
On Roots Factorization for PQC Algorithms

Alexander Maximov

Ericsson Research, Lund, Sweden
alexander.maximov@ericsson.com

Abstract. In this paper we consider several methods for an efficient extraction of roots
of a polynomial over large finite fields. The problem of computing such roots is often
the performance bottleneck for some multivariate quantum-immune cryptosystems,
such as HFEv-based Quartz, Gui, etc. We also discuss a number of techniques for
fast computation of traces as part of the factorization process. These optimization
methods could significantly improve the performance of cryptosystems where roots
factorization is a part thereof.

Keywords: NIST · PQC · HFE · Gui · Quartz · Roots · Factorization · Traces

1 Introduction

The development of multivariate quantum-immune cryptography is progressing rapidly,
and some cryptographic primitives, such as Gui, have been proposed to NIST as part of
the Post-Quantum Cryptography (PQC) Standardisation effort [NIS20a, NIS20b].

The class of Multivariate Quadratic (MQ) public keys cryptosystems with Hidden Field
Equations (HFE) based schemes, such as Rainbow, Quartz, Gui, etc [PCG01, DPCY14,
ZT15, PCY+15], require at their core the computation of roots of a polynomial over a
large (presumably binary) field. This part of computation in a scheme often appears
the performance bottleneck for such cryptosystems. For example, as a consequence, the
Quartz scheme can only perform 1 signature per about 10 seconds. Hence, approaches
to improve methods for computing roots of polynomials over large finite fields may have
a positive impact on several PQC schemes. Of course, improved methods may also have
other applications such as computing an isomorphism between two finite fields, etc.

In this paper we consider factorization algorithms in order to find roots of a polynomial
over a large finite field; also we consider various techniques to compute traces as this is the
critical part of the factorization core. We show that the steps of a polynomial factorization
over a large finite field can be implemented by using a linear function Γk(ξ) = ξq

2k

in an
extension field of characteristic q. Particularly, this opens-up for multiple implementation
choices, which are no longer limited to only the polynomial modular composition as
proposed by Shoup et. al. in [KS97, vzGS92a] for trace computation and factorization
purposes.

The paper is organized as follows. In Section 2 we introduce notations and review
basic approaches for roots factorization algorithms. In Section 3 and Section 4 we consider
methods for fast computation of traces. Finally, in Section 5 we give some software
performance results for Quartz and a number of versions of Gui with various scheme
configuration parameters, and conclude the paper.

mailto:alexander.maximov@ericsson.com

2 On Roots Factorization for PQC Algorithms

2 Preliminaries

2.1 Notations
For the sake of notation, let us consider a monic primitive polynomial f(x) = xn + ...+ 1
in GF (q) of degree n, over some prime field with characteristic q, and let this polynomial
be the generating polynomial of the extension field Fqn = GF (q)[x]/f(x). The number of
elements in Fqn is

N = qn.

Consider a polynomial F (Z) = fDZ
D + ...f1Z + f0 of degree D over the base field

Fqn , i.e., the coefficients fi can be represented as polynomials modulo f(x) of degree at
most n− 1 and represent elements of the base field Fqn . For the purpose of this paper we
assume that n is large (e.g., n ≈ 100 . . . 400).

2.2 Roots factorization algorithms
A crucial task in the mentioned PQC schemes is the factorization of the polynomial
F (Z), and extraction from that root values R1, R2, . . . such that F (Ri) = 0 in Fqn . Many
factorization algorithms of polynomials usually have the following three steps:

• Square-free factorization

• Distinct-degree factorization

• Equal-degree factorization

with an exception of Berlekamp’s algorithm that combines the last two steps.
For the purpose of finding roots of the equation F (Z) = 0, we need to perform only

the following steps:

• Extract the product R(Z) of all monic 1-degree factors of F (Z);

• Perform equal-degree factorization.

where R(Z) = (Z −R1)(Z −R2)...(Z −Rr) is the monic polynomial of degree r that is
the product of (Z −Ri)s for all r roots Ri of F (Z) such that F (Ri) = 0. The number of
roots is then denoted as r. When the degree r of R(Z) is 0 then F (Z) has no roots in the
base field. When r = 1 then F (Z) has exactly one root and it is the first coefficient of
R(Z). For r > 1 we need to perform an equal-degree factorization.

Some PQC schemes, such as the original Quartz scheme, require to sample for F (Z)
that have only an unique root. In those schemes we can thus ignore the second step.

In the subsequent sections we go through each of the above two steps.

2.3 Step 1: Product of all roots R(Z) given F (Z)

The polynomial R(Z) is the product of all 1-degree monic factors of F (Z) and it can be
obtained by computing

R(Z) = gcd(F (Z); ZN − Z) = gcd(F (Z); Zq
n

− Z mod F (Z))

since ZN −Z is the product of all 1-degree monic polynomials over the extension field Fqn .

Alexander Maximov 3

2.4 Step 2: Equal-degree factorization of R(Z)
In this section we assume that R(Z) is a monic polynomial of degree r > 1, for which we
seek its factorization.

One approach to factor out the roots from R(Z) is to use Berlekamp’s algorithm,
[Ber67]. However, the complexity of this algorithm appears to be O(r3 + r2qn) operations
in Fqn , [vzGP01], which is large and not applicable in our case.

Alternatively, factorization algorithms over large base fields Fqn utilize another tech-
nique. Because it is the product of all 1-degree monic factors of F (Z), the given R(Z)
forms an extension ring Rrqn :

Rrqn = Fqn [Z]/R(Z)
Thereafter, if we take a random element Y ∈ Rrqn then

Y N − Y = 0 mod R(Z)

Odd characteristic. For odd characteristic the splitting of R(Z) into two smaller
factors can be done using the Cantor-Zassenhaus [CZ81] algorithm, since:

gcd(R; Y N − Y) = gcd(R; Y · (Y (N−1)/2 − 1) · (Y (N−1)/2 + 1))

and, therefore, the computation of

gcd(R; Y (N−1)/2 − 1)

gives a non-trivial factor of R(Z) with probability ≈ 1− (1/2)r−1.
Even characteristic. The above method, however, does not work for fields with

even characteristic i.e., q = 2. A different technique is then applied. The square-free
factorization of R(Z) over a large binary field with characteristic 2 can be done with, e.g.,
a modified Berlekamp’s algorithm given in [Ber70].

Let us define:

W (Z) =
n−1∑
i=0

Y 2i

over F2n

then Y 2n − Y = W · (W + 1), which means that

gcd(R; Y 2n

− Y) = gcd(R; W) · gcd(R; W − 1)

Each root will fall intoW or (W −1)’s “bin” with probability 1/2, so the overall probability
to get a non-trivial factor will be 1− (1/2)r−1, see Theorem 8.12 in [Ric09] for details.

2.5 Using traces for factorization
As it will become clear, traces are very useful in solving the factorization problem. Consider
the following trace for some element ξ defined as the function

Tr(ξ, n) =
n−1∑
i=0

ξq
i

over K. (1)

where K is some field (e.g., K = Fqn). Then we get that

Tr(ξ, n)q − Tr(ξ, n) = (ξq
n

− ξ) over Fqn ,

since (a+ b)q = aq + bq in a field with characteristic q. Hence, we also get that Tr(ξ, n)
divides ξqn − ξ, i.e.,

ξq
n

− ξ = Tr(ξ, n) · (Tr(ξ, n)q−1 − 1).

4 On Roots Factorization for PQC Algorithms

Firstly, in any field of characteristic q we can get the product of roots R(Z) via the
computation of traces as follows:

R(Z) = gcd(F (Z); (Zq
n

− Z)) = gcd(F (Z); Tr(Z, n)q − Tr(Z, n) mod F (Z)).

Secondly, in fields with even characteristic, q = 2, the polynomial R(Z) can be split into
two smaller subfactors by computing

gcd(R(Z); W (Z)) = gcd(R(Z); Tr(Y (Z), n) mod R(Z))

with the success probability

1−
(

1
2

)r−1
,

where r is the degree of R(Z). Note that in the first splitting we can get the trace value
“for free” by doing

gcd(R(Z); Tr(Z, n) mod F (Z)),

where Tr(Z, n) mod F (Z) has already been computed in the first step.
Thirdly, in any field with odd field characteristic, q 6= 2, the polynomial R(Z) can be

split into subfactors in a similar way as we do for the even characteristic:

gcd(R(Z); Tr(Y (Z), n) mod R(Z))

for a random Y (Z) ∈ Rrqn , but the probability that a single root will fall into the bin
Tr(Y (Z), n) is 1/q, and the other “bin” is (1 − 1/q), which leads to the probability of
successful splitting of R(Z) to be

1−
(

1
q

)r
−
(

1− 1
q

)r
= [(qr − 1)− (q − 1)r] /qr.

For example, for r = 2 roots and field characteristic q = 3 the success of such a splitting
will be 4/9 ≈ 0.444, but for larger q = 7 the probability drops to 12/49 ≈ 0.245.

2.6 Trace computation
The critical part of roots factorization appears to be the part of computing traces of ξ(Z)
modulo a given random polynomial F (Z) or R(Z). However, the base field Fqn is usually
known in advance and fixed.

The naive approach is to follow ?? so that: we start with the given ξ, then compute ξq
and sum, then power again to ξq2 and sum, and so on until we get ξqn−1 . Thus we need
n− 1 modular powerings to q. For the even characteristic case q = 2 we thus need n− 1
squarings.

In [vzGS92b] V. Shoup and Von zur Gathen proposed a nice algorithm to compute a
trace using a polynomial convolution technique. Thus, computing Tr(ξ, n) can be done in
log(n) steps instead of the classical n− 1 modular squarings (or powerings to q). However,
the basic step there is the computation of convolution of elements in the base field, which
is quite expensive and at best it can be done with n modular multiplications in the field
Fqn .

In case of Gui, where D ≥ 5 (the small value of D comes from the proposal in [PCY+15])
and q = 2 are small, but n ≈ 100 . . . 400 is large, the complexity of the polynomial
convolution becomes too expensive in time.

Alexander Maximov 5

3 Fast computation of traces
3.1 Preliminaries
Let us have a field Fqn with characteristic q with the generating primitive polynomial f(x)
over GF(q) of degree n. Also, let us have a polynomial R(Z) of degree r over Fqn , which
then forms an extension ring Rrqn = Fqn [Z]/R(Z).

For any element ξ(Z) ∈ Rrqn we would like to compute the trace

Tr(ξ, n) =
n−1∑
i=0

ξq
i

mod R(Z).

Normally, this would require n polynomial powerings to q modulo the polynomial R(Z),
but for a more efficient computation we would like to introduce the following function

Γk(ξ) = ξq
2k

mod R(Z), for ∀k = 0, 1, 2, ...

and then we derive the needed trace via that function, instead. Later on we will show how
that function may be implemented in an efficient way with complexity O(log(n)).

Some properties of Γ function include the following equations:

Γk(a+ b) = Γk(a) + Γk(b)
Γk+1(ξ) = Γk(Γk(ξ)).

3.2 Partial traces
Let us define the kth partial trace as follows:

Trk(ξ,m) =
m−1∑
i=0

ξq
i·2k

mod R(Z).

Hence, the full trace Tr(ξ, n) is the partial trace with k = 0,m = n. We then get the
following recursive formulae:

Γk−1(Trk(ξ,m)) + Trk(ξ,m) =
(
m−1∑
i=0

ξq
i·2k

)q2k−1

+
m−1∑
i=0

ξq
i·2k

=
m−1∑
i=0

(ξqi·2k
)q2k−1

+ ξq
i·2k

 =
m−1∑
i=0

[
ξq

(2i+1)·2k−1

+ ξq
2i·2k−1

]

=
2m−1∑
i=0

ξq
i·2k−1

= Trk−1(ξ, 2m).

(2)

Thus, Trk(ξ,m) divides Trk−1(ξ, 2m) since

Trk−1(ξ, 2m) = Trk(ξ,m) · (Trk(ξ,m)q
2k−1

−1 + 1).

The computation of the partial trace may be done as follows. Let us introduce the following
sums

St(ξ) =
2t−1∑
i=0

ξq
i·2k

,

6 On Roots Factorization for PQC Algorithms

which can be computed recursively as

St+1 = St + Sq
2t+k

t = St + Γt+k(St),

where S0 = ξ. Then the partial trace can be expressed recursively via S and Γ as

Trk(ξ,m) = St + Γt+k(Trk(ξ,m− 2t)), where t = blog2(m)c.

This means that computing the partial trace would require blog2(m)c+H(m) applications
of Γt functions, where H(m) is the Hamming weight of m. I.e., the complexity to compute
the partial trace is then O(log(m)) with Γt being the basic operation. Summarizing the
above, the algorithm for computing the partial trace for any m and k is then as follows.

PartialTrace(ξ, m, k) -> T=Trk(ξ,m)
set S = ξ and T = 0
for(int t=0; m; m>>=1, ++t)
{ if(m&1)

T = S + Γt+k(T)
S = S + Γt+k(S)

}
return T;

3.3 Computation of all partial traces and the full trace
The summary algorithm that computes all partial traces T1...Tk and the full trace T0 can
be written this way.

AllPartialTraces(ξ, n, k : 2k|n) -> {T0, ..., Tk} : Ti+1|Ti,∀i ∈ [0..k − 1]
compute Tk=PartialTrace(ξ, n/2k, k)
for(int t=k-1; t>=0; --t)

compute Tt = Tt+1 + Γt(Tt+1)

The algorithm has complexity O(log(n)) with exactly blog2(n)c+H(n) applications of
Γt function, for t = 0, ..., blog2(n)c.

3.4 Computation of ξqt

One method is to use the trace:

ξq
t

= Tr(ξ, t) · (Tr(ξ, t)q−1 − 1),

or, we can use the Γ(·) function:

PowerOnly(ξ, t) -> Q = ξq
t

set Q = ξ
for(i=0; t; t>>=1, ++i)

if(t&1)
Q = Γi(Q)

return Q.

This function may be useful for the first step of the factorization algorithm where we
need to compute Zqn −Z, and that can be done with H(n) applications of the Γk function,
instead of H(n) + blog2(n)c applications in case of computing all partial traces.

Alexander Maximov 7

3.5 Application of partial traces for factorization
In the first step of factorization we compute R(Z) = gcd(F (Z); Zqn − Z) that can be
done via partial traces as shown in the previous sections. Those partial traces can be used
for the first splittings of R(Z), without having to compute other traces modulo R(Z) as
the first step of the splitting.

In the second step, in order to split R(Z) into subfactors, we pick a random Y (Z)
mod R(Z) and then compute its trace modulo R(Z), then take gcd with R(Z). With the
algorithm AllPartialTraces we can, instead of a single trace, compute all partial traces
T0...Tk, so that we get

gcd(R(Z); Zq
n

− Z) = gcd(R(Z); T0 ·∆0(Z)).

If T0 is not trivial (T0 6= 1) then F0(Z) = gcd(R(Z); T0(Z)) gives a non trivial sub-
factor F0(Z). Then we try to factor F0 further on by using the partial traces in the order
of Fi = gcd(Fi−1(Z); Ti(Z)), since Ti|Ti−1, and stop when Fi is trivial or all partial traces
are used. If some subfactors still need to be factored, then we repeat the computation of
new partial traces with a new random Y (Z) modulo the remaining subfactor polynomial.

4 Preparation and computing Γk mod R(Z)
We have shown that the overall time complexity of roots factorization relies on the ability
to compute the Γk function fast. That function becomes the most critical one for the
overall performance of PQC algorithms that require a roots factorization step.

During the factorization we will have to deal with a random polynomial R(Z) or
F (Z) that will serve as the modulus in which we then compute Γk(ξ) = ξq

2k

, for k =
0, . . . , blog2(n)c.

4.1 Further splitting of the trace computation problem
For a polynomial ξ(Z) of degree r − 1, taken modulo R(Z), the application of Γk(ξ) can
be written as

Γk(ξ(Z)) =
(
r−1∑
i=0

ξi · Zi
)q2k

=
r−1∑
i=0

ξq
2k

i ·
(
Zq

2k
)i
.

If we now define

γk(ξ)(Z) =
r−1∑
i=0

ξq
2k

i · Zi,

then we can rewrite the above expression as

Γk(ξ(Z)) =
r−1∑
i=0

ξq
2k

i · (Γk(Z))i = γk(ξ)(Z) ◦ Γk(Z) = γk(ξ)(Γk(Z)).

That is, the evaluation of Γk is now split into an evaluation of γk coefficient-wise of ξ, and
an evaluation of Γk(Z).

4.2 Evaluation of γk(ξ) ∈ Fqn

γk(ξ) ∈ Fqn is a linear function in the field Fqn . The base field is usually known in advance
and fixed, which opens-up a variety of different options to implement the computation of
γk(ξ). Note also that we will only use γk functions for the maximum value of k such that
2k ≤ n. I.e., one needs to develop only 0 ≤ k ≤ blog2(n)c of such functions.

8 On Roots Factorization for PQC Algorithms

Option 1. For q = 2 one can utilize, on an Intel CPU, the PCLMULQDQ instruction to
speed up the computation of ξ22k

i in the base field. That requires at most 2k ≤ n field
multiplications, but it is a lot faster than the classical and naive binary-wise multiplication,
in a general case.

Option 2. On the other hand, that operation is linear and since in most cases the base
field is fixed, one could precompute linear matrices to derive that power directly. That
means we will have a n× n matrix of elements in GF (q). For q = 2 it is a binary matrix,
and with efficient implementations and, perhaps, efficient lookup tables, the computation
may be done with ≈ n/8 XORs of rows of length n bits. In our experience, this method
seem to be the fastest for binary fields.

When q 6= 2, the classical matrix multiplication approach would take n2 operations
over GF (q), which is comparable to n field multiplications.

Option 3. Polynomial composition in the base field Fqn may still be applied. That
requires around n multiplications in Fqn .

There could be a heuristic selector of the fastest method in the code, based on the
input parameters n, q, k.

4.3 Evaluation of Γk(ξ(Z)) via polynomial modular composition
Assume we have precomputed Γk(Z) for all k, then Γk(ξ(Z)) = γk(ξ)(Z) ◦ Γk(Z) is the
polynomial composition applied after γk(ξ) is computed.

Option 1. I.e., let γk(ξ)(Z) = ar−1Z
r−1 + . . .+ a1 · Z + a0 then the evaluation can

be done with Horner’s method as

γk(ξ)(Z) ◦ Γk(Z) = (. . . ((ar−1 · Γk(Z) + ar−2) · Γk(Z) + ar−3) . . .) · Γk(Z) + a0,

which requires r polynomial multiplications modulo R(Z).
Option 2. There is a more efficient method for fields with characteristic q = 2, see

[ERS11]. Combine even and odd coefficients of γk(ξ) as follows:

Aeven(Z) = a0 + a2 · Z + a4 · Z2 + . . .

Aodd(Z) = a1 + a3 · Z + a5 · Z2 + . . .

then the evaluation becomes

γk(ξ)(Γk(Z)) = Aeven(Γk(Z)2) + Γk(Z) ·Aodd(Γk(Z)2),

where both Aeven and Aodd reuse the same powers of the input Γk(Z)i, and thus the
evaluation of both can be done with ≈ (1 + r/2) modular polynomial multiplications R(Z),
plus 1 squaring.

Continuing this way the evaluation is then can be done with O(
√
r) modular polynomial

multiplications [ERS11].

4.4 Evaluation of Γk(ξ(Z)) via reduction matrix multiplication
For this method to work we need a number of precomputed matrices Mk of dimension
r × r with elements from the base field Fqn of the following form:

Mk[i] = Γk(Z)i mod R(Z).

I.e., the ith row is the reduced polynomial of Γk(Z)i mod R(Z). Let us call a matrix
Mk for Reduction Matrix. This way, the evaluation of Γk(ξ(Z)) is a vector-by-matrix
multiplication as follows:

Γk(ξ(Z)) = [γk(ξ)]×Mk,

where [γk(ξ)] is the vector of r coefficients from γk(ξ).

Alexander Maximov 9

4.5 Precomputation of Γk(Z)
The precomputation of Γk(Z) can be done sequentially by any of the above evaluation
methods as follows

Γk(Z) = Γk−1(Γk−1(Z)),

i.e., when Γk−1(Z) is already computed then Γk(Z) can be derived from Γk−1 by using
any of the evaluation methods described above, and we start with Γ0(Z) = Zq.

4.6 Precomputation of reduction matrices Mk

In case we choose the second evaluation method, we then need to precompute the matrices
Mk. For the sake of notation, for a vector V and a matrix M whose elements are from the
base field Fqn , we define the notation:

V 〈t〉 and M 〈t〉,

meaning that every element of V and M is raised to the power t individually. Thus, the
following may be seen as an almost equivalent notation

γk(V)⇒ V

〈
q2k
〉
,

and similar for γk(M), with only the difference that γk is actually a polynomial with

coefficients from the vector V

〈
q2k
〉
.

4.6.1 Method A: Extracting from the sequence of Zi

The ith row of Mk corresponds to the coefficients of the polynomial

Zi·q
2k

mod R(Z).

We start to pre-compute the matrix M0. It can be done quite easily by producing the
following sequence of polynomials:

P0(Z) = 1
P1(Z) = Z · P0(Z) mod R(Z)
P2(Z) = Z · P1(Z) mod R(Z)
P3(Z) = Z · P2(Z) mod R(Z)

...

Note that Pj(Z) = Z · Pj−1(Z) is basically a shift by 1 element, and xor with R(Z)
multiplied by a base field element. Note also that each Pj is a vector of r elements from
the base field. The rows of the first matrix M0 are then every qth P , i.e.,

M0 = [P0, Pq, P2q, ..., P(r−1)q]T .

This way, if we want to raise ξ to the power of q then we simply raise each coefficient
of ξ to the power q, then multiply the resulting vector with the reduction matrix M0.

The construction of M0 relies on the construnction of qr rows of P s, where in each
step we make r multiplications in the base field, except for the first r rows as they are
trivial. The complexity to precompute the first M0, when the base field is binary q = 2, is
then r(r − 1) base field multiplications.

10 On Roots Factorization for PQC Algorithms

Construction of the next Mk. The construction of the next matrix M1 can be
done in a similar way as for M0, but just we take every q2th vector of P . In general the
construction of Mk is then to pick every q2kth vector of P .

It is easy to see that when k grows, then the distance between two P s that will constitute
two consecutive rows of Mk becomes very large, and, in fact, grows exponentially. However,
there is the second method to construct Mk from the previous Mk−1.

4.6.2 Method B: Deriving Mk from Mk−1 by a matrix multiplication

Recall that Mk−1 holds the reduced value of Zi·q2k−1

, for all 0 ≤ i < r. Then the ith row
of Mk can be computed as:

Mk[i] =
(
Zi ·Mk−1

)〈q2k−1
〉
·Mk−1 (3)

= Mk−1[i]

〈
q2k−1

〉
·Mk−1. (4)

I.e., we take the ith row of Mk−1 which corresponds to Zi·q2k−1

, then we raise each
coefficient to the power q2k−1 and applyMk−1 to get the final reduction of (Zi·q2k−1

)q2k−1

=
Zi·q

2k

, which is then the ith row of Mk. Therefore, the full matrix Mk can be computed
from Mk−1 through the following expression:

Mk = M

〈
q2k−1

〉
k−1 ·Mk−1,

where the matrix multiplication can be done with around O(r2.38) multiplications (see,
e.g., [CW90]) in the base field Fqn .

4.6.3 Method C: Mixed techniques

The above Method B may be performed by a mixed technique, in order to reduce the
complexity of a matrix multiplication. The assumption is that the matrix Mk−1 is already
precomputed and we want to construct the next matrix Mk.

Idea 1. The row Mk[0] is the constant polynomial and it is equal to 1.
Idea 2. The rowMk[i] can be copied fromMk−1[i ·q2k−1] for all i such that i ·q2k−1

< r.
This is due to the fact that

Mk[i] =
(
Zq

2k
)i

=
(
Zq

2k−1
)i·q2k−1

= Mk−1[i · q2k−1
].

Idea 3. Rows divisible by q, i.e. Mk[qi] can be computed via the reduction matrix
M0 due to:

Mk[qi] = Mk[i]q mod R(Z) = Mk[i]
〈
q20〉
·M0.

E.g., in the field of characteristic q powering the polynomial into q can be done efficiently
point-wise, while the reduction matrix M0 is then applied.

Idea 4a. Other rows may be computed by a polynomial modular multiplication as
Mk[i] = Mk[i− 1](Z) ·Mk[1](Z) mod R(Z)

Idea 4b. ...or by a vector-by-matrix multiplication as

Mk[i] = Mk−1[i]

〈
q2k−1

〉
·Mk−1.

Idea 4c. ...or by the modular polynomial convolution as
Mk[i] = γk−1(Mk−1[i])(Z) ◦Mk−1[1](Z) mod R(Z).

Alexander Maximov 11

4.6.4 Heuristic switch between the methods

We start precomputing the power matrices with Method A. In the beginning of Method A
we analyze if this method is still faster than the other ones, and when the heuristic finds
that the other Method becomes faster then it performs a switch to that other Method,
and all further power matrices are then computed with Method B or C.

4.7 Not all Mk (Γk(Z)) have to be computed
It could be worth to consider the case when we precompute not all matrices (or Γk(Z),
resp), but a little bit less, for example for only k = 0 . . . blog2(n)c − 2. One possible reason
could be that precomputing the matrix Mk takes a little more time than evaluation, and
it may be worth skipping 1 or 2 last matrices and perform a bit more of evaluation steps,
instead. The optimal number of matrices to skip depends on many parameters and the
platform capabilities for efficient implementation techniques, but it may be estimated by
simulations.

In this case, the evaluation of Γk(ξ) given the maximum available function Γs<k(·)
with precomputed tables up to s can be done by applying Γs(·) sequentially 2k−s times as
follows:

Γk(ξ) = Γs(. . .Γs(ξ) . . .)︸ ︷︷ ︸
2k−s times

.

5 Benchmarks and Conclusions
We have implemented all the tricks presented in this paper, and tested various HFEv-based
signature schemes on a user-grade laptop with Intel Core i7-8650U CPU @ 1.90GHz with
Turbo Boost up to 4.20GHz, utilizing SIMD instructions (e.g., PCLMULQDQ and others). Due
to a high misalignment in the way how various scientific papers derive the metric “cycles
per operation”, we decided to present the results in terms of “operations per second”, where
possible. Although that metric is not the best and depends on the evaluation platform
(e.g., CPU), we believe it still gives some indication of what can be achieved in terms of
the signing speed in this class of PQC algorithms.

In the original paper on Quartz [PCG01] the authors mentioned that the time to sign
a single message takes around 30 seconds, while tested on Pentium III 500 MHz. The
performance was later improved to 1 signature per ∼10 seconds [CCC+09] using SIMD
instructions. In our implementation with all the tricks described in this paper the signing
speed reaches 30 signatures per 1 second.

Also, it is required in Quartz that the central equation Fv(Y) = X should have a
unique root. However, if we allow multiple roots, then the number of roots factorizations
per a signature decreases; as the penalty, the “equal-degree” factorization step is then
required to be implemented. Our experiments show that allowing multiple roots actually
makes the signing process faster overall. The performance comparison table for Quartz is
given in Table 1.

Table 1: Performance for Quartz

Profile Secur. Parameters as in [PCY+15] Sign PubKey Roots Signs Verif.
level unique size size factoriz. per per
(bits) n D K v r root (bits) (Kbits) per sign. second second

Original paper [PCG01] (Pentium III 500MHz)
Quartz 80 103 129 4 4 3 Yes 128 578 – 0.03 8334

Our implementations (Intel Core i7-8650U @1.9/4.2GHz)
Quartz 80 103 129 4 4 3 Yes 128 577 10.9 30.7 42276
Quartz-r 80 103 129 4 4 3 No 128 577 6.4 51.6 42706

12 On Roots Factorization for PQC Algorithms

In [PCY+15] the authors proposed a HFEv-based signature scheme Gui, where the
degree D is very small, D ∈ {5, 9, 17}, while the other parameters like n, v, r, can be
increased in order to reach the security level. This appeared to be crucial for the speed of
HFEv-based schemes, since the complexity to extract a root is O(D3 +n ·D2). There were
four versions of Gui proposed with the requirement for a unique root. In the mentioned
paper, only cycles/signature are given, and it is not easy to convert that into real signing
time. However, the authors state that the speed of Gui is ∼100-150 times faster than
Quartz, from which we can assume the performance of Gui is around 15 signatures per
second, given the speed of Quartz being 1 signature per 10 seconds, implemented with
SIMD as mentioned above.

In our experiments we give our performance numbers for Gui, as well as we give the
results when multiple roots are allowed. The results are given in Table 2.

Table 2: Performance for original versions of Gui

Profile Secur. Parameters as in [PCY+15] Sign PubKey Roots Signs Verif.
level unique size size factoriz. per per
(bits) n D K v r root (bits) (Kbits) per sign. second second

Our implementations (Intel Core i7-8650U @1.9/4.2GHz)
Gui-94 80 94 17 4 4 4 Yes 122 436 10.9 1227.2 56672
Gui-95 80 95 9 3 5 5 Yes 120 454 8.2 7528.0 70178
Gui-96 80 96 5 3 6 6 Yes 126 472 8.0 25725.2 66113
Gui-127 123 127 9 4 6 4 Yes 163 1096 10.9 5312.8 36551
Gui-94r 80 94 17 4 4 4 No 122 436 6.3 2114.3 57599
Gui-95r 80 95 9 3 5 5 No 120 454 4.7 12365.6 70561
Gui-96r 80 96 5 3 6 6 No 126 472 4.7 35941.1 64471
Gui-127r 123 127 9 4 6 4 No 163 1096 6.3 8431.4 36883

Versions of Gui submitted to NIST [PCYD18] also perform very slow, as we can see
it from Table 3; in our implementations the speed is around 2 times faster, even though
the reference speed was measured on a server-class Intel Xeon CPU. Moreover, if we allow
multiple roots, then we can achieve ∼3-20 times speed up.

Table 3: Performance for versions of Gui as submitted to NIST
Profile Secur. Parameters as in [PCY+15] Sign PubKey Roots Signs Verif.

level unique size size factoriz. per per
(bits) n D K v r root (bits) (Kbits) per sign. second second

Intel Xeon E3-1225 v5 (Skylake) @3.3GHz with PCLMULQDQ [PCYD18]
Gui-184 128 184 33 2 16 16 Yes 232 3376 — 96.2 19607
Gui-312 192 312 129 2 20 24 Yes 376 15920 — 1.88 5524
Gui-448 256 448 513 2 28 32 Yes 536 47227 — 0.038 976

Our implementations (Intel Core i7-8650U @1.9/4.2GHz)
Gui-184 128 184 33 2 16 16 Yes 232 3376 5.4 163.0 30849
Gui-312 192 312 129 2 20 24 Yes 376 15920 5.5 5.7 6030
Gui-448 256 448 513 2 28 32 Yes 536 47227 6.6 0.4 2273
Gui-184r 128 184 33 2 16 16 No 232 3376 3.2 262.0 32495
Gui-312r 192 312 129 2 20 24 No 376 15920 3.0 10.0 6066
Gui-448r 256 448 513 2 28 32 No 536 47227 3.3 0.8 2329

Conclusions. Overall, it now becomes clear that the way to speed up an HFEv-based
signature scheme is to use a low value for D and K, and to allow multiple roots in the
central equation Fv(Y) = X. We tried to collect a number of alternative parameters for
Gui that we think might give us the intended security level whilst having a superior signing
performance. The results are given in Table 4.

In all our implementations we used Montgomery representation for elements in the
base field F2n . However, when n becomes larger, it is then worth considering “optimal
primitive polynomials” given in [MS17] for which modular arithmetics become faster than

Alexander Maximov 13

Table 4: Performance for alternative versions of Gui with D = 5 and multiple roots allowed

Profile Secur. Parameters as in [PCY+15] Sign PubKey Roots Signs Verif.
level unique size size factoriz. per per
(bits) n D K v r root (bits) (Kbits) per sign. second second

Our implementations (Intel Core i7-8650U @1.9/4.2GHz)
Gui80A 80 112 5 4 6 2 No 142 772 6.3 25778.9 44629
Gui80B 80 120 5 3 6 2 No 142 944 4.7 30333.1 53124
Gui112A 112 160 5 3 8 6 No 196 2186 4.7 16954.3 38268
Gui112B 112 176 5 3 8 6 No 212 2893 4.7 14501.2 28385
Gui128A 128 184 5 4 14 2 No 246 3585 6.3 11134.8 22914
Gui128B 128 190 5 3 2 13 No 222 3279 4.7 13009.0 26303
Gui128C 128 224 5 3 2 13 No 256 5412 4.7 10642.4 17985
Gui192A 192 252 5 6 4 28 No 416 7368 9.4 4602.0 7138
Gui192B 192 288 5 3 16 12 No 360 12795 4.7 6329.8 10322
Gui192C 192 304 5 3 16 12 No 376 14997 4.6 5864.6 8989
Gui256A 256 352 5 5 16 26 No 536 22134 8.2 1556.1 3156
Gui256B 256 368 5 4 16 26 No 510 25280 6.3 1984.9 3891
Gui256C 256 380 5 3 4 38 No 468 25280 4.7 2467.6 5186

that in the Montgomery representation, even with the PCLMULQDQ instruction. As an
example, the primitive polynomial f(x) = x457 + x16 + 1 (n = 457) over GF (2) has
a very low reduction penalty and performs 4x times faster than the reduction in the
Montgomery representation. Other interesting examples are f(x) = x375 + x16 + 1 and
f(x) = x511 + x15 + 1, which are also very fast. For n > 511, the most interesting
polynomials would be: f(x) = x521 +x32 + 1, f(x) = x543 +x16 + 1, f(x) = x577 +x25 + 1,
f(x) = x609 +x128 +1, f(x) = x721 +x9 +1, f(x) = x865 +x+1, etc. The last example gives
around 8x speed up of the modular reduction vs. similar arithmetics in the Montgomery
representation.

Acknowledgements
We thank our colleague, Ben Smeets, for valuable comments to this manuscript. We also
thank Helena Sjöberg for providing the ranges of Gui parameters which were used to select
alternative Gui instances in Table 4.

References
[Ber67] Elwyn R. Berlekamp. Factoring polynomials over finite fields. The Bell System

Technical Journal, 46(8):1853–1859, Oct 1967.

[Ber70] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics
of Computation, 24:713–735, 1970.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng,
Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE
implementation of multivariate PKCs on modern x86 CPUs. In Christophe
Clavier and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems -
CHES 2009, pages 33–48, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
https://www.iacr.org/archive/ches2009/57470031/57470031.pdf.

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. J. Symb. Comput., 9(3):251–280, March 1990. http://dx.doi.
org/10.1016/S0747-7171(08)80013-2.

https://www.iacr.org/archive/ches2009/57470031/57470031.pdf
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2

14 On Roots Factorization for PQC Algorithms

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polyno-
mials over finite fields. Mathematics of Computation, 36(154):587–592, April
1981.

[DPCY14] Jintai Ding, Albrecht Petzoldt, Ming-Shing Chen, and Bo-Yin
Yang. Gui : Revisiting multivariate digital signature schemes
based on HFEv-. 2014. https://pdfs.semanticscholar.org/8575/
eb87e81ed01302ad6ce4a57d24c67080ede6.pdf.

[ERS11] Michele Elia, Joachim Rosenthal, and Davide Schipani. Polynomial evaluation
over finite fields: new algorithms and complexity bounds. CoRR, abs/1102.4772,
2011. http://arxiv.org/abs/1102.4772.

[KS97] Erich Kaltofen and Victor Shoup. Fast polynomial factorization over high
algebraic extensions of finite fields. In Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’97, pages 184–
188, New York, NY, USA, 1997. ACM. http://www4.ncsu.edu/~kaltofen/
bibliography/97/KaSh97.pdf.

[MS17] Alexander Maximov and Helena Sjöberg. On fast multiplication in binary
finite fields and optimal primitive polynomials over GF(2). Cryptology ePrint
Archive, Report 2017/889, 2017. https://eprint.iacr.org/2017/889.

[NIS20a] NIST. Post-quantum cryptography standardization, Visited 2020.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[NIS20b] NIST. Post-Quantum Cryptography Standardization, round 2
submissions, Visited 2020. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[PCG01] Jacques Patarin, Nicolas Courtois, and Louis Goubin. QUARTZ, 128-bit long
digital signatures, 2001. http://www.goubin.fr/papers/rsa2001b.pdf.

[PCY+15] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and
Jintai Ding. Design principles for HFEv- based multivariate signature schemes.
In Proceedings, Part I, of the 21st International Conference on Advances in
Cryptology – ASIACRYPT 2015 - Volume 9452, pages 311–334, New York, NY,
USA, 2015. Springer-Verlag New York, Inc. https://www.iis.sinica.edu.
tw/papers/byyang/19342-F.pdf.

[PCYD18] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, and Jintai Ding.
PPT slides for Gui at NIST, 2018. https://csrc.nist.gov/CSRC/media/
Presentations/Gui/images-media/Gui-April2018.pdf.

[Ric09] Chelsea Richards. Algorithms for factoring square-free polynomials, 2009.
http://www.cecm.sfu.ca/CAG/theses/chelsea.pdf.

[vzGP01] Joachim von zur Gathen and Daniel Panario. Factoring polynomials over
finite fields: A survey. Symbolic Computation, 31:3–17, 2001. https://people.
csail.mit.edu/dmoshkov/courses/codes/poly-factorization.pdf.

[vzGS92a] Joachim von zur Gathen and Victor Shoup. Computing Frobenius maps and
factoring polynomials. Computational Complexity, 2:187–224, 1992. http:
//www.shoup.net/papers/frobenius.pdf.

https://pdfs.semanticscholar.org/8575/eb87e81ed01302ad6ce4a57d24c67080ede6.pdf
https://pdfs.semanticscholar.org/8575/eb87e81ed01302ad6ce4a57d24c67080ede6.pdf
http://arxiv.org/abs/1102.4772
http://www4.ncsu.edu/~kaltofen/bibliography/97/KaSh97.pdf
http://www4.ncsu.edu/~kaltofen/bibliography/97/KaSh97.pdf
https://eprint.iacr.org/2017/889
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://www.goubin.fr/papers/rsa2001b.pdf
https://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf
https://www.iis.sinica.edu.tw/papers/byyang/19342-F.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Gui/images-media/Gui-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Gui/images-media/Gui-April2018.pdf
http://www.cecm.sfu.ca/CAG/theses/chelsea.pdf
https://people.csail.mit.edu/dmoshkov/courses/codes/poly-factorization.pdf
https://people.csail.mit.edu/dmoshkov/courses/codes/poly-factorization.pdf
http://www.shoup.net/papers/frobenius.pdf
http://www.shoup.net/papers/frobenius.pdf

Alexander Maximov 15

[vzGS92b] Joachim von zur Gathen and Victor Shoup. Computing Frobenius maps
and factoring polynomials. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Theory of Computing, STOC ’92, pages 97–105, New York, NY,
USA, 1992. ACM. http://doi.acm.org/10.1145/129712.129722.

[ZT15] Wenbin Zhang and Chik How Tan. MI-T-HFE, A new multivariate signature
scheme. In Proceedings of the 15th IMA International Conference on Cryp-
tography and Coding - Volume 9496, IMACC 2015, pages 43–56, New York,
NY, USA, 2015. Springer-Verlag New York, Inc. https://doi.org/10.1007/
978-3-319-27239-9_3.

A Complexities
A.1 Complications to derive the complexity
One of the difficulties to derive the computational complexity comes from the different ways
to perform modular reduction in Fqn . Indeed, if we perform the reduction in Montgomery
space then we achieve one complexity with a certain number of multiplications; on the other
way, if we take a primitive generating polynomial of the form f(x) = xn + xc + xb + xa + 1,
then the reduction may be done in a number of shifts and xors, with zero multiplications.
How to assign the complexity in the second case, in terms of which basic functions?

Assume the instruction PCLMULQDQ or equivalent is available, which can perform a
64× 64 bit multiplication in F2n . Which method is faster - to use PCLMULQDQ or shifts-xors
for modular multiplication? How to compare these complexities?

Another problem comes from the choice of data representation. For example, in fields
of characteristic 2 we can represent elements of the field F2n as a number of 64-bit limbs.
More precisely as 1 + bn/64c limbs. This way, a xor of a(x) and b(x) in F2n can be done
in 1 + bn/64c xors. Or, it may be performed as 256-bit xors by using CPU’s intrinsic
instructions (where available).

A.2 Basic field arithmetics in Fqn

Let us assume that a single modular multiplication of two elements in Fqn can be performed
with complexity

Cmul = λmul · n log(n),

where λmul is a constant that depends on field representation, data structures, usage of
intrinsics, and efficient implementation.

Raising an element to the power q can be done more efficiently than a usual multiplica-
tion, so the complexity is

Cpwrq = λpwrq · n.

A.3 Basic polynomial arithmetics over Fqn

Here we again assume that R(Z) is a monic polynomial over Fqn of degree r, which is the
modulus polynomial for further arithmetics.

Multiplication of A(Z) and B(Z) each of degree at most r−1 can be done in O(r log(r))
multiplications in the base field. The following reduction needs (r−1) steps, each consisting
of r multiplications in the base field. Thus, the complexity of modular polynomial
multiplication can be derived as

Cpol.mul = (r log(r) + r(r − 1)) · Cmul

http://doi.acm.org/10.1145/129712.129722
https://doi.org/10.1007/978-3-319-27239-9_3
https://doi.org/10.1007/978-3-319-27239-9_3

16 On Roots Factorization for PQC Algorithms

Raising a polynomial to the power of q and taking the result by modulo R(Z) can be done
with the complexity

Cpol.pwrq = (r + r(r − 1)) · Csqrq = r2 · Cpwrq

A.4 Evaluation of γk(ξ) over Fqn

Here we have several options.
Option 1 with the sequence of raising each element of ξ to the power q, this requires

Cgamma.opt1(k) = r2k · Cpwrq = λpwrq · rn2k.

Option 2 with the pre-computed lookup tables. Let’s assume the tables will have q8

entries (in case of characteristic 2 it means one byte) each of which then gives a partial
sum of length n values in Fq. Then we get

Cgamma.opt2 = rbn/8c.

where the basic operation is a xor of elements of Fqn .
The combined complexity is then

Cγ(k) =
{
λpwrq · rn2k, if λpwrq · 2k < 1/8
rbn/8c, otherwise .

A.5 Evaluation of Γk(ξ) via polynomial modular composition
We evaluated the algorithm using Horner’s method and Option 2 from our previous sections.
Option 1 with Horner’s method, requires r − 2 polynomial multiplications modulo R(Z),
thus

CΓ.eval.comp.opt1 = (r − 2) · Cpol.mul = λmul · r(r − 2)(log(r) + r − 1) · n log(n).

or, in O() notation, it will be
O(r3 · n log(n)).

Option 2 is faster for characteristic 2 as it gives the complexity

CΓ.eval.comp.opt2 =
√
r ln(r) · Cpol.mul = λmul · r

√
r ln(r) · (log(r) + r − 1) · n log(n),

which leads to
O(r2√r log(r) · n log(n)).

A.6 Evaluation of Γk(ξ) via reduction matrices
With a given reduction matrix Mk the evaluation of Γ can be done as a vector-by-matrix
multiplication, excluding the rows with indexes i such that iq2k

< r. For simplicity we
will only exclude the first row as it is always 1.

CΓ.eval.redmatr = r(r − 1) · Cmul = λmul · r(r − 1)n log(n).

So, in O(·) notation, we get
O(r2 · n log(n)),

which seem to be faster than using the polynomial composition technique.

Alexander Maximov 17

A.7 Complexity of the algorithms PowerOnly and PartialTrace

Let us now have a closer look at the computational complexity of the discussed algorithms.
The combined complexity of applying Γk(ξ) is then

CΓ = Cγ + CΓ.eval. ≈ rbn/8c+ λmul · r(r − 1) · n log(n).

The complexity of the algorithms PowerOnly and PartialTrace can be derived as

Calg.power.only(t) = H(t) · CΓ

and
Calg.part.trace(m) = (blog2(m)c − 1 +H(m)) · CΓ,

where H(·) is the Hamming weight of the input integer.

A.8 Classical way to compute ξ(Z)qn, for comparison purpose
Given a polynomial ξ(Z) we would need to raise it to the power q n times. Obviously, the
computation of the trace requires a similar task, with the difference that in the latter we
also sum all intermediate results. The complexity is the following:

Cpol.std.pwrq.n = n · Cpol.sqrq = nr2 · Cpwrq = λpwrq · (rn)2

So, the algorithms PowerOnly and PartialTrace have complexity

O(r2 · n log2(n)).

while the classical method has complexity

O(r2 · n2)

However, the speed up is even larger if we consider also complexity constants, implementa-
tion tricks, etc. If we, otherwise, use the technique with polynomial composition then in
O() notation we get the complexity

(blog2(n)c − 1 +H(n)) · (rbn/8c+
√
r ln(r) · Cpol.mul)→ O(r2√r log(r) · n log2(n)),

which seems to be worse than the complexity when we use reduction matrices.
For getting the complete picture, we should also calculate the complexity to precompute

the matrices Mk. This we do in the following subsection.

A.9 Precomputation of Γk(Z)

We do a precomputation of log(n) polynomials of Γk(Z) for k = 0..blog(n)c by sequential
evaluation as Γk(Z) = Γk−1(Γk−1(Z)). Then the complexity for all precomputation will be

CZ.prec.eval = log(n) · (Cγ + CΓ.eval.comp.opt2),

which results in
O(r2√r log(r) · n log2(n)).

18 On Roots Factorization for PQC Algorithms

A.10 Precomputation of reduction matrices Mk

A.10.1 Method A

Computation of the next Pj(Z) from Pj−1(Z) takes in general rCmul steps, with the
exception of the first i = blogq(r)c steps for which q2i

< r - those P s are just copied from
P1(Z) = Z since Pi(Z) = Zq

2i

has degree < r.
Therefore, to compute all matrices M0,M1, ,Mk, assuming having done those compu-

tations for other M<k, the complexity is given by

CM.all.methA(k) = (rq2k

− blogq(r)c) · rCmul

Therefore, the single complexity to compute the next matrix Mk is

CM.one.methA(k) = CM.all.methA(k)− CM.all.methA(k − 1)

= r2(q2k

− q2k−1
) · Cmul = λmul · r2(q2k

− q2k−1
) · n log(n).

A.10.2 Method B

In the second method we compute Mk = M

〈
q2k−1

〉
k−1 ·Mk−1. That can be done with

complexity (for matrix multiplication we can use the complexity, e.g., from [CW90])

CM.one.methB(k) = rCγ(k) + r2.38Cmul = r2bn/8c+ r2.38λmuln log(n).

A.10.3 Method C

The first s = dr/q2k−1e rows can be copied from the previous matrix Mk−1 (Ideas 1 and
2). The other blogq(r − s)c rows can be computed by using M0 matrix (Idea 3) with
complexity rCpwrq + r2Cmul. The remaining rows may be computed by a usual evaluation
method. We can upper bound the complexity as follows:

CM.one.methC(k) ≤ r2 · (r − dr/q2k−1
e) · (bn/8c+ λmuln log(n)),

which is then
O(r3n log(n)).

A.10.4 Combining everything

To compute all Mk’s would require O(r2.38n log2(n)) time in the worst case, which has the
term r2.38 larger than in the classical complexity r2. However, the real implementation with
all the explained tricks gives a huge speed up even for large degree r of input polynomials.
It would be more fair to introduce the coefficient λM < 1 in the complexity that will reflect
other tricks while computing Mks. I.e., for a fairly small r or for r much smaller than n
we get a good speed up in computations.

Finally, we switch from the method A to B or C heuristically, when complexity becomes
smaller in the other method.

A.11 Overall conclusion on complexity
The standard algorithm to compute a trace would cost about O(r2n2) of time. The new
algorithm would cost in total

O(r2√r log(r) · n log2(n))

Alexander Maximov 19

in case we use polynomial composition for both the precomputation phase and evaluation
of Γk(ξ); and the complexity is

O((λMr2.38︸ ︷︷ ︸
precompute

+ r2︸︷︷︸
evaluate

) · n log2(n)),

if we precompute reduction matrices Mk; in practice, and in the context of this paper, the
term r2.38 has a low constant λM < 1.

	Introduction
	Preliminaries
	Notations
	Roots factorization algorithms
	Step 1: Product of all roots R(Z) given F(Z)
	Step 2: Equal-degree factorization of R(Z)
	Using traces for factorization
	Trace computation

	Fast computation of traces
	Preliminaries
	Partial traces
	Computation of all partial traces and the full trace
	Computation of qt
	Application of partial traces for factorization

	Preparation and computing k 12mumodR(Z)
	Further splitting of the trace computation problem
	Evaluation of k()Fqn
	Evaluation of k((Z)) via polynomial modular composition
	Evaluation of k((Z)) via reduction matrix multiplication
	Precomputation of k(Z)
	Precomputation of reduction matrices Mk
	Not all Mk (k(Z)) have to be computed

	Benchmarks and Conclusions
	Complexities
	Complications to derive the complexity
	Basic field arithmetics in Fqn
	Basic polynomial arithmetics over Fqn
	Evaluation of k() over Fqn
	Evaluation of k() via polynomial modular composition
	Evaluation of k() via reduction matrices
	Complexity of the algorithms PowerOnly and PartialTrace
	Classical way to compute (Z)qn, for comparison purpose
	Precomputation of k(Z)
	Precomputation of reduction matrices Mk
	Overall conclusion on complexity

