
K-Cipher: A Low Latency, Bit Length Parameterizable Cipher

Michael Kounavis, Sergej Deutsch, Santosh Ghosh, and David Durham

Intel Labs, Intel Corporation, 2111, NE 25th Avenue, Hillsboro, OR 97124

Email: {michael.e.kounavis, sergej.deutsch, santosh.ghosh, david.durham}@intel.com

November 2019

Abstract

We present the design of a novel low latency, bit length parameterizable cipher, called
the “K-Cipher”. K-Cipher is particularly useful to applications that need to support ultra
low latency encryption at arbitrary ciphertext lengths. We can think of a range of net-
working, gaming and computing applications that may require encrypting data at unusual
block lengths for many different reasons, such as to make space for other unencrypted state
values. Furthermore, in modern applications, encryption is typically required to complete
inside stringent time frames in order not to affect performance. K-Cipher has been designed
to meet these requirements. In the paper we present the K-Cipher design and discuss its
rationale.

1 Introduction

The paper presents a novel block cipher design which is lightweight, hardware efficient, as well
as bit length parameterizable. Our cipher is called the “K-Cipher”. In the K-Cipher design,
the block length is not fixed (e.g., fixed to 128 bits), neither takes values from a small set of
options (e.g., 64 or 128 bits). Instead the block length can take any arbitrary value between
an upper and a lower bound and is an input parameter passed into the cipher.

The need for such block cipher comes from the requirements of modern applications. To
address a wide range of vulnerabilities, applications employ cryptographic mechanisms to pro-
vide confidentiality and integrity. A common characteristic of applications is that their features
have been designed to work well with some existing or specially designed cipher (e.g., AES [2]
or QARMA [6]).

In the paper we argue for the need of a new block cipher family that is more agile and
easier to tune to the needs of a particular application or hardware. A new requirement we
introduce is that the block length of the cipher should be an input parameter to the encryption
operation. Furthermore, the specification and security analysis of block ciphers should be, to
some degree, block length independent. Such independence should substantially surpass what
is accomplished today, where the block length is selected from a small number of options. Our
design supports encryption at arbitrary block lengths which, in our prototype take all values
from 24 to 1024 at increments of 1.

The reason why we believe such requirement is important, is because applications operate
on a variety of data of different lengths. The encrypted portions of such data may be of
arbitrary lengths as well. Rather than designing an application with a fixed block length
cipher in mind, we argue for the opposite. That is, to have the ability to arbitrarily tune the



block length of a block cipher to meet the needs of a particular application or hardware. This
is something that is not possible today.

Another property of our cipher family is that it supports ultra low latency encryption
in hardware. It is fair to state that the landscape of today’s block ciphers, which are ei-
ther standard (e.g., AES [1]), or are to be standardized though the current NIST lightweight
cryptography competition [7], does not include any cipher that simultaneously meets the two
requirements stated: (i) support for full confusion and diffusion over arbitrary block lengths,
as part of the encryption and decryption operations; and (ii) support for ultra low latency
encryption and decryption operations in hardware.

For example, past lightweight cipher designs such as NSA’s “Simon” and “Speck” [8],
or designs like “PRINCE” [9] are not bit length parameterizable. Furthermore, such ciphers
support critical paths, which can get even smaller with the design proposed here. For example,
the PRINCE rounds, even though contain simpler Sbox transformations, and simpler Mix
Columns matrices when compared to AES, still require several clocks in the critical path,
in typical client and server frequencies. Others ciphers like Simon employ a simple Feistel
structure, which includes only elementary logical AND, XOR and rotation operations over 32-
72 rounds. Furthermore, Simon supports only 5 fixed lengths: i.e., 32, 48, 64, 96 and 128
bits. Last, some submissions to the NIST lightweight cryptography competition, such as
TinyJAMBU [11] or Xoodyak [12] support encryption at both very high speeds and arbitrary
plaintext lengths. However, they do not fully diffuse the bits of their plaintext input into the
bits of the ciphertext output. Instead, for a wide range of plaintext inputs, they merely add
in GF(2) the input plaintext bits into the bits of some sponge state.

2 Overview

We envision that K-Cipher will be a useful tool for the encryption and decryption of data of
varying lengths, performed by many different types of applications such as running in net-
working devices, gaming consoles, servers, low power clients and so on. K-Cipher supports fast
encryption based on a novel confusion-diffusion network, which we discuss in this paper. The
primitives it employs are: (i) block wide addition with carries. In this operation, the carry
out bit is ignored. The operation is invertible, its inverse being subtraction with borrows. For
the subtraction operation, K-Cipher just ignores the borrow out bit; (ii) block wide bit level
reordering; and finally (iii) wide Sbox substitution, which is realized as inversion in a binary
Galois Field.

K-Cipher is designed to support confidentiality at desired security levels by employing the
least possible number of rounds, which, in the proposed design is equal to 2. We can also
consider this number to be a configurable parameter. Future cryptanalysis will determine the
exact number of rounds which will be necessary to support desired security levels.

Substitution box lengths are determined by the block length. For example, to diffuse across
32 bits, K-Cipher uses 8-bit substitution boxes, as 32 bits< (8 bits)2 rounds. To diffuse across 128
bits, K-Cipher uses 16-bit substitution boxes, as 128 bits < (16 bits)2 rounds. All primitives of
the K-Cipher apply to a wide range of block lengths. Arbitrary ciphertext lengths are supported
using Galois field inverters of varying lengths, the sum of which is equal to the requested input
and ciphertext lengths. In our implementation the employed Galois field inverters have fixed
lengths but the last one, the length of which is determined by the block length.

2



input (state)

+ Integer addition (with carries)

round key

=

modified state

bit-level reordering

output

Figure 1: The Aggressive Adder Component of the K-Cipher Round

3 K-Cipher Design

3.1 Notation

We will be denoting as <an . . . a1a0> a bit string of length n consisting of bits a0, . . . , an,
where a0 is the least significant bit of the string and an is its most significant bit. Similarly,
we will be denoting as N(<an . . . a1a0>) the binary number which is represented by the string
<an . . . a1a0>.

3.2 The Aggressive Adder

Starting with Figure 1, we illustrate one of the basic components of the K-Cipher round called
the “aggressive adder”. The aggressive adder accepts as input some state, and then adds to
this state a round key. The addition performed is not in the typical GF(2) arithmetic, but is
in the integer arithmetic. Integer addition, if seen as a bit-logical operation, performs strong
mixing of its input bits, in order to produce the bits of the output. The mixing performed
demonstrates regularity due to the use of carry values. By “mixing” in this document we
mean computations on single bit values that involve a plurality of AND, OR, NAND, NOR or XOR
operations.

For example lets consider that we add the numbers N(<a3a2a1a0>) and N(<b3b2b1b0>)
with each other and with some input carry value c0. The first bit of the result is equal to a0⊕
b0⊕c0. The carry produced from the addition of the first two bits is equal to a0b0⊕b0c0⊕a0c0.
Similarly, the second bit of the result is a1 ⊕ b1 ⊕ a0b0 ⊕ b0c0 ⊕ a0c0 and the carry produced
from the addition of the second two bits is equal to a1b1⊕ a1a0b0⊕ a1b0c0⊕ a1a0c0⊕ b1a0b0⊕
b1b0c0 ⊕ b1a0c0. Moving on to the addition of the third least significant bits of the input, the
same pattern of computation is repeated. The input bits are XOR-ed with each other and with
the input carry, in order to produce the output bit. Furthermore, the input bits are multiplied
with each other in GF(2) arithmetic (i.e., undergo a logical AND operation) and with the input
carry and, subsequently, the products are XOR-ed with each other in order to produce the
output carry. The third least significant bit of the result, as computed using this pattern, is
a2 ⊕ b2 ⊕ a1b1 ⊕ a1a0b0 ⊕ a1b0c0 ⊕ a1a0c0 ⊕ b1a0b0 ⊕ b1b0c0 ⊕ b1a0c0. The third output carry

3



input

aggressive adder using ‘reordering 1’ with Round Key 1 = Key

Sbox Layer based on inverters in GF(28), GF(216), GF(232) etc…

aggressive adder using ‘reordering 2’ with Round Key 2

Sbox Layer based on inverters in GF(28), GF(216), GF(232) etc…

XOR with round key 3 = output

Figure 2: Two Round K-Cipher Specification

is a2b2 ⊕ a2a1b1 ⊕ a2a1a0b0 ⊕ a2a1b0c0 ⊕ a2a1a0c0 ⊕ a2b1a0b0 ⊕ a2b1b0c0 ⊕ a2b1a0c0 ⊕ b2a1b1 ⊕
b2a1a0b0 ⊕ b2a1b0c0 ⊕ b2a1a0c0 ⊕ b2b1a0b0 ⊕ b2b1b0c0 ⊕ b2b1a0c0.

From the logical expressions above, it becomes evident that the mixing performed by the
addition with carries stage, as measured by the number of GF(2) products which are XOR-ed
with each other, gets only stronger as one moves from the least significant bit of the result
toward the most significant bit. In fact, it grows stronger exponentially. It is easy to show
that the n-th output bit for the result is produced by XOR-ing 2n + 1 products.

To destroy the regularity which characterizes the addition with the carries stage, the aggres-
sive adder performs a bit level reordering operation on the addition output. Such reordering
operation places the output bits coming from the integer adder in a seemingly random order,
so that the number of GF(2) products of the logic equation of the result no longer increases
monotonically but instead increases and decreases in a pseudorandom manner. Furthermore
the bit level reordering operation aids the subsequent wide substitution stage, shown in Figures
2 and 3, ensuring that each bit of the output of the K-Cipher results from mixing all bits of the
input with all bits of the key. The addition with carries is a bit length independent operation.
Its specification is independent of the length of the inputs. It is also invertible, its inverse
being the subtraction with borrows. Any final carry out or borrow out signals produced from
such operations are ignored.

3.3 Two Round K-Cipher Specification

Moving onto Figure 2, the processing steps of an instance of the K-Cipher employing two rounds
are shown. The first round consists of an aggressive adder stage that performs reordering using
a first index sequence denoted as “reordering 1” and a first round key denoted as “Round Key
1”. The aggressive adder of the first round is followed by a wide substitution stage denoted
as “Sbox Layer” in the figure. The second round consists of an aggressive adder stage also
performing reordering using a second index sequence denoted as “reordering 2” and a second
round key denoted as “Round Key 2”. The second aggressive adder is followed by a second

4



wide substitution stage. The processing steps of the K-Cipher conclude with an XOR operation
performed between the cipher state and a third round key denoted as “round key 3”.

The Sbox layer performs the following steps. It first divides its input N bits into blocks
of M bits. Let’s assume for now that N is a multiple of M . The cases where N is not a
multiple of M are discussed further below. If N is a multiple of M , the Sbox layer employs an
array of N/M inverters in GF(2M ) arithmetic which replace their input bits with the bits of
the inverse in GF(2M ). Inversion in the Galois Field arithmetic GF(2M ) is another operation
supporting strong bit mixing. The mixing performed by the Galois Field inverters employed by
the K-Cipher does not demonstrate the regularity of addition with carries and is in fact pseudo-
random. K-Cipher is designed to support strong encryption security by employing additions
and inversions in two unrelated types of arithmetic (i.e., Galois Field and integer) and by
combining those into sequences of few rounds. K-Cipher rounds, despite the fact that they
are few, succeed in strongly mixing their input and key bits potentially thwarting differential,
algebraic and other types of attacks, as suggested by analysis, which we currently carry out
and will discuss in a future paper.

The Sbox layer, as defined so far, is bit length independent provided that the length of the
state of the cipher N is a multiple of the width of the inverters employed M . In this case the
specification of the cipher is generic and each wide substitution stage employs N/M inverters.
If N is not a multiple M , then these situations can be handled as shown in Figure 3. In the
figure there are m substitution boxes of width M which are employed, plus one more of width
K = N −m ·M , where K is non-zero. The substitution stage employs m inverters in the in
GF(2M ) arithmetic and one inverter in the GF(2K) arithmetic handling the last K bits of the
cipher state.

The generation of the index sequences employed by the K-Cipher, which support bit level
reordering, is accomplished by the following algorithm: The algorithm first determines the
number of times d it needs to iterate over the bits of a substitution box in order to distribute
these bits over all substitution boxes. We refer to these bits of a substitution box as “bits-to-
be-reordered”. The parameter d is equal to ceil(M/b). Then, for each of the d iterations, the
algorithm generates a random sequence of numbers. These are the indexes of the substitution
boxes where the “bits-to-be-reordered”, associated with the current iteration, will be placed.
Subsequently, for each “bit-to-be-reordered”, the algorithm picks a bit position at random
from among the empty bit positions in the input bit’s target substitution box and assigns this
position to the bit. This last step is repeated for all iterations of a triply nested loop executed
by the algorithm.

One can show that the algorithm produces sequences of indexes that are both correct and
proper. By correct we mean that every bit of the input is placed in a different bit position
of the output and there is no input which is omitted from the output. By proper we mean
that if such reordering operations are combined with wide substitution operations, then, after
logMN rounds all bits of the input have been fully mixed with each other, even if additions
with carries are absent.

3.4 Key Schedule and Use of Tweaks

The key schedule algorithm of the K-Cipher has the same structure as the cipher itself shown
in Figure 2. However, it uses a different set of reordering sequences. Furthermore, instead of
adding key bits into its state, it adds a plurality of constants. This is to expand a single key
into a sequence of three round keys used by the cipher rounds.

Last we discuss, how the K-Cipher can be turned into a tweakable block cipher. This is
done as follows: As said above, the key schedule of the K-Cipher involves 3 round keys. A

5



M bits M bits M bits

…

substitution boxes based on GF(2M) inversion

K ≠ M bits

substitution box based on GF(2K) inversion

N bits long state, where N - m∙M = K > 0 

Figure 3: The Sbox Layer of the K-Cipher

tweak value is accepted which has the same length as each round key. The tweak value is added
to the first and the last round key of the K-Cipher key schedule using the aggressive adder
algorithm of Figure 1. The result is a tweaked key schedule which is used by the encryption
and decryption processes.

4 Concluding Remarks

We presented the design of a new cipher, called the K-Cipher. K-Cipher is bit length parame-
terizable and only involves few low latency components in the critical path, specifically integer
adders and Galois field inverters. As such, the K-Cipher can be a useful tool for developing
secure applications without sacrificing performance. We have developed a software prototype
of the cipher, which can successfully perform encryptions and decryptions for all block lengths
from 24 bits up to 1024 bits, at block length increments of one.

As defined, the K-Cipher could also be used as part of other larger cryptographic con-
structions. Many different known cryptographic constructions could be employing the cipher,
including Feistel structures, sponge structures, Davies Meyer constructions, modes such as
CBC, CTR, XTS and so on. The cryptanalysis of the K-Cipher is ongoing. A more detailed
specification document will be published soon.

References

[1] Advanced Encryption Standard (AES), Federal Information Processing Standards Pub-
lication FIPS PUB 197.

[2] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confi-
dentiality on Storage Devices, NIST Special Publication 800-38E.

[3] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue
and U. Savagaonkar, Innovative instructions and software model for isolated execution,
Proceedings of the Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

6



[4] AMD Secure Encrypted Virtualization (SEV), https://developer.amd.com/sev/, 2016.

[5] M. Rutland, ARM v8.3 Pointer Authentication, presentation, available on-
line at https://events.static.linuxfound.org/sites/events/files/slides/

slides 23.pdf, 2017.

[6] R. Avanzi, The QARMA Block Cipher Family, Cryptology ePrint Archive: Report
2016/444.

[7] NIST Lightweight Cryptography Competition, available online at
https://csrc.nist.gov/projects/lightweight-cryptography

[8] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers The
Simon and Speck Families of Lightweight Block Ciphers, Cryptology ePrint Archive:
Report 2013/404.

[9] J. Borghoff, A. Canteaut, T. Guneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G.
Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalcin,
PRINCE: a low-latency block cipher for pervasive computing applications, ASIACRYPT
2012, Proceedings of the 18th international conference on The Theory and Application of
Cryptology and Information Security, Pages 208-225, Beijing, China December 02 - 06,
2012.

[10] Y. Dodis, T. Liu, M. Stam, J. Steinberger, Indifferentiability of Confusion-Diffusion
Networks, hskip 1em plus 0.5em minus 0.4emCryptology ePrint Archive: Report 2015/680.

[11] H. Wu, and T. Huang, TinyJAMBU: A Family of Lightweight Authenti-
cated Encryption Algorithms, Submission to the NIST Lightweight Cryptogra-
phy Competition, available online at https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf.

[12] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer, Xoodyak,
a lightweight cryptographic scheme, Submission to the NIST Lightweight Cryptogra-
phy Competition, available online at https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/Xoodyak-spec.pdf.

7


