
Biometric-Authenticated Searchable Encryption

Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

Surrey Centre for Cyber Security
University of Surrey

Guildford, United Kingdom

d.gardham@surrey.ac.uk, mark@manulis.eu, c.dragan@surrey.ac.uk

Abstract. We introduce Biometric-Authenticated Keyword Search (BAKS), a
novel searchable encryption scheme that relieves clients from managing cryp-
tographic keys and relies purely on client’s biometric data for authenticated
outsourcing and retrieval of files indexed by encrypted keywords.

BAKS utilises distributed trust across two servers and the liveness assumption
which models physical presence of the client; in particular, BAKS security is
guaranteed even if clients’ biometric data, which often has low entropy, becomes
public. We formalise two security properties, Authentication and Indistinguisha-
bility against Chosen Keyword Attacks, which ensure that only a client with a
biometric input sufficiently close to the registered template is considered legit-
imate and that neither of the two servers involved can learn any information
about the encrypted keywords.

Our BAKS construction further supports outsourcing and retrieval of files using
multiple keywords and flexible search queries (e.g., conjunction, disjunction and
subset-type queries). An additional update mechanism allows clients to replace
their registered biometrics without requiring re-encryption of outsourced key-
words, which enables smooth user migration across devices supporting different
types of biometrics.

Keywords: Searchable Encryption · Biometric Authentication · Secret Shar-
ing.

1 Introduction

Searchable Encryption. Searchable Encryption addresses the need for clients with
computation or storage limitations to outsource encrypted data to (potentially multi-
ple) servers. Retrieval processes typically operate on encrypted keywords that preserve
the privacy of search queries of the client from malicious servers. Most of existing so-
lutions can be generally split into two approaches: Symmetric Searchable Encryption
(SSE), e.g., [4, 17, 36], where a high-entropy key is shared between the client and the
server, and Public Key Encryption with Keyword Search (PEKS), e.g., [2, 7, 8, 11, 16,
31,36,37].

From the practical perspective, both of these approaches require the client to store
and manage cryptographic keys, which can be generally considered error-prone and
brings further limitations for users who wish to use multiple devices to outsource and
perform search over encrypted data. Password-Authenticated Keyword Search (PAKS)

2 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

[25] was recently introduced to alleviate this problem by basing security of search-
able encryption on a human-memorisable password and adopting a two-server archi-
tecture [12, 44] to account for dictionary attacks on low-entropy passwords and key-
words which arise in such case. The high-level idea used in [25] is to use a password-
authenticated key-recovery protocol in combination with an SSE scheme.

Precisely due to their nature of being memorable, passwords are often re-used, in
different contexts than their initial purpose [35]. Moreover, strict policies that require
the user to frequently update his password, can further exacerbate this problem. A
security breach on a particular server may impact all other servers for which the user
has re-used some form of his password. The current trend, observed in the domain of
web authentication (e.g. [21]), is to move away from passwords to other forms of usable
authentication factors. In this context, biometric data (e.g., fingerprints, iris recogni-
tion, facial imagery, etc.) can be seen as an alternative to passwords, especially since
support for different types of biometrics on commodity user devices such as laptops,
smartphones, and wearables is on the rise.
Challenges for Biometric-based Searchable Encryption. Crucially, biometric
data used for authentication is inherently noisy (e.g., as opposed to passwords), which
introduces unique challenges for the design and security analysis of biometric-based
protocols. In the context of searchable encryption, a general approach for a purely
biometric-based solution could be to adopt fuzzy extractors [9, 13,19,20] and combine
them with SSE schemes [4, 17, 36], i.e., user’s biometric input would be processed by
a fuzzy extractor to obtain a symmetric key, which will then be used to outsource
encrypted keywords to the server and perform the search. However, to practically use
fuzzy extractors to source high-entropy (symmetric) keys, the biometric data needs to
be of a certain “quality” (i.e., the min-entropy greater than a fixed threshold). Tech-
niques to utilize distributions with low-entropy have been studied in [13], but require
some additional structure, in particular, that random subsequences of the biometric
data source still have sufficient min-entropy. It is shown that this property is necessary
to support low-entropy source material [13]. Finding biometric data that satisfies these
requirements is particularly challenging, as even the best source of biometric data, i.e.,
iris recognition [40], ran by the state-of-the-art iris recognition protocol IrisCode [18]
falls short of the minimum bound [6]. Additionally, it is unclear how to apply the tech-
niques in [13] to arbitrarily type biometric data, and enforce the structure required
by low entropy source distributions. Therefore, the use of fuzzy extractors imposes
restrictions over the selection of biometric data, that makes them unsuitable for our
construction.

Another aspect for the unsuitability of fuzzy-extractors for our model relates to
their security assumptions. The security of this general approach would rely on the
secrecy of the biometric data, which often has low entropy (i.e., comparable to 32
bits security [23]), and if this data is leaked the server would be able to break the
privacy of the outsourced keywords. However, the assumption that biometric data is
secret, although widely used in academia [10, 19, 28], is often too strong for the real
world. Indeed, in many practical applications biometric authentication often relies on
mechanisms ensuring physical presence of the user, e.g., in applications of e-passports
and in recent FIDO standards for web authentication [21], etc. This so-called liveness
assumption is also part of industrial standardization efforts, e.g., ISO/IEC WD 30107
[1], to detect and prevent impersonation attacks based on digital copies of biometric
data or other fake artefacts, and has been also considered in the academic literature

Biometric-Authenticated Searchable Encryption 3

[22, 39]. Under this assumption biometric data used as input to the cryptographic
protocol can be considered public as long as it remains fresh and stems from a living
subject, in which case security of the protocol can still be guaranteed. The liveness
assumption, however, is only valid and enforced on the client side, and does not prevent
malicious servers from running brute-force attacks against the biometric template, thus
enabling dictionary-type attacks on the outsourced (low-entropy) keywords [16]. Hence,
designing a searchable encryption scheme that would rely only on biometric data and
remain secure is particularly challenging and requires a new approach.

We note that access pattern attacks, when paired with auxiliary information about
the files in the database, could allow an adversary to recover the keyword of a search
query (e.g. [26]). A variety of works [14, 29, 34, 45] have shown that it may also be
impossible to protect against access pattern leakage attacks, and that SSE as a prim-
itive leaks too much information to feasibly mitigate against these attacks. Some of
these known attacks [14, 45] require an adversary to perform active insertion of files,
which could be mitigated against by enforcing an authentication property for at least
the outsourcing protocol. We briefly note that oblivious RAM (ORAM), or other tech-
niques [32], can be used to achieve minimal information leakage, that is, the server
only learns the number of files in the database. However, ORAM typically requires
high bandwidth, but where low bandwidth is sufficient, much more client storage is
needed [43]. With this in mind, understanding when pattern leakage is acceptable is
an important direction for future research, but is not considered further in this work.

Our Contribution: Biometric-Authenticated Keyword Search (BAKS). We
propose a novel searchable encryption scheme, BAKS, that relies purely on a client’s
biometric data for authenticated outsourcing and retrieval of files indexed by encrypted
keywords and relieves clients from managing cryptographic keys. The scheme relies on
the two-server architecture and the liveness assumption on the biometric inputs. BAKS
makes use of symmetric searchable encryption techniques with the symmetric key be-
ing linked to the biometric data and protected by secret-sharing techniques involving
both servers. BAKS accounts for the noise in biometric measurements and consists of
a protocol that allows the client to reconstruct this key following an interaction with
both servers as long as the measured biometric input is “similar” to the template that
was used during the initial registration phase. The degree of similarity, potentially in-
fluenced by the accuracy of the measuring device, is defined by the client during the
registration. The use of a two-server architecture not only is crucial for the secrecy of
the keywords but also improves the availability of outsourced files, since each server
stores a copy. Our security model for BAKS defines two main security properties: (i) in-
distinguishability against chosen keyword attacks guaranteeing that keywords remain
secret against an active adversary in control of at most one server and (ii) authen-
tication ensuring that only legitimate clients can outsource the encrypted keywords.
Security of our construction is proven under standard cryptographic assumptions and
its efficiency analysis shows that the scheme has linear overhead in the length of the
biometric template. In addition, BAKS supports update of the registered biometric
without requiring any re-encryption of the outsourced keywords, thus making it easier
for the users to migrate across devices.

4 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

2 Preliminaries and Building Blocks

We introduce the assumptions and building blocks underlying our BAKS scheme.

2.1 Cryptographic Building Blocks

Pedersen Commitment [38]. Let G be a multiplicative cyclic group of order q, with
g, h←$G two generators such that logg h is unknown. A Pedersen commitment is com-
puted as c← grhm, for some message m, with r←$Zq. It can be opened by providing
(r,m). Pedersen commitments provide perfect hiding and computational binding of the
message under the Discrete Logarithm (DL) assumption in G.

Pseudorandom Function [24, 33]. A pseudorandom function (PRF) takes as input a
high entropy key k and a message m, and produces an output PRF(k,m) that should
be indistinguishable from a uniformly random bit string of the same length, for any
efficient adversary A. In this paper, we restrict the key space, message space, and out-
put to be a cyclic group G of order q, PRF : G×G→ G.

Key Derivation Function [30]. A key derivation function (KDF) takes as input a
source of key material σ and a context variable c, to produce a key k. Any efficient ad-
versary A can distinguish with a negligible probability between the output of KDF(σ, c)
and a uniformly sampled binary string of the same length, for some σ, c. Let G be a
cyclic group of order q, we consider KDF : G× {0, 1}∗ → G.

Message Authentication Code [5]. A message authentication code (MAC) is defined
as (KGen, Tag, Ver), where the secret key mk ← KGen(1λ), for some security parameter
λ. Algorithm Tag(mk,m) outputs a code (or a tag) µ, for any key mk and any message
m. The verification algorithm Ver(mk,m, µ) evaluates if the tag µ is valid w.r.t. mk and
a message m. The MAC satisfies a correctness property: true← Ver(mk,m, Tag(mk,m)),
for some m and any mk ← KGen(1λ). The MAC is unforgeable if any efficient adversary
A has a negligible advantage to create a tag µ∗ for a message m∗, without access to
the key mk. The adversary has access to an oracle Otag(·) that outputs µ← Tag(mk,m)
for any message m 6= m∗. In this paper, we use the output of KDF as the key space,
and consider messages of arbitrary length {0, 1}∗. There is no restriction on the code
space, but for uniformity with the previous cryptographic primitives we take it as G.

Secret Sharing of Group Elements [38, 41, 42]. We consider a threshold secret-
sharing scheme SS = (Setup, Shr, Rec) that shares group elements in G for which we
know the discrete logarithm. The setup algorithm Setup(1λ) sets the public parameters
pp = (t,N, g,G, q), with N as the number of shares, 0 < t ≤ N as the threshold, the
group G of order q as the secret space and share space, and g ∈ G as the generator.
Algorithm Shr(pp, k) shares the secret K = gk by returning the shares {Ki}Ni=1. This
is done by first applying Shamir’s threshold secret sharing scheme [42] to create the
shares k1, . . . , kN ∈ Zq from k, before returning {Ki}Ni=1 with Ki = gki . The recon-
struction Rec(pp, T) returns K for any set of shares |T | ≥ t, by replicating Shamir’s
reconstruction in the exponent [38]. The scheme SS is private, if any efficient adversary
A has an negligible advantage to distinguish between given shares of K ∈ G or shares
of K ′ ∈ G, when he can see at most (t−1) shares [41], for any pp = (t,N, g,G, q). This
scheme trivially satisfies privacy, as the underlying Shamir scheme is perfect [42].

Biometric-Authenticated Searchable Encryption 5

2.2 Biometric Sampling and Liveness Assumption

A user’s biometric data is modelled as a distribution D, and an instance of a user
submitting a biometric reading is captured by sampling W ←$D. Let M be a metric
space with distance function d : M × M → R+. Our protocol is constructed for d
being the Hamming distance over M := {0, 1}N , however, we note that the model fits
a generic instance to encompass other metrics suitable for different types of biometric
data. To relate the biometric sampling to the security properties, it is necessary to
define two error-probabilities.

The first error we consider is false rejection. That is, the distance between any
two samples from the same biometric distribution is bounded by a constant τ1 with
probability 1 − εfr. Here we capture the event a legitimate user submits a biometric
sample that is sufficiently noisy and is therefore rejected. This probability will be
necessary in the definition for the correctness of the protocol. Formally, we have:

Pr[W ← D,W ′ ← D : d(W,W ′) ≤ τ1] ≥ 1− εfr

Secondly, we introduce false acceptance. This states that any two biometrics sam-
pled from two different distributions (which corresponds to different users submitting
biometric data) have a minimum distance τ2 with probability 1 − εfa. We use this to
model an adversary, who cannot sample from the user’s biometric distribution, that is
able to falsely authenticate himself as that user. We define false acceptance formally
as:

Pr[W ← D,W ′ ← D′ : d(W,W ′) > τ2] ≥ 1− εfa
Finally, we assume that the biometric distribution D for user U is public and conse-

quently rely on the liveness assumption [1,18] which states that any input of biometric
data is sampled fresh from a user. It ensures the physical presence of the user and thus
prevents an attacker from mounting replay attacks, or altering the output of the bio-
metric sensor. We model it through an oracle Obio that takes as input some biometric
distribution D, chosen by the adversary, and outputs results of the computation using
a fresh sample W ←$D. Any step that involves computation on the biometric sample
directly must be computed and output by the oracle.

An implementation of liveness assumption in practice would require some form of
trusted processing of biometric measurements, which is not in the focus of this paper.
We note, however, there exist a number of methods for enforcing liveness detection such
as software enhancement (e.g. pupil and eye movement for iris recognition), hardware
enhancement (e.g. temperature sensing, pulse, electrical conductivity, ECG for finger-
prints) and challenge-response techniques (e.g. expressions in face recognition) [3].

3 Biometric-Authenticated Keyword Search: Syntax and
Definitions

In this section we model BAKS and its security properties. Our model is inspired by
the recent model for password-authenticated keyword search from [25], which in turn
addresses main security requirements that have been previously formulated for other
flavours of searchable encryption, e.g. [2, 7, 16]. The main differences to [25] is that
we need to account for the inherent errors in the imperfectness of the measurement
process, and also application of the liveness assumption to this protocol.

6 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

3.1 Syntax of BAKS

Definition 1 (BAKS). The BAKS = (Setup, Register, Outsource, Retrieve) proto-
col consists of the following algorithms:

• Setup(1λ) : pp, takes as input a security parameter λ and outputs public parameters
pp, that include a description for the structure of the biometric data.
• Register(pp, U, t,W, S0, S1) is executed between user U and two servers S0 and S1,
and consists of the following two interactive algorithms:

– RegisterU(pp, t,W, S0, S1) : {succ, fail} performed by U, takes an input a de-
scription of the biometric data W, public parameters pp, and the identities of the
two servers S0 and S1. It interacts with RegisterSd for d ∈ {0, 1} and outputs
succ if registration was successful and fail otherwise.

– RegisterSd(pp, U, S1-d) : infod, performed by Sd, d ∈ {0, 1}, takes as input the
users identity U and the identity of the other server S1-d. It interacts with RegisterU

and RegisterS1−d. At the end of the protocol, it stores infod associated with user
U on Sd.

• Outsource(pp, U,W ′, w, f, S0, info0, S1, info1) is executed between a user U and two
servers S0 and S1 that follow the interactive algorithms:

– OutsourceU(pp, U,W ′, w, f, S0, S1) : {succ, fail} executed by U, takes as input a
sampled biometricW ′, a keyword w, and a file descriptor f, and finally the identity
of two servers S0 and S1. The algorithm interacts with OutsourceSd for d ∈ {0, 1},
it outputs succ if successful, and fail otherwise.

– OutsourceSd(pp, U, S1-d, infod) : (C, f) is performed by server Sd for d ∈ {0, 1}.
It takes as input the identity of the user U, identity of the other server S1-d and
information infod. This protocol interacts with OutsourceU and OutsourceS1−d,
and upon completion, stores (C, f) in a database CCCd.

• Retrieve(pp, U,W ′, w, S0, info0, S1, info1) is executed between user U and the servers
S0 and S1 that follow the two interactive algorithms below.

– RetrieveU(pp,W ′, w, S0, S1) : FFF , executed by the user U, takes as input a sampled
biometric W ′, a keyword w, and the identity of the servers S0 and S1. It interacts
with RetrieveSd for d ∈ {0, 1}. It outputs a set FFF containing all file descriptors f

associated with keyword w.
– RetrieveSd(pp, U, S1-d, infod) : {succ, fail}, executed by server Sd for d ∈ {0, 1}.

It takes as input user identity U, server identity S1-d and information infod, it
interacts with RetrieveU and RetrieveS1−d, and outputs a flag in {succ, fail}.

We store the outsourced data on both servers for redundancy and increased availability.
In particular, a user suffers minimal data loss in the event a server is compromised and
mounts a denial of service attack.

Correctness. Intuitively, correctness ensures that a file f ∈ F outsourced under a
keyword w will be retrieved (i.e., f ∈ FFF) with probability of 1 − εfr, where εfr is the
probability of false rejection, provided the user presents a biometric sample W ′ which
is sufficiently close to the registered template W. Formally, we say that the BAKS
scheme is correct if ∀λ ∈ N, f ∈ F , w ∈ wd,W,W ′ ∈ D, pp ← Setup(1λ) we get
Pr[f ∈ FFF] = 1− εfr iff:

Biometric-Authenticated Searchable Encryption 7

〈succ, info0, info1〉 ← Register(pp, U, t,W, S0, S1)
〈succ, (C, f), (C, f)〉 ← Outsource(pp, U,W ′, w, f, S0, info0, S1, info1)

〈FFF , succ, succ〉 ← Retrieve(pp, U,W ′, w, S0, info0, S1, info1)

3.2 Security Definitions

We define two notions of security for BAKS, Indistinguishability against Chosen Key-
word Attacks (IND-CKA) and Authentication (Auth), inspired by the recent model
from [25]. We model the adversary A as a probabilistic polynomial-time algorithm
(PPT), and we define security through experiments in Figure 1.

Oracles. We consider a PPT adversary A that interacts with the BAKS functionality
through the following set of oracles and can possibly corrupt one of the two servers,
S0 or S1, involved in the protocol. During each user registration, the adversary gets
access to the information assigned to server S1-d, for any one d of his choice. Then,
the adversary can only play an active role in the retrieval and outsourcing protocols
by assuming the role of server S1-d, for d fixed during registration. We further give the
adversary the capability to impersonate the user, together with his control over server
S1-d, and interact with an honest server Sd either during retrieval or outsourcing.

To manage multiple registration sessions, even for the same user (with potentially
different biometric distributions), we use a unique session identifier j. For simplicity,
this session identifier starts at 0, and with each registration it is incremented. Each
time the adversary wants to retrieve or outsource files for a particular user, he needs
to provide the corresponding session identifier i, s.t. 0 ≤ i < j. Due to the liveness
assumption each oracle call that handles (adversarial given) biometric distributions
must first call the biometric sampling oracle to extract a biometric sample.

Internal to the oracles, we use a table E (initially empty) to store and access the
tuples (d,D, infod) assigned to the honest servers Sd during registration, i.e. E[j] ←
(d,D, infod). We store all biometric distributions for which the adversary has requested
a sample in a list B; that is initially empty. We also log all keyword requests by the
adversary in the sets ASet (during outsourcing) and ISet (during retrieval); that are
initialised at the beginning of both security experiments. The variables i∗ ∈ Z, f∗ ∈ FFF
and user distribution D∗ are used to store the challenge values during the challenge
outsource oracle in the IND-CKA experiment.

– Och(b, ·) is a challenge oracle, which on input (·) = (i, w0, w1, f) aborts if ((i∗ ≥
0) ∨ (i ≥ j) ∨ ((i, w0) ∈ ISet) ∨ ((i, w1) ∈ ISet)). Otherwise, it sets i∗ ← i,
f∗ ← f, and takes D∗ ← D from E[i] ← (d,D, infod). Then, it invokes oracle
OoutU(i∗, wb, f

∗). It is used as the indistinguishably challenge in the IND-CKA proof
for BAKS, where bit b is defined.

– Oreg(·), with (·) = (d,D), is the oracle that registers user U and its biometric
distribution D. First, a biometric sample W is obtained from the Obio(D). The
registration protocol Register is run between the adversary A playing the role of
server S1-d, and the oracle running RegisterU and RegisterSd. Then, the map E
gets updated for the current session identifier j as E[j] ← (d,D, infod), and j is
incremented j ← j + 1.

– OoutU(·) on input (·) = (i, w, f) the oracle aborts if (i ≥ j), otherwise it obtains
(d,D, infod) ← E[i]. The biometric sample is taken from W ← Obio(D). Then,

8 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

the protocol Outsource is then executed, with the oracle running OutsourceU

and OutsourceSd, and the adversary A playing as S1-d. During the authentication
game, the oracle performs an additional step ASet← ASet ∪ (i, w, f).

– OoutS(·) on input (·) = (i). If i < j the oracle parses list E and obtains (d,D, infod);
otherwise it aborts. Then, the protocol Outsource is executed with A playing the
roles of S1-d and U, and the oracle running OutsourceSd. This oracle is used in the
AUTH experiment for BAKS.

– OretU(·) on input (·) = (i, w). If i ≥ j and ((i = i∗) ∧ (w ∈ {w0, w1})) the oracle
aborts; otherwise it parses list E and obtains (d,D, infod). A biometric sample
is taken from W ← Obio(D). Then, the protocol Retrieve is then executed with
the adversary A in role of S1-d, and the oracle honestly running RetrieveU and
RetrieveSd. If (i∗ = −1) then the oracle further computes ISet← ISet ∪ (i, w).

– OretS(·) takes as input (·) = (i), and aborts only if i ≥ j. Otherwise, it obtains
(d,D, infod) ← E[i]. The retrieve protocol Retrieve is then executed, with the
oracle running RetrieveSd honestly, and the adversary A playing the roles of user
U and server S1-d. This oracle is used in the IND-CKA property of BAKS.

– Obio(·) takes as input a biometric distribution (·) = (D). It samples W ←$D, pos-
sibly performs computations onW and outputs the result. Additionally, it updates
the list of all queried biometric distributions B ← B ∪ {D}.

Indistinguishability against Chosen Keyword Attacks (IND-CKA). This security
property is closely related to [4] and [25], with the extension that our definition consid-
ers authentication with regard to the retrieval phase based on a user’s biometric data.
It is formally defined through the experiment ExpIND-CKA−b

BAKS,A in Figure 1. The experi-
ment is initialised and the public parameters pp are set, the adversary is given access to
the oracles Och, Oreg, Oout,OretU, OretS and Obio where it makes 1, qr, qo, qt, qs and qb
queries respectively. The adversary wins the game if, when presented with a challenge,
is unable to distinguish which keyword wb was used in the execution of the protocol
except in the case an (illegitimate) biometric sample is falsely accepted. We capture the
two scenarios for A in the IND-CKA experiment. Firstly, an adversary who has control of
a corrupt server S1-d interacts with the honest user U and server Sd, or secondly, where
the adversary controls an illegitimate user communicating with the honest servers Sd
and S1-d. We must also consider the case A samples a biometric sufficiently close to
the registered template of a user. This is incorporated by utilising the false acceptance
probability εfa defined in Section 2.2. We say that a BAKS scheme is IND-CKA-secure if
the following advantage is bounded by εfa + negl, where negl is negligible in λ:

AdvIND−CKA
BAKS,A (1λ) :=

∣∣Pr[ExpIND-CKA−1
BAKS,A (1λ) = 1]− Pr[ExpIND-CKA−0

BAKS,A (1λ) = 1]
∣∣

Authentication (AUTH). Motivated by a similar property in the password-based set-
ting [25], the authentication property of BAKS captures two attack scenarios for an
adversary. In the first case, A wins if he is able to outsource a file on behalf of some
user without sampling the user’s biometric. Secondly, if it is able to retrieve an honestly
outsourced, file again without sampling a biometric from the user’s biometric distribu-
tion. We define this property with the experiment ExpAUTH

BAKS,A in Figure 1. In the game,
variables are initialised, and the adversary is given access to the oracles Oreg, OoutU,
OoutS, OretU and Obio where each oracle is queried qr, qo, qs, qt and qb times, respec-
tively. The adversary is allowed to interact with the user U with biometric distribution
D, as well as an honest server Sd. We allow the adversary to control server S1-d as

Biometric-Authenticated Searchable Encryption 9

ExpAUTH
BAKS,A

E ← ∅;B ← ∅; j ← 0;

ASet← ∅; pp← Setup(1λ);

(i∗, w∗, f∗,D∗)← AOreg,OoutU,OoutS,OretU,Obio(pp)

W ′ ←$D∗

〈FFF , succ, succ〉 ← Retrieve(pp, U,W ′, w∗, Ŝ)

return (((i∗, w∗, f∗) /∈ ASet)∧
(f∗ ∈ FFF) ∧ (D∗ /∈ B))

ExpIND-CKA−b
BAKS,A

E ← ∅;B ← ∅; i∗ ← (−1); j ← 0;

ISet← ∅; pp← Setup(1λ);

b′ ← AOch,Oreg,OoutU,OretU,OretS,Obio(pp)

return b′ ∧ (D∗ /∈ B)

Fig. 1. Security Experiments for BAKS, where Ŝ = (S0, info0, S1, info1).

well as interrupt and alter all communication in sessions between the honest server
Sd and the user U. The probability the adversary samples a biometric (from a distinct
distribution D′ 6= D) sufficiently close to the registered template and thus is able to
trivially break security by including the false acceptance probability εfa from Section
2.2. The adversary loses the game if it invokes the Obio on the user’s U distribution D.

A BAKS scheme provides authentication if the following advantage is bounded by
εfa + negl, where negl is negligible in λ:

AdvAUTH
BAKS,A(1λ) :=

∣∣Pr[ExpAUTH
BAKS,A(1λ) = 1]

∣∣

4 Construction

In this section we present our Biometric-Authenticated Keyword Search (BAKS) pro-
tocol. We start with a high-level description of the protocol, and emphasise the func-
tionality for the users. Then, we detail the protocol, and provide explicit description
for the setup and registration algorithm, and refer to Figures 3 and 4 for the outsource
and retrieval algorithms. To ease presentation, we illustrate in Figure 2 the method for
key reconstruction that both outsource and retrieval algorithms use. Additionally, we
provide an efficiency analysis and show how our protocol can be extended to handle
multiple keywords and update of user’s biometric data.

High-level Overview. Our construction is based on the password-authenticated key-
word search [25], that we modify significantly to work with (noisy) biometric templates.
We account for the imperfections of biometric data, where at each scan some bits may
differ from the initial template, by considering a threshold secret-sharing scheme [42].
We fix as N the total number of bits that can be extracted and used by users, but
trivial extension can consider an arbitrary number, dependingent the user’s biometric
device.

When each user U registers in our protocol, he calls Register and creates a high
entropy key K = gk, for k←$Z∗q . All future computations between the user U and
the servers S0 and S1 are done with respect to this key K. One core property of our
protocol is that we do not require the user to store this key, and devise a method where

10 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

Key reconstruction sub-routine KRec

User U(pp,W) Server Sd(pp, infod), with infod = (xd,

with W = {Wi}Ni=1 gr1 , gr2 , {C(i)
W ,K

(i)
d , mk

(i)
d }

N
i=1, mkd)

1 : for 1 ≤ i ≤ N do

ai ←$Z∗q , Ai ← gaihWi
i

2 :
{Ai}Ni=1−−−−−→ sd, yd ←$Z∗q , Yd ← gyd 3

Rd ← (gr2)yd , cd ← gsdhH(Yd,Rd) 4

(c1-d, s1-d, Y1-d, R1-d)
StS←−−−−−−−−−−−→ 5

if c1-d 6= gs1-dhH(Y1-d,R1-d) then abort 6

Y ← Y0Y1, R← R0R1 7

for 1 ≤ i ≤ N do 8

Z
(i)
d ← K

(i)
d (C

(i)
W A-1

i)yd(gr1R)-xd

µ
(i)
d ← Tag(mk

(i)
d , (Ai, Y, Z

(i)
d))

9 :
Y,{Z(i)

d
,µ

(i)
d
}Ni=1←−−−−−−−−−−− return ({Ai}Ni=1, Y)

10 : T ← ∅
Y,{Z(i)

1-d,µ
(i)

1-d}
N
i=1←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 : for 1 ≤ i ≤ N do

Ti ← Z
(i)
0 Z

(i)
1 Y ai

mk
(i)
0 ← KDF1(Ti, S0, ‘1’), mk

(i)
1 ← KDF1(Ti, S1, ‘1’)

if Ver(mk
(i)
0 , (Ai, Y, Z

(i)
0), µ

(i)
0) ∧ Ver(mk

(i)
1 , (Ai, Y, Z

(i)
1), µ

(i)
1) then

T ← T ∪ {Ti}
12 : K ← SS.Rec(T), return (K, {Ai}Ni=1, Y)

Fig. 2. This is a partial view of subroutine KRec that construct the key K from the biometric
input W . The complete routine KRec involves the user U sending the message in Step 2 to
both servers S0 and S1, then at Steps 9 and 10 receiving messages from both servers. We
illustrate only the computation done by Sd, as S1-d performs the exact same steps. Moreover,

we use
StS←→ to model the communication between Sd and S1-d; at a high level Sd sends the

commitment cd, waits for c1-d, then sends the opening sd, Yd, Rd and receives s1-d, Y1-d, R1-d.
SS.Rec returns either a valid key or an error symbol ⊥.

the user’s biometric data W = {Wi}Ni=1 is used to reconstruct this key. More precisely,
the user applies SS.Shr(t,N, g,G, q,K) to create the shares {K(i)}Ni=1 that can later be

used to directly recover K. (See Remark 1.) Further, each share K(i) is split into K
(i)
0

and K
(i)
1 , such that the reconstruction of K(i) can done only when the shares K

(i)
0 ,K

(i)
1

are processed together with an encryption C
(i)
W of the bit Wi. The value K

(i)
d is sent

to Sd, for d ∈ {0, 1} and all 1 ≤ i ≤ N . We also account for the fact that some of the
inputs Wi the user is submitting at later stage may differ from the ones in the initial
template W that has used when sharing K. As pointed by the steps in the subroutine

Biometric-Authenticated Searchable Encryption 11

Outsource Protocol Outsource

User U(pp,W, w, f) Server Sd(pp, infod) with infod = (xd,

gr1 , gr2 , {C(i)
W ,K

(i)
d , mk

(i)
d }

N
i=1, mkd)

1 : (K, {Ai}Ni=1, Y) ←−−−−− KRec −→ ({Ai}Ni=1, Y)

2 : if K = ⊥ then abort

3 : z ← KDF2(K,w)

4 : e←$G, v ← PRF(z, e)

5 : mku ← KDF1(K, U, ‘0’)

6 : µc ← Tag(mku, (e, v, f))

7 : C ← (e, v, µc)

8 : mkd ← KDF1(K, Sd, ‘1’),

9 : skd ← KDF1(mkd, {Ai}Ni=1, Y, ‘2’) skd ← KDF1(mkd, {Ai}Ni=1, Y, ‘2’) 10

11 : µskd ← Tag(skd, (C, f))
(C,f),µskd−−−−−−→ if Ver(skd, (C, f), µskd) then 12

store (C, f) on CCCd

else abort;

Fig. 3. This is a partial view of the interactive protocol Outsource, and captures only the
interactions between user U that outsources file f with keyword w and biometric data W to
server Sd. The complete algorithm requires U to replicate Steps 9 and 11 for S1-d, and send
((C, f), µsk1-d) to S1-d. Step 1 executes the routine KRec from Figure 2.

KRec in Figure 2 we use MAC tags µ
(i)
d to identify the shares Ti = K(i) that have been

correctly recovered before applying SS.Rec to reconstruct K.

Whenever the user U wants to outsource a file f characterized by the keyword w, he
does so by calling Outsource. The first step is for the user to recover the key K using his
current scanned biometric data W, and establish some session identifiers ({Ai}Ni=1, Y)
with the two servers S0, S1. Then, the user constructs a ciphertext C that should be
stored together with the file f by both servers. The ciphertext C plays a fundamental
role during retrieval, as it contains a MAC tag µc that can be used to authenticate the
file provenance, as could have been produced only by the user with the knowledge of
K and w. We assume the communication between U and server Sd during outsourcing
and retrieval is performed over insecure channels, and in addition to (C, f) it contains
a MAC that uses a fresh KDF key composed of the long term key mkd and the current
session identifiers. If the MAC tag verifies, server Sd stores (C, f) in an internal database
CCCd. Notice, that each Sd stores a copy of the file f to achieve better availability.

At any point of time, the user U can retrieve all outsourced files that match the
keyword w, by running Retrieve with servers S0, S1. Similar to the outsource algo-
rithm, the user inputs his biometric data W, recovers the key K, and creates the
session identifiers ({Ai}Ni=1, Y). Then, the user defines a search query z ← KDF(K,w)
that depends on the key K and keyword w. As the communication between U and Sd
is over an insecure channel, z is sent together with a MAC that is built and verified
using the knowledge of mkd and the session identifiers ({Ai}Ni=1, Y). Finally, the user
collects the responses from the two servers in the list LLL, and discards the responses that

12 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

Retrieve Protocol Retrieve

User U(pp,W, w) Server Sd(pp, infod) with infod = (xd,

gr1 , gr2 , {C(i)
W ,K

(i)
d , mk

(i)
d }

N
i=1, mkd)

1 : (K, {Ai}Ni=1, Y) ←−−−−− KRec −→({Ai}Ni=1, Y)

2 : if K = ⊥ then abort LLLd ← ∅ 3

4 : mkd ← KDF1(K, Sd, ‘1’)

5 : skd ← KDF1(mkd, {Ai}Ni=1, Y, ‘2’) skd ← KDF1(mkd, {Ai}Ni=1, Y, ‘2’) 6

7 : z ← KDF2(K,w), µskd ← Tag(skd, z)
z,µskd−−−−→ if Ver(skd, z, µskd) then 8

for (C, f) ∈ CCCd do

(e, v, µc)← C

if v = PRF(z, e) then

9 : mku ← KDF1(K, U, ‘0’) LLLd ← LLLd ∪ (C, f)

else abort;

10 :
LLLd←−−−−

11 : LLL← LLL0 ∪LLL1,FFF ← ∅
LLL1-d←−−−−−−−−−−−−−−−−

12 : for (C, f) ∈ LLL with C = (e, v, µc) do

if (v = PRF(z, e) ∧ Ver(mku, (e, v, f), µc)) then

FFF ← FFF ∪ f

13 : return FFF

Fig. 4. This is a partial view of the interactive protocol Retrieve, and captures the interaction
between user U, authenticated by the biometric data W , and server Sd, such that the user
retrieves all files f that have keyword w. The complete algorithm requires U to replicate Steps
5 and 7 for S1-d, then send (t, µsk1-d) to S1-d. The set LLL does not contain duplicate elements.

do not match his query or have an invalid MAC tag µc to produce the final output list FFF .

Detailed Description. We provide the complete specification of our protocol only
for the setup and registration algorithms, and illustrate the outsource and retrieval
steps in Figure 3 and 4. Both algorithms contain a key reconstruction phase, that for
simplicity is presented separately in Figure 2.

– Setup(1λ). Based on the type of biometric data considered, we define the number of
bitsN that can be extracted. For simplicity, we provide a uniform value for all users,
but trivial extensions of our protocol can allow users to define their own number of
bits during registration. Moreover, we generate a cyclic group G of order q with the
following (N+2) random generators: g, h, {hi}Ni=1←$G. Additionally, we introduce
the building blocks SS, MAC, KDF1, KDF2, and PRF using the notations from Section
2. The algorithm outputs pp = (N,G, q, g, h, {hi}Ni=1, SS, MAC, KDF1, KDF2, PRF).

– Register(pp, U, t,W, S0, S1). Let W = {Wi}Ni=1. User U randomly selects a secret
key k←$Z∗q , setsK = gk, and builds the shares {K(i)}Ni=1 ← SS.Shr(t,N, g,G, q, k).

Additionally, the user generates r1, r2, x0, x1←$Z∗q and {K(i)
0 }Ni=1←$G, then sets

Biometric-Authenticated Searchable Encryption 13

X = gx0+x1 , K
(i)
1 = Xr1K(i)(K

(i)
0)−1 and C

(i)
W = Xr2hWi

i for all 1 ≤ i ≤ N .

For each server Sd ∈ {S0, S1}, the values mkd ← KDF1(K, Sd, ‘1’) and mk
(i)
d ←

KDF1(K(i), Sd, ‘1’) for all 1 ≤ i ≤ N , are derived and used to define infod =

(xd, g
r1 , gr2 , {C(i)

W ,K
(i)
d , mk

(i)
d }Ni=1, mkd) before infod is sent over an authenticated

and secure channel to Sd.

Correctness. Correctness of each key share K(i) can be observed by computing the
following:

Z
(i)
0 Z

(i)
1 Y ai =K

(i)
0 (C

(i)
W A-1

i)y0(gr1R)-x0 ·K(i)
1 (C

(i)
W A-1

i)y1(gr1R)-x1 · gai(y0+y1)

=K
(i)
0 K

(i)
1 (C

(i)
W A-1

i g
ai)(y0+y1)(gr1R)-(x0+x1)

=Xr1K(i)(Xr2hWi
i (gaihWi

i)−1gai)(y0+y1)(gr1gr2(y0+y1))−(x0+x1)

=g(x0+x1)r1K(i)g(x0+x1)r2(y0+y1)(gr1gr2(y0+y1))−(x0+x1) = K(i)

The correctness of SS ensures that they key K can be recovered from t or more correct
shares.

Remark 1. The desired level of accuracy for the biometric measurement is defined by
the SS threshold t ≤ N , such that any t bits Wi that are correct would lead to the
recovery of the key K. In particular, the false rejection parameter τ1 is proportional to
the value of t and similarly τ2, the false accept parameter is inversely proportional to t.
However, the true values for τ1 and τ2 cannot be derived from the threshold parameter
alone, as they also depend on the accuracy of the biometric sensor. We assume that
selection of t can be made based on the sensors used such that the scheme adheres to
appropriate security guarantees.

4.1 Efficiency Analysis and Improvements

We compare the efficiency of our BAKS scheme with the PAKS construction from [25],
which relies on a password and by this also supports searchable encryption without
requiring users to store and manage private keys. We immediately note that BAKS has
the same number of rounds for the outsourcing and retrieval as PAKS. This leads to
BAKS having the same server-side storage O(D) as PAKS, for a database of size D,
but without any user-side storage. The computational cost of PAKS for the user and
each server is 3, resp. 8, exponentiations, while in our BAKS scheme it amounts to 3N ,
resp. 6 + 2N , exponentiations, for the noisy biometric sample of N bits. During the
key reconstruction phase, the communication overheads are 8 group elements, and 2
MACs for PAKS, and 2 + 6N group elements along with 2 MAC tags for BAKS. The
linear growth in BAKS complexity is unavoidable due to existence of noise and hence
bitwise processing of the biometric template.

We remark that it is possible to reduce the value of N by splitting the biomet-
ric sample W into k blocks of N/k bits, which would reduce the computational and
communication costs to O(N/k). This could be used, for example, where the biomet-
ric is a fingerprint, the data stored represents k features (or minutiae [27]) and the
data stored in each block is the feature-type and location. While we would not loose
security by supporting this mechanism, the corresponding false-rejection rate would be
significantly affected by the accuracy of the biometric scanner. In particular, even one

14 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

bit difference in the feature description would render the share invalid, whereas the
presented BAKS scheme offers more flexible tolerance to errors.

BAKS with sublinear search complexities. BAKS achieves O(D) search complexity
(as highlighted in Step. 7 of Figure 4), for a database DB of size D, whilst state-of-
the-art schemes achieve a bound of O(logD). We can improve BAKS search complexity
by employing some of the general ideas from [15,17,43]. However, this would introduce
security and/or functionality limitations. One first approach would be to restrict only
to static databases [15, 17], and loose the dynamic aspect of our solution. Another
approach would be to use ORAM and maintain the dynamic aspects of our database,
but at the cost of requiring periodic (costly, i.e., O(D logD) comparisons) oblivious
sorting [43]. The final method, and the one we highlight in the rest of this section, is to
consider dynamic databases with limited update (i.e., handles only adding entries) [17].

At a high level, [17] does each outsourcing over batches of documents, and treats
each update as an outsource of a static database DB. Their optimisation relies on a
look-up table T that stores pointers to location of documents in DB, such that the
table inputs depend on the document keyword. In the setup phase, the look-up table T
is initialized to empty. We extend the outsource protocol from Figure 3 to upload the
database DB = {(wi, fi)|1 ≤ i ≤ N} instead of a single file f and keyword w. First,
for all unique keywords wi, we create the list Li = {(wi, ind(fij), fij)|(wi, fij) ∈ DB}
with ind(fij) the index in DB where file fij can be found. Then, for each entry
(wi, ind(fij), fij) steps 1-9 are performed, followed by the generation of the key oij ←
KDF2(zi, j) and setting the look-up table T [oij] = ind(fij). Finally, Step 11 is executed
for all entries and the entire encrypted database CCCd is sent with the look-up table.
Notice that CCCd preserves the same order of elements from DB, and ind(·) should
give the same location for both CCCd and DB. The retrieval protocol is performed in
the same way as in Figure 4, except the server receives (z, µskd , {oij}

ni
j=1) in step 7,

for |Li| = ni. Then, the values {oij}
ni
j=1 are used to identify the entries {(Cij , fij)}ni

j=1

from CCCd, based on ind(fij) from the look-up table T . To stop adversaries from trivially
differentiating based on the list size, we can use the techniques in [17] to extend DB to
DB∗ with dummy files, such that all lists have the same size |Li| = n, for n = maxi{ni}.
This version of BAKS with sublinear search complexity would satisfy the same security
guarantees as the initial version. The main limitation is that now we are restricted to
dynamic databases that only allow addition of entries, and not removal. The security
intuition is based on the fact that each outsource operation is treated as an outsource
of a new independent static database.

4.2 Extensions with multiple keywords

The construction we have presented in this paper is limited to only allowing a user to
search for a single keyword. In practise, it is likely that a user would want to outsource
a file with multiple keywords in a single execution, or search for multiple keywords in
one running of the retrieve protocol. We briefly show that our BAKS construction allows
for a natural extension to support this functionality.

Outsourcing with multiple keywords. Here, we allow a user to outsource a file f

with keywords w := (w1, ..., wk). This can be achieved by computing tj ← KDF2(K,wj),
vj ← PRF(tj , e) and finally µc ← tag(mku(e, v)) as part of out. Each server receives the

Biometric-Authenticated Searchable Encryption 15

ciphertext C = (e, v, µc) where v = (v1, ..., vk).

Retrieval based on complex queries. A user submits the keywords w = (w1, ..., wk)
to a single execution of the retrieve protocol. It computes search queries tj ← KDF2(K,wj)
for each keyword. Then for every entry (e, v, µc, f) in the database CCCd, the server com-
putes v′j = PRF(tj , e) (j = 1, ..., k) and updates the output list Ad according to the
search query. We note this approach supports conjunctive, disjunctive and subset type
queries which can be enforced by line 7 in the retrieve protocol.

4.3 Biometric Update

Our BAKS construction supports a user who may wish to update their registered bio-
metric template W to a new biometric template W∗. This could be the case when a
user changes their biometric device (e.g., from fingerprint to iris recognition), or does
not have access to the initial biometric feature they registered (e.g., vision loss). To
prevent the need for re-encryption of all keywords for all outsourced files, we do not
change the key K and simply update only the commitments to the biometric template.
If the user cannot use their already registered biometric template for authentication,
we can use an alternative authenticated channel to each of the servers S0 and S1 to
update the biometric sample. This process is executed independent of the previous
biometric sample, and has the following steps:

– Servers Sd, for d ∈ {0, 1}, compute Xd ← gxd and send this to the user U over a
secure and authenticated channel.

– User U then samples r∗2 ←$Z∗q , computes C
(i)
W∗ ← (X0X1)r

∗
2h

W∗i
i for each bit W ∗i

in the new biometric, and forwards (gr
∗
2 , {C(i)

W∗}Ni=1) to both servers, on the same
authenticated channel.

– Each server Sd updates their information infod to reflect the new biometric sample,

from (gr2 , {C(i)
W }Ni=1) to (gr

∗
2 , {C(i)

W∗}Ni=1), for d ∈ {0, 1}.

5 Security Analysis

In this section, we give proof that our construction for BAKS in Figures 2, 3 and 4
meets the security definitions from Section 3.2. We extend the table E to also include
some secret values, s.t. E[j] ← (d,D, infod, r2, r1, x1−d) for some session identifier j.
This is possible due to the oracle playing the role of the user and generating the values
r2, r1, x1−d.

Theorem 1. Our BAKS construction is IND-CKA secure given KDF1 and KDF2 are secure,
PRF is pseudorandom, MAC is unforgeable, SS offers privacy, the discrete logarithm (DL)
assumption is hard in G and the liveness assumption holds.

Proof. G0: Game G0 is defined exactly by the experiment ExpIND-CKA−b
BAKS,A . Thus:

Pr[G0 = 1] = Pr[ExpIND-CKA−b
BAKS,A = 1].

G1: This game is obtained from G0 by aborting if yd is used in more than one protocol
session in oracles Oout, OretU or OretS, the rest remains the same. The probability of

16 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

winning G1 over G0 is bounded by the probability of sampling yd twice or more from
j samples of a uniform distribution over Z∗q . Thus we have:

∣∣Pr[G1 = 1]− Pr[G0 = 1]
∣∣ ≤ j2

q

G2: This game is identical to G1 except that the game aborts if Y appears in two differ-
ent protocol sessions through oracles Oout, OretU or OretS. We note because the Peder-
sen commitment cd is perfectly hiding, Y1−d must be independent of Yd. Additionally,
the binding property (based on the DL assumption) ensures that it is computationally
hard to open c1−d to a Y ′d 6= Yd. Hence, since Yd and Y1−d are fresh and independent,
Y is also fresh based on the hardness of DL assumption. Thus we have:∣∣Pr[G2 = 1]− Pr[G1 = 1]

∣∣ ≤ AdvDLB

G3: This game is defined by G2 where PRF is replaced with a function. In the outsourcing
protocol, when the adversary has control of U, it is able to provide a µ′c such that
Ver(mkd, (e, v, f), µ′c) = 1. If A is able to do so without knowledge of mkd, he breaks the
unforgeability of MAC.
Hence, the games are bounded by:∣∣Pr[G3 = 1]− Pr[G2 = 1]

∣∣ ≤ AdvunforgeB

We now split the games conditioned on the value of some components. In G4, the
adversary does not have knowledge of mkd and is therefore forced to try to break un-
forgeability of the message authentication code. We let prime-counterpart mk′d denote
the adversary’s guess at mkd and capture the case the adversary does know mkd in game
G5 by letting mk′d = mkd. The law of total probability gives us:

Pr[G3 = 1] = (Pr[G3 = 1] ∧ mk′u 6= mku)︸ ︷︷ ︸
G4

+ (Pr[G3 = 1] ∧ mk′u = mku)︸ ︷︷ ︸
G5

G4: This game is defined by G3 where PRF is replaced with a function. In the outsourcing
protocol, when the adversary has control of U, it is able to provide a µ′c such that
Ver(mkd, (e, v, f), µ′c) = 1. If A is able to do so without knowledge of mkd, he breaks the
unforgeability of MAC. Hence, the game is bounded by:

Pr[G4 = 1] ≤ (qo + qt)AdvPRFB

G5: We now split the games conditioned on the value of some components. In G6, the
adversary does not have knowledge of K and is therefore forced to try to break the
security of KDF, we capture the case the adversary does know K in game G7. The law
of total probability gives:

Pr[G5 = 1] = (Pr[G5 = 1] ∧K ′ 6= K)︸ ︷︷ ︸
G6

+ (Pr[G5 = 1] ∧K ′ = K)︸ ︷︷ ︸
G7

G6: In this game, the adversary does not know the key which we denote K ′ 6= K, where
K ′ is his guess at the key. Thus, the adversary is only able to win this game if he can

Biometric-Authenticated Searchable Encryption 17

break the security of the key derivation function. Hence we have the following bound
its success probability:

Pr[G6 = 1] ≤ AdvKDFB

G7: In this game, we necessarily have K ′ = K and we analyse the adversary’s probabil-
ity of being able to compute K. We define game G7 to be G5 except that SS.share and
SS.rec are replaced with functions Fs and Fr. Ts is initialised as an empty table at the
beginning of the experiment, on input K, and returns {Ki}Ni=1 if ∃(K, {Ki}Ni=1) ∈ Ts.

We aim to show that the success probability of this game is bounded by an adver-
sary against the secret sharing scheme. To start, the adversary to SS, B, guesses a user i
for which A is going to break the authentication property, he does with probability 1/U
for U total users. For Uj where j 6= i, he runs the protocol honestly. Upon registration
and when j = 1, he invokes his challenge oracle from the privacy game against SS by

inputting two challenge secrets S0 and S1, the game returns the shares {S(i)
b }Ni=1 for

some b ∈ {0, 1}. The adversary B wins the game if he can correctly guess the challenge
bit b. It invokes G5 with A in the role of U and S1-d.

If A submits his biometric reading via the Obio oracle, with probability εfa, for a
sampled biometricW ′ (sampled from a distribution D′) we have d(W ′,W) ≤ τ2 (equiv-
alent to more than t−1 bits matching). Thus, with probability 1−εfa, A is only able to

compute at most t−1 correct shares of K (for biometricW) given {Z(i)′

0 , Z
(i)′

1 , Y a
′
i}Ni=1

from W ′. The adversary has a negligible probability of reconstructing the tth share by

either guessing Z
(t)
d such that Tt = Z

(t)
0 Z

(t)
1 Y at , or finding another user (in a different

session) with common features to the challenge user, breaking liveness assumption. In
particular, the liveness assumption prevents an adversary from submittingW ′ sampled
from the user’s distribution D. The SS adversary B waits for A to finish the run of
the user. If it outputs a response (t, µskd) then adversary B answers its SS challenge
with b = 0. We note that if b = 1, then A would not have been able to complete the
protocol due to the security properties of KDF and MAC that we have ruled out in games
G3 and G4, respectively. Thus, any correct response from A implies the challenge bit
b = 0. Hence, the probability of winning game G5 is bound by the probability that B
can break the privacy property of the secret sharing scheme.

Pr[G7 = 1] ≤ 1

|U |
AdvprivB + εfa

By the sequence of games G0 to G7, we have shown that the probability of a BAKS

adversary against the IND-CKA property is bounded by εfa + negl where negl is neg-
ligible in the security parameter λ. ut

Theorem 2. Our BAKS construction provides authentication given KDF1 and KDF2 are
secure, MAC is unforgeable, SS offers privacy, the discrete logarithm (DL) assumption
is hard in G and the liveness assumption holds.

Proof. G0: Game G0 is defined exactly by the experiment ExpAUTH
BAKS,A, where the oracles

in the experiment are instantiated by the following:

The success probability of an adversary winning game G0 is identical to adversary
against the experiment ExpAUTH

BAKS,A.

Pr[G0 = 1] = Pr[ExpAUTH
BAKS,A = 1].

18 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

G1: This game is obtained from G0 by aborting if yd is used in more than one protocol
session in oracles Oout, OretU or OretS, the rest remains the same. The probability of
winning G1 over G0 is bounded by the probability of sampling yd twice or more from
j samples of a uniform distribution over Z∗q . Thus we have:

∣∣Pr[G1 = 1]− Pr[G0 = 1]
∣∣ ≤ j2

q

G2: This game is identical to G1 except that the game aborts if Y appears in two differ-
ent protocol sessions through oracles Oout, OretU or OretS. We note because the Peder-
sen commitment cd is perfectly hiding, Y1−d must be independent of Yd. Additionally,
the binding property (based on the DL assumption) ensures that it is computationally
hard to open c1−d to a Y ′d 6= Yd. Hence, since Yd and Y1−d are fresh and independent,
Y is also fresh based on the hardness of DL assumption. Thus we have:∣∣Pr[G2 = 1]− Pr[G1 = 1]

∣∣ ≤ AdvDLB

We now split the games conditioned on the value of some components. In G3, the
adversary does not have knowledge of skd and is therefore forced to try to break un-
forgeability. We capture the case the adversary does know skd in game G4. The law of
total probability gives us:

Pr[G2 = 1] = (Pr[G2 = 1] ∧ sk′d 6= skd)︸ ︷︷ ︸
G3

+ (Pr[G2 = 1] ∧ sk′d = skd)︸ ︷︷ ︸
G4

G3: This game is defined by G2 where we restrict the adversary to not have knowledge
of skd. In the outsourcing protocol, when the adversary has control of U, it is able
to provide a µ′skd such that Ver(skd, (e, v, f), µ′skd) = 1. If A is able to do so without
knowledge of skd, he breaks the unforgeability of MAC.
Hence, the games are bounded by:

Pr[G3 = 1] ≤ AdvunforgeB

G4: We now split the games conditioned on the value of some components. In G5, the
adversary does not have knowledge of K and is therefore forced to try to break the
security of KDF. We capture the case the adversary does know K in game G6. The law
of total probability gives:

Pr[G4 = 1] = (Pr[G4 = 1] ∧K ′ 6= K)︸ ︷︷ ︸
G5

+ (Pr[G4 = 1] ∧K ′ = K)︸ ︷︷ ︸
G6

G5: We define game G5 to be G4 except we make the restriction the adversary does know
the key K. For each session i of the oracles Oout and OretU, the value t← KDF2(K,w)
is replaced with t ← F2(i, w). T2 is initialised as an empty table at the beginning of
G4 and define F2 as follows. If ∃(i, w, t) ∈ T2, then it returns t, otherwise it samples a
fresh t←$KPRF and stores (i, w, t) in T2.

We also replace the values mku ← KDF1(K, U, ‘0’), mkd ← KDF1(K, Sd, ‘1’) and mk1-d ←
KDF1(K, S1-d, ‘1’) with the function F1 such that mku ← F1(i, U, ‘0’), mkd ← F1(i, Sd, ‘1’)
and mk1-d ← F1(i, S1-d, ‘1’). The game G5 initialises a table T1, and for F1 : {0, 1}∗ →

Biometric-Authenticated Searchable Encryption 19

MACkeyspace define as follows. If ∃(i, id, k,mk) ∈ T1 then F1(i, id, k) returns mk, other-
wise it samples mk←$ MACkeyspace and stores (i, id, k,mk) in T1 and returns mk.
By the uniform distribution of K, and the indistinguishability property of KDF1 and
KDF2, we have the following bound:

Pr[G5 = 1] ≤ (qo + qt + qr)AdvKDFB

G6: We follow the same strategy as that in game G7 in the proof for Theorem 1. Thus,
the advantage of an adversary against G6 is bounded by the success probability of an
adversary against the privacy of the secret sharing scheme.

Pr[G6 = 1] ≤ AdvprivB + εfa

By the sequence of games G0 to G6, we have shown that the probability of a BAKS

adversary against the Auth property is bounded by εfa+negl where negl is negligible
in λ. ut

6 Conclusion

We introduced Biometric-Authenticated Keyword Search (BAKS), a novel searchable
encryption scheme that uses biometric data as authentication mechanism for outsourc-
ing and retrieval of files indexed by encrypted keywords. We accounted for the im-
perfections in the biometric measurements, and designed BAKS such that users can
authenticate via biometric data that is “similar” to their template. This degree of simi-
larity is modeled using threshold secret sharing techniques, and selecting the threshold
involves at least considering the accuracy of the measuring device and the nature of
used biometric factors, e.g. fingerprint, iris, face, voice.

BAKS employs a two-server architecture together with the liveness assumption to
provide security guarantees and doesn’t assume that biometric data remains private.
Moreover, BAKS allows users to update their biometric template without the need to
re-encrypt the outsourced keywords and provides support for multi-keyword outsourc-
ing and search. BAKS ensures that only legitimate users can outsource and retrieve
files (via authentication property) and confidentiality of the outsourced keywords (via
indistinguishability against chosen keyword attacks) in presence of at most one com-
promised server.

Acknowledgements. Daniel Gardham was supported by the UK Government PhD
studentship scheme. Mark Manulis and Constantin Cătălin Drăgan were supported by
the EPSRC project TAPESTRY (EP/N02799X).

References

1. Biometric presentation attack detection. Standard ISO/IEC WD 30107-3:2017, Interna-
tional Organization for Standardization, Geneva, CH, 2017.

2. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. Searchable Encryption Revisited: Consistency Proper-
ties, Relation to Anonymous IBE, and Extensions. J. Cryptology, 21(3):350–391, 2008.

20 Daniel Gardham, Mark Manulis and Constantin Cătălin Drăgan

3. Z. Akhtar, C. Micheloni, and G. L. Foresti. Biometric liveness detection: Challenges and
research opportunities. IEEE Security & Privacy, 13(5):63–72, 2015.

4. L. Ballard, S. Kamara, and F. Monrose. Achieving Efficient Conjunctive Keyword Searches
over Encrypted Data. In ICICS 2005, pages 414–426, 2005. LNCS 3783.

5. M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authenti-
cation. In CRYPTO 1996, pages 1–15, 1996. LNCS 1109.

6. M. Blanton and W. M. P. Hudelson. Biometric-based non-transferable anonymous cre-
dentials. In ICICS 2009, pages 165–180, 2009.

7. D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public Key Encryption with
Keyword Search. In EUROCRYPT 2004, pages 506–522, 2004. LNCS 3027.

8. D. Boneh and B. Waters. Conjunctive, Subset, and Range Queries on Encrypted Data.
In TCC 2007, pages 535–554, 2007. LNCS 4392.

9. X. Boyen. Reusable cryptographic fuzzy extractors. In ACM CCS 2004, pages 82–91.
ACM, 2004.

10. X. Boyen, Y. Dodis, J. Katz, R. Ostrovsky, and A. D. Smith. Secure Remote Authenti-
cation Using Biometric Data. In EUROCRYPT 2005, pages 147–163, 2005. LNCS 3494.

11. J. Bringer, H. Chabanne, and B. Kindarji. Error-tolerant searchable encryption. In IEEE
ICC 2009, pages 1–6, 2009.

12. J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to reconstruct
your secrets from a single password in a hostile environment. In CRYPTO 2014, volume
8617 of LNCS, pages 256–275. Springer, 2014.

13. R. Canetti, B. Fuller, O. Paneth, L. Reyzin, and A. D. Smith. Reusable fuzzy extractors
for low-entropy distributions. In EUROCRYPT 2016, pages 117–146, 2016. LNCS 9665.

14. D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against searchable
encryption. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 668–679. ACM, 2015.

15. D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable
searchable symmetric encryption with support for boolean queries. In CRYPTO 2013,
Part I, pages 353–373, 2013.

16. R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang. Dual-server public-key encryption with
keyword search for secure cloud storage. Trans. Info. For. Sec., 11(4):789–798, 2016.

17. R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. J. of Computer Security, 19(5):895–
934, 2011. A preliminary version appeared in ACM CCS 2006.

18. J. Daugman. How iris recognition works. IEEE Trans. Circuits Syst. Vid. Techn.,
14(1):21–30, 2004.

19. Y. Dodis, J. Katz, L. Reyzin, and A. D. Smith. Robust fuzzy extractors and authenticated
key agreement from close secrets. In CRYPTO 2006, pages 232–250, 2006. LNCS 4117.

20. Y. Dodis, L. Reyzin, and A. D. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In EUROCRYPT 2004, pages 523–540, 2004. LNCS
3017.

21. FIDO Alliance. FIDO 2.0. Technical report, 2015. https://fidoalliance.org/

specifications, Accessed 03-March-2019.
22. N. Fleischhacker, M. Manulis, and A. Azodi. A Modular Framework for Multi-Factor

Authentication and Key Exchange. In SSR 2014, pages 190–214, 2014. LNCS 8893.
23. B. Fuller, S. Simhadri, and J. Steel. Reusable authentication from the iris. Cryptology

ePrint Archive, Report 2017/1177, 2017. https://eprint.iacr.org/2017/1177.
24. J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from

any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
25. K. Huang, M. Manulis, and L. Chen. Password authenticated keyword search. In PAC

2017, pages 129–140, 2017.
26. M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable

encryption: Ramification, attack and mitigation. In NDSS 2012, 2012.

Biometric-Authenticated Searchable Encryption 21

27. A. K. Jain, A. Ross, and S. Prabhakar. Fingerprint matching using minutiae and texture
features. In ICIP 2001, pages 282–285, 2001.

28. A. Juels and M. Wattenberg. A fuzzy commitment scheme. In ACM CCS 1999, pages
28–36, 1999.

29. G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure outsourced
databases. In ACM CCS 2016, pages 1329–1340, 2016.

30. H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer, 2010.

31. V. Kuchta and M. Manulis. Public Key Encryption with Distributed Keyword Search. In
INTRUST 2015, volume 9565 of LNCS, pages 62–83. Springer, 2016.

32. C. Liu, L. Zhu, M. Wang, and Y. Tan. Search pattern leakage in searchable encryption:
Attacks and new construction. Inf. Sci., 265:176–188, 2014.

33. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudoran-
dom functions. SIAM J. Comput., 17(2):373–386, 1988.

34. M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-preserving
encrypted databases. In ACM SIGSAC 2015, pages 644–655, 2015.

35. L. O’Gorman. Comparing passwords, tokens, and biometrics for user authentication.
Proceedings of the IEEE, 91(12):2021–2040, 2003.

36. C. Örencik, A. Selcuk, E. Savas, and M. Kantarcioglu. Multi-keyword search over en-
crypted data with scoring and search pattern obfuscation. Int. J. Inf. Sec., 15(3):251–269,
2016.

37. D. J. Park, K. Kim, and P. J. Lee. Public key encryption with conjunctive field keyword
search. In WISA 2004, pages 73–86, 2004. LNCS 3325.

38. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In CRYPTO 1991, pages 129–140, 1991. LNCS 576.

39. D. Pointcheval and S. Zimmer. Multi-factor Authenticated Key Exchange. In ACNS 2008,
volume 5037 of LNCS, pages 277–295, 2008.

40. S. Prabhakar, S. Pankanti, and A. K. Jain. Biometric recognition: Security and privacy
concerns. IEEE Security & Privacy, 1(2):33–42, 2003.

41. P. Rogaway and M. Bellare. Robust computational secret sharing and a unified account
of classical secret-sharing goals. In ACM CCS 2007, pages 172–184, 2007.

42. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
43. E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption with

small leakage. In NDSS 2014. The Internet Society, 2014.
44. X. Yi, F. Hao, L. Chen, and J. K. Liu. Practical threshold password-authenticated secret

sharing protocol. In ESORICS 2015, volume 9326 of LNCS, pages 347–365. Springer,
2015.

45. Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In USENIX Security 2016, pages 707–720,
2016.

