of RLWE for KSKeyGen. Moreover, an additional
circular security assumption should be made because Ad is a special encryption of τd(s) with
secret s.

Correctness. Suppose that ct ∈ R2
q is an RLWE ciphertext such that µ = 〈ct, (1, s)〉 (mod q)

and Ad ← AutoKeyGen(d; s) is an automorphism key. Then the output ciphertext ct′ ←
EvalAuto(ct, d;Ad) satisfies that

〈ct′, (1, s)〉 ≈ 〈(τd(c0), τd(c1)), (1, τd(s))〉 = τd (〈ct, (1, s)〉) = τd(µ) (mod q),

from the property of KeySwitch.

In the rest of this paper, we simply write EvalAuto(ct, d;Ad) = EvalAuto(ct, d) by assum-
ing that an automorphism key Ad ← AutoKeyGen(d; s) is properly generated and implicitly
taken as input of the EvalAuto algorithm. We remark that homomorphic automorphism has
almost the same complexity as the KS procedure because the computation of τd(ci) is very
cheap.

5



3 Conversion Algorithms

This section presents core ideas and their application to efficient conversion between HE
ciphertexts of different secret keys or algebraic structures.

3.1 Functionality of Automorphisms on Coefficients

We examine how the elements of Gal(K/Q) act on the coefficients of an input polynomial.
Let us define the sets Ik =

{
i ∈ [N ] : 2k ‖ i

}3 for 0 ≤ k < logN and IlogN = {0}. Then, the
index set [N ] can be written as the disjoint union

⋃
0≤k≤logN Ik. We are interested in how

the automorphism τd(·) acts on the monomials for d = 2` + 1, 1 ≤ ` ≤ logN . We note that
the map i 7→ i · d (mod N) is a signed permutation on Ik, i.e., if i ∈ Ik, then τd(Xi) = ±Xj

for some j ∈ Ik. In particular, we see that

τd(X
i) = Xi for i ∈

⋃
k>logN−`

Ik,

τd(X
i) = −Xi for i ∈ IlogN−`. (2)

In other words, the map µ 7→ µ + τd(µ) doubles the coefficients µ[i] if 2logN−`+1| i, but
zeroizes the coefficients µ[i] if 2logN−`‖ i.

3.2 LWE to LWE

Let (b,a) ∈ ZN+1
q be an LWE ciphertext under a secret s ∈ ZN with phase µ0 = b + 〈a, s〉

(mod q). We aim to design an efficient LWE-to-LWE conversion, which replaces the secret of
the ciphertext into another secret s′ ∈ ZN while almost preserving the phase µ0.

Our first idea is to embed ZNq and Zq into Rq to utilize the ring structure. We consider
the two polynomials

a := ι(a) =
∑
i∈[N ]

a[i] ·Xi ∈ Rq,

s := τ−1 ◦ ι(s) =
∑
i∈[N ]

s[i] ·X−i ∈ R,

and we define the polynomial pair ct = (b, a) ∈ R2
q . We remark that ct can be viewed as

an RLWE ciphertext with secret s satisfying 〈ct, (1, s)〉[0] = (b + as)[0] = µ0, i.e., its phase
µ = 〈ct, (1, s)〉 (mod q) of ct stores µ[0] = µ0 in the constant term but all other coefficients,
µ[i] for 0 6= i ∈ [N ], have no valid values.

Though ct is not a valid RLWE ciphertext, we can still apply the KS algorithm. If we
perform the KS procedure from s to s′ = τ−1 ◦ ι(s′), then the output ciphertext also includes
a valid value in its constant term from the property of KS. Finally, we can extract an LWE
ciphertext with secret s′.

• LWE-to-LWE ((b,a),K) : Given an LWE ciphertext (b,a) ∈ ZN+1
q and a KS key K ∈ RL×2q ,

set the RLWE ciphertext ct ← (b, a) ∈ R2
q where a = ι(a). Compute ct′ = (b′, a′) ←

KeySwitch(ct,K) ∈ R2
q and let a′ = ι−1(a′). Return the ciphertext (b′[0],a′) ∈ ZN+1

q .

Correctness. We claim that, if K← KSKeyGen(s, s′) is a KS key from s to s′, then (b′[0],a′)
is an LWE ciphertext under s′ whose phase is approximately equal to the phase of (b,a)
under s. It can be shown by

b′[0] + 〈a′, s′〉 = (b′ + a′s′)[0] ≈ (b+ as)[0] = b+ 〈a, s〉 (mod q),

where the approximate equality is derived from the property of KeySwitch (see Equation (1)).
3 2k ‖ i if and only if 2k | i and 2k+1 - i.

6



Algorithm 1 Homomorphic Evaluation of the Trace Function (EvalTrN/n)

Input: ciphertext ct = (b, a) ∈ R2
q , a power-of-two integer n ≤ N .

1: ct′ ← ct
2: for k = 1 to log(N/n) do
3: ct′ ← ct′ + EvalAuto(ct′; 2logN−k+1 + 1)

4: return ct′ ∈ R2
q

3.3 LWE to RLWE

Our next goal is to design a conversion algorithm from LWE to RLWE. As explained above,
if we set an RLWE ciphertext (b, a = ι(a)) ∈ R2

q from an LWE ciphertext (b,a) ∈ ZN+1
q , then

its phase has the valid value only in the constant term. Hence, the key question is how to
annihilate useless coefficients of µ except the constant term µ[0] to generate a valid RLWE
ciphertext.

We remark that the field trace TrK/Q : K → Q, a 7→
∑

τ∈Gal(K/Q) τ(a) has the required
property, i.e., TrK/Q(1) = N and TrK/Q(Xi) = 0 for all 0 6= i ∈ [N ]. Therefore, a conversion
from LWE into RLWE can be done by evaluating the field trace homomorphically. A naive
solution is to evaluate each automorphism τ(·) and add up all the resulting ciphertexts, and
therefore it requires N KS operations. We now describe a recursive algorithm which uses an
algebraic structure of cyclotomic fields for reducing the conversion complexity. To be precise,
for the tower of finite fields K = KN ≥ KN/2 ≥ · · · ≥ K1 = Q, where Kn denotes the
(2n)-th cyclotomic field for a power-of-two integer n, the field trace can be expressed as a
composition TrK/Q = TrK2/K1

◦ · · · ◦ TrKN/KN/2
of logN field traces and each Galois group

Gal (K2`/K2`−1) has a (unique) nontrivial element τ2`+1|K2`
for ` = 1, . . . , logN . Therefore,

the evaluation of TrK
2`
/K

2`−1
requires only one homomorphic rotation.

See Alg. 1 for a description of homomorphic trace evaluation TrKN/Kn
for any power-

of-two integer n ≤ N . We use the parameter n = 1 in this section. Finally, we present an
LWE-to-RLWE conversion algorithm as follows.

• LWE-to-RLWE
(
(b,a) ∈ Zq × ZNq

)
: Set the RLWE ciphertext ct ← (b, a) ∈ R2

q where a =
ι(a). Then, run Alg. 1 and return the ciphertext ct′ ← EvalTrN/1(ct) ∈ R2

q .

Correctness. We will prove the correctness of Alg. 1 for an arbitrary n ≤ N . Let µ =
〈ct, (1, s)〉 (mod q) be the phase of an input ct. We inductively show that the phase µ′ =
〈ct′, (1, s)〉 (mod q) satisfies

µ′ ≈ TrKN/KN/2k
(µ) = 2k ·

∑
2k|i∈[N ]

µ[i] ·Xi (mod q) (3)

at iteration k. For the base case k = 0, the statement is trivially true since µ′ = µ. Now we
assume that (3) is true for k−1. In the next k-th iteration, we evaluate the map µ′ 7→ µ′+τd(µ

′)
for d = 2logN−k+1+1. We recall from (2) that τd(Xi) = Xi for 2k | i ∈ [N ] and τd(Xi) = −Xi

for i ∈ [N ] such that 2k−1 ‖ i. From the induction hypothesis,

µ′ ≈ 2k−1 ·
∑
2k−1|i

µ[i] ·Xi

= 2k−1 ·
∑
2k|i

µ[i] ·Xi + 2k−1 ·
∑

2k−1‖i

µ[i] ·Xi (mod q),

τd(µ
′) ≈ 2k−1 ·

∑
2k|i

µ[i] ·Xi − 2k−1 ·
∑

2k−1‖i

µ[i] ·Xi (mod q),

7



and thereby µ′ + τd(µ
′) ≈ 2k ·

∑
2k|i µ[i] ·Xi. Finally, we obtain

µ′ ≈ TrKN/Kn
(µ) = (N/n) ·

∑
(N/n)|i∈[N ]

µ[i] ·Xi (mod q)

after k = log(N/n) iterations. We remark that the size of noise does not blow up much during
the evaluation since τd(·) preserves the size of elements in R.

The correctness of LWE-to-RLWE is directly derived from this result with parameter n =
1. Given an RLWE encryption ct = (b, a), we homomorphically compute the field trace
TrKN/Q and the phase µ′ = 〈ct′, (1, s)〉 of the output ciphertext is approximately equal to
TrKN/Q(b+ as) = N · (b+ as)[0] = N · (b+ 〈a, s〉), as desired.

3.4 LWEs to RLWE

An LWE ciphertext has a phase in Zq, which can store only one scalar message, so our LWE-
to-RLWE conversion algorithm aims to generate an RLWE ciphertext whose phase µ contains
an approximate value of an initial LWE phase in its constant term. However, in general, an
RLWE ciphertext can store at most N scalars in the coefficients of its phase. So a natural
question is how to efficiently merge multiple LWE ciphertexts into a single RLWE ciphertext.

Suppose that we are given n LWE ciphertexts {(bj ,aj)}j∈[n] for some n = 2` ≤ N and
let µj ∈ Zq be the phase of (bj ,aj) under the same secret s ∈ ZN . A naive answer for the
question above is to run ct′j ← LWE-to-RLWE ((bj ,aj)) ∈ R2

q for all j ∈ [n] and take their
linear combination ct′ =

∑
j∈[n] ct

′
j ·Y j for Y = XN/n. Then the phase of ct′ is approximately

equal to N ·
∑

j∈[n] µj · Y j , which is an element of the ring of integers of Kn. However, this
method is not optimal in terms of both complexity and noise growth.

In this section, we present a generalized version of our previous algorithm which takes
multiple LWE encryptions as input and returns a single RLWE ciphertext. This conversion
consists of two phases: packing and trace evaluation. The first step (Alg. 2) is an FFT-style
algorithm which merges n = 2` multiple RLWE ciphertexts into one. The phase µ of an output
ciphertext stores the constant terms of input phases in its coefficients µ[i] for (N/n) | i. All
valid values are now packed into an element of Rn, so in the next step, we use the idea of the
previous section to evaluate the field trace TrKN/Kn

and zeroize useless coefficients.

• LWEs-to-RLWE
(
{(bj ,aj)}j∈[n]

)
: Given n = 2` LWE ciphertexts (bj ,aj) ∈ ZN+1

q , do the
following:

1. Set ctj ← (bj , aj) ∈ R2
q for each j ∈ [n] where aj = ι(aj).

2. Run Alg. 2 to get ct← PackLWEs
(
{ctj}j∈[n]

)
.

3. Compute and return the ciphertext ct′ ← EvalTrN/n(ct).

The packing algorithm and the subsequent field trace evaluation for n = 2` ciphertexts
require (n − 1) and log(N/n) homomorphic automorphisms, respectively. Hence the total
complexity of LWEs-to-RLWE is (n− 1) + log(N/n) < n+ logN automorphisms, yielding an
amortized complexity less than (1+n−1 ·logN) automorphisms per an input LWE ciphertext.
We remark that this conversion algorithm achieves the asymptotically optimal amortized
complexity (O(1) automorphisms) when n = Ω(logN).

Correctness. We first show the correctness of our packing algorithm. For j ∈ [2`], let ctj be
input ciphertexts of Alg. 2 such that µj = 〈ctj , (1, s)〉[0] (mod q). For the output ciphertext
ct← PackLWEs

(
{ctj}j∈[2`]

)
, we claim that its phase satisfies

µ
[
(N/2`) · j

]
≈ 2` · µj (mod q) for all j ∈ [2`]. (4)

8



Algorithm 2 Homomorphic Packing of LWE Ciphertexts (PackLWEs)
1: input ciphertexts ctj = (bj , aj) ∈ R2

q for j ∈ [2`]
2: if ` = 0 then
3: return ct← ct0
4: else
5: cteven ← PackLWEs

(
{ct2j}j∈[2`−1]

)
6: ctodd ← PackLWEs

(
{ct2j+1}j∈[2`−1]

)
7: ct←

(
cteven +XN/2` · ctodd

)
+ EvalAuto

(
cteven −XN/2` · ctodd, 2` + 1

)
8: return ct

We again use the induction on ` ≥ 0. The base case ` = 0 is trivial since µ[0] = µ0.
Suppose that our statement is true for some 0 ≤ ` − 1 < logN . For 2` input ciphertexts,
Alg. 2 first divides them into two groups of size 2`−1 and runs PackLWEs twice (in lines 5 and
6). From the induction hypothesis, the output ciphertexts cteven, ctodd have phases µeven, µodd
such that

µeven

[
(N/2`−1) · j

]
≈ 2`−1 · µ2j (mod q),

µodd

[
(N/2`−1) · j

]
≈ 2`−1 · µ2j+1 (mod q),

for all j ∈ [2`−1]. Then, we compute and return the ciphertext ct whose phase is

µ ≈ (µeven +XN/2` · µodd) + τd

(
µeven −XN/2` · µodd

)
= µ′even +XN/2` · µ′odd,

for µ′even = µeven + τd(µeven) and µ′odd = µodd + τd(µodd), which satisfies that

µ′even

[
(N/2`) · (2j)

]
≈ 2` · µ2j , µ′even

[
(N/2`) · (2j + 1)

]
≈ 0 (mod q),

µ′odd

[
(N/2`) · (2j)

]
≈ 2` · µ2j+1, µ′odd

[
(N/2`) · (2j + 1)

]
≈ 0 (mod q)

for all j ∈ [2`−1]. Therefore, their linear combination µ = µ′even+X
N/2` ·µ′odd has coefficients

µ
[
(N/2`) · j

]
≈ 2` · µj for all j ∈ [2`], as desired.

Now let us discuss about the LWEs-to-RLWE algorithm. After running the packing algo-
rithm, the phase µ of ct ← PackLWEs

(
{ctj}j∈[n]

)
has n · µj in its coefficients µ[i] such that

(N/n) | i. So we homomorphically evaluate the field trace TrKN/Kn
on the ciphertext ct

to zeroize all other coefficients. It follows from the property of Alg. 1 that the final output
ct′ ← EvalTrN/n(ct) satisfies

〈ct′, (1, s)〉 ≈ TrKN/Kn
(µ) = (N/n) ·

∑
(N/n)|i∈[N ]

µ[i] ·Xi

≈ (N/n) ·
∑
j∈[n]

(n · µj) ·X(N/n)·j = N ·
∑
j∈[n]

µj · Y j (mod q)

where Y = XN/n, as desired.

Removing the Leading Term. Our conversion algorithms from LWE(s) to RLWE in-
troduce the auxiliary term N to the phase of output RLWE ciphertext. We present two

9



available methods to remove this constant, but recommend to use the second method if ap-
plicable. Throughout this section, we assume that {ctj}j∈[n] are n LWE input encryptions
of our LWEs-to-RLWE and ct′ is the output RLWE ciphertext. Their phases are denoted by
µj = 〈ctj , (1, s)〉 (mod q) and µ′ = 〈ct′, (1, s)〉 (mod q), respectively.

The first approach is a post-processing procedure that utilizes the functionality of an HE
scheme. We describe the idea by providing two specific examples: BFV and CKKS. In the
BFV scheme with a plaintext modulus t > 1, each phase has the form of µj = ∆ ·mj + ej
for plaintext mj ∈ Zt and noise ej ∈ Z where ∆ = bq/te. Hence it satisfies that

µ′ = ∆ ·

N ·∑
j∈[n]

mj · Y j

+

N ·∑
j∈[n]

ej · Y j + e


for some extra noise e ∈ R. As in [24, 4], we can obtain a valid BFV encryption ct′′ of∑

j∈[n]mj · Y j by computing ct′′ ←
(
N−1 (mod t)

)
· ct′. However, this method works only

when t is co-prime to N , and the noise (N−1 (mod t)) · (N ·
∑

j∈[n] ej ·Y j+ e) of ct′′ becomes
somewhat large. Meanwhile, CKKS is a leveled HE scheme which exploits an approximate
encoding method µj = mj + ej for plaintext mj ∈ Z and noise ej ∈ Z, so that µ′ =
N ·

∑
j∈[n](mj + ej) + e for some noise e. The ‘rescale’ operation of CKKS can remove the

term N . To be precise, if the current modulus is q = q1 . . . q`, then we compute ct′′ ←
bq−1` · bq`/Ne · ct

′e, which is a CKKS encryption of
∑

j∈[n]mi with modulus q1 . . . q`−1. In
both cases, we roughly consume one level of the HE system.

The other solution is a general and more efficient method which pre-processes the inputs.
At the beginning of computation, we multiply the input LWE ciphertexts by the constantN−1

(mod q), so that their phases µj are also multiplied by the same factor. If we run the same
algorithm on the ciphertexts of phase N−1 ·µj (mod q), then the leading term N is cancelled
out and the output would be an RLWE ciphertext whose phase is ≈ N ·

∑
j∈[n](N

−1 ·µj)·Y j =∑
j∈[n] µj ·Y j as desired. This method is based on the assumption that the ciphertext modulus

q is co-prime to N , but it is not a strong requirement because a stronger assumption is usually
made in HE schemes in order to enable an efficient implementation.4 We recommend to use
the second method if applicable because it is depth-free and has better noise growth compared
to the first approach.

Further Computation on a Packed Ciphertext. In a plaintext level, our conversion
algorithm computes the function Znq → Rq, (µj)j∈[n] 7→

∑
j∈[n] µj · Y j , which is not a mul-

tiplicative homomorphism. However, it is often required to pack multiple values in plaintext
slots, instead of coefficients, so that parallel computation (e.g. element-wise addition or mul-
tiplication) is allowed over an encrypted vector of plaintexts.

It has been studied in several researches about HE bootstrapping [24, 30, 13, 12] how
to represent values from coefficients to slots and vice versa. In the case of BGV, BFV or
CKKS, the transformation can be done by evaluating the encoding or decoding functions of
the underlying scheme, which are expressed as linear transformations over plaintext vectors.
We do not consider it here because this coefficients-to-slots conversion is scheme-dependent.
Moreover, its computational cost is cheaper than the main part, so that the total/amortized
complexity does not change much even if we add this extra step at the end.

4 The ciphertext modulus q is usually set to be a product of primes 1 modulo 2N so that we can utilize an
efficient Number Theoretic Transformation (NTT) for polynomial arithmetic in Rq.

10



4 Implementation

4.1 Experimental Results

We provide a proof-of-concept implementation to show the performance of our conversion
algorithms. Our source code is developed in C++ by modifying Microsoft SEAL version
3.5.1 [40]. All experiments are performed on a desktop with an Intel Core i7-4770K CPU
running a single thread at 3.50 GHz, compiled with Clang 9.0.0 (-O3).

We set the secret distribution as the uniform distribution over the set of ternary polyno-
mials in R coefficients in {0,±1}. Each coefficient/entry of (R)LWE error is drawn according
to the discrete Gaussian distribution centered at zero with standard deviation σ = 3.2. Ta-
ble 2 presents timing results and noise growth for our conversion algorithms with various
LWE parameters. The selected parameter sets provide at least 128-bit of security level ac-
cording to the LWE estimator [2] and HE security standard white paper [1]. We adapt an
RNS-friendly decomposition method [5] and exploit an efficient NTT in order to optimize
the basic polynomial arithmetic. As discussed in Section 3.4, the LWEs-to-RLWE conversion
algorithm achieves a better amortized running time as the number of input LWE ciphertexts
n increases.

(N, log q) n

(212, 72) (213, 174) (214, 389)

Total
Noise

Total
Noise

Total
Noise

(Amortized) (Amortized) (Amortized)

LWE to LWE - 1.03 ms 7 4.81 ms 8 27.1 ms 10
LWE to RLWE - 11.2 ms 18 57.7 ms 21 361 ms 23

LWEs to RLWE

2
11.4 ms

18
58.7 ms

21
364 ms

23
(5.70 ms) (29.4 ms) (182 ms)

8
16.8 ms

20
83.2 ms

22
492 ms

24
(2.10 ms) (10.4 ms) (61.5 ms)

32
45.0 ms

20
209 ms

22
1168 ms

24
(1.41 ms) (6.53 ms) (36.5 ms)

Table 2: Concrete performance of our conversion algorithms measured by total running time
(amortized timing per ciphertext) and noise growth (an upper bound on the bit size of
coefficients of conversion errors).

Our solution supports flexible parameter setting so that it allows the client to take ad-
vantage in performance or functionality. We did not specify the type of HE scheme or its
plaintext space since the performance of our conversion algorithms depend only on the pa-
rameters N , log q and n. The noise of a fresh encryption is of size O(1) and the additional
noise from our conversion algorithm is bounded by poly(N) = poly(log q). Hence we can use
log q − O(log log q) out of log q bits of a ciphertext modulus for further homomorphic com-
putation. We refer the reader to Appendix A which provides noise analysis of our conversion
algorithms.

There are several options to utilize the space Zq for storing the phase of an LWE cipher-
text. If we use the full space to store a plaintext, then the expansion ratio between bitsizes of
ciphertext modulus and plaintext would be log q/(log q−O(log log q)) = 1+O(log log q/ log q).
It achieves nearly optimal rate but no more homomorphic computation is allowed after conver-
sion without bootstrapping. Otherwise, a larger parameter can be chosen to let ciphertexts
have more remaining levels after conversion without bootstrapping. In summary, a simple

11



trade-off between the expansion rate and computational capability can be made by the en-
cryptor accordingly.

4.2 Lightweight Communication with Homomorphic Functionality

HE is an attractive solution for secure outsourced computation on the cloud, however, there
still remain some problems of performance. Since RLWE encryption schemes are functional
but comparably expensive, a client must have a device (encryptor) with enough memory and
computational power. Moreover, the ciphertext expansion rate can be reasonably small only
when we pack a large number of values in a single ciphertext. So, the total communication
cost blows up if the client must send a small amount of information frequently. To mitigate
this issue, Naehrig et al. [38] gave a blueprint that the client sends data, encrypted by a
light-weight symmetric encryption scheme, as well as a homomorphically encrypted secret
key of the cryptosystem. Then, the cloud homomorphically evaluates its decryption circuit
to get homomorphically encrypted data. In this scenario, the main challenge is to construct
a symmetric encryption with low communication cost (expansion rate) and conversion com-
plexity.

The first attempt was made by Gentry et al. [25], which evaluated the AES-128 circuit
using the BGV scheme. The main implementation takes about 4 minutes to evaluate an entire
AES decryption operation on 120 blocks. Since then, other HE-friendly symmetric encryp-
tion schemes such as LowMC [3], FLIP [35], and Rasta [20] have been designed to reduce
multiplicative depth and minimize the cost of homomorphic decryption. These block/stream
ciphers have advantages in communication cost and encryption timing, but the transformation
of ciphertexts brings considerable computation overhead to the cloud side. Prior works have
several minutes’ latency for the transformation and have to collect a number of ciphertexts
to achieve the minimal amortized complexity.

We suggest to use an LWE-based symmetric encryption on the edge device and let the
cloud perform the LWE-to-RLWE conversion for homomorphic computation (multiplication).
Coron et al. [18] compressed the public key of an LWE-based encryption scheme by storing
its random part as a seed of a pseudo-random number generator (PRNG). We adapt the
same idea to reduce the size of ciphertexts. To be precise, a symmetric key LWE encryption
of secret s is of the form (b,a) ∈ ZN+1

q for a random vector a← U(ZNq ) and b = −〈a, s〉+ µ
(mod q) where µ is the phase from the input which is a randomized encoding of plaintext (by
Gaussian sampling). Since the second component a is purely random over ZNq , we can modify
the encryption algorithm such that it samples a seed se and takes it as the input of a PRNG
f : {0, 1}∗ → ZNq to generate a = f(se). As a result, a ciphertext can be represented as a pair
(b, se), and this variant remains semantically secure in the random oracle model. Moreover,
when a client sends multiple LWE ciphertexts to the cloud, the same seed can be reused by
computing the random part of the i-th ciphertext by ai = f(se; i). Hence, the communication
cost per ciphertext is only log q bits.

The use of an LWE-based scheme has several advantages compared to prior works based on
either block or stream ciphers: (1) Our solution has better conversion latency and amortized
timings, and a smooth trade-off between them based on our packing algorithm. As discussed
in Section 3.4, it requires to collect only Ω(logN) ciphertexts to obtain an optimal amortized
complexity. Meanwhile, previous solutions have fixed conversion latency timings (e.g. 4.1,
14.2, 14.5, and 7.7 minutes of AES-128, LowMC, FLIP, and Rasta, respectively) and require
to pack hundreds of messages to achieve the minimal amortized complexity of a few seconds
per input ciphertext, compared to several milliseconds of our approach. (2) Our algorithms are
more generic in the sense that they preserve the phases of input ciphertexts approximately.
Therefore, it is allowed to use any type of HE scheme including BGV/BFV with a non-binary
plaintext space, and CKKS for approximate arithmetic. On the other hand, the decryption of

12



block or stream cipher is usually Boolean circuits, so it is required to use an HE scheme with
a binary plaintext space to homomorphically evaluate its decryption circuit. Therefore, this
imposes a limitation that the resulting HE ciphertext supports only binary operations after
conversion. (3) Parameter setting is more flexible and the unit ciphertext size is much smaller
compared to the block/stream ciphers. (4) LWE-based schemes are additively homomorphic,
so linear operations can be done over input LWE ciphertexts before converting them into
RLWE ciphertexts.

If the client wants to send only a few bits of information at a time, we can take a smaller
ciphertext modulus q and hence speed up the computation. As discussed above, if the client
wishes to minimize the communication cost, then the expansion rate 1 + o(1) can be almost
optimal by utilizing the whole space to store a plaintext. For example, as shown in Table 2,
the expansion rate can be reduced down to 174/(174− 21) ≈ 1.14 or 389/(389− 23) ≈ 1.06
when (N, log q) = (213, 174) or (214, 389), respectively.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoffstein, J.,
Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.:
Homomorphic encryption security standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada
(November 2018)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Journal of Math-
ematical Cryptology 9(3), 169–203 (2015)

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE.
In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. pp.
430–454. Springer (2015)

4. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Annual Cryptology Con-
ference. pp. 1–20. Springer (2013)

5. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full RNS variant of FV like somewhat homomor-
phic encryption schemes. In: International Conference on Selected Areas in Cryptography. pp. 423–442.
Springer (2016)

6. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-based fully homomorphic
encryption schemes. Cryptology ePrint Archive, Report 2018/758 (2018), https://eprint.iacr.org/
2018/758

7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In:
Advances in Cryptology–CRYPTO 2012, pp. 868–886. Springer (2012)

8. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Leveraging linear decryption: Rate-1 fully-
homomorphic encryption and time-lock puzzles. In: Theory of Cryptography Conference. pp. 407–437.
Springer (2019)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without boot-
strapping. In: Proc. of ITCS. pp. 309–325. ACM (2012)

10. Carpov, S., Gama, N., Georgieva, M., Troncoso-Pastoriza, J.R.: Privacy-preserving semi-parallel logistic
regression training with fully homomorphic encryption. (2019), https://eprint.iacr.org/2019/101

11. Carpov, S., Sirdey, R.: Another compression method for homomorphic ciphertexts. In: Proceedings of the
4th ACM International Workshop on Security in Cloud Computing. pp. 44–50. ACM (2016)

12. Chen, H., Han, K.: Homomorphic lower digits removal and improved fhe bootstrapping. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 315–337.
Springer (2018)

13. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryp-
tion. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques.
pp. 360–384. Springer (2018)

14. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approximate homomorphic
encryption. In: Selected Areas in Cryptography – SAC 2018. pp. 347–368. Springer (2019)

15. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate num-
bers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Application of Cryptology and Information Security. pp. 409–437. Springer (2017)

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic encryption over
the torus. Journal of Cryptology pp. 1–58

13



17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: Boot-
strapping in less than 0.1 seconds. In: Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information Security. pp. 3–33. Springer
(2016)

18. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homo-
morphic encryption over the integers. In: Proc. of EUROCRYPT, LNCS, vol. 7237, pp. 446–464. Springer
(2012)

19. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., Mytkowicz, T.:
CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In: Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementation. pp. 142–156.
ACM (2019)

20. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E., Mendel, F., Rechberger,
C.: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: Annual International Cryptology
Conference. pp. 662–692. Springer (2018)

21. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144 (2012), https://eprint.iacr.org/2012/144

22. Gentry, C., Halevi, S.: Compressible fhe with applications to pir. In: Theory of Cryptography Conference.
pp. 438–464. Springer (2019)

23. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homomorphic encryption.
Journal of Computer Security 21(5), 663–684 (2013)

24. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Public
Key Cryptography–PKC 2012, pp. 1–16. Springer (2012)

25. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Advances in
Cryptology–CRYPTO 2012, pp. 850–867. Springer (2012)

26. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: STOC. vol. 9, pp. 169–178 (2009)
27. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption

scheme. In: Cryptographers’ Track at the RSA Conference. pp. 83–105. Springer (2019)
28. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library. IBM Research

(Manuscript) (2013)
29. Halevi, S., Shoup, V.: Algorithms in HElib. In: Advances in Cryptology–CRYPTO 2014. pp. 554–571.

Springer (2014)
30. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Advances in Cryptology–EUROCRYPT 2015, pp.

641–670. Springer (2015)
31. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation and application to neural

networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 1209–1222. ACM (2018)

32. Kim, M., Song, Y., Li, B., Micciancio, D.: Semi-parallel logistic regression for GWAS on encrypted data.
Cryptology ePrint Archive, Report 2019/294 (2019), https://eprint.iacr.org/2019/294

33. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Designs, Codes and
Cryptography 75(3), 565–599 (2015)

34. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Ad-
vances in Cryptology–EUROCRYPT 2010. pp. 1–23 (2010)

35. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers for efficient FHE with low-
noise ciphertexts. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 311–343. Springer (2016)

36. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 700–718. Springer
(2012)

37. Miccianco, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: 45th International Col-
loquium on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2018)

38. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings
of the 3rd ACM workshop on Cloud computing security workshop. pp. 113–124. ACM (2011)

39. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: Heax: High-performance architecture for computation on
homomorphically encrypted data in the cloud. arXiv preprint arXiv:1909.09731 (2019)

40. Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL (Apr 2020), microsoft Research,
Redmond, WA.

41. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, codes and cryptography
71(1), 57–81 (2014)

14



A Noise analysis

The key switching procedure in Section 2.4 is the only source of an extra noise during our
conversion algorithms. Recall that the key-switching procedure KeySwitch(ct = (c0, c1);K)
introduces the noise eks = 〈g−1(c1), e〉 where e is the noise of the KS key K. We make a
heuristic assumption (which has been widely used in HE researches, e.g. [25, 28, 16]) such
that a KS noise behaves as if its coefficients are sampled independently from a Gaussian
distribution with a fixed variance, which will be denoted by Vks. For a random variable
a =

∑
i∈[N ] ai · Xi over R, we denote by Var(a) the maximum among the variances of its

coefficients {Var(ai) : 0 ≤ i < N}.
In practice, we need to specify the gadget decomposition method to compute Vks. For

example, suppose that the ciphertext modulus q =
∏

0≤i<d qi is a product of relatively co-
prime integers and the gadget decomposition is defined as Rq →

∏
i∈[d]Rqi , a 7→ g−1(a) =

(a (mod qi))0≤i<d.5 Then, the coefficients of eks = 〈g−1(c1), e〉 have the common variance
Vks ≤ 1

12Nσ
2 ·
∑

i∈[d] q
2
i where σ2 is the variance of RLWE error distribution.

A.1 LWE to LWE

Technically, our LWE-to-LWE conversion includes only one KS procedure between RLWE
ciphertexts and then we extract an LWE ciphertext from the output ciphertext. As shown in
the correctness proof in Section 3.2, the additional noise in the final LWE ciphertext is equal
to the constant term of the KS noise, whose variance is Vks.

A.2 LWE to RLWE

We will analyze the noise of homomorphic trace evaluation (EvalTrN/n in Alg. 1) since the
LWE-to-RLWE conversion is a special case where n = 1.

We showed that if µ = b + as (mod q) is the phase of the input ciphertext ct, then the
phase of ct′ is TrKN/KN/2k

(µ) + ek for some error ek after k iterations. We will estimate the
variance of ek using the induction on k.

If k = 0, we have e0 = 0. For 1 ≤ k ≤ log(N/n), we denote by e′k ∈ R the additional
noise from the homomorphic automorphism at the k-th iteration. Then, we get ek = ek−1 +
τd(ek−1)+e

′
k for d = 2logN−k+1+1 and its variance is bounded by Var(ek) ≤ 4·Var(ek−1)+Vks.

Therefore, the noise of the output ciphertext from Alg. 1 is bounded by Var(ek) ≤ (1 + 4 +
· · ·+ 4k−1) · Vks ≤ 1

3

(
(N/n)2 − 1

)
· Vks.

Our LWE-to-RLWE algorithm is the case of n = 1 (or equivalently k = logN) which
returns a ciphertext whose phase is TrK/Q(µ) + elogN for some elogN such that Var(elogN ) ≤
1
3(N

2 − 1) · Vks.

A.3 LWEs to RLWE

We first analyze the noise growth of Alg. 2. We showed that if {ctj = (bj , aj)}j∈[2`] are the
input RLWE ciphertexts such that µj = (bj+aj · s)[0], then the phase µ of output ciphertext
satisfies that µ[(N/2`) · j] = 2` · µj + e`,j (mod q) for all j ∈ [2`] and for some e`,j ∈ Z.
If ` = 0, then there is no extra noise from the packing algorithm. In the case of ` > 0, we
divide the input ciphertexts into two groups and run the packing algorithm on each subgroup
separately. Suppose that the phases of cteven and ctodd satisfy

µeven[(N/2
`−1) · j] = 2`−1 · µ2j + e`−1,2j (mod q),

µodd[(N/2
`−1) · j] = 2`−1 · µ2j+1 + e`−1,2j+1 (mod q)

5 This method is called the prime decomposition which is widely used in the construction of RNS-friendly
HE schemes such as [5, 27, 32, 40].

15



for some errors e`−1,2j , e`−1,2j+1 ∈ Z. Let e′`(X) be the additional noise from the evaluation
of automorphism EvalAuto(cteven−XN/2` · ctodd, 2`+1) and e′`,j the (N/2

`)) · j-th coefficient
of e′`(X) for j ∈ [2`]. Then, we get a relation e`,j = 2e`−1,j + e′`,j between errors from the
equation µ = µ′even +XN/2` · µ′odd + e′`(X) for all j ∈ [2`]. Since e′`,j has a fixed variance Vks
for all ` and j, we have Var(e`,j) = 4 · Var(e`−1,j) + Vks. Finally, we use the induction on `
and show that Var(e`,j) = (1 + 4 + · · ·+ 4`−1) · Vks = 1

3(n
2 − 1) · Vks when n = 2`.

In our LWEs-to-RLWE conversion, the packing algorithm is followed by the trace evalu-
ation EvalTrN/n whose noise growth is analyzed above. Hence, the phase of the output cipher-

text from the LWEs-to-RLWE conversion satisfies that µ = (N/n)·
(∑

j∈[n](nµj + e`,j) ·X(N/n)·j
)
+

ek(X) (mod q) where ek denotes the noise from trace evaluation and k = log(N/n). There-
fore, the variance of total noise (N/n)·

(∑
j∈[n] e`,j ·X(N/n)·j

)
+ek(X) is bounded by (N/n)2 ·

Var(e`,j) + Var(ek) ≤ 1
3(N

2 − 1) · Vks.

16


