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Abstract
The majority of real-world applications of digital signatures
use timestamping to ensure non-repudiation in face of pos-
sible key revocations. This observation led Buldas, Laanoja,
and Truu to a server-assisted digital signature scheme built
around cryptographic timestamping.
In this paper, we report on the machine-checked proofs

of existential unforgeability under the chosen-message at-
tack (EUF-CMA) of some variations of BLT digital signature
scheme. The proofs are developed and verified using the
EasyCrypt framework, which provides interactive theorem
proving supported by the state-of-the-art SMT solvers.

Keywords digital signatures, EasyCrypt, formalized cryp-
tography, timestamping

1 Introduction
A digital signature is a cryptographic construction for verify-
ing the authenticity of a digital message. A digital signature
scheme comes with a key generation algorithm which pro-
duces public-private key pairs. The private keys are used to
generate signatures and must be kept in secret by the signers.
The public keys must be openly available for those who need
to validate the signatures.

Historically, the first digital signature schemes were “one-
time use” which means that a public-private key pair could
only be used for signing a single message [Diffie andHellman
1976]. Later, Merkle described a generic way to turn one-
time schemes into many-time schemes [Merkle 1979, 1980].
In this paper, we focus on one-time schemes.
An important property of signatures is non-repudiation,

i.e. the possibility to use the signature as evidence against
the signer. This induces the real-world problem of key re-
vocation. Without such capability a user may (fraudulently)
claim that their private key was stolen and someone else
may have created signatures in their name. With revocation
tracking, signatures created before key revocation event can
be treated as valid, whereas signatures created afterwards
can be considered invalid. Usually this is implemented using
cryptographic timestamping and certificate status distribu-
tion services. Regardless of the implementation details, this
cannot be done without online services, which means that

most practical deployments of digital signatures are actually
server-supported and rely on timestamping services.

Based on this observation Buldas, Laanoja, and Truu [Bul-
das et al. 2017] proposed a new type of digital signature
scheme (BLT scheme in the following) which builds on the
fact that the valid signatures are always timestamped. Their
original idea was to combine one-time time-bound keys with
a timestamping service. The legitimate use of a key associ-
ated with a particular time is then proven by timestamping
the message-key pair at that time.
Since keys are time-bound, the integrity of the signed

messages does not depend on the long-term secrecy of pri-
vate keys. Existential unforgeability against adaptive chosen-
message attacks was proven in the random oracle model.
Back-dating new pairs (new messages with already used

keys) would allow signatures to be forged. Therefore, to
avoid key-based cryptography and trusted third parties, the
hash-then-publish timestamping [Buldas and Saarepera 2004;
Haber and Stornetta 1991] and the so-called keyless time-
stamping [Buldas et al. 2013] were employed, so that time-
stamps become irrefutable proofs of time.
The practicality of the original BLT scheme was limited

by the fact that pre-generated keys had to be used at their
designated time-slots only. For practical deployments, the
number of time-bound keys tends to be large, which makes
the key generation prohibitively slow on constrained devices
such as smart cards.
Later, the BLT scheme was generalized and decomposed

into two functional components: cryptographic timestamping
and forward-resistant tag systems. This made it possible to
propose other forward-resistant tag systems and arrive at a
rich family of different BLT signature schemes with distinct
functional and security properties [Buldas et al. 2019].

In this work, we use the EasyCrypt theorem prover to for-
malize cryptographic timestamping, forward-resistant tag
systems, and analyze the security properties of the BLT sig-
nature scheme. We do the following technical contributions:

• Specify and implement the ideal model of universally
composable cryptographic timestamping service (Sec-
tion 3).
• Give a formal definition of bounded and unbounded
tag systems with their security and correctness prop-
erties (Section 4).
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• Implement the BLT signature scheme parameterized
by a timestamping service and a tag system (Section 5).
• Analyze the unforgeability of the BLT scheme un-
der different types of timestamping repositories (Sec-
tion 6).

All of our results have been formalized in EasyCrypt theo-
rem prover and the code is available as the accompanying
supplementary material.

2 EasyCrypt
EasyCrypt (EC) is a framework for building and verifying the
security of cryptographic constructions. In this section, we
briefly outline some basic concepts behind EC by stepping
through an example. More information on EC can be found
in [Barthe et al. 2013].
We illustrate the proof development process on a simple

example regarding collision and second-preimage resistance
of hash functions. More specifically, our goal is to formally
prove the basic fact that collision resistance (CR) implies
second-preimage resistance (SPR).
The proof development starts by formally specifying the

computational context which usually includes datatypes and
operators, where types denote non-empty sets of values and
operators are typed functions on these sets. EC provides
basic built-in types such as bool, int, real, etc. The stan-
dard library includes formalizations of lists, arrays, finite
sets, maps, distributions, etc. EC also allows users to imple-
ment their own datatypes and functions (including inductive
datatypes and functions defined by pattern matching). Later
we will make use of an “option” type which represents en-
capsulation of an optional value. More specifically, a value
of type X option is either empty (None), or it contains a
value x of type X (Some x). Function oget extracts the value
from the Some constructor. If the argument is None then an
arbitrary witness of the target type is returned (as mentioned
above, all types in EC are inhabited).
type ’ a op t i on = [ None | Some o f ’ a ] .
op oge t [ ’ a ] ( o : ’ a op t i on ) : ’ a =
with o = None => w i tn e s s
with o = Some x => x .

The types and operators without definitions are abstract and
can be seen as parameters to the rest of the development. In
our example we declare an abstract hash function H with its
input and output types. Moreover, our example is parame-
terized by a distribution (his) of input values as required for
SPR:
type hash_ inpu t .
type hash_outpu t .
op H : hash_ inpu t → hash_output .
op h i s : ha sh_ inpu t d i s t r .
axiom uh i s : i s _un i f o rm h i s .

Parameters can additionally be restricted by axioms that can
be later discharged during particular instantiation.

The computational hardness assumptions are implemented
as probabilistic programs (also called games) parameterized
by oracles and adversaries. An adversary is modeled as un-
specified code with specified interface. We define a module
type AdvSPR describing the interface of adversaries whose
task is to break the second-preimage resistance of H:
module type AdvSPR = {

proc adv ( x : ha sh_ inpu t ) : ha sh_ inpu t
} .

Modules are stateful “objects” consisting of global variables
and procedures. Global variables are visible outside the mod-
ules and define their state at any given time. A procedure
consists of local variables, assignments, probabilistic assign-
ments (denoted by the infix operator <$), and calls to other
procedures.
Next, we formalize the second-preimage resistance as a

parameterized module GameSPR which is played by an adver-
sary of type AdvSPR. The adversary receives an input for the
hash function H and returns another input. The adversary
wins the game if these two input values are different, but
yield the same output from the hash function H:
module GameSPR (A : AdvSPR ) = {

proc main ( ) : boo l = {
var x , x ’ : ha sh_ inpu t ;
x <$ h i s ;
x ’ = A . adv ( x ) ;
r e t u r n H x = H x ’ ∧ x , x ’ ;

}
} .

Thus, the main procedure returns a Boolean value which
indicates the outcome of the game.

In case of collision resistance the adversary needs to pro-
duce any pair of inputs which gives a collision:
module type AdvCR = {

proc adv ( ) : ha sh_ inpu t ∗ ha sh_ inpu t
} .

module GameCR (A : AdvCR ) = {
proc main ( ) : boo l = {

var x , x ’ ;
( x , x ’ ) = A . adv ( ) ;
r e t u r n H x = H x ’ ∧ x , x ’ ;

}
} .

We want to prove that if H is CR then this implies that H is
also SPR. As it is common in cryptographic proofs, instead of
proving the implication directly, we prove the contrapositive
of it. Namely, let us assume that there exists an adversary A
that is successful in breaking the SPR of H, then we show that
A can be efficiently transformed into adversary T(A) that can
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break the collision resistance of H. This will contradict our
initial assumption that H is CR and therefore H must be SPR.

To transform SPR adversary into CR adversary we act as
follows: sample an input from his, feed the value to the SPR
adversary, get a second preimage, and return the two inputs
as a collision for H:

module T (A : AdvSPR ) : AdvCR = {
proc adv ( ) : ha sh_ inpu t ∗ ha sh_ inpu t = {

var x , x ’ ;
x <$ h i s ;
x ’ = A . adv ( x ) ;
r e t u r n ( x , x ’ ) ;

}
} .

It should be intuitively clear that whenever A wins GameSPR,
T(A)wins GameCR. We use the Probabilistic Relational Hoare
Logic (PRHL [Barthe et al. 2012]) to formally establish this
intuitive “equivalence”.

lemma sp rp r : f o r a l l (A <: AdvSPR ) ,
equ iv [ GameSPR (A) . main ~ GameCR (T (A) ) . main :
= { g l ob A} =⇒ r e s { 1 } => r e s { 2 } ] .

The lemma sprpr claims the equivalence of the procedures
GameSPR(A).main and GameCR(T(A)).main with respect to
precondition ={glob A} and postcondition res{1} => res{2}
(symbol ~ separates programs; symbol⇒ separates precondi-
tion from postcondition; symbol => denotes ordinary logical
implication). The special variable res{1} is a Boolean value
which refers to the result of running (left) the procedure
GameSPR(A).main on memory &1 (as for memory &2 and
procedure GameCR(T(A)).main on the right).

The statement of lemma sprprmeans that if for any mem-
ories &1 and &2 the global variables of adversary A are equal
(precondition) then the output sub-distributions obtained
by executing the first procedure on memory &1 and second
procedure on &2 satisfy the postcondition. In other words, if
A wins the SPR-game then T(A) wins the CR-game as well.

The importance of PRHL equivalences is that they imply
the usual statements about probabilities of events. More
specifically, sprpr lemma allows us to conclude that for
any initial memory &m and adversary A, the probability of A
breaking the second-preimage resistance is upper-bounded
by the probability of T(A) breaking the collision resistance:

lemma SPR_CR : f o r a l l &m (A <: AdvSPR ) ,
Pr [ GameSPR (A) . main ( ) @ &m : r e s ] ≤
Pr [ GameCR (T (A) ) . main ( ) @ &m : r e s ] .

The res above is an abbreviation for res = true. We can
conclude that the second-preimage resistance is stronger
than the collision resistance.
The rest of the necessary EC background will be intro-

duced on demand.

3 Cryptographic Timestamping
Intuitively, cryptographic timestamping generates proofs
that data existed before a particular time. The proof can be a
statement that data (or its hash) existed at a given time, cryp-
tographically signed by a trusted third party. Such statements
are useful for data archiving, supporting non-repudiable dig-
ital signatures, etc.
Haber and Stornetta [Haber and Stornetta 1991] made

the first steps toward trustless timestamping by proposing a
scheme where each timestamp would include some informa-
tion from the immediately preceding one and a reference to
the immediately succeeding one. Benaloh and de Mare [Be-
naloh and de Mare 1991] proposed to increase the efficiency
of hash-linked timestamping by operating in rounds, where
messages to be timestamped within one round would be com-
bined into a hierarchical structure from which a compact
proof of participation could be extracted for each message.
Formally speaking, the timestamping does not provide

proofs of wall-clock time, but it rather allows us to prove
that data existed at some moment in the past, and also allows
us to establish a linear order on the timestamped data.

3.1 Ideal Model of Timestamping
We will use an idealized model of timestamping. This can
be seen as an assumption of the timestamping service being
a trusted third party or, alternatively, as relying on univer-
sal composability of a particular timestamping construction.
Roughly speaking, the universal composability is a strong
property of cryptographic primitives which states that a
“real” cryptographic construction can be replaced with the
“ideal” version of it and no efficient adversary will spot the
difference in any extensional context. Universally compos-
able timestamping constructions do exist [Buldas et al. 2005;
Matsuo and Matsuo 2005].
We take advantage of the typed setting of EC and let

the timestamping service be parameterized with the type
of values stored in the timestamping repository. Another
parameter is the distribution of initial times tdistr (time
values are positive integers):
type t ime = i n t .
type da t a .
op t d i s t r : t ime d i s t r .
axiom tpo s : f o r a l l t , t ∈ t d i s t r => t > 0 .

The module type Repo describes interface of timestamping
services. A service allows a user to timestamp (put) values
of type data and returns associated timestamps:
module type Repo = {

proc i n i t ( ) : u n i t
proc c l o c k ( ) : t ime
proc put ( d : d a t a ) : t ime
proc check ( t : t ime , d : d a t a ) : boo l

} .
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The procedure clock shall return the current “time” of a
service. The procedure check(t, d) returns true iff the
value d is associated with the time t.

Next, we introduce module Ts of type Repo which imple-
ments the standard timestamping functionality:
module Ts : Repo = {

var i : t ime
var t : t ime
var r : ( t ime , da t a ) fmap

proc i n i t ( ) = {
i <$ t d i s t r ;
t = i ;
r = empty ;

}

proc c l o c k ( ) = {
r e t u r n t ;

}

proc put ( d : d a t a ) = {
t = t + 1 ;
r = r . [ t ← d ] ;
r e t u r n t ;

}

proc check ( t : t ime , d : d a t a ) = {
r e t u r n r . [ t ] = Some d ;

}
} .

The inner state of object Ts consists of the initial time i (sam-
pled from tdistr), the current time t, and the repository
(finite map) r which associates data items to time values.
Although “time” advances in this implementation only when
the new value is being added, it accurately models a linear or-
dering over the timestamped values. Notice that in Ts.check
r.[t] has the option type.

3.2 Properties
To address the properties of the timestamping service we
need to define a type of adversaries that can access it:
module type AdvTs ( TsO : Repo ) = {

proc main ( ) : u n i t { TsO . check TsO . put }
} .

As mentioned before, the timestamping service is initialized
by the init method. To forbid adversaries to re-initialize
the service (and break the invariants) we only allow them
to invoke the check and put methods. In EC, this is done by
listing the allowed procedures in the module type definition.

Let us fix an adversary A for the rest of this section:
d e c l a r e module A : AdvTs { Ts } .

To be able to prove properties of an abstract procedure
A.main with respect to the specific module Ts, we require

that global variables of A and Ts must be mutually inaccessi-
ble. In EC, this is done by listing “disjoint” modules in curly
braces after the module type. This has the effect that the
adversary A must use the interface of Ts (specified by type
Repo) and therefore is not allowed to directly update global
variables of the module Ts.

BackdatingResistance The essential property of any time-
stamping service is its resistance against backdating. In other
words, if we assume that a data d is associated with a time x
(timestamped in the past, i.e., x ≤ Ts.t) then it remains true
after running an arbitrary computation by the adversary A.
In EC, one can use Hoare logic (HL) to prove specific

properties of procedures. In HL, properties are expressed as
pre- and postconditions of programs (Hoare triples).
In our example, the precondition and the postcondition

coincide (x ≤ Ts.t ∧ Ts.r.[x] = d). A Hoare triple
means that if the precondition is true before the execution
of the program, then the postcondition will be true if the
program terminates. Note that in our example the program
A(Ts).main is abstract.
lemma immutableTs : f o r a l l x d ,

hoare [ A( Ts ) . main :
x ≤ Ts . t ∧ Ts . r . [ x ] = d =⇒
x ≤ Ts . t ∧ Ts . r . [ x ] = d ] .

The statement is proved by analyzing the implementation
details of methods Ts.put and Ts.check, i.e., those that are
accessible by A.

Soundness Clearly, if Ts ignored its inputs and never stored
any data it would be trivially backdating resistant, but not
useful. So, we also address soundness: storing a value d at a
time x results in d being associated with the time x+1.

We used regular HL to prove immutability of Ts. However,
regular HL ensures the postcondition only if the program
terminates. Therefore, regular HL is not suitable to prove the
correct operation of Ts.put method (it would leave the pos-
sibility that Ts.put is non-terminating). In EC, probabilistic
Hoare logic (PHL) analyzes the probability that the program
terminates and the postcondition is true.
lemma soundTs : f o r a l l x d ,

phoare [ Ts . put : a rg = d ∧ Ts . t = x =⇒
Ts . r . [ x +1] = Some d ] = 1% r .

The variable arg in the precondition refers to the argument
passed to the procedure put; 1%r stands for the real number
one.

4 One-Time Tag System
In this section we will describe the second ingredient of the
BLT signature scheme: forward-resistant tag systems [Bul-
das et al. 2019]. Such systems consist of a probabilistic key
generation algorithm (modeled by a distribution of key pairs),
tag generation, and tag verification functions. Similarly to
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signature schemes, a tag system is one-time if each private
key is supposed to be used only once.
type pkey , skey , t ag .
op keyGen : ( pkey ∗ skey ) d i s t r .
op tagGen : skey → t ime → t ag .
op tagVer : pkey → t ime → t ag → boo l .

If the tag verification function always agrees with the tag gen-
eration function then we say that tag system is unbounded:
axiom tagSndU : f o r a l l pk sk t , ( pk , sk ) ∈ keyGen

=> tagVer pk t ( tagGen sk t ) = t r u e .

In the original formulation [Buldas et al. 2019], the tag system
was also parameterized by a time value kpe holding the
expiration date of the key pairs. In this case we say that
the tag system is bounded, and it must satisfy the following
property:
op kpe : t ime .
axiom tagSndB : f o r a l l pk sk t , ( pk , sk ) ∈ keyGen

=> tagVer pk t ( tagGen sk t ) = t r u e ⇔ t ≤ kpe .

The proofs and constructions in this paper are valid for both
kinds of tag systems.

4.1 Properties
The definition of a tag system is somewhat similar to that
of a signature scheme. The main difference is in the associ-
ated security properties. In their previous work, Buldas et al.
designed efficient forward-resistant tag systems. They also
proved that forward-resistance is sufficient to imply the se-
curity of a simple version of the BLT scheme (Section 6.6). In
this work, we make a further step and analyze security of a
more complicated variation of the BLT scheme (Section 6.7),
where it turns out that forward-resistance alone is not suffi-
cient, and we need to require additional security properties
from a tag system.
To describe properties of one-time tag systems we need

to specify one-time tagging oracles. Note that tagGen and
tagVer are pure functions which cannot affect the state of
the variables ofmodules. To control andmonitor the access of
an adversary to the tag generation function we parameterize
adversaries with a stateful module (oracle) which stores a
key pair and provides one-time tag generation functionality.
module type TagOracleT = {

proc i n i t ( pk : pkey , sk : skey ) : u n i t
proc orac leTagGen ( t : t ime ) : t ag op t i on
proc o ra c l eTagVer ( t g : tag , t : t ime ) : boo l
proc orac l eUsedTime ( ) : t ime

} .

The module TagOracle implements the TagOracleT func-
tionality (see Appendix A). The oracleTagGen(t) proce-
dure provides one-time tag generation functionality: on the
first run the method delivers a value Some (tagGen sk t),

whereas afterwards it returns value None. The global state of
TagOracle consists of a key pair, variable used telling if the
oracleTagGen was already invoked, and oracleUsedTime
which stores the time argument of the first call to the proce-
dure oracleTagGen .

Forward-Resistance One-time tag system is forward re-
sistant (FR) if adversaries cannot generate a valid tag for any
time t given that they observed a tag for time t' and t' < t.
This is the main motivating property of tag systems which
also illustrates the essential difference between signature
schemes and tag systems.
Recall that a secure (existentially unforgeable) one-time

signature scheme must ensure that if an adversary has seen
a signature for a message m' then it must not be able to
produce a valid signature for any message m so that m , m'.
From this perspective, in terms of a timeline, an FR tag

system is only required to provide “half” of the security
of a signature scheme. Buldas et al. observed that relaxing
the security requirements allows the building of efficient
hash-based tag systems which later could be combined with
cryptographic timestamping to give more efficient digital
signature schemes [Buldas et al. 2019].

Let us formalize the concept of forward-resistance in terms
of cryptographic games. As explained above, the adversaries
are allowed to ask the tagging oracle for a tag associated
with a time of their choice and must produce a valid tag for
some later time.
module type AdvFR ( TagO : TagOrac leT ) = {

proc f o r g e ( pk : pkey ) : t ag ∗ t ime { TagO .
orac leTagGen }

} .

Note that adversary needs no access to oracleUsedTime
procedure since it simply returns the adversary’s input to
the oracleTagGen procedure. Similarly, verTag verifies a
tag based only on a public data.

We say that a tag system is forward-resistant if the proba-
bility of winning GameFR by any efficient adversary of type
AdvFR is small.
module GameFR ( TagO : TagOracleT , A : AdvFR ) = {

module A = A( TagO )

proc main ( ) : boo l = {
var pk , sk , tg , t , t ’ , f o r g ed ;
( pk , sk ) <$ keyGen ;
TagO . i n i t ( pk , sk ) ;
( tg , t ) = A . f o r g e ( pk ) ;

f o r g ed = TagO . verTag ( tg , t ) ;
t ’ = TagO . orac l eUsedTime ( ) ;
r e t u r n f o r g ed ∧ t ’ < t ;

}
} .
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Tag-then-Hash Unpredictability The tag-then-hash un-
predictability (THU) claims that, given a public key, any
efficient adversary cannot produce a pair of time t and the
hash of a tag for t.

module type AdvTHU = {
proc f o r g e ( pk : pkey ) : hash_outpu t ∗ t ime

} .

module GameTHU(A : AdvTHU) = {
proc main ( ) : boo l = {

var pk , sk , y , t ;
( pk , sk ) <$ keyGen ;
( y , t ) = A . f o r g e ( pk ) ;
r e t u r n H ( tagGen sk t ) = y ;

}
} .

THU ensures that there are no “special” relations between
the tag system and the hash function (see Section 4.2).

Phantom-Freeness A tag system is phantom-free if it is
difficult to construct a valid tag for time t which is not equal
to the canonical tag created by the tag generation function.

module type AdvPF ( TagO : TagOrac leT ) = {
proc f o r g e ( pk : pkey ) : t ag ∗ t ime { TagO .

orac leTagGen }
} .

module GamePF ( TagO : TagOracleT , A : AdvPF ) = {
module A = A( TagO )

proc main ( ) : boo l = {
var pk , sk , tg , t , f o r g ed ;
( pk , sk ) <$ keyGen ;
TagO . i n i t ( pk , sk ) ;
( tg , t ) = A . f o r g e ( pk ) ;
f o r g ed = TagO . verTag ( tg , t ) ;
r e t u r n f o r g ed ∧ t g , tagGen sk t ;

}
} .

4.2 Construction
Since tag-then-hash unpredictability and phantom-freeness
are novel properties, we give an example of a toy n-bounded
tag system which satisfies these two properties as well as
forward-resistance:
• The private key sk is a list of (z1, . . . , zn) of n unpre-
dictable values.
• The public key pk is the list (h(h(z1)), . . . ,h(h(zn))),
where h is one-way function.
• The tagging function tagGen sk t outputs the t-th
component of the private key.
• The verification function tagVer pk z t verifies if
h(h(z)) results in the t-th component of the public key.

Assuming that h is one-way, the tag system is forward-
resistant, tag-then-hash unpredictable, and phantom-free.
For the reader, it is instructive to think which property forces
us to apply h twice in each component of the public key.

5 One-Time BLT Signature Scheme
In this section, we implement the BLT one-time signature
scheme parameterized by a timestamping service and a tag
system. We start by giving an intuitive overview of the ver-
sion of BLT scheme from [Buldas et al. 2019].

Initialization Choose a forward-resistant tag system and
a timestamping service. Generate a valid one-time public-
private key pair (pk, sk) for the tag system.

Signing To sign a message m:
1. Query the time t of the timestamping service.
2. Use the private key to generate a tag tg for the next

time (t+1).
3. Bind the tagwith themessage by timestamping (m, tg).
4. Output (tg, t+1) as a signature of m.
5. Dispose of the private key to avoid its accidental second-

time use.

Verification To verify m against signature (tg, t):
1. Verify tg against the time t and the public key pk.
2. Verify that the timestamping service contains a bind-

ing of tg and m at time t.

Security (EUF-CMA) Intuitively, the security of the de-
scribed scheme is based on backdating resistance of the
timestamping service and forward-resistance of the tag sys-
tem. Let us assume that an adversary obtained a signature
(tg, t) for a message m. One possible signature forging
strategy is to obtain a valid tag-time pair (tg', t') where
t' < t (this might be possible since the tag system is not
required to be backward-resistant). However, to produce a
valid signature the adversary must then backdate the tuple
(tg', m') to the time t' and we assume it to be impossible.
An alternative strategy is to timestamp a pair (tg', m')
at time t' so that t' > t, but this would require breaking
forward-resistance of the tag system.

Notice that in the above description we timestamp a plain
message-tag pair. This might be undesirable if the message
is confidential or too large, or we do not want to expose the
tag to the timestamping service. To this end, we provide an
abstract function bind which converts message-tag pairs
into bindings which could be timestamped later.
op b ind : message ∗ t ag → da t a

The particular implementation of the bind function plays a
crucial role in security proofs.
Next, we implement the main signature functionality as

the BLTScheme module parameterized by a binding function,
a timestamping service, and a tagging oracle. The module
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is stateless and has procedures for signature generation and
verification.

module BLTScheme ( TsO : Repo , TagO : TagOrac leT ) = {
proc s i gn (m : message ) : t ag ∗ t ime = {

var t , t g ;
t = TsO . c l o c k ( ) ;
t g = TagO . orac leTagGen ( t +1 ) ;
TsO . put ( b ind (m, oge t t g ) ) ;
r e t u r n ( oge t tg , t +1 ) ;

}

proc v e r i f y (m : message , t g : tag , t : t ime ) :
boo l = {

var v a l i d , t imestamped ;
v a l i d = TagO . verTag ( tg , t ) ;
t imestamped = TsO . check ( t , b ind (m, tg ) ) ;
r e t u r n v a l i d ∧ t imestamped ;

}
} .

Correctness The signature scheme is functionally correct
if given a valid key pair, signing a message with the private
key produces a signature which verifies with the public key.
Since BLT signature generation affects the global state, we
express its correctness as a game which returns a verification
result:

module BLTCorrect = {
module BLT = BLTScheme ( Ts , TagOrac le )
proc main (m : message ) = {

var pk , sk , t , tg , r ;
( pk , sk ) <$ keyGen ;
Ts . i n i t ( ) ;
TagOrac le . i n i t ( pk , sk ) ;
( tg , t ) = BLT . s i gn (m) ;
r = BLT . v e r i f y (m, tg , t ) ;
r e t u r n r ;

}
} .

For our correctness proof we use the previously defined
timestamping service Ts and the tagging oracle TagOracle.

lemma b l t C o r r e c t :
phoare [ BLTCorrect . main : t r u e =⇒ r e s ] = 1% r .

In case of bounded tag systems we also must assume that
any initial time sampled from tdistr is smaller than the key
expiration date.

6 Security Analysis
The security of the BLT signature scheme strongly depends
on how tags are bound to messages (plain or hashed) and
whether adversaries have only read or also write access to
the timestamping repository. In this section, we analyze four
cases which arise from these possibilities.

6.1 One-Time Signing Oracles
We implement a wrapper around the stateless BLTScheme
module which logs whether it was used, what message was
signed, and which signature was produced.
module type BLTOracleT = {

proc i n i t ( pk : pkey , sk : skey ) : u n i t
proc s i gn (m : message ) : ( t ag ∗ t ime ) op t i on
proc v e r i f y (m : message , t g : tag , t : t ime ) :

boo l
proc f r e s h (m : message ) : boo l

} .

Signing Oracle The BLTOracle module (Appendix B) is a
straightforward instantiation of the BLTOracleT interface.
The global state of the oracle consists of variables qs, qt, and
used. The variables qs and qt log the argument (message)
and the time of the first execution of sign procedure, re-
spectively. The variable used logs whether sign has already
been invoked. The procedure init initializes the global vari-
ables, the timestamping service (Ts), and the tagging oracle
(TagOracle). On the first run, sign(m) procedure returns
the value Some (tg, t) where (tg, t) is a signature of
m with t being the time of Ts and tg is the corresponding
tag. On the following executions sign returns value None.
The procedure fresh(m) checks whether the message m was
previously signed by the oracle.

Dummy Oracle In some cases we might have an adver-
sary who is successful in an attack without ever using the
signing oracle. However, to run this adversary we still need
to provide a module which fulfills the BLTOracleT inter-
face. Therefore, we implement the BLTDummy module which
always returns None when asked to sign a message (Appen-
dix B).

6.2 Existential Unforgeability
It is common to assume that adversaries can trick a user into
creating a valid signature of a message of their choice. There-
fore we say that a digital signature is secure if adversaries
who can use the real signer as “an oracle” cannot efficiently
forge signatures for any messages whose signature were
not obtained from the real signer. This property of digital
signatures is known as existential unforgeability against
chosen-message attacks (EUF-CMA).
We formalize these ideas below. The BLT adversary is

parameterized by a timestamping service and a BLT oracle.
The goal of an adversary is to produce a valid signature for
a “fresh” message.
module type AdvBLT (T : Repo , O : BLTOracleT ) = {

proc f o r g e ( pk : pkey ) : message ∗ t ag ∗ t ime
} .

The existential unforgeability game starts by generating a
key pair and initializing the BLT oracle. Then the adversary
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generates a message-tag-time triple. If the tag-time pair rep-
resents a valid signature of the message and the message is
fresh (i.e., was not previously signed by the BLT oracle) then
the adversary wins the game.

module GameBLT (BLTO : BLTOracleT , A : AdvBLT ) = {
module A = A( Ts , BLTO )

var tg : t ag
var m : message
var t : t ime

proc main ( ) : boo l = {
var pk , sk , fo rged , f r e s h ;
( pk , sk ) <$ keyGen ;
BLTO . i n i t ( pk , sk ) ;
(m, tg , t ) = A . f o r g e ( pk ) ;
f o r g ed = BLTO . v e r i f y (m, tg , t ) ;
f r e s h = BLTO . f r e s h (m) ;
r e t u r n f o r g ed ∧ f r e s h ;

}
} .

Our goal is to prove that for any efficient adversary the proba-
bility of winning the GameBLT is small. We do this by proving
that this probability is upper-bounded by a sum of probabili-
ties which are assumed to be small. In other words, we show
that if A can win GameBLT then we can efficiently transform
A into winning adversaries against security assumptions of
tag systems and hash functions.

Clearly, no digital signature scheme is secure against com-
putationally unbounded adversary: given a verification key,
an unbounded adversary can try all possible signing keys
to find one which gives a signature that passes verification.
When we say “efficiently”, we mean in time polynomial in
the size of the key pair. EC does not provide any tools to
verify computational complexity of modules. Therefore, an
EC user must manually verify that implemented adversaries
and their transformations remain efficient in this sense.

6.3 Illegal Reductions
Assume that A is a successful BLT adversary and we want
to reduce it to the adversary against forward-resistance of a
tag system. Here is a possible reduction:

module LameAdv (A : AdvBLT , T : TagOrac leT ) = {
proc f o r g e ( pk : pkey ) = {

var t , t g ;
t = Ts . c l o c k ( ) ;
t g = tagGen TagOrac le . sk t ;
r e t u r n ( tg , t ) ;

}
} .

While it is easy to prove that LameAdv(A) always wins the
forward-resistance game (GameFR), this is clearly cheating,
because the reduction LameAdv directly accesses the global

variable of the tagging oracle which holds the secret key. In
EC, one can check the validity of an adversary reduction by
analyzing the accessed global variables:

p r i n t g lob LameAdv (A) .

The above command will indicate that, among others, the
variable TagOracle.sk is accessed and thereforewe consider
the reduction LameAdv to be illegal.
Alternatively, we can ask EC to statically check whether

LameAdv(A) belongs to the set AdvFR{TagOracle} which
contains all FR-adversaries disjoint form TagOracle.

6.4 Plain Data, Read-Only Access
Let us first look at the simplest case when the timestamping
repository contains plain data and adversary has no write
access to the timestamping service (note that T.put is not
listed in the allowed methods):
op b ind : message ∗ t ag → message ∗ t ag = fun x , x .
module type AdvBLT (T : Repo , O : BLTOracleT ) = {

proc f o r g e ( pk : pkey ) : message ∗ t ag ∗ t ime
{ T . check O . s i gn }

} .

Let us fix a BLT-adversary for the rest of this section:

d e c l a r e module A : AdvBLT
{ Ts , TagOrac le , BLTOracle } .

Theorem6.1. If the backdating resistant timestamping repos-
itory stores plain message-tag pairs then the probability of a
read-only adversary performing a successful BLT forgery is
zero.

The most important step in the proof is establishing the
following pre- and postcondition for the A.forge procedure:

Ts . r = empty ∧ TagOrac le . used = BLTOracle . used =⇒
( s i z e Ts . r ) ≤ 1 ∧
f o r a l l i y , Ts . r . [ i ] = y ∧ y , None =>
e x i s t s m, Some m = BLTOracle . qs ∧
y = Some (m, tagGen TagOrac le . sk BLTOracle . q t )

The first conjunct of the postcondition claims that the size of
the repository after running A.forge will be at most one. In-
deed, since the adversary cannot directly write to the reposi-
tory then the only entry can be created by using the one-time
signing oracle. The second conjunct claims that if the repos-
itory contains a value then it will be (m, tagGen sk qt)
where m is the message signed by signing oracle at time qt.

If A wins GameBLT then the repository has a message-tag
pair (m', tg') and m' is fresh (Some m' , BLTOracle.qs)
which contradicts the established postcondition and hence:

lemma sec : f o r a l l &m,
Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m: r e s ]=0% r .
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6.5 Hashed Data, Read-Only Access
Next, we look at the case when binding is a hash of amessage-
tag pair and adversaries are read-only.
op b ind : message ∗ t ag → hash_output = fun x , H x .

Theorem6.2. If the backdating resistant timestamping repos-
itory holds hashes of message-tag pairs then the probability of
a read-only adversary performing a successful BLT forgery is
upper-bounded by collision resistance of the hash function.

Similarly to the previous case, we establish that if the repos-
itory contains anything at all after A.forge then it is a hash
of a message-tag pair used in the signing oracle:
Ts . r = empty ∧ TagOrac le . used = BLTOracle . used =⇒
( s i z e Ts . r ) ≤ 1 ∧
f o r a l l i y , Ts . r . [ i ] = y ∧ y , None =>
e x i s t s m, Some m = BLTOracle . qs ∧
y = Some (H (m,
tagGen TagOrac le . sk BLTOracle . q t ) )

Next, we implement a transformation of a BLT adversary
into an adversary for collision resistance (see Section 2).
module T (A : AdvBLT ) = {

module G = GameBLT ( BLTOracle , A)

var p1 , p2 : message ∗ t ag
var b : boo l

proc adv ( ) : ( message ∗ t ag ) ∗ ( message ∗ t ag ) = {
b = G . main ( ) ;
p1 = ( oge t BLTOracle . qs , tagGen TagOrac le . sk

BLTOracle . q t ) ;
p2 = ( GameBLT .m, GameBLT . tg ) ;
r e t u r n ( p1 , p2 ) ;

}
} .

The CR-adversary T(A) runs the BLT-game with A (stores
the outcome in the global variable b) and returns a tuple of
message-tag pairs as a collision for H. The first pair consists
of the message signed by the BLT oracle (qs) and the respec-
tive tag. The second pair consists of the message and the tag
which A returned in the BLT-game. Note that our transforma-
tion directly accesses the secret key of a TagOracle module.
This is a legal move, because T(A) is an adversary for colli-
sion resistance (not for forward-resistance as in Section 6.3)
which does not require secrecy of any keys.

Next, we show that if A wins the BLT-game (incorporated
in the T transformation) then T(A) wins the CR-game:
lemma reduc t ionCR : phoare [ GameCR (T (A) ) . main :

t r u e =⇒ T . b => r e s ] = 1% r .

If A wins the BLT-game, it produces a triple (m', tg', t')
such that T.r.[t'] = Some (H (m', tg')) and m' is
fresh (m , m', where m is the message signed by BLT-oracle,

i.e., BLTOracle.qs = Some m). We also proved that any
value stored in the timestamping repository must be equal
to Some (H (m, tagGen sk qt)). Hence, we constructed
a collision since tuples (m, tg) and (m', tagGen sk qr)
are different, but their hashes are equal.

We now prove that running the BLT-game with A in the T
module produces the same outcome as simply running the
BLT-game:
lemma r e l 1 : equ iv [ GameBLT ( BLTOracle , A) . main ~

GameCR (T (A) ) . main : = { g l ob A , g lob BLTOracle } =⇒
r e s { 1 } = T . b { 2 } ] .

The next step is to combine the results of the two previous
lemmas into the equivalence which states that the positive
outcome of A in the BLT-game implies positive outcome of
T(A) in the CR-game:
lemma r e l 2 : equ iv [ GameBLT ( BLTOracle , A) . main ~

GameCR (T (A) ) . main : = { g l ob A , g lob BLTOracle } =⇒
r e s { 1 } => r e s { 2 } ] .

The equivalence rel2 implies that CR is an upper bound for
EUF of the BLT scheme:
lemma sec : f o r a l l &m,

Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m : r e s ] ≤
Pr [ GameCR (T (A) ) . main ( ) @ &m : r e s ] .

6.6 Plain Data, Read-Write Access
In this section, we analyze the BLT scheme when adversaries
have read-write access to the timestamping repository which
contains plain message-tag pairs.
op b ind : message ∗ t ag → message ∗ t ag = fun x , x .
module type AdvBLT (T : Repo , O : BLTOracleT ) = {

proc f o r g e ( pk : pkey ) : message ∗ t ag ∗ t ime
{ T . check T . put O . s i gn }

} .

Theorem6.3. If the backdating resistant timestamping repos-
itory holds plain message-tag pairs then the probability of a
read-write adversary performing a successful BLT forgery is
upper-bounded by the probability of breaking forward-resistance
of the tag system.

After running the BLT-game, the variable BLTOracle.qt
holds the time value when the adversary used the BLT-oracle
to sign a message (if qt is zero then the oracle was not
used). Similarly, the variable GameBLT.t stores the time value
which is associated with the forged signature computed by
the adversary. We split the probability of winning the BLT
game into three cases based on the relative order of these
time values.
In the first case, the adversary A first uses the signing

oracle and later timestamps a forged message-tag pair. More
formally, we are interested in finding an upper bound for
the following probability:
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Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m :
r e s ∧ BLTOracle . q t < GameBLT . t ]

We note that after using the signing oracle, the adversary
observes a tag for time BLTOracle.qt and then successfully
produces a tag for the later time GameBLT.t. In this scenario,
A manages to break forward-resistance of the tag system. To
turn A into an FR-adversary, we must not forget to manually
initialize the used variable of the BLT-oracle.
module D(A : AdvBLT , O : TagOrac leT ) = {

module A = A( Ts , BLTOracle )
proc f o r g e ( pk : pkey ) = {

var tg , m, t ;
Ts . i n i t ( ) ;
BLTOracle . used = f a l s e ;
(m, tg , t ) = A . f o r g e ( pk ) ;
r e t u r n ( tg , t ) ;

}
} .

If we analyze the BLT-game with A and the FR-game with
D(A) then we see that the same computations are performed,
but the FR-game ignores the message and its freshness. Thus,
if A wins the BLT-game then D(A) wins the FR-game:
lemma c1 : equ iv [ GameBLT ( BLTOracle , A) . main ~

GameFR ( TagOracle , D(A) ) . main : = { g lob A} =⇒
r e s { 1 } ∧ BLTOracle . q t { 1 } < GameBLT . t { 1 } =>

r e s { 2 } ] .

The equivalence c1 allows us to conclude that the probability
of the first case is upper-bounded by the forward-resistance.
lemma ca s e 1 : f o r a l l &m,

Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m :
r e s ∧ BLTOracle . q t < GameBLT . t ] ≤

Pr [ GameFR ( TagOracle , D(A) ) . main ( ) @ &m : r e s ] .

In the second case, we analyze the probability of forgery
being associated with the time when the signing oracle
was invoked (GameBLT.t = BLTOracle.qt). Since the time-
stamping repository contains plain message-tag pairs, this
case cannot occur. To show it, we prove that when A wins
then BLT-game, then the time associated with the forgery is
always different from the time of using the oracle.
lemma c2 : phoare [ GameBLT ( BLTOracle , A) . main :

t r u e =⇒ r e s => GameBLT . t , BLTOracle . q t ] = 1% r .

Let us sketch the proof. If a forged signature is valid (res is
true) then GameBLT.t , 0. If the oracle was not used then
BLTOracle.qt = 0 and we are done. On the other hand, if
the BLT-oracle was used then Ts.r.[BLTOracle.qt] con-
tains a “non-fresh” message signed by the oracle. This fact,
combined with the premise that A was successful implies
that GameBLT.t must differ from BLTOracle.qt.

We use the De Morgan’s law to convert the PHL statement
c2 to the probability statement for this case:

lemma ca s e 2 : f o r a l l &m,
Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m :

r e s ∧ GameBLT . t = BLTOracle . q t ] = 0% r .

In the third case, the adversary wins by using the sign-
ing oracle after timestamping the forged message-tag pair
(GameBLT.t < BLTOracle.qt). Intuitively, it is clear that if
adversary managed to timestamp a forgery before using the
signing oracle then he must also be successful in performing
a forgery with the “dummy” oracle. One might be tempted
to prove the following equivalence:
lemma c3 ’ : equ iv [ GameBLT (BLTDummy , A) . main ~

GameBLT ( BLTOracle , A) . main : = { g l ob A} =⇒
r e s { 2 } ∧ BLTOracle . used { 2 } ∧

GameBLT . t { 2 } < BLTOracle . q t { 2 } => r e s { 1 } ] .

Unfortunately, it does not work since the adversary might
change his mind about revealing the forgery after discover-
ing that the access to the real oracle was not granted. There-
fore, we need to implement a wrapper around A:
module C (A : AdvBLT , T : Repo , O : BLTOracleT ) = {

module A = A( Ts , O)
proc f o r g e ( pk : pkey ) = {

var z , t ;
A . f o r g e ( pk ) ;
( t , z ) = f i l t e r ( fun ( a : i n t ) ( b : message ∗ t ag )

=> tagVer pk a b . 2 ) Ts . r ;
r e t u r n ( z . 1 , z . 2 , t ) ;

}
} .

The wrapper C runs A and then scans the entries of the time-
stamping repository to find an entry which contains a valid
tag. C(A) is guaranteed to find at least one valid tag since
we assumed that A wins the BLT-game and that the relevant
entries are filled before accessing the BLT-oracle:
lemma c3 : equ iv [ GameBLT (BLTDummy , C (A) ) . main ~

GameBLT ( BLTOracle , A) . main : = { g l ob A} =⇒
r e s { 2 } ∧

GameBLT . t { 2 } < BLTOracle . q t { 2 } => r e s { 1 } ] .

Another useful fact is that if an adversary A wins the BLT-
game with BLTDummy then N(A) wins the forward-resistance
game, where N transforms A into the FR-adversary by run-
ning A and returning the tag-time tuple computed by A.
lemma d2 f : f o r a l l (A <: AdvBLT { Ts , TagOrac le } ) ,
equ iv [ GameBLT (BLTDummy , A) . main ~
GameFR ( TagOracle , N(A) ) . main :

= { g l ob A} =⇒ r e s { 1 } => r e s { 2 } ] .

By combining the equivalences c3 and d2f, we arrive at
the conclusion that this case is also bounded by forward-
resistance:
lemma ca s e 3 : f o r a l l &m,

Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m :
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r e s ∧ GameBLT . t < BLTOracle . q t ] ≤
Pr [ GameFR ( TagOracle , N(C (A) ) ) . main ( ) @ &m :

r e s ] .

To sum up, the described three cases cover all of the possibil-
ities to win the BLT-game and we have shown that in each
of these cases the probability is upper-bounded by forward-
resistance of the tag system.

6.7 Hashed Data, Read-Write Access
Finally, we analyze the BLT scheme in combinationwith read-
write adversaries and the hashed values in the repository.

op b ind : message ∗ t ag → hash_output ∗
hash_output = fun x , (HM x . 1 , HT x . 2 ) .

Note that in this case the bind function returns a hash of a
message paired with the hash of a tag. Our analysis shows
that binding a message-tag pair into one hash value (as in
Section 6.5) leads to a non-trivial non-malleability require-
ments on the hash function. In the definition of bind, one
might think of HM and HT as the same hash function, but
differently typed.

Theorem6.4. If the backdating resistant timestamping repos-
itory holds tuples of hashes computed from message-tag pairs
then the probability of a read-write adversary performing a
successful BLT forgery is bounded by the sum of probabilities
of breaking the forward-resistance, phantom-freeness, collision
resistance, and tag-then-hash unpredictability scaled by the
number of entries in the repository.

We analyze the same cases as in the previous section. The
security proof for the first case (forgery done after using the
oracle) remains exactly the same. Like the proof in Section 6.5,
the second case (the forgery time and the time of using
the signing oracle are the same) is bounded by collision
resistance of HM.

This leaves us with the last possibility when the adversary
uses the signing oracle after timestamping the hashes of a
message-tag pair (GameBLT.t < BLTOracle.qt). In this case,
the actions of the adversary can be split into three phases:

1. Filling the timestamping repository with entries.
2. Signing a message with the BLT-oracle.
3. Computing a tag-message-time triple which comprises

a forgery.
Notice how the new information accumulates through the
phases. In the first phase, the adversary fills the repository
based only on the public key of a tag system. In the second
phase, the adversary chooses the message and the signing
time based on the public key and the entries in the reposi-
tory. In the final phase, the adversary also learns the signa-
ture from the second phase and since the tag system is not
backward-resistant it does not prohibit deducing tags for the
previous time values.

Recall that after running the BLT-game, the variables
GameBLT.t and GameBLT.tg store the components of the
BLT signature returned by the adversary. If GameBLT.tg is
not equal to tagGen sk GameBLT.t then adversary managed
to construct a phantom tag. Since in the phantom-freeness
game the adversary can access the tagging oracle, the con-
version from a BLT-adversary to a PF-adversary is trivial:
module F (A : AdvBLT , O : TagOrac leT ) : AdvPF = {

module A = A( Ts , BLTOracle )
proc f o r g e ( pk : pkey ) = {

var tg , m, t ;
BLTOracle . used = f a l s e ;
Ts . i n i t ( ) ;
(m, tg , t ) = A . f o r g e ( pk ) ;
r e t u r n ( tg , t ) ;

}
} .

If A manages to construct a non-canonical tag, then F(A)
wins the phantom-freeness game:
lemma tg c : equ iv [ GameBLT ( BLTOracle , A) . main ~

GamePF ( TagOrac le , F (A) ) . main :
= { g l ob A , g lob TagOracle , g l ob BLTOracle ,

g l ob Ts } =⇒
( tagGen TagOrac le . sk GameBLT . t , GameBLT . tg ) { 1 } =>

r e s { 2 } ] .
lemma case3 −1 : f o r a l l &m,

Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m :
r e s ∧ GameBLT . t < BLTOracle . q t ∧
tagGen TagOrac le . sk GameBLT . t , GameBLT . tg ] ≤

Pr [ GamePF ( TagOrac le , F (A) ) . main ( ) @ &m : r e s ] .

In the last case, when GameBLT.tg = tagGen sk GameBLT.t,
we notice that in the first phase (filling the repository) the
adversary managed to find a hash of a tag, i.e., to break tag-
then-hash unpredictability (THU). The important aspect is
that the THU-adversary has no access to the tagging oracle,
which fits nicely with the fact that the adversary “commits”
to the repository entries before using the signing oracle. At
the same time, without the real signing oracle in the second
and third phases, the adversary can arbitrarily change his
behavior. Therefore, our strategy is to run the adversary
with the dummy oracle and then uniformly choose one of
the entries from the repository:
module H(A : AdvBLT ) = {

module A = A( Ts , BLTDummy)
var gues s : i n t
proc f o r g e ( pk : pkey ) = {

Ts . i n i t ( ) ;
A . f o r g e ( pk ) ;
gues s <$ [1 . . kpe ] ;
r e t u r n ( oge t Ts . r . [ gues s ] . 2 , gues s ) ;

}
} .
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It might be instructive to think why we cannot search the
repository for the right entry similarly to what we did in the
third case of Section 6.6.
In the reduction above we use the kpe constant which

denotes the expiration date of a bounded tag system. In
the unbounded case, kpe constant can be replaced by an
upper bound on the number of entries that an efficient (i.e.,
polynomial-time) adversary can possibly produce.

First, we prove that if A wins the BLT-game and the guess
coincides with the forgery time, then H(A) also wins the
THU-game:

lemma htueq ’ : equ iv [ GameTHU(H(A) ) . main ~
GameBLT ( BLTOracle , A) . main :
= { g l ob A , g lob BLTOracle } =⇒
r e s { 2 } ∧ GameBLT . t { 2 } = H . gues s { 1 } => r e s { 1 } ] .

Unfortunately, by the rules of PRHL the equivalence htueq'
cannot be reinterpreted into probabilities of events. This is
due to the fact that the postcondition compares values from
the different runs (memories). This problem can be fixed by
coding a small wrapper around A, which chooses the value
from the same interval as H(A):

module W(A : AdvBLT , T : Repo , O : BLTOracleT ) = {
var gues s : i n t

proc f o r g e ( pk : pkey ) = {
var r ;
r = A . f o r g e ( pk ) ;
gues s <$ [1 . . kpe ] .
r e t u r n r ;

}
} .

Now we can prove a similar equivalence which only com-
pares values from the same memory and can therefore be
transformed into a statement about probabilities:

lemma htueq : equ iv [ GameTHU(H(A) ) . main ~
GameBLT ( BLTOracle , W(A) ) . main :
= { g l ob A , g lob BLTOracle } =⇒
r e s { 2 } ∧ GameBLT . t { 2 } < BLTOracle . q t { 2 } ∧

tagGen TagOrac le . sk GameBLT . t = GameBLT . tg ∧
GameBLT . t { 2 } = W(A) . gues s { 2 } => r e s { 1 } ] .

This trick works out because H(A) and W(A) are sampling
the guess “simultaneously”. This allows us to identify the
guess value in the first game with the guess in the second
game.

lemma case3 −2 : f o r a l l &m,
Pr [ GameBLT ( BLTOracle , W(A) ) . main ( ) @ &m :

r e s ∧ GameBLT . t < BLTOracle . q t ∧
tagGen TagOrac le . sk GameBLT . t = GameBLT . tg ∧
GameBLT . t = W(A) . gues s ] ≤

Pr [ GameTHU(H(A) ) . main ( ) @ &m : r e s ] .

Finally, we observe that the value guess is sampled indepen-
dently and uniformly and the wrapper W(A) does not play
any role in the outcome of the BLT-game (A wins iff W(A)
wins), which leads us to the following upper bound:
lemma ca s e 3 : f o r a l l &m,

Pr [ GameBLT ( BLTOracle , A) . main ( ) @ &m :
r e s ∧ GameBLT . t < BLTOracle . q t ] ≤

Pr [ GameTHU(H(A) ) . main ( ) @ &m : r e s ] ∗ kpe +
Pr [ GamePF ( TagOrac le , F (A) ) . main ( ) @ &m : r e s ] .

By putting all the cases together we conclude that the exis-
tential unforgeability of the BLT scheme depends on forward-
resistance, tag-then-hash unpredictability, phantom-freeness,
collision resistance, and the key expiration date (or the size
of the repository in case of unbounded tag system).

7 Discussion and Related Work
As the cryptographic protocols are getting more complicated,
the importance of formal verification becomes evident. Sym-
bolic and computational models represent two main direc-
tions in the field of formalized cryptography [Blanchet 2012].
In the symbolic model the cryptographic primitives are ren-
dered as symbols considered as black boxes with perfect
security. The messages are terms composed of these primi-
tives. Adversaries are restricted to compute only using these
primitives. The symbolic model is well suited for automation
and allows to compute all terms the adversaries can derive.
This model fits well for catching the high-level insecurities
in the logic of non-trivial protocols.
In the computational model the adversary is any proba-

bilistic interactive Turing machine with the runtime poly-
nomial in the length of a secret key. The security property
of a cryptographic primitive is considered to hold when the
probability that it does not hold is negligible. The compu-
tational model is more realistic, but most of the times the
proofs must be done manually.
Delaune et al. present a survey of symbolic methods for

establishing equivalence-based properties in cryptographic
protocols. They give a few examples on how to equationally
describe digital signatures in the context of more complicated
protocols [Delaune and Hirschi 2017].
Jackson et al. argue that real-world digital signatures as-

sume more properties than provided by standard existential
unforgeability. Authors give a hierarchy of new formal mod-
els for signature schemes that captures these subtleties. They
implement these models in the Tamarin Prover which gives
a way to perform these analyses automatically. Moreover,
authors validated their approach by finding new attacks on
real-life protocols [Jackson et al. 2019].

Béguelin et al. present machine-checked proofs of existen-
tial unforgeability under adaptive chosen-message attacks of
the Full Domain Hash signature scheme in the computational
model of CertiCrypt prover. CertiCrypt is implemented on
top of the Coq proof assistant which provides expressive
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specification language and high degree of trustworthiness—
all derivations are checked by Coq [Zanella-Béguelin et al.
2009].

Lindenberg et al. use Isabelle/HOL to give a formal speci-
fication of the RSA probabilistic signature scheme (RSA-PSS)
and show its functional correctness. The security proof of
RSA-PSS is left as a future work [Lindenberg et al. 2006].

Kusch presents a formalization of the Digital Signature Al-
gorithm (DSA) in the Isabelle/HOL system. The main contri-
bution of this work is a formal proof of the verifying scheme,
i.e. author proved that a legitimate signature will be actually
accepted. The security properties are not addressed [Kusch
2006].

8 Conclusions and Future Work
We have presented a formalization of the BLT signature
scheme. Along our way we defined an ideal model of univer-
sally composable timestamping and formally specified tag
systems and their security properties. We have shown that
the existential unforgeability of the BLT scheme depends on
the kind of message-tag binding used and whether we as-
sume that adversaries have write access to the timestamping
repository.
In the future, it would be interesting to look at more in-

volved, but also practically more relevant types of timestamp-
ing repositories. For example, some real-world timestamping
services store multiple entries per round, combined into a
Merkle tree. Another interesting direction is to investigate
implementions of efficient and provably secure tag systems
based only on the standard properties of hash functions.

A Tagging Oracle

module TagOrac le : TagOrac leT = {
var u s edF l ag : boo l
var usedTime : i n t
var pk : pkey
var sk : skey

proc i n i t ( pk : pkey , sk : skey ) : u n i t = {
TagOrac le . pk = pk ;
TagOrac le . sk = sk ;
u s edF l ag = f a l s e ;
usedTime = 0 ;

}

proc orac leTagGen ( t : i n t ) : t a g op t i on = {
var r = None ;
i f ( ! u s edF l ag ) {

usedTime = t ;
r = Some ( tagGen sk usedTime ) ;

}
u s edF l ag = t r u e ;
r e t u r n r ;

}

proc verTag ( tg : tag , t : i n t ) : boo l = {
r e t u r n tagVer pk t tg ;

}

proc orac l eUsedTime ( ) : i n t = {
r e t u r n usedTime ;

}
} .

B BLT Oracles
module BLTOracle : BLTOracleT = {

module BLT = BLTScheme ( Ts , TagOrac le )
var qs : message op t i on
var q t : i n t
var used : boo l

proc i n i t ( pk : pkey , sk : skey ) : u n i t = {
TagOrac le . i n i t ( pk , sk ) ;
Ts . i n i t ( ) ;
qs = None ;
used = f a l s e ;

}

proc s i gn (m : message ) : ( t ag ∗ i n t ) op t i on = {
var r , q ;
i f ( ! used ) {

qs = Some m;
( q , q t ) = BLT . s i gn (m) ;
r = Some ( q , q t ) ;

} e l s e {
r = None ;

}
used = t r u e ;
r e t u r n r ;

}

proc v e r i f y (m: message , t g : tag , t : i n t ) : boo l = {
var b : boo l ;
b = BLT . v e r i f y (m, tg , t ) ;
r e t u r n b ;

}

proc f r e s h (m : message ) : boo l = {
r e t u r n qs <> Some m;

}
} .

module BLTDummy : BLTOracleT = {
module BLT = BLTScheme ( Ts , TagOrac le )

proc i n i t ( pk : pkey , sk : skey ) : u n i t = {
TagOrac le . i n i t ( pk , sk ) ;
Ts . i n i t ( ) ;

}

proc s i gn (m : message ) : ( t ag ∗ i n t ) op t i on = {
r e t u r n None ;

}
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proc v e r i f y (m : message , t g : tag , t : i n t ) :
boo l = {
var b : boo l ;
b = BLT . v e r i f y (m, tg , t ) ;
r e t u r n b ;

}

proc f r e s h (m : message ) : boo l = {
r e t u r n t r u e ;

}
} .
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