
K-Cipher: A Low Latency, Bit Length Parameterizable Cipher

Michael Kounavis, Sergej Deutsch, Santosh Ghosh, and David Durham

Intel Labs, Intel Corporation, 2111, NE 25th Avenue, Hillsboro, OR 97124

Email: {michael.e.kounavis, sergej.deutsch, santosh.ghosh, david.durham}@intel.com

Rev. 0.1: November 2019, Rev. 0.5: February 2021

Abstract

We present the design of a novel low latency, bit length parameterizable cipher, called
the “K-Cipher”. K-Cipher is particularly useful to applications that need to support ultra
low latency encryption at arbitrary ciphertext lengths. We can think of a range of net-
working, gaming and computing applications that may require encrypting data at unusual
block lengths for many different reasons, such as to make space for other unencrypted state
values. Furthermore, in modern applications, encryption is typically required to complete
inside stringent time frames in order not to affect performance. K-Cipher has been designed
to meet these requirements. In the paper we present the K-Cipher design and specification
and discuss its security properties. Our analysis indicates that K-Cipher is secure against
both known ciphertext, as well as adaptive chosen plaintext adversaries. Finally, we present
synthesis results of 32-bit and 64-bit K-Cipher encrypt datapaths, produced using Intel’s
® 10 nm process technology. Our results show that the encrypt datapaths can complete
in no more than 767 psec, or 3 clocks in 3.9-4.9 GHz frequencies, and are associated with
a maximum area requirement of 1875 µm2.

1 Introduction

The paper presents a novel block cipher design which is lightweight, hardware efficient, as well
as bit length parameterizable. Our cipher is called the “K-Cipher”. In the K-Cipher design,
the block length is not fixed (e.g., fixed to 128 bits), neither takes values from a small set of
options (e.g., 64 or 128 bits). Instead the block length can take any arbitrary value between
an upper and a lower bound and is an input parameter passed into the cipher.

The need for such block cipher comes from the requirements of modern applications. To ad-
dress a wide range of vulnerabilities, applications employ cryptographic mechanisms to provide
confidentiality and integrity. A common characteristic of applications is that their features are
designed to work well with some existing or specially designed cipher (e.g., AES [2] or QARMA
[6]).

In the paper we argue for the need of a new block cipher family that is more agile and
easier to tune to the needs of a particular application or hardware. A new requirement we
introduce is that the block length of a cipher should be an input parameter to the encryption
operation. This should be the block length over which full confusion and diffusion operations
are performed. Furthermore, the specification and security analysis of such block cipher should
be, to some degree, block length independent. Such independence should substantially surpass
what is accomplished today, where the block length is selected from a small number of options.
Our design supports encryption at arbitrary block lengths which, in our software prototype
prototype take all values from 24 to 1024 at increments of 1.

The reason why we believe such requirement is important, is because applications operate
on a variety of data of different lengths. The encrypted portions of such data may be of
arbitrary lengths as well. Rather than designing an application with a cipher of fixed block
length in mind, we argue for the opposite. That is, to have the ability to arbitrarily tune the
block length of a block cipher to meet the needs of a particular application or hardware.

Another property of our cipher family is that it supports ultra low latency encryption in
hardware. Specifically, our 32-bit and 64-bit encrypt datapaths can complete in 3 clocks in
3.9-4.9 GHz frequencies, where datapaths are synthesized using Intel’s ® 10 nm process tech-
nology. It is fair to state that the landscape of today’s block ciphers, which are either standard
(e.g., AES [1]), or are to be standardized though the current NIST lightweight cryptography
competition [7], does not include any cipher that simultaneously meets the two requirements
stated: (i) support for full confusion and diffusion over arbitrary block lengths, as part of the
encryption and decryption operations; and (ii) support for ultra low latency encryption and
decryption operations in hardware.

For example, past lightweight cipher designs such as NSA’s “Simon” and “Speck” [8],
or designs like “PRINCE” [9] are not bit length parameterizable. Furthermore, such ciphers
support critical paths, which can get even smaller with the design proposed here. For example,
the PRINCE rounds, even though contain simpler SBox transformations, and simpler Mix
Columns matrices when compared to AES, still require several clocks in the critical path,
in typical client and server frequencies. Others ciphers like Simon employ a simple Feistel
structure, which includes only elementary logical AND, XOR and rotation operations over 32-
72 rounds. Furthermore, Simon supports only 5 fixed lengths: i.e., 32, 48, 64, 96 and 128
bits. Last, some submissions to the NIST lightweight cryptography competition, such as
TinyJAMBU [11] or Xoodyak [12] support encryption at both very high speeds and arbitrary
plaintext lengths. However, they do not fully diffuse the bits of their plaintext input into the
bits of the ciphertext output. Instead, for a wide range of plaintext inputs, they merely add
the input plaintext bits into the bits of some sponge state, in the finite field F2.

2 Overview

We envision that K-Cipher will be a useful tool for the encryption and decryption of data of
varying lengths, performed by many different types of applications such as running in net-
working devices, gaming consoles, servers, low power clients and so on. K-Cipher supports
fast encryption based on a novel confusion-diffusion network, which we discuss in this paper.
The primitives it employs are: (i) block-wide addition with carries. In this operation, the
carry-out bit is ignored. The operation is invertible, its inverse being subtraction with bor-
rows. For the subtraction operation, K-Cipher just ignores the borrow-out bit; (ii) block-wide
bit level reordering; and finally (iii) wide SBox substitution, which is realized as inversion in a
binary Galois field. To further provide security against adaptive chosen plaintext adversaries,
K-Cipher randomizes the SBox transformation, as explain in Section 4.2.

K-Cipher is designed to support confidentiality at desired security levels by employing the
least possible number of rounds r, which, in the proposed design is set to 2 and 3. There
are two encryption flows specified. First, a “Flex” flow is computationally lighter and suited
to defend against known ciphertext adversaries. This one uses two rounds and deterministic
SBox transformations. Second, a “CPA” flow is only incrementally more expensive, but defends
against adaptive chosen plaintext adversaries. This one employs three rounds and randomized
SBox transformations. The number of rounds can also be a configurable parameter. In the
security analysis section of the paper, we discuss why the suggested numbers of rounds is a

2

input (state)

+ addition modulo 2n (involves carry propagation)

round key

=

modified state

bit reordering

output

Figure 1: The Aggressive Adder Component of the K-Cipher Round

good choice for the cipher.
Substitution box lengths are determined by the block length. For example, to diffuse across

32 bits, K-Cipher uses 8-bit substitution boxes, as the 32-bit length is smaller than the square
of the 8-bit length, and the minimum number of rounds is 2. Similarly, to diffuse across 128
bits, K-Cipher uses 16-bit substitution boxes, as the 128-bit length is smaller than the square
of the 16-bit length. All primitives of the K-Cipher apply to a wide range of block lengths.
When the number of rounds is three, the box widths guarantee that not only every bit value of
the input is diffused over all bits of the output, but also every bit differential of the input can
cause the appearance of bit differentials in every bit of the output. Arbitrary ciphertext lengths
are supported using Galois field inverters of varying lengths, the sum of which is equal to the
requested input and ciphertext lengths. In the K-Cipher specification discussed in Section 4,
all employed Galois field inverters have fixed lengths but the last one, the length of which is
determined by the block length, and a specific procedure configuring the cipher.

3 K-Cipher Design

3.1 Notation

In the design and specification sections that follow, we will be denoting by [a0 : a1 : . . . : an−1]
a bit string of length n consisting of bits a0, . . . , an−1, where a0 is the least significant bit of
the string and an−1 is its most significant bit. Similarly, we will be denoting by [ai : aj] the
substring of [a0 : a1 : . . . : an−1], which starts at bit position i and ends in bit position j.
The bits at positions i and j are included in the substring. We will also be using the standard
notation [i, j] to refer to the set of integers from i to j. The operators ‘�M ’and ‘�M ’will denote
addition and subtraction modulo M , whereas the operator ⊕ will denote XOR. Inversion in the

finite field Fq will be denoted by ()−1q . The assignment
$← Permutation(e0, e1, . . . , ev−1) will

denote a random permutation of elements e0, e1, . . . , ev−1. Finally, the assignment notation
$← Range(L,U) will denote assignment to a random uniformly distributed value in the set

[L,U].

3

3.2 The Aggressive Adder

Starting with Figure 1, we illustrate one of the basic components of the K-Cipher round called
the “aggressive adder”. The aggressive adder accepts as input some state, and then adds
to this state a round key. The addition performed is not in the typical F2 arithmetic, but
is in the integer arithmetic. Integer addition modulo 2n, if seen as a bit-logical operation,
performs strong mixing of its input bits, in order to produce the bits of the output. The
mixing performed demonstrates regularity due to the use of carry values. By “mixing” in
this document we mean computations on single bit values that involve a plurality of AND, OR,
NAND, NOR or XOR operations.

For example let’s consider that we add the numbers [a0 : a1 : a2; a3] and [b0 : b1 : b2 : b3] with
each other and with some input carry value c0. The first bit of the result is equal to a0⊕b0⊕c0.
The carry produced from the addition of the first two bits is equal to a0b0⊕b0c0⊕a0c0. Similarly,
the second bit of the result is a1 ⊕ b1 ⊕ a0b0 ⊕ b0c0 ⊕ a0c0 and the carry produced from the
addition of the second two bits is equal to a1b1 ⊕ a1a0b0 ⊕ a1b0c0 ⊕ a1a0c0 ⊕ b1a0b0 ⊕ b1b0c0 ⊕
b1a0c0. Moving on to the addition of the third least significant bits of the input, the same
pattern of computation is repeated. The input bits are XOR-ed with each other and with the
input carry, in order to produce the output bit. Furthermore, the input bits are multiplied
with each other in F2 arithmetic (i.e., undergo a logical AND operation) and with the input
carry and, subsequently, the products are XOR-ed with each other in order to produce the
output carry. The third least significant bit of the result, as computed using this pattern, is
a2 ⊕ b2 ⊕ a1b1 ⊕ a1a0b0 ⊕ a1b0c0 ⊕ a1a0c0 ⊕ b1a0b0 ⊕ b1b0c0 ⊕ b1a0c0. The third output carry
is a2b2 ⊕ a2a1b1 ⊕ a2a1a0b0 ⊕ a2a1b0c0 ⊕ a2a1a0c0 ⊕ a2b1a0b0 ⊕ a2b1b0c0 ⊕ a2b1a0c0 ⊕ b2a1b1 ⊕
b2a1a0b0 ⊕ b2a1b0c0 ⊕ b2a1a0c0 ⊕ b2b1a0b0 ⊕ b2b1b0c0 ⊕ b2b1a0c0.

From the logical expressions above, it becomes evident that the mixing performed by the
addition with carries stage, as measured by the number of F2 products which are XOR-ed with
each other, gets only stronger as one moves from the least significant bit of the result toward
the most significant bit. In fact, it grows stronger exponentially. It is easy to show that the
n-th output bit of the result is produced by XOR-ing 2n+1 terms, of which 2n−1 are products.

To destroy the regularity which characterizes the addition with the carries stage, the ag-
gressive adder performs a bit reordering operation on the addition output. Such reordering
operation places the output bits coming from the integer adder in a seemingly random order,
so that the number of F2 products of the logic equation of the result no longer increases mono-
tonically but instead increases and decreases in a pseudorandom manner. Furthermore, the
bit reordering operation aids the subsequent wide substitution stage, shown in Figures 2 and
3, ensuring that each bit of the output of the K-Cipher results from mixing all bits of the input
with all bits of the key. The addition with carries is a bit length independent operation. Its
specification is independent of the length of the inputs. It is also invertible, its inverse being
the subtraction with borrows. Both of them are performed modulo 2n. This means that any
final carry-out or borrow-out signals produced from such operations are ignored.

3.3 Two Round K-Cipher Flow

Moving onto Figure 2, the processing steps of the Flex flow of the K-Cipher ar shown. The Flex
flow employs two rounds, as shown in the figure. The Flex flow is introduced in this section,
so that the functionality of the main K-Cipher components is explained. There is also the
alternative CPA flow, which is similar, though it employs three rounds for better security. The
differences are discussed in the next section. The first round consists of an aggressive adder
stage that performs reordering using a first index sequence and a first round key denoted by

4

input

aggressive adder that uses round key K0 and performs reordering using ‘index sequence 0’

SBox Layer based on Galois Field inversion and reordering that uses ‘index sequence ‘1’

aggressive adder that uses round key K1 and performs reordering using ‘index sequence 2’

SBox Layer based on Galois Field inversion and reordering that uses ‘index sequence ‘3’

XOR with round key K3; The result is the output

Figure 2: The Flex flow of the K-Cipher

K0. The aggressive adder of the first round is followed by a wide substitution stage referred
to as “SBox Layer” in the figure. The wide substitution stage is followed by yet another
bit reordering stage. The second round consists of an aggressive adder stage also performing
reordering using a different round key and index sequence. The round key is denoted by K1.
The second aggressive adder is followed by a second wide substitution stage and bit reordering.
The processing steps of the K-Cipher conclude with an XOR operation performed between the
cipher state and a third round key denoted by K2.

The SBox layer of the Flex flow performs the following steps. It first divides its input n bits
into blocks of m bits. Let’s assume for now that n is a multiple of m. The cases where n is not
a multiple of m are discussed further below. If n is a multiple of m, the SBox layer employs
an array of b ← n/m inverters in the F2m arithmetic, which replace their input bits with the
bits of the inverse in F2m . In the Flex flow, the output undergoes yet another bit reordering
operation, like the one employed by the aggressive adder, but this reordering uses a different
index sequence. Inversion in the Galois field arithmetic F2m is another operation supporting
strong bit mixing. The mixing performed by the Galois field inverters employed by the K-Cipher
does not demonstrate the regularity of addition with carries and is in fact pseudorandom. K-
Cipher is designed to support strong encryption security by employing additions and inversions
in two unrelated types of arithmetic (i.e., Galois field and integer) and by combining those into
sequences of few rounds. Even though the additions and inversions may demonstrate imperfect
differential distributions, their combination creates a much stronger cryptographic primitive.
Moreover, the CPA flow mitigates adaptive chosen plaintext attacks by further randomizing the
SBox transformation. So, not only the resulting ciphertext is produced from a difficult to solve
non-linear system of equations, but also observed differential trails reveal little information
about the state of the cipher. This aspect of our design is further discussed in the analysis
section below.

The SBox layer, as defined so far, is bit length independent provided that the length of the
state of the cipher n is a multiple of the width of the inverters employed m. In this case, the
specification of the cipher is generic and each wide substitution stage employs n/m inverters.
If n is not a multiple m, then these situations can be handled as shown in Figure 3. In the

5

m bits m bits m bits

…

substitution boxes based on GF(2m) inversion

last ≠ m bits

substitution box based on GF(2last) inversion

n bits long state, where n - m∙(b-1) = last > 0

Figure 3: The SBox Layer of the K-Cipher

figure there are b − 1 substitution boxes of width m which are employed, plus one more of
width last ← n − (b − 1) · m, where last is non-zero. The substitution stage employs b − 1
inverters in the in F2m arithmetic and one inverter in the F2last arithmetic handling the last
bits of the cipher state.

The generation of the index sequences is done by an algorithm, which, in each iteration,
determines the number of bits of an SBox that need to be distributed over all b substitution
boxes. We refer to these bits of a substitution box as “bits-to-be-reordered”. The number of
times the algorithm needs to iterate for a particular box d is equal to dmb e, if boxes are homo-
geneous. For each of the d iterations, the algorithm generates a random sequence of numbers.
These are the indexes of the substitution boxes where the bits-to-be-reordered associated with
the current iteration will be placed. Subsequently, for each bit-to-be-reordered the algorithm
picks a bit position at random from among the empty bit positions in the input bit’s target
substitution box and assigns this position to the bit. This last step is repeated for all iterations
of a triply nested loop executed by the algorithm.

One can show that the algorithm produces sequences of indexes that are both “correct” and
“proper”. By correct we mean that every bit of the input is placed in a different bit position
of the output and there is no input which is omitted from the output. By proper we mean
that if such reordering operations are combined with wide substitution operations, then, after
logmn rounds all bits of the input have been fully mixed with each other, even if additions
with carries are absent.

3.4 Key Schedule and Use of Tweaks

For block lengths less than 32, the cipher’s key is equal to the key schedule. For larger block
lengths a key schedule algorithm is employed. The key schedule algorithm of the K-Cipher has
the same structure as the cipher itself shown in Figure 2. However, it uses a different set of
reordering sequences. Furthermore, instead of adding key bits into its state, it adds a plurality
of constants. This is done in order for the cipher to expand the key into a sequence of round
keys used by the cipher rounds.

Last, we discuss how the K-Cipher can be turned into a tweakable block cipher. This is
done as follows: As said above, the key schedule of the K-Cipher involves 3 round keys. A
tweak value is accepted which has the same length as each round key. The tweak value is added

6

to the first and the last round key of the K-Cipher key schedule using the aggressive adder
algorithm of Figure 1. The result is a tweaked key schedule which is used by the encryption
and decryption processes. The CPA flow uses, additionally, one more random bit string, which
is part of the key and is called the “randomizer”. The randomizer is not expanded into a key
schedule.

4 K-Cipher Specification

4.1 Auxiliary Procedures

We begin the description of the cipher with auxiliary procedures that determine the widths of
the substitution boxes for a particular block length value n. These are procedures DFunction(),
EFunction(), GetLURange() and GetSBoxLengths() shown below. Procedure GetSBoxLengths()
is the main one, which invokes the other three. Procedure DFunction() accepts as input an SBox
width value m and determines whether this value is in a list of permitted SBox input lengths.
These are the lengths of lines 1 and 2 of the pseudocode. Each length from the list is either
a small prime, or can be written as a product of small primes. This property of the lengths
allows for an efficient implementation of the Galois field inversion operation of the substitution
boxes. Inversion in a characteristic two finite field F2m , can be implemented in this case as
inversion in an isomorphic composite field, where m is a permitted length. The irreducible
polynomials defining the fields for each permitted length value are given in Appendix A.1.
Suggested composite field representations for the characteristic two fields associated with each
permitted length are given in Appendix A.2.

Procedure EFunction() determines whether an input box length m is greater or equal than
a number of boxes b. Invoking this function is required in order to ensure that each bit string
returned by a substitution box contains enough bits to be distributed to all substitution boxes
of the cipher. This happens as part of a bit reordering operation. This is needed by both the
Flex flow of K-Cipher, as well as the CPA flow. For the Flex flow, it guarantees that each bit of
the input is diffused over all bits of the output. For the CPA flow it guarantees but each bit
differential in the input can cause the appearance of bit differentials in every bit position of
the output, provided that the number of rounds is at least 3.

DFunction(m)
1. PermittedLengths ← {12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 33, 34, 36, 38, 39}
2. PermittedLengths ← PermittedLengths ∪ [5, 10] ∪ {40, 42, 44, 45, 48, 49, 50, 52, 54, 55, 56, 60, 64}
3. if m ∈ PermittedLengths
4. then
6. return true
7. else
8. return false

EFunction(m, b)
1. if m > b
2. then
3. return true
4. else
5. return false

GetLURange(n)
1. if n 6 256

7

2. then
3. return (8, 28)
4. else
5. return (16, 64)

GetSBoxLengths(n)
1. lengthseq ← Ø
2. lengthsdiff ← Ø
3. (L,U)← GetLURange(n)
4. for l← L to U do
5. if DFunction(l) = false then continue
6. bl ← dnl e
7. if EFunction(l, bl) = false then continue
8. scorel ← |l − bl|
9. if n− l · bl = 0 then
10. lengthseq ← lengthseq ∪ l
11. else
12. lastl ← n− l · (bl − 1)
13. if DFunction(lastl) = true and EFunction(lastl, bl) = true then
14. lengthsdiff ← lengthsdiff ∪ l
15. else if DFunction(lastl + l) = true and EFunction(lastl + l, bl − 1) = true then
16. lengthsdiff ← lengthsdiff ∪ l
17. scorel ← |l − bl + 1|
18. lastl ← lastl + l
19. bl ← bl − 1
20. if lengthseq 6= Ø then
21. m← arg min

l∈lengthseq
scorel

22. return (bm,m, true,m)
23. else if lengthsdiff 6= Ø then
24. m← arg min

l∈lengthsdiff

scorel

25. return (bm,m, false, lastm)
26. else
27. return ⊥

Procedure GetLURange() returns upper and lower bounds for SBox widths, associated with
different block sizes. For block sizes up to 256 bits, box widths with may range between 8 and
28. For block sizes greater than 256 bits, box widths may range between 16 and 64.

Procedure GetSBoxLengths() searches for solutions to the problem of defining SBox widths.
These solutions, on the one hand, should only include lengths from the permitted list and, on
the other hand, should use as homogeneous boxes as possible. The types of solutions returned
by this procedure can be two. In one type, all boxes have the same width. In another type
all boxes have the same width, but the last which can be different. In lines 1 and 2 of the
pseudocode, procedure GetSBoxLengths() initializes two lists of box lengths, one for each type
of solution. In line 3, the procedure obtains upper and lower bounds L and U associated with
box widths of block size n. A search for solutions begins in line 4. Solutions which do not
satisfy the DFunction() are rejected in line 5. In line 6, a number of boxes bl associated with
a length value l is is computed as bl ← dnl e. Based on this number, a solution of length l is
accepted, only if it satisfies procedure EFunction(). The check is done in line 7. In line 8, the
procedure GetSBoxLengths() computes a score associated with the length value l. The score is
defined as scorel ← |l − bl|. The score is defined in this way, so that solutions with too wide
substitution boxes are penalized. The score rewards solutions that employ boxes which are as

8

wide as necessary, in order for procedures DFunction() and EFunction() to be satisfied.
In line 9, the procedure determines whether the block length n is divisible by the box width

l. If this is the case, then the solution of length l is one where all boxes have the same length.
In this case, length l is added to the list lengthseq. If this is not the case, the width of the
last box must be different. Such width is computed as lastl ← n − l · (bl − 1) in line 12. In
line 13, procedure GetSBoxLengths() checks whether the width of the last box lastl satisfies
procedures DFunction() and EFunction(). If this is the case, the length value l is added to the
list of solutions of the second type lengthsdiff . This is done in line 14. If the length value lastl
does not satisfy one of DFunction() or EFunction(), the procedure checks if a last box width
value, specified as the sum lastl + l, happens to satisfy both of these procedures. This width
value corresponds to a solution where there are only bl − 1 boxes, among which the last box
is wider, being of length lastl + l instead of lastl. In this case, the length l represents a valid
solution of the second type. The number of boxes bl, the last box length lastl and the score
scorel are updated for this case in lines 17 through 19 of the code.

If the list lengthseq is not empty, this means that a solution specifying boxes of identical
widths exists. This solution is preferred over solutions of the second type. In this case, the
solution m with the best score is determined in line 21 of the code, and returned in line 22. The
code returns four values. These are the number of boxes bm, the width m of all boxes but the
last, a boolean indicating whether all boxes have the same width, and a last box width value
lastm. If the list lengthseq is empty, the procedure looks for a solution among the members of
the list lengthsdiff . The solution with the best score is identified in line 24, and returned in
line 25. If both lists are empty, the procedure returns the empty string in line 27. In fact, this
never happened during the execution of our code, where the input block length n was between
the values n← 24 and n← 1024. So, the code returned, either in line 22 or line 25.

Three additional auxiliary procedures are GetFlexKeyLength(), GetKeyLength() and GetRan-
domizer(). The first of the three, GetFlexKeyLength(), is directly invoked by the Flex flow of the
K-Cipher, and indirectly by the CPA flow. It returns the length of the key bits used by the key
expansion routine KeyExpansion() below, to produce a key schedule. There are five different
key lengths, each associated with a different range of block lengths. These are lengths of 96,
128, 256, 512 and 1024 bits, respectively.

Procedure GetKeyLength() is invoked by both the Flex and the CPA flows. In line 1, it
invokes GetFlexKeyLength(). For the Flex flow, the value l returned by this invocation is the
length of the key of the cipher. If the flow f is equal to “Flex”, then procedure GetKeyLength()
returns in line 3. If the flow f is equal to “CPA”, however, the key of the cipher includes
both the key bits that produce a key schedule, as well as the bits of a randomizer. The length
of the randomizer is 6 times the block length n. This is because there are 3 rounds in the
CPA flow and each round uses two substrings of length n. Hence for the CPA flow, procedure
GetKeyLength() returns the length value l + 6n.

Procedure GetRandomizer() accepts as input a block length value n and a key k. It obtains
the bits of the randomizer string, which are those bits from k, located between bit positions l
and l + 6n− 1. A bit string r, which is the randomizer, is returned in line 3.

GetFlexKeyLength(n)
1. if n 6 32 then return 96
2. else if n 6 128 then return 128
3. else if n 6 256 then return 256
4. else if n 6 512 then return 512
5. else if n 6 1024 then return 1024

9

GetKeyLength(n, f)
1. l← GetFlexKeyLength(n)
2. if f = Flex then
3. return l
4. else
5. return l + 6n

GetRandomizer(n, k)
1. l← GetFlexKeyLength(n)
2. r ← k[l : l + 6n− 1]
3. return r

4.2 K-Cipher Components

The SBox() procedure of the K-Cipher specification is shown below. In line 1, the procedure
invokes procedure GetSBoxLengths() in order to obtain information about substitution box
widths. If the flow of the cipher is CPA, then the procedure determines the starting positions
of substrings of the randomizer, where random values aiding the substitutions to be performed
are located. This is done in lines 3 and 4 of the code. The random values extracted from
bit position u confuse each SBox’s input. The random values extracted from bit position
v randomize the SBox transformation itself. Specifically, the bits extracted from position v
determine the choice of the SBox transformations which are used by the cipher. If the flow
is Flex, then the SBox transformation is deterministic, being Galois field inversion. If the
flow is CPA, however, each SBox is randomized, and the exact permutation to be applied is
determined by the bits of the substring starting at position v.

The “for” loop of lines 5 to 21 performs the substitution steps for each box. The substitution
associated with the last box, the width of which may be different, happens when the loop index
i is equal to 0. The input to that box is the substring x0 which is located between bit positions
0 and last− 1 of input x . If the flow of the cipher is Flex, then the SBox output is the inverse
of x0 in the finite field F2last . This is computed in line 8. If, however, the flow of the cipher
is CPA, then the procedure to be followed is more complex. First, two values r0 and r1 are
extracted from the substrings of the randomizer located at positions u and v. This happens
in lines 10 and 11 of the pseudocode. Then, a temporary variable t is computed from x0 by
XOR-ing x0 with the substring r0. Next, the result of the XOR operation is inverted in the finite
field F2last . The result of the inversion is added modulo 2last to the randomizer value r1. It is
this last addition, which involves carry propagation, that randomizes the SBox transformation,
making it difficult for an adversary to deduce the state of a substitution box by just observing a
differential trail. The SBox output for x0 is finally computed in line 13 by performing two shift
operations on the temporary variable t. A similar procedure is followed for all subsequent SBox
substitutions in lines 15 through 21 of the pseudocode. The computed string y is returned in
line 22 of the pseudocode.

Procedure InvSBoxCPA() is applicable only to the CPA flow. Since the Flex flow is deter-
ministic, and involves only Galois field inversions, the same procedure can be applied for both
encrypting and decrypting data. In the CPA flow however, there is an asymmetry in the pro-
cessing due to the introduction of addition with carries in the SBox. Hence, a different inverse
SBox procedure must be followed. The flow of InvSBoxCPA() involves similar steps to those
of procedure SBox(), though in reverse order. In line 1 box width information is obtained. In
lines 2 and 3, the bit positions u and v are computed indicating the starting locations of the
substrings of the randomizer containing r0 and r1. The main loop is between lines 4 and 16.

10

For i = 0, the inverse SBox input x0 is located between bit positions 0 and last − 1 of the
input string x. Randomizer values r0 and r1 are obtained in a similar way in lines 7 and 8
for this box. Next, a temporary variable t is computed by first reversing the shift operations
performed at the end of the SBox() transformation, and then subtracting modulo 2last the
randomizer value r1. Next t is inverted in the finite field F2last and the result of the inversion
is XOR-ed with r0. For all other boxes, a similar procedure is followed between lines 12 and 16
of the pseudocode. The computed string y is returned in line 17 of the pseudocode.

SBox(x, n, f, r, round)
1. (b,m, diff, last)← GetSBoxLengths(n)
2. if f = CPA then
3. u← 2 · round · n
4. v ← (2 · round + 1) · n
5. for i← 0 to b− 1 do
6. if i = 0 then
7. x0 ← x[0 : last− 1]
8. if f = Flex then y[0 : last− 1]← (x0)−1last

9. else
10. r0 ← r[u : u + last− 1]
11. r1 ← r[v : v + last− 1]
12. t← (x0 ⊕ r0)−1last �last r1
13. y[0 : last− 1]← (t�last 2) |(t�last (last− 2))
14. else
15. xi ← x[last + (i− 1) ·m : last + i ·m− 1]
16. if f = Flex then y[last + (i− 1) ·m : last + i ·m− 1]← (xi)

−1
m

17. else
18. r0 ← r[u + last + (i− 1) ·m : u + last + i ·m− 1]
19. r1 ← r[v + last + (i− 1) ·m : v + last + i ·m− 1]
20. t← (xi ⊕ r0)−1m �m r1
21. y[last + (i− 1) ·m : last + i ·m− 1]← (t�m 2) |(t�m (m− 2))
22. return y

InvSBoxCPA(x, n, r, round)
1. (b,m, diff, last)← GetSBoxLengths(n)
2. u← 2 · round · n
3. v ← (2 · round + 1) · n
4. for i← 0 to b− 1 do
5. if i = 0 then
6. x0 ← x[0 : last− 1]
7. r0 ← r[u : u + last− 1]
8. r1 ← r[v : v + last− 1]
9. t← ((x0 �last 2) |(x0 �last (last− 2)))�last r1
10. y[0 : last− 1]← (t)−1last ⊕ r0
11. else
12. xi ← x[last + (i− 1) ·m : last + i ·m− 1]
13. r0 ← r[u + last + (i− 1) ·m : u + last + i ·m− 1]
14. r1 ← r[v + last + (i− 1) ·m : v + last + i ·m− 1]
15. t← ((xi �m 2) |(xi �m (m− 2)))�m r1
16. y[last + (i− 1) ·m : last + i ·m− 1]← (t)−1m ⊕ r0
17. return y

Procedure BitReordering() performs the bit reordering steps of the K-Cipher specification.
It accepts as input a string x, a block length value n, and an index order order specifying which

11

index sequence will be used for the reordering operation to be performed. For a particular block
size n, the index order argument order may take integer values between 0 and 13. Orders 0, 1,
2 and 3 are used by the Flex and CPA encryption flows. Orders 4, 5, 6 and 7 are used by the
KeyExpansion() procedure. Orders 8 and 9 are used by procedure TweakableKeyExpansion()
which blends the bits of a tweak into the bits of a key schedule. Orders 10, 11, 12 and 13
are the inverse of orders 0, 1, 2 and 3 respectively, and are used by the decryption flows of
K-Cipher. In line 1 of the procedure the input string x is represented as a sequence of bits
[x0 : x1 : . . . : xn−1]. In line 2 of the pseudocode, the specified index sequence Rn,order is
represented as a set of integer values {R0, R1, . . . , Rn−1}, denoting bit positions. The loop of
lines 3 and 4 performs the actual bit reordering operation. The computed string y is returned
in line 6.

Procedure KeyExpansion() computes the key schedule for both the Flex and CPA flows of
the K-Cipher. If the block length n is less than, or equal to 32, then 96 bits of key k, passed
as input, are sufficient to be used as bits of the key schedule. For block lengths up to 32,
the procedure extracts 3n least significant bits from the key, and returns them as the bits of
the key schedule of the cipher. For other block lengths, the procedure determines the length
of the quantities over which expansion will take place. For block lengths between 33 and 64,
the supplied key k is L ← 128 bits long. In this case, the expansion is performed over 64 bit
quantities. The length of such quantities is denoted by w, and for these lengths w is equal to
L/2. For block lengths greater than 64, the expansion is performed over quantities, the length
w of which is equal to the key length L. The first round of the key expansion takes place in
lines 6 to 9 of the pseudocode. In line 6, a constant C1 is added to w bits of key k modulo
2w. In line 7, a bit reordering operation takes place using the index sequence 4, associated
with the block length value w. Next, the substitution transformation SBox() of the Flex flow
is invoked on the output of bit reordering. This transformation performs deterministic Galois
field inversion. A second round of key expansion steps takes place, only for block lengths
greater than 64, in lines 11 to 14 of the pseudocode. Three round keys K0, K1 and K2 are
finally returned in line 15 of the code.

The procedure TweakableKeyExpansion() accepts as input a block length value n, a key k
and a tweak t. The tweak t is a bit string, the length of which is equal to the block length
n. Procedure TweakableKeyExpansion() first invokes KeyExpansion() in line 1, obtaining three
round keys K0, K1 and K2. In lines 2 and 3, the bits of the tweak are blended into the bits
of K0. This is done by following steps similar to the steps of the key expansion procedure.
Specifically, the key K0 is first added to the tweak t modulo 2n. The result of the addition
undergoes a bit reordering operation, which uses the index sequence 8 and is specified for the
block length n. The result of the bit reordering operation is a modified round key M0. In
lines 4 and 5, the same procedure is followed. However, the bit reordering operation uses the
index sequence 9 this time. The bits of the tweak are blended into the bits of round key K2,
producing a modified round key M2. The round keys M0, K1 and M2 are returned in line 6.

BitReordering(x, n, order)
1. [x0 : x1 : . . . : xn−1]← x
2. {R0, R1, . . . , Rn−1} ← Rn,order

3. for i← 0 to n− 1 do
4. yRi

← xi

5. y ← [y0 : y1 : . . . : yn−1]
6. return y

12

KeyExpansion(n, k)
1. if n 6 32 then return (k[0 : n− 1], k[n : 2n− 1], k[2n : 3n− 1])
2. K ← k
3. L← GetFlexKeyLength(n)
4. if n ∈ [33, 64] then w ← L/2
5. else w ← L
6. u← K[0 : w − 1]�w C1
7. v ← BitReordering(u,w, 4)
8. u← SBox(v, w,Flex,⊥,⊥)
9. K[L : L + w − 1]← BitReordering(u,w, 5)
10. if n > 64 then
11. u← K[L : L + w − 1]�w C2
12. v ← BitReordering(u,w, 6)
13. u← SBox(v, w,Flex,⊥,⊥)
14. K[L + w : L + 2w − 1]← BitReordering(u,w, 7)
15. return (K[0 : n− 1],K[n : 2n− 1],K[2n : 3n− 1])

TweakableKeyExpansion(n, k, t)
1. (K0,K1,K2)← KeyExpansion(n, k)
2. u← K0 �n t
3. M0 ← BitReordering(u, n, 8)
4. u← K2 �n t
5. M2 ← BitReordering(u, n, 9)
6. return (M0,K1,M2)

4.3 Encryption and Decryption Flows

The main encryption steps of the Flex flow are in procedure KCipherCoreEncFlex(). This proce-
dure begins by adding the plaintext input x to a constant C0 modulo 2n. Then, the output of
the addition is added to the first round key K0, modulo 2n as well. In line 3 of the pseudocode,
the output of the previous addition undergoes a first bit reordering operation, which uses the
index sequence 0. Next, deterministic SBox() substitution takes place in line 4. This is based
on Galois field inversion. A second bit reordering operation takes place in line 5 of the code,
ending the first round of the Flex flow of the K-Cipher. The next round, shown in lines 6 to
9 is similar. Round key addition that uses the round key K1 is performed in line 6. A third
bit reordering operation is performed in line 7, followed by SBox() inline 8, and yet another
bit reordering operation in line 9. The bit reordering operations of lines 7 and 9 use index
sequences 2 and 3, respectively. The encryption flow ends with an XOR operation performed
between the output of the second round and the round key K2. The resulting bit string y is
returned. The reverse steps of this sequence are included in procedure KCipherCoreDecFlex()
which, on accepting as input round keys K0, K1 and K2, decrypts y and returns x.

Procedure KCipherCoreEncCPA() implements the main encryption steps of the CPA flow.
The main difference between the Flex and the CPA flows is that the CPA flow employs three
rounds, instead of two, and SBox transformations are randomized, and not followed by re-
ordering. In line 1 of the code, the plaintext is added to constant C0 modulo 2n. In lines 2 to 4,
the first round takes place that involves a round key addition step, a bit reordering step, and
a randomized SBox step. Round key addition is performed modulo 2n. The first round uses
the round key K0. The other two rounds use round keys K1 and K2 and take place in lines
5 through 7 and 8 through 10 of the pseudocode, respectively. A variable veil is computed in
line 12 from round key K2 by applying the bit reordering transformation and index sequence
3. This variable is XOR-ed with the output of the third round. The computed bit string y is

13

returned in line 13. These steps are reversed in procedure KCipherCoreDecCPA(), which on the
same round key and randomizer inputs, decrypts y and returns x.

Finally, procedures KCipherEnc() and KCipherDec(), as well as their tweakable counter-
parts TweakableKCipherEnc() and TweakableKCipherDec(), are wrapper functions that compute
round keys, extract randomizer bit strings, and, depending on the value of the flow parameter
f , invoke either the processing steps of the Flex flow or the steps of the CPA flow.

KCipherCoreEncFlex(x, n,K0,K1,K2)
1. u← x�n C0
2. v ← u�n K0

3. u← BitReordering(v, n, 0)
4. v ← SBox(u, n,Flex,⊥,⊥)
5. u← BitReordering(v, n, 1)
6. v ← u�n K1

7. u← BitReordering(v, n, 2)
8. v ← SBox(u, n,Flex,⊥,⊥)
9. u← BitReordering(v, n, 3)
10. y ← u⊕K2

11. return y

KCipherCoreDecFlex(y, n,K0,K1,K2)
1. u← y ⊕K2

2. v ← BitReordering(u, n, 13)
3. u← SBox(v, n,Flex,⊥,⊥)
4. v ← BitReordering(u, n, 12)
5. u← v �n K1

6. v ← BitReordering(u, n, 11)
7. u← SBox(v, n,Flex,⊥,⊥)
8. v ← BitReordering(u, n, 10)
9. u← v �n K0

10. x← u�n C0
11. return x

KCipherCoreEncCPA(x, n,K0,K1,K2, r)
1. u← x�n C0
2. v ← u�n K0

3. u← BitReordering(v, n, 0)
4. v ← SBox(u, n,CPA, r, 0)
5. u← v �n K1

6. v ← BitReordering(u, n, 1)
7. u← SBox(v, n,CPA, r, 1)
8. v ← u�n K2

9. u← BitReordering(v, n, 2)
10. v ← SBox(u, n,CPA, r, 2)
11. veil← BitReordering(K2, n, 3)
12. y ← v ⊕ veil
13. return y

KCipherCoreDecCPA(y, n,K0,K1,K2, r)
1. veil← BitReordering(K2, n, 3)
2. u← y ⊕ veil
3. v ← InvSBoxCPA(u, n, r, 2)
4. u← BitReordering(v, n, 12)
5. v ← u�n K2

14

6. u← InvSBoxCPA(v, n, r, 1)
7. v ← BitReordering(u, n, 11)
8. u← v �n K1

9. v ← InvSBoxCPA(u, n, r, 0)
10. u← BitReordering(v, n, 10)
11. v ← u�n K0

12. x← v �n C0
13. return x

KCipherEnc(x, n, f, k)
1. (K0,K1,K2)← KeyExpansion(n, k)
2. if f = Flex then
3. y ← KCipherCoreEncFlex(x, n,K0,K1,K2)
4. else
5. r ← GetRandomizer(n, k)
6. y ← KCipherCoreEncCPA(x, n,K0,K1,K2, r)
7. return y

KCipherDec(y, n, f, k)
1. (K0,K1,K2)← KeyExpansion(n, k)
2. if f = Flex then
3. x← KCipherCoreDecFlex(y, n,K0,K1,K2)
4. else
5. r ← GetRandomizer(n, k)
6. x← KCipherCoreDecCPA(y, n,K0,K1,K2, r)
7. return x

TweakableKCipherEnc(x, n, f, k, t)
1. (K0,K1,K2)← TweakableKeyExpansion(n, k, t)
2. if f = Flex then
3. y ← KCipherCoreEncFlex(x, n,K0,K1,K2)
4. else
5. r ← GetRandomizer(n, k)
6. y ← KCipherCoreEncCPA(x, n,K0,K1,K2, r)
7. return y

TweakableKCipherDec(y, n, f, k, t)
1. (K0,K1,K2)← TweakableKeyExpansion(n, k, t)
2. if f = Flex then
3. x← KCipherCoreDecFlex(y, n,K0,K1,K2)
4. else
5. r ← GetRandomizer(n, k)
6. x← KCipherCoreDecCPA(y, n,K0,K1,K2, r)
7. return x

4.4 Generating Pseudorandom Index Sequences

Procedure BitReorderingIndexes(), shown below, computes pseudorandom index sequences.
These sequences are used for bit reordering, and are associated with a specific block length
value n. First, the returned indexes Ri, i ∈ [0, n − 1] are initialized to −1 in line 2 of the
pseudocode. The source indexes, which have not yet been taken into account, are initialized
in lines 3 and 4 for each of the boxes. Index placement happens in the “while” loop of lines 6
through 23. Inside this “while” loop, a second “for” loop places indexes from each of the boxes

15

of the cipher state in other boxes in a pseudorandom manner. The number of indexes to be
placed in each iteration is computed in lines 10 and 11. For this computation the procedure
emptySlotsInBoxes() is invoked, which determines the number of boxes that have available slots
for index placement, as well as the indexes of these boxes. The per-box placement is done in
lines 14 to 21, once the order of the available boxes is first altered in a pseudorandom manner
in line 13. The loop stops when no new index has been placed in any of the iterations.

emptySlotsInBoxes(n,R0, R1, . . . , Rn−1)
1. (b,m, diff, last)← GetSBoxLengths(n)
2. V ← Ø
3. S ← Ø
4. count← 0
5. for i← 0 to b− 1 do
6. if i = 0 then S0 ←

∑
j∈[0,last−1],Rj=−1 1

7. else Si ←
∑

j∈[last+(i−1)·m, last+i·m−1],Rj=−1 1

8. if Si > 0 then
9. V ← V ∪ {i}
10. S ← S ∪ {Si}
11. count← count + 1
12. return (count,V,S)

GetPlace(d, s, n,R0, . . . , Rn−1)
1. (b,m, diff, last)← GetSBoxLengths(n)
2. if d = 0 then range← last
3. else range← m
4. j ← 0
5. for i← d to d + range− 1 do
6. if Ri = −1 then j ← j + 1
7. if s = j − 1 then return i− d

BitReorderingIndexes(n)
1. (b,m, diff, last)← GetSBoxLengths(n)
2. for i← 0 to n− 1 do Ri ← −1
3. for i← 0 to b− 1 do
4. if i = 0 then N0 ← last else Ni ← m
5. allPlaced ← false
6. while allPlaced = false do
7. atLeastOne← false
8. for i← 0 to b− 1 do
9. if Ni = 0 then continue
10. (v, {V0, . . . , Vv−1}, {S0, . . . , Sv−1})← emptySlotsInBoxes(R0, . . . , Rn−1)
11. w ← min(v,Ni, b)
12. if w > 0 then atLeastOne← true

13. {t0, . . . tv−1}
$← Permutation(0, 1, . . . , v − 1)

14. for j ← 0 to w − 1 do
15. if i = 0 then srcIndex ← N0 − w + j
16. else srcIndex ← last + (i− 1) ·m + Ni − w + j
17. if Vtj = 0 then dstIndex ← 0
18. else dstIndex ← last + (Vtj − 1) ·m
19. slotIndex

$← Range(0, Stj − 1)
20. placeInBox ← GetPlace(dstIndex, slotIndex, n,R0, . . . , Rn−1)
21. RdstIndex+placeInBox ← srcIndex
22. Ni ← Ni − w

16

23. if atLeastOne = false then allPlaced← true
24. return {R0, R1, . . . , Rn−1}

4.5 Cipher Constants

K-Cipher uses 15 constants. A single constant is used by block lengths of the range [24, 32]. For
these block lengths, no key expansion takes place. Two constants are used by block lengths of
the range [33, 64]. For these block lengths, encryption and decryption uses a first constant and
key expansion a second constant. Three constants are used by each block length of the ranges
[65, 128], [129, 256], [257, 512], and [512, 1024]. For a particular block length range, constants
are denoted by C0, C1 and C2 in the pseudocode above. The values of these constants are given
in Appendix A.3.

5 Security Discussion

5.1 Security of the Flex Flow

The Flex flow of the K-Cipher is designed to address known ciphertext attacks. The adversary
model for these attacks is as follows. The adversary can observe q ciphertexts y(0), y(1), . . .,
y(q−1). The adversary has no access to plaintext information or the key. The goal of the
adversary is, after observing q ciphertexts, to determine what the encryption key is. We argue
that the Flex flow is secure in this adversary model, because of the difficulty of solving the
nonlinear system of equations relating the output of the Flex flow with the plaintext input and
key.

Let’s look at the properties of this nonlinear system. The algebraic degree of the system is
equal to the sum of the number of plaintext bits n plus the key bits L. In fact, this algebraic
degree value is reached quickly, as part of the K-Cipher processing. This is because of the
carry propagation happening in each round. The resulting number of terms, which are XOR-ed
with each other in the output equations of the Flex flow, is at least O(2n), where n is the block
size. Carry propagation over n bits results in terms which are produced by XOR-ing 2n − 1,
2n−1 − 1, 2n−2 − 1, etc., F2 products at bit positions n − 1, n − 2, etc., respectively. The
last box contains the terms resulting from the strongest mixing operation. These terms are
distributed over all boxes of the second round of the Flex flow and participate in Galois field
inversion operations. Galois field inversions further mix these terms with the rest of the terms
in a pseudorandom manner. We conjecture that, because of these reasons, the complexity of
solving any linearized version of the resulting system of equations is at least the complexity of
the brute force approach for breaking the cipher. By “brute force” complexity we mean any
complexity of 2n compute steps.

The Flex flow, however is vulnerable to known plaintext and known ciphertext attacks.
The only mixing mechanism, which is block wide, is the carry propagation, which is statistical
in nature. An attacker may exploit this vulnerability of the design and introduce differentials
in a single SBox of the first round, which, on the second round can cause some boxes to be
active and some to be inactive. The activations, or lack of, of boxes in the second round
can be observed by the adversary. In this way, the adversary can obtain information about
at least one differential trail associated with a first round SBox. Since, in the Flex flow, the
SBox transformation is deterministic and based on Galois field inversion, knowledge about a
differential trail can easily reveal the state of the SBox transformation. There can be at most
4 state values, with 2 on average, associated with a trail, provided that a trail is possible. To

17

address this vulnerability of the Flex flow, we extend the Flex flow in the form of the CPA flow.
In what follows, we discuss why the CPA flow is secure against known plaintext and known
ciphertext attacks, which can be adaptive as well.

5.2 Security of the CPA Flow

The adversary model we consider in this section is as follows. The adversary can adaptively
submit q plaintexts x(0), x(1), . . ., x(q−1) of his choice to the encryption oracle, and observe q
ciphertexts y(0), y(1), . . ., y(q−1). The adversary has no access to information about the key.
The goal of the adversary is, once again, to determine what the encryption key is. This is an
adaptive chosen plaintext attack. The analysis that follows is applicable to a similarly defined
adaptive chosen ciphertext attack as well.

The security of the CPA flow stems from the fact that, once a differential trail is observed,
there can be many different SBox permutations and state values, which may support this
differential trail. This number is much larger than 4, for a single box, and, in fact, pushes the
complexity of attacking the CPA flow back to the brute force complexity. Because of the fact
that the number of rounds is 3, each single bit differential in the input can cause the appearance
of bit differentials in every output bit of the cipher. On average, one should expect that half
of the bits of the output will be perturbed. Each output box differential is characterized
by some differential uncertainty. For a particular substitution box of width m, we define

the output differential uncertainty U (m)
output as the minimum number of combinations of SBox

permutations and state values, which may cause an output differential value to appear. For
SBox transformations of widths 5, 6, 7 and 8, for instance, the output differential uncertainty

U (m)
output is this equal to 400, 1664, 6628 and 26388, respectively.

Similarly, for each input box differential, associated with width m, we can define the input

differential uncertainty U (m)
input as the minimum number of combinations of SBox permutations

and state values, which are compatible with an input differential value. For example, for SBox

width values of 5, 6, 7, and 8, the input differential uncertainty U (m)
input is equal to 246, 884,

3658, and 13898, respectively.
Since the number of rounds is 3, given a set of active boxes in the first and the third round,

there is a number of combinations of permutations and state values in the middle round, which
are compatible with an applied input differential and an observed output differential. We define

the minimum trail uncertainty U (m)
trail of a single box of width m, as the minimum number of

combinations of SBox permutations and state values for which a differential trail, associated
with the box, is possible. For boxes of widths 5, 6, 7, and 8 the minimum trail and certainty

U (m)
trail is equal to 8, 16, 16, and 32, respectively. In general, the minimum trail uncertainty is a

conservative metric for the behavior of the randomized SBox transformations of the CPA flow.
On average, the number of combinations of SBox transformations and state values, which can
cause a differential trail to appear is much larger. For example, for 5, 6, 7, and 8-bit boxes, the
average number permutations supporting a trail is 15, 29, 57, and 110, respectively. For our
analysis, we also define the probability that a differential trail is possible. We have observed
that, on boxes of width up to 8 bits, this probability is approximately 1/2. This property
characterizes boxes of larger widths as well.

Based on what we discussed so far, we can compute the minimum input-output differential

uncertainty U (b,m)
input-output of a CPA flow consisting of b homogeneous boxes of width m, and

3 rounds of the K-Cipher. This uncertainty is defined as the product between the input

uncertainty U (m)
input and the output uncertainty U (m)

output raised to a power of b
2 :

18

cipher area (μm2) latency (psec) number of clocks

K-Cipher Enc-32, Flex 614 613 3

1875 767 3K-Cipher Enc-64, Flex

freq.

3.9 GHz

4.9 GHz

Figure 4: Synthesis results and performance of the K-Cipher Enc-32 and K-Cipher Enc-64
algorithms, when the encryption is performed by the Flex flow

U (b,m)
input-output ← U

(m)
input · (U

(m)
output)

b
2 (5.1)

The exponent b
2 reflects the fact that, on average, there are b

2 boxes perturbed at the output
of a differential trail, which originates from a single perturbed box.

From the minimum input-output differential uncertainty of a CPA flow, we can compute

an approximation for the minimum number N (b,m)
input-output of combinations of SBox permutations

and state values, which may be possible, given an observed input-output trail. To do this, we

first multiply U (b,m)
input-output with the minimum trail uncertainty U (m)

trail , raised to a power equal
to the number of boxes divided by 2. This is done in order to take into account the fact
that there is uncertainty, not only in the first and the third rounds but also in the middle as
well. We conservatively estimate that only half of the middle round boxes will be active on
average. Next, we multiply the result of the previous multiplication with the probability that
all middle round differential trails are possible which is at least (12)b. The result is a reasonable

approximation for the minimum number of combinations N (b,m)
input-output of SBox transformations

and state values that can cause a differential trail to appear, in the case the CPA flow consists
of homogeneous boxes:

N (b,m)
input-output =

U (m)
input · (U

(m)
output)

b
2 · (U (m)

trail)
b
2

2b
(5.2)

The security of the CPA flow stems from the fact that the number of combinations computed
using this formula is above the brute force complexity for the range of K-Cipher block lengths.

5.3 Performance

We have built a software prototype of the Flex and CPA flows that supports encryption for
all bit lengths from 24 to 1024 with increments of 1. Our optimized K-Cipher Enc-24 and
K-Cipher Dec-24 Flex flow routines demonstrate a speed of 17 cycles per byte on an Intel ®
Core � i7-8665U processor running at 1.9 GHz.

More interesting is the hardware performance of the K-Cipher Flex flow. K-Cipher em-
ploys standard integer adders, substitutions that can be implemented using lookup tables, and
reordering operations that can be implemented using wires. These components add minimal
latency to the critical path. Moreover, the number of these components is small for two and
three rounds.

We have built and synthesized optimal encrypt and decrypt datapaths for the 32-bit and
64-bit versions of the K-Cipher Flex flow using Intel’s ® 10 nm process technology. Our results
are shown in the table of Figure 4. The area required by the encrypt and decrypt datapaths is
614 µm2 and 1875 µm2 respectively. Moreover, the complete encryption operation finishes in
617 psec and 767 psec respectively for the two datapaths, if there are no clocking constraints.

19

Finally, the implementations allow for the insertion of pipeline registers. The staged en-
cryptions performed using these registers complete in 3 clocks. The minimum unconstrained
clock periods supported correspond to frequency values of 4.9 and 3.9 GHz, respectively for
the 32-bit and 64-bit datapaths.

6 Concluding Remarks

We presented the design and specification of a new cipher, called the K-Cipher. K-Cipher is
bit length parameterizable and only involves few low latency components in the critical path,
specifically integer adders and Galois field inverters. As such, the K-Cipher can be a useful tool
for developing secure computer architecture components, where ultra low latency cryptographic
mechanisms can be invoked inside the CPU. We have developed a software prototype of the
cipher, which can successfully perform encryptions and decryptions for all block lengths from
24 bits up to 1024 bits, at block length increments of one, and hardware prototypes for some
data paths.

As defined, the K-Cipher could also be used as part of other larger cryptographic con-
structions. Many different known cryptographic constructions could be employing the cipher,
including Feistel structures, sponge structures, Davies Meyer constructions, modes such as
CBC, CTR, XTS and so on. Finally, we note that this technical report extends a previous
IEEE publication [13], which describes only the Flex flow of the cipher.

References

[1] Advanced Encryption Standard (AES), Federal Information Processing Standards Pub-
lication FIPS PUB 197.

[2] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode for Confi-
dentiality on Storage Devices, NIST Special Publication 800-38E.

[3] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue
and U. Savagaonkar, Innovative instructions and software model for isolated execution,
Proceedings of the Workshop on Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[4] AMD Secure Encrypted Virtualization (SEV), https://developer.amd.com/sev/, 2016.

[5] M. Rutland, ARM v8.3 Pointer Authentication, presentation, available on-
line at https://events.static.linuxfound.org/sites/events/files/slides/

slides 23.pdf, 2017.

[6] R. Avanzi, The QARMA Block Cipher Family, Cryptology ePrint Archive: Report
2016/444.

[7] NIST Lightweight Cryptography Competition, available online at
https://csrc.nist.gov/projects/lightweight-cryptography

[8] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers The
Simon and Speck Families of Lightweight Block Ciphers, Cryptology ePrint Archive:
Report 2013/404.

20

[9] J. Borghoff, A. Canteaut, T. Guneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, G.
Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen, and T. Yalcin,
PRINCE: a low-latency block cipher for pervasive computing applications, ASIACRYPT
2012, Proceedings of the 18th international conference on The Theory and Application of
Cryptology and Information Security, Pages 208-225, Beijing, China — December 02 - 06,
2012.

[10] Y. Dodis, T. Liu, M. Stam, J. Steinberger, Indifferentiability of Confusion-Diffusion
Networks, hskip 1em plus 0.5em minus 0.4emCryptology ePrint Archive: Report 2015/680.

[11] H. Wu, and T. Huang, TinyJAMBU: A Family of Lightweight Authenti-
cated Encryption Algorithms, Submission to the NIST Lightweight Cryptogra-
phy Competition, available online at https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/TinyJAMBU-spec.pdf.

[12] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer, Xoodyak,
a lightweight cryptographic scheme, Submission to the NIST Lightweight Cryptogra-
phy Competition, available online at https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/Xoodyak-spec.pdf.

[13] M. Kounavis, S. Deutsch S. Ghosh, and D. Durham, K-Cipher: A Low Latency, Bit
Length Parameterizable Cipher, Proceedings of 25th IEEE Symposium on Computers
and Communications (ISCC), 2020.

Appendix

A.1 The polynomials defining the finite fields of SBox

The polynomials defining the finite fields of the SBox transformation are given in binary form
below. The most significant bit of the polynomials is omitted.

uint32 t gf inv polys range 5 32[28] =

{
0x00000005, 0x00000003, 0x00000003, 0x0000001b, 0x00000003, 0x00000009, 0x00000005, 0x00000009,

0x0000001b, 0x00000021, 0x00000003, 0x0000002b, 0x00000009, 0x00000009, 0x00000027, 0x00000009,

0x00000005, 0x00000003, 0x00000021, 0x0000001b, 0x00000009, 0x0000001b, 0x00000027, 0x00000003,

0x00000005, 0x00000003, 0x00000009, 0x0000008d

};

uint32 t gf inv polys range 33 64[32][2] =

{
{0x0000004b, 0x00000000}, {0x0000001b, 0x00000000}, {0x00000005, 0x00000000}, {0x00000035, 0x00000000},
{0x0000003f, 0x00000000}, {0x00000063, 0x00000000}, {0x00000011, 0x00000000}, {0x00000039, 0x00000000},
{0x00000009, 0x00000000}, {0x00000027, 0x00000000}, {0x00000059, 0x00000000}, {0x00000021, 0x00000000},
{0x0000001b, 0x00000000}, {0x00000003, 0x00000000}, {0x00000021, 0x00000000}, {0x0000002d, 0x00000000},
{0x00000071, 0x00000000}, {0x0000001d, 0x00000000}, {0x0000004b, 0x00000000}, {0x00000009, 0x00000000},
{0x00000047, 0x00000000}, {0x0000007d, 0x00000000}, {0x00000047, 0x00000000}, {0x00000095, 0x00000000},
{0x00000011, 0x00000000}, {0x00000063, 0x00000000}, {0x0000007b, 0x00000000}, {0x00000003, 0x00000000},
{0x00000027, 0x00000000}, {0x00000069, 0x00000000}, {0x00000003, 0x00000000}, {0x0000001b, 0x00000000}

};

21

A.2 Suggested composite field realizations

Composite field isomorphisms for the finite fields of SBox follow from expressing each permitted
box width as a product of primes or small numbers:

9 -> 3X3

10 -> 2X5

12 -> 3X6

14 -> 2X7

15 -> 3X5

16 -> 2X8

18 -> 3X6

20 -> 4X5

21 -> 3X7

24 -> 3X8

25 -> 5X5

27 -> 3X9

28 -> 4X7

30 -> 5x6

32 -> 4X8

33 -> 3X11

34 -> 2X17

36 -> 4x9

38 -> 2X19

39 -> 3X13

40 -> 5x8

42 -> 6X7

44 -> 5X11

45 -> 5x9

48 -> 6x8

49 -> 7X7

50 -> 2X5X5

52 -> 4X13

54 -> 6X9

55 -> 5X11

56 -> 7X8

60 -> 3X4X5

64 -> 8x8

A.3 K-Cipher Constants

K-Cipher uses following 15 constants. Byte sequences are represented using the little endian
ordering. This means that the least significant byte of constant C0 of the block range [65, 128]
is 0x37. The most significant byte of the same constant is 0xf9.

uint32 t k cipher range 24 32 const 0 = 0x820390b6;

uint64 t k cipher range 33 64 const 0 = 0x010abcfe1d620c9a;

uint64 t k cipher range 33 64 const 1 = 0xa99cac23bfb4f3ad;

uint64 t k cipher range 65 128 const 0[2] = {
0x5f63c0ec346ddc37, 0xf98c63bbbbefa08e };
uint64 t k cipher range 65 128 const 1[2] = {
0x44aa7cb19f6d53a0, 0x43daa42d7323101a };
uint64 t k cipher range 65 128 const 2[2] = {
0xb3b27e401ae99fd0, 0x84177319f57a5e1b };

uint64 t k cipher range 129 256 const 0[4] = {
0x49d69cc59cc874f8, 0x95f9f51b2856dafe, 0x98cdbb6d6554111d, 0x51702d3a34e78fdf };
uint64 t k cipher range 129 256 const 1[4] = {
0x0cf17165dac7d437, 0xde2b49aa38844cc9, 0xd0ad712895e8d678, 0x97db930c1683f6fa };
uint64 t k cipher range 129 256 const 2[4] = {
0xf61ee062c9489499, 0xc73550005b576a0e, 0x90b4719065e20f7d, 0xcf8fe6c55f319a95 };

22

uint64 t k cipher range 257 512 const 0[8] = {
0x068b3e350cc445b3, 0x276805d874618924, 0x5f507e5b28605cbc, 0x5c27fd355e75b28d,

0x49b36eb3e4d23573, 0x4c73056b53772c7a, 0xab8c9fc4d78c0454, 0x8ce6bca6afec79f9 };
uint64 t k cipher range 257 512 const 1[8] = {
0x5462124631ca6164, 0xa724c8137f74116f, 0x0f1354c2da386bd0, 0x366cea7f936a8239,

0xcd73a0329989e890, 0x094a21f6ac86924e, 0xc2e7059e2e236500, 0x3e2acb68917e5ddd };
uint64 t k cipher range 257 512 const 2[8] = {
0x840d78c270b35588, 0x69fec54137a373ec, 0x2a5304a776d73039, 0xafdc8b13d985fefc,

0x6e9edd49afb69769, 0xe9a0562a218cdea6, 0xcfe78b3403a57159, 0xc0883f3842a0c83a };

uint64 t k cipher range 513 1024 const 0[16] = {
0x2c846651558d88a5, 0x092441d00b6b2761, 0xf31bd4cef8a8c9bd, 0xf8db9bb403125ecc,

0x039407a206d7e350, 0x570f34e00ad05916, 0xbb9c486b0ce24273, 0x3232679a7682d1e3,

0x60954ef8305fb3c3, 0x89bb8d264b207631, 0x373560ec564f9107, 0x72c82368525c10f5,

0xa82671573cc0d8c9, 0x30badc85434799be, 0x61a6455b976f4e04, 0x5cd4d285ddef6853 };
uint64 t k cipher range 513 1024 const 1[16] = {
0x6c2b8ec93b619cb3, 0x03e199ec0dfe4653, 0x5cfa0bc5348b7581, 0xbfd06463085993d4,

0x61d1ab62e76daf5d, 0xe25324516dc36709, 0x7282aa4339b46b1f, 0x8e80aa7c687caed9,

0x6691b63da3da2c28, 0xd774c4aecedd4e87, 0x17d807f35dc4fc02, 0xe6ef61514002414b,

0x8127857d776591fd, 0x14f6aa0d455cb8f7, 0xe3dee8fefc5a60d7, 0x0c732d6b745e3b99 };
uint64 t k cipher range 513 1024 const 2[16] = {
0xe098d64e1591c952, 0xeed1ef778c15c711, 0x9cbe03931fe032d8, 0x6ca6995c96caf2bc,

0xdc3350e3d6ac261f, 0xe846910408a6070e, 0x2ae9efe7708677c1, 0x9a6c1cbbdd4c2734,

0xf18d8078bccb5fe5, 0xaad97acfc2796ab3, 0xa01b303d46469cd8, 0x54f10f2d2aabfe0a,

0xc785dc5071cb96b1, 0x055d780171ba4b4d, 0x3a5330d99edf77ed, 0x7da9b659017c0acd };

A.4 Substitution Box Widths

The following data structure stores the responses coming from the invocations to procedure
GetSBoxLengths(). Responses are stored for all block lengths from n← 24 to n← 1024 in the
following format: Each entry in the data structure stores the block length value n, the number
of boxes b, the width of all boxes but the last m, a variable which is set to 0 if all boxes are of
the same width, and to 1 if otherwise, and the last box width last, if different.

int

k cipher all mixing box length data[1001][5] =

{
{ 24, 3, 8, 0, 0 }, { 25, 1, 25, 0, 0 }, { 26, 3, 8, 1, 10 }, { 27, 3, 9, 0, 0 },
{ 28, 2, 14, 0, 0 }, { 29, 4, 8, 1, 5 }, { 30, 3, 10, 0, 0 }, { 31, 4, 8, 1, 7 },
{ 32, 4, 8, 0, 0 }, { 33, 4, 8, 1, 9 }, { 34, 4, 8, 1, 10 }, { 35, 4, 9, 1, 8 },
{ 36, 4, 9, 0, 0 }, { 37, 5, 8, 1, 5 }, { 38, 5, 8, 1, 6 }, { 39, 5, 8, 1, 7 },
{ 40, 5, 8, 0, 0 }, { 41, 5, 8, 1, 9 }, { 42, 3, 14, 0, 0 }, { 43, 5, 9, 1, 7 },
{ 44, 5, 8, 1, 12 }, { 45, 5, 9, 0, 0 }, { 46, 6, 8, 1, 6 }, { 47, 6, 8, 1, 7 },
{ 48, 6, 8, 0, 0 }, { 49, 6, 8, 1, 9 }, { 50, 5, 10, 0, 0 }, { 51, 6, 9, 1, 6 },
{ 52, 6, 8, 1, 12 }, { 53, 6, 9, 1, 8 }, { 54, 6, 9, 0, 0 }, { 55, 7, 8, 1, 7 },
{ 56, 7, 8, 0, 0 }, { 57, 7, 8, 1, 9 }, { 58, 7, 8, 1, 10 }, { 59, 6, 9, 1, 14 },
{ 60, 6, 10, 0, 0 }, { 61, 7, 9, 1, 7 }, { 62, 7, 8, 1, 14 }, { 63, 7, 9, 0, 0 },
{ 64, 8, 8, 0, 0 }, { 65, 6, 10, 1, 15 }, { 66, 7, 9, 1, 12 }, { 67, 7, 10, 1, 7 },
{ 68, 7, 9, 1, 14 }, { 69, 7, 9, 1, 15 }, { 70, 7, 10, 0, 0 }, { 71, 8, 9, 1, 8 },
{ 72, 8, 9, 0, 0 }, { 73, 8, 9, 1, 10 }, { 74, 7, 10, 1, 14 }, { 75, 5, 15, 0, 0 },
{ 76, 7, 10, 1, 16 }, { 77, 8, 9, 1, 14 }, { 78, 8, 9, 1, 15 }, { 79, 8, 9, 1, 16 },
{ 80, 8, 10, 0, 0 }, { 81, 9, 9, 0, 0 }, { 82, 8, 10, 1, 12 }, { 83, 6, 15, 1, 8 },
{ 84, 7, 12, 0, 0 }, { 85, 8, 10, 1, 15 }, { 86, 8, 10, 1, 16 }, { 87, 7, 12, 1, 15 },
{ 88, 8, 10, 1, 18 }, { 89, 9, 10, 1, 9 }, { 90, 9, 10, 0, 0 }, { 91, 7, 14, 1, 7 },
{ 92, 9, 10, 1, 12 }, { 93, 8, 12, 1, 9 }, { 94, 9, 10, 1, 14 }, { 95, 9, 10, 1, 15 },
{ 96, 8, 12, 0, 0 }, { 97, 7, 15, 1, 7 }, { 98, 7, 14, 0, 0 }, { 99, 8, 12, 1, 15 },
{ 100, 10, 10, 0, 0 }, { 101, 6, 16, 1, 21 }, { 102, 8, 12, 1, 18 }, { 103, 7, 16, 1, 7 },
{ 104, 8, 12, 1, 20 }, { 105, 7, 15, 0, 0 }, { 106, 9, 12, 1, 10 }, { 107, 8, 14, 1, 9 },
{ 108, 9, 12, 0, 0 }, { 109, 6, 20, 1, 9 }, { 110, 9, 12, 1, 14 }, { 111, 9, 12, 1, 15 },
{ 112, 8, 14, 0, 0 }, { 113, 8, 14, 1, 15 }, { 114, 9, 12, 1, 18 }, { 115, 8, 15, 1, 10 },
{ 116, 9, 12, 1, 20 }, { 117, 9, 12, 1, 21 }, { 118, 10, 12, 1, 10 }, { 119, 8, 14, 1, 21 },
{ 120, 10, 12, 0, 0 }, { 121, 9, 14, 1, 9 }, { 122, 10, 12, 1, 14 }, { 123, 10, 12, 1, 15 },
{ 124, 10, 12, 1, 16 }, { 125, 5, 25, 0, 0 }, { 126, 9, 14, 0, 0 }, { 127, 9, 14, 1, 15 },
{ 128, 8, 16, 0, 0 }, { 129, 10, 12, 1, 21 }, { 130, 9, 14, 1, 18 }, { 131, 6, 25, 1, 6 },
{ 132, 11, 12, 0, 0 }, { 133, 9, 14, 1, 21 }, { 134, 11, 12, 1, 14 }, { 135, 9, 15, 0, 0 },
{ 136, 11, 12, 1, 16 }, { 137, 9, 16, 1, 9 }, { 138, 11, 12, 1, 18 }, { 139, 6, 25, 1, 14 },

23

{ 140, 10, 14, 0, 0 }, { 141, 11, 12, 1, 21 }, { 142, 10, 14, 1, 16 }, { 143, 9, 16, 1, 15 },
{ 144, 12, 12, 0, 0 }, { 145, 10, 15, 1, 10 }, { 146, 10, 14, 1, 20 }, { 147, 7, 21, 0, 0 },
{ 148, 9, 16, 1, 20 }, { 149, 10, 15, 1, 14 }, { 150, 10, 15, 0, 0 }, { 151, 10, 15, 1, 16 },
{ 152, 11, 14, 1, 12 }, { 153, 10, 15, 1, 18 }, { 154, 11, 14, 0, 0 }, { 155, 11, 14, 1, 15 },
{ 156, 11, 14, 1, 16 }, { 157, 8, 21, 1, 10 }, { 158, 11, 14, 1, 18 }, { 159, 10, 15, 1, 24 },
{ 160, 10, 16, 0, 0 }, { 161, 11, 14, 1, 21 }, { 162, 9, 18, 0, 0 }, { 163, 8, 21, 1, 16 },
{ 164, 11, 14, 1, 24 }, { 165, 11, 15, 0, 0 }, { 166, 12, 14, 1, 12 }, { 167, 8, 20, 1, 27 },
{ 168, 12, 14, 0, 0 }, { 169, 12, 14, 1, 15 }, { 170, 12, 14, 1, 16 }, { 171, 11, 15, 1, 21 },
{ 172, 12, 14, 1, 18 }, { 173, 6, 28, 1, 33 }, { 174, 12, 14, 1, 20 }, { 175, 7, 25, 0, 0 },
{ 176, 11, 16, 0, 0 }, { 177, 12, 15, 1, 12 }, { 178, 12, 14, 1, 24 }, { 179, 12, 14, 1, 25 },
{ 180, 12, 15, 0, 0 }, { 181, 12, 15, 1, 16 }, { 182, 13, 14, 0, 0 }, { 183, 13, 14, 1, 15 },
{ 184, 13, 14, 1, 16 }, { 185, 12, 15, 1, 20 }, { 186, 13, 14, 1, 18 }, { 187, 11, 16, 1, 27 },
{ 188, 13, 14, 1, 20 }, { 189, 9, 21, 0, 0 }, { 190, 12, 15, 1, 25 }, { 191, 12, 16, 1, 15 },
{ 192, 12, 16, 0, 0 }, { 193, 13, 14, 1, 25 }, { 194, 13, 15, 1, 14 }, { 195, 13, 15, 0, 0 },
{ 196, 14, 14, 0, 0 }, { 197, 12, 16, 1, 21 }, { 198, 11, 18, 0, 0 }, { 199, 10, 21, 1, 10 },
{ 200, 10, 20, 0, 0 }, { 201, 13, 15, 1, 21 }, { 202, 9, 24, 1, 10 }, { 203, 12, 16, 1, 27 },
{ 204, 13, 15, 1, 24 }, { 205, 13, 15, 1, 25 }, { 206, 13, 16, 1, 14 }, { 207, 13, 15, 1, 27 },
{ 208, 13, 16, 0, 0 }, { 209, 14, 15, 1, 14 }, { 210, 14, 15, 0, 0 }, { 211, 14, 15, 1, 16 },
{ 212, 13, 16, 1, 20 }, { 213, 14, 15, 1, 18 }, { 214, 12, 18, 1, 16 }, { 215, 14, 15, 1, 20 },
{ 216, 12, 18, 0, 0 }, { 217, 13, 16, 1, 25 }, { 218, 12, 18, 1, 20 }, { 219, 14, 15, 1, 24 },
{ 220, 11, 20, 0, 0 }, { 221, 11, 20, 1, 21 }, { 222, 14, 15, 1, 27 }, { 223, 14, 15, 1, 28 },
{ 224, 14, 16, 0, 0 }, { 225, 15, 15, 0, 0 }, { 226, 14, 16, 1, 18 }, { 227, 11, 20, 1, 27 },
{ 228, 14, 16, 1, 20 }, { 229, 14, 16, 1, 21 }, { 230, 13, 18, 1, 14 }, { 231, 11, 21, 0, 0 },
{ 232, 14, 16, 1, 24 }, { 233, 14, 16, 1, 25 }, { 234, 13, 18, 0, 0 }, { 235, 14, 16, 1, 27 },
{ 236, 14, 16, 1, 28 }, { 237, 13, 18, 1, 21 }, { 238, 14, 16, 1, 30 }, { 239, 15, 16, 1, 15 },
{ 240, 15, 16, 0, 0 }, { 241, 13, 18, 1, 25 }, { 242, 15, 16, 1, 18 }, { 243, 9, 27, 0, 0 },
{ 244, 15, 16, 1, 20 }, { 245, 15, 16, 1, 21 }, { 246, 13, 18, 1, 30 }, { 247, 12, 20, 1, 27 },
{ 248, 15, 16, 1, 24 }, { 249, 15, 16, 1, 25 }, { 250, 10, 25, 0, 0 }, { 251, 15, 16, 1, 27 },
{ 252, 14, 18, 0, 0 }, { 253, 10, 25, 1, 28 }, { 254, 15, 16, 1, 30 }, { 255, 14, 18, 1, 21 },
{ 256, 16, 16, 0, 0 }, { 257, 10, 25, 1, 32 }, { 258, 14, 18, 1, 24 }, { 259, 14, 18, 1, 25 },
{ 260, 13, 20, 0, 0 }, { 261, 14, 18, 1, 27 }, { 262, 14, 18, 1, 28 }, { 263, 12, 21, 1, 32 },
{ 264, 11, 24, 0, 0 }, { 265, 13, 20, 1, 25 }, { 266, 7, 38, 0, 0 }, { 267, 15, 18, 1, 15 },
{ 268, 15, 18, 1, 16 }, { 269, 8, 33, 1, 38 }, { 270, 15, 18, 0, 0 }, { 271, 11, 25, 1, 21 },
{ 272, 8, 34, 0, 0 }, { 273, 13, 21, 0, 0 }, { 274, 14, 20, 1, 14 }, { 275, 11, 25, 0, 0 },
{ 276, 15, 18, 1, 24 }, { 277, 15, 18, 1, 25 }, { 278, 14, 20, 1, 18 }, { 279, 15, 18, 1, 27 },
{ 280, 14, 20, 0, 0 }, { 281, 14, 20, 1, 21 }, { 282, 15, 18, 1, 30 }, { 283, 11, 25, 1, 33 },
{ 284, 15, 18, 1, 32 }, { 285, 15, 18, 1, 33 }, { 286, 16, 18, 1, 16 }, { 287, 14, 20, 1, 27 },
{ 288, 16, 18, 0, 0 }, { 289, 14, 21, 1, 16 }, { 290, 16, 18, 1, 20 }, { 291, 16, 18, 1, 21 },
{ 292, 14, 20, 1, 32 }, { 293, 14, 20, 1, 33 }, { 294, 14, 21, 0, 0 }, { 295, 16, 18, 1, 25 },
{ 296, 15, 20, 1, 16 }, { 297, 11, 27, 0, 0 }, { 298, 16, 18, 1, 28 }, { 299, 12, 25, 1, 24 },
{ 300, 15, 20, 0, 0 }, { 301, 15, 20, 1, 21 }, { 302, 16, 18, 1, 32 }, { 303, 16, 18, 1, 33 },
{ 304, 8, 38, 0, 0 }, { 305, 15, 20, 1, 25 }, { 306, 17, 18, 0, 0 }, { 307, 15, 20, 1, 27 },
{ 308, 11, 28, 0, 0 }, { 309, 17, 18, 1, 21 }, { 310, 15, 20, 1, 30 }, { 311, 12, 25, 1, 36 },
{ 312, 13, 24, 0, 0 }, { 313, 17, 18, 1, 25 }, { 314, 15, 20, 1, 34 }, { 315, 15, 21, 0, 0 },
{ 316, 17, 18, 1, 28 }, { 317, 12, 27, 1, 20 }, { 318, 17, 18, 1, 30 }, { 319, 15, 21, 1, 25 },
{ 320, 16, 20, 0, 0 }, { 321, 17, 18, 1, 33 }, { 322, 17, 18, 1, 34 }, { 323, 12, 28, 1, 15 },
{ 324, 18, 18, 0, 0 }, { 325, 13, 25, 0, 0 }, { 326, 15, 21, 1, 32 }, { 327, 16, 20, 1, 27 },
{ 328, 16, 20, 1, 28 }, { 329, 12, 27, 1, 32 }, { 330, 11, 30, 0, 0 }, { 331, 16, 21, 1, 16 },
{ 332, 16, 20, 1, 32 }, { 333, 16, 20, 1, 33 }, { 334, 16, 20, 1, 34 }, { 335, 16, 21, 1, 20 },
{ 336, 16, 21, 0, 0 }, { 337, 14, 24, 1, 25 }, { 338, 17, 20, 1, 18 }, { 339, 16, 21, 1, 24 },
{ 340, 17, 20, 0, 0 }, { 341, 17, 20, 1, 21 }, { 342, 9, 38, 0, 0 }, { 343, 7, 49, 0, 0 },
{ 344, 17, 20, 1, 24 }, { 345, 17, 20, 1, 25 }, { 346, 14, 24, 1, 34 }, { 347, 17, 20, 1, 27 },
{ 348, 17, 20, 1, 28 }, { 349, 16, 21, 1, 34 }, { 350, 14, 25, 0, 0 }, { 351, 13, 27, 0, 0 },
{ 352, 11, 32, 0, 0 }, { 353, 17, 20, 1, 33 }, { 354, 17, 20, 1, 34 }, { 355, 14, 25, 1, 30 },
{ 356, 17, 20, 1, 36 }, { 357, 17, 21, 0, 0 }, { 358, 18, 20, 1, 18 }, { 359, 14, 25, 1, 34 },
{ 360, 18, 20, 0, 0 }, { 361, 18, 20, 1, 21 }, { 362, 13, 27, 1, 38 }, { 363, 11, 33, 0, 0 },
{ 364, 13, 28, 0, 0 }, { 365, 18, 20, 1, 25 }, { 366, 17, 21, 1, 30 }, { 367, 18, 20, 1, 27 },
{ 368, 18, 20, 1, 28 }, { 369, 17, 21, 1, 33 }, { 370, 18, 20, 1, 30 }, { 371, 15, 25, 1, 21 },
{ 372, 18, 20, 1, 32 }, { 373, 18, 20, 1, 33 }, { 374, 11, 34, 0, 0 }, { 375, 15, 25, 0, 0 },
{ 376, 18, 20, 1, 36 }, { 377, 18, 21, 1, 20 }, { 378, 18, 21, 0, 0 }, { 379, 14, 27, 1, 28 },
{ 380, 19, 20, 0, 0 }, { 381, 19, 20, 1, 21 }, { 382, 18, 21, 1, 25 }, { 383, 15, 25, 1, 33 },
{ 384, 16, 24, 0, 0 }, { 385, 7, 55, 0, 0 }, { 386, 15, 25, 1, 36 }, { 387, 19, 20, 1, 27 },
{ 388, 19, 20, 1, 28 }, { 389, 18, 21, 1, 32 }, { 390, 13, 30, 0, 0 }, { 391, 18, 21, 1, 34 },
{ 392, 14, 28, 0, 0 }, { 393, 19, 20, 1, 33 }, { 394, 19, 20, 1, 34 }, { 395, 18, 21, 1, 38 },
{ 396, 12, 33, 0, 0 }, { 397, 14, 28, 1, 33 }, { 398, 19, 20, 1, 38 }, { 399, 19, 21, 0, 0 },
{ 400, 20, 20, 0, 0 }, { 401, 12, 33, 1, 38 }, { 402, 19, 21, 1, 24 }, { 403, 19, 21, 1, 25 },
{ 404, 17, 24, 1, 20 }, { 405, 15, 27, 0, 0 }, { 406, 19, 21, 1, 28 }, { 407, 16, 25, 1, 32 },
{ 408, 17, 24, 0, 0 }, { 409, 17, 24, 1, 25 }, { 410, 19, 21, 1, 32 }, { 411, 19, 21, 1, 33 },
{ 412, 19, 21, 1, 34 }, { 413, 16, 25, 1, 38 }, { 414, 19, 21, 1, 36 }, { 415, 16, 25, 1, 40 },

24

{ 416, 13, 32, 0, 0 }, { 417, 19, 21, 1, 39 }, { 418, 11, 38, 0, 0 }, { 419, 20, 21, 1, 20 },
{ 420, 20, 21, 0, 0 }, { 421, 17, 25, 1, 21 }, { 422, 17, 24, 1, 38 }, { 423, 20, 21, 1, 24 },
{ 424, 20, 21, 1, 25 }, { 425, 17, 25, 0, 0 }, { 426, 20, 21, 1, 27 }, { 427, 20, 21, 1, 28 },
{ 428, 18, 24, 1, 20 }, { 429, 13, 33, 0, 0 }, { 430, 17, 25, 1, 30 }, { 431, 20, 21, 1, 32 },
{ 432, 18, 24, 0, 0 }, { 433, 20, 21, 1, 34 }, { 434, 17, 25, 1, 34 }, { 435, 20, 21, 1, 36 },
{ 436, 18, 24, 1, 28 }, { 437, 20, 21, 1, 38 }, { 438, 20, 21, 1, 39 }, { 439, 20, 21, 1, 40 },
{ 440, 11, 40, 0, 0 }, { 441, 21, 21, 0, 0 }, { 442, 13, 34, 0, 0 }, { 443, 18, 25, 1, 18 },
{ 444, 18, 24, 1, 36 }, { 445, 18, 25, 1, 20 }, { 446, 18, 24, 1, 38 }, { 447, 18, 24, 1, 39 },
{ 448, 16, 28, 0, 0 }, { 449, 18, 25, 1, 24 }, { 450, 18, 25, 0, 0 }, { 451, 12, 38, 1, 33 },
{ 452, 19, 24, 1, 20 }, { 453, 19, 24, 1, 21 }, { 454, 16, 28, 1, 34 }, { 455, 18, 25, 1, 30 },
{ 456, 19, 24, 0, 0 }, { 457, 19, 24, 1, 25 }, { 458, 18, 25, 1, 33 }, { 459, 17, 27, 0, 0 },
{ 460, 19, 24, 1, 28 }, { 461, 18, 25, 1, 36 }, { 462, 14, 33, 0, 0 }, { 463, 18, 25, 1, 38 },
{ 464, 19, 24, 1, 32 }, { 465, 19, 24, 1, 33 }, { 466, 19, 24, 1, 34 }, { 467, 18, 25, 1, 42 },
{ 468, 13, 36, 0, 0 }, { 469, 17, 28, 1, 21 }, { 470, 19, 24, 1, 38 }, { 471, 19, 24, 1, 39 },
{ 472, 19, 24, 1, 40 }, { 473, 17, 28, 1, 25 }, { 474, 19, 24, 1, 42 }, { 475, 19, 25, 0, 0 },
{ 476, 17, 28, 0, 0 }, { 477, 20, 24, 1, 21 }, { 478, 19, 25, 1, 28 }, { 479, 18, 27, 1, 20 },
{ 480, 20, 24, 0, 0 }, { 481, 20, 24, 1, 25 }, { 482, 19, 25, 1, 32 }, { 483, 20, 24, 1, 27 },
{ 484, 11, 44, 0, 0 }, { 485, 12, 40, 1, 45 }, { 486, 18, 27, 0, 0 }, { 487, 18, 27, 1, 28 },
{ 488, 20, 24, 1, 32 }, { 489, 20, 24, 1, 33 }, { 490, 10, 49, 0, 0 }, { 491, 18, 27, 1, 32 },
{ 492, 20, 24, 1, 36 }, { 493, 18, 27, 1, 34 }, { 494, 13, 38, 0, 0 }, { 495, 15, 33, 0, 0 },
{ 496, 20, 24, 1, 40 }, { 497, 18, 27, 1, 38 }, { 498, 20, 24, 1, 42 }, { 499, 20, 25, 1, 24 },
{ 500, 20, 25, 0, 0 }, { 501, 21, 24, 1, 21 }, { 502, 20, 25, 1, 27 }, { 503, 20, 25, 1, 28 },
{ 504, 21, 24, 0, 0 }, { 505, 21, 24, 1, 25 }, { 506, 19, 27, 1, 20 }, { 507, 13, 39, 0, 0 },
{ 508, 21, 24, 1, 28 }, { 509, 20, 25, 1, 34 }, { 510, 17, 30, 0, 0 }, { 511, 20, 25, 1, 36 },
{ 512, 16, 32, 0, 0 }, { 513, 19, 27, 0, 0 }, { 514, 21, 24, 1, 34 }, { 515, 20, 25, 1, 40 },
{ 516, 21, 24, 1, 36 }, { 517, 20, 25, 1, 42 }, { 518, 21, 24, 1, 38 }, { 519, 21, 24, 1, 39 },
{ 520, 13, 40, 0, 0 }, { 521, 21, 25, 1, 21 }, { 522, 21, 24, 1, 42 }, { 523, 16, 33, 1, 28 },
{ 524, 21, 24, 1, 44 }, { 525, 21, 25, 0, 0 }, { 526, 19, 27, 1, 40 }, { 527, 21, 25, 1, 27 },
{ 528, 22, 24, 0, 0 }, { 529, 22, 24, 1, 25 }, { 530, 21, 25, 1, 30 }, { 531, 22, 24, 1, 27 },
{ 532, 19, 28, 0, 0 }, { 533, 21, 25, 1, 33 }, { 534, 22, 24, 1, 30 }, { 535, 18, 30, 1, 25 },
{ 536, 22, 24, 1, 32 }, { 537, 22, 24, 1, 33 }, { 538, 22, 24, 1, 34 }, { 539, 11, 49, 0, 0 },
{ 540, 20, 27, 0, 0 }, { 541, 20, 27, 1, 28 }, { 542, 22, 24, 1, 38 }, { 543, 22, 24, 1, 39 },
{ 544, 17, 32, 0, 0 }, { 545, 21, 25, 1, 45 }, { 546, 14, 39, 0, 0 }, { 547, 20, 27, 1, 34 },
{ 548, 22, 24, 1, 44 }, { 549, 22, 24, 1, 45 }, { 550, 22, 25, 0, 0 }, { 551, 20, 27, 1, 38 },
{ 552, 23, 24, 0, 0 }, { 553, 23, 24, 1, 25 }, { 554, 18, 30, 1, 44 }, { 555, 23, 24, 1, 27 },
{ 556, 23, 24, 1, 28 }, { 557, 22, 25, 1, 32 }, { 558, 23, 24, 1, 30 }, { 559, 22, 25, 1, 34 },
{ 560, 20, 28, 0, 0 }, { 561, 17, 33, 0, 0 }, { 562, 23, 24, 1, 34 }, { 563, 22, 25, 1, 38 },
{ 564, 23, 24, 1, 36 }, { 565, 22, 25, 1, 40 }, { 566, 23, 24, 1, 38 }, { 567, 21, 27, 0, 0 },
{ 568, 23, 24, 1, 40 }, { 569, 22, 25, 1, 44 }, { 570, 19, 30, 0, 0 }, { 571, 20, 28, 1, 39 },
{ 572, 13, 44, 0, 0 }, { 573, 23, 24, 1, 45 }, { 574, 23, 25, 1, 24 }, { 575, 23, 25, 0, 0 },
{ 576, 24, 24, 0, 0 }, { 577, 23, 25, 1, 27 }, { 578, 17, 34, 0, 0 }, { 579, 21, 27, 1, 39 },
{ 580, 23, 25, 1, 30 }, { 581, 21, 28, 1, 21 }, { 582, 23, 25, 1, 32 }, { 583, 23, 25, 1, 33 },
{ 584, 23, 25, 1, 34 }, { 585, 15, 39, 0, 0 }, { 586, 23, 25, 1, 36 }, { 587, 21, 28, 1, 27 },
{ 588, 21, 28, 0, 0 }, { 589, 23, 25, 1, 39 }, { 590, 23, 25, 1, 40 }, { 591, 22, 27, 1, 24 },
{ 592, 23, 25, 1, 42 }, { 593, 21, 28, 1, 33 }, { 594, 22, 27, 0, 0 }, { 595, 23, 25, 1, 45 },
{ 596, 21, 28, 1, 36 }, { 597, 22, 27, 1, 30 }, { 598, 23, 25, 1, 48 }, { 599, 24, 25, 1, 24 },
{ 600, 24, 25, 0, 0 }, { 601, 22, 27, 1, 34 }, { 602, 24, 25, 1, 27 }, { 603, 24, 25, 1, 28 },
{ 604, 21, 28, 1, 44 }, { 605, 11, 55, 0, 0 }, { 606, 22, 27, 1, 39 }, { 607, 24, 25, 1, 32 },
{ 608, 19, 32, 0, 0 }, { 609, 24, 25, 1, 34 }, { 610, 20, 30, 1, 40 }, { 611, 24, 25, 1, 36 },
{ 612, 18, 34, 0, 0 }, { 613, 24, 25, 1, 38 }, { 614, 24, 25, 1, 39 }, { 615, 24, 25, 1, 40 },
{ 616, 22, 28, 0, 0 }, { 617, 24, 25, 1, 42 }, { 618, 23, 27, 1, 24 }, { 619, 24, 25, 1, 44 },
{ 620, 24, 25, 1, 45 }, { 621, 23, 27, 0, 0 }, { 622, 23, 27, 1, 28 }, { 623, 24, 25, 1, 48 },
{ 624, 16, 39, 0, 0 }, { 625, 25, 25, 0, 0 }, { 626, 23, 27, 1, 32 }, { 627, 19, 33, 0, 0 },
{ 628, 23, 27, 1, 34 }, { 629, 20, 32, 1, 21 }, { 630, 21, 30, 0, 0 }, { 631, 15, 44, 1, 15 },
{ 632, 23, 27, 1, 38 }, { 633, 23, 27, 1, 39 }, { 634, 23, 27, 1, 40 }, { 635, 20, 32, 1, 27 },
{ 636, 23, 27, 1, 42 }, { 637, 13, 49, 0, 0 }, { 638, 23, 27, 1, 44 }, { 639, 23, 27, 1, 45 },
{ 640, 20, 32, 0, 0 }, { 641, 23, 28, 1, 25 }, { 642, 23, 27, 1, 48 }, { 643, 23, 27, 1, 49 },
{ 644, 23, 28, 0, 0 }, { 645, 24, 27, 1, 24 }, { 646, 19, 34, 0, 0 }, { 647, 20, 32, 1, 39 },
{ 648, 24, 27, 0, 0 }, { 649, 24, 27, 1, 28 }, { 650, 13, 50, 0, 0 }, { 651, 24, 27, 1, 30 },
{ 652, 23, 28, 1, 36 }, { 653, 24, 27, 1, 32 }, { 654, 24, 27, 1, 33 }, { 655, 24, 27, 1, 34 },
{ 656, 23, 28, 1, 40 }, { 657, 24, 27, 1, 36 }, { 658, 23, 28, 1, 42 }, { 659, 24, 27, 1, 38 },
{ 660, 22, 30, 0, 0 }, { 661, 24, 27, 1, 40 }, { 662, 22, 30, 1, 32 }, { 663, 17, 39, 0, 0 },
{ 664, 23, 28, 1, 48 }, { 665, 24, 27, 1, 44 }, { 666, 24, 27, 1, 45 }, { 667, 21, 32, 1, 27 },
{ 668, 24, 28, 1, 24 }, { 669, 24, 27, 1, 48 }, { 670, 24, 27, 1, 49 }, { 671, 24, 27, 1, 50 },
{ 672, 24, 28, 0, 0 }, { 673, 25, 27, 1, 25 }, { 674, 24, 28, 1, 30 }, { 675, 25, 27, 0, 0 },
{ 676, 13, 52, 0, 0 }, { 677, 24, 28, 1, 33 }, { 678, 25, 27, 1, 30 }, { 679, 22, 30, 1, 49 },
{ 680, 20, 34, 0, 0 }, { 681, 25, 27, 1, 33 }, { 682, 25, 27, 1, 34 }, { 683, 24, 28, 1, 39 },
{ 684, 19, 36, 0, 0 }, { 685, 23, 30, 1, 25 }, { 686, 14, 49, 0, 0 }, { 687, 25, 27, 1, 39 },
{ 688, 25, 27, 1, 40 }, { 689, 24, 28, 1, 45 }, { 690, 23, 30, 0, 0 }, { 691, 20, 34, 1, 45 },

25

{ 692, 25, 27, 1, 44 }, { 693, 21, 33, 0, 0 }, { 694, 24, 28, 1, 50 }, { 695, 20, 34, 1, 49 },
{ 696, 25, 27, 1, 48 }, { 697, 25, 27, 1, 49 }, { 698, 25, 27, 1, 50 }, { 699, 25, 28, 1, 27 },
{ 700, 25, 28, 0, 0 }, { 701, 21, 34, 1, 21 }, { 702, 26, 27, 0, 0 }, { 703, 26, 27, 1, 28 },
{ 704, 22, 32, 0, 0 }, { 705, 26, 27, 1, 30 }, { 706, 25, 28, 1, 34 }, { 707, 26, 27, 1, 32 },
{ 708, 26, 27, 1, 33 }, { 709, 26, 27, 1, 34 }, { 710, 25, 28, 1, 38 }, { 711, 26, 27, 1, 36 },
{ 712, 25, 28, 1, 40 }, { 713, 26, 27, 1, 38 }, { 714, 21, 34, 0, 0 }, { 715, 13, 55, 0, 0 },
{ 716, 25, 28, 1, 44 }, { 717, 26, 27, 1, 42 }, { 718, 24, 30, 1, 28 }, { 719, 26, 27, 1, 44 },
{ 720, 24, 30, 0, 0 }, { 721, 25, 28, 1, 49 }, { 722, 19, 38, 0, 0 }, { 723, 26, 27, 1, 48 },
{ 724, 26, 27, 1, 49 }, { 725, 26, 27, 1, 50 }, { 726, 22, 33, 0, 0 }, { 727, 26, 27, 1, 52 },
{ 728, 26, 28, 0, 0 }, { 729, 27, 27, 0, 0 }, { 730, 26, 28, 1, 30 }, { 731, 23, 32, 1, 27 },
{ 732, 26, 28, 1, 32 }, { 733, 26, 28, 1, 33 }, { 734, 26, 28, 1, 34 }, { 735, 15, 49, 0, 0 },
{ 736, 23, 32, 0, 0 }, { 737, 23, 32, 1, 33 }, { 738, 26, 28, 1, 38 }, { 739, 26, 28, 1, 39 },
{ 740, 26, 28, 1, 40 }, { 741, 19, 39, 0, 0 }, { 742, 26, 28, 1, 42 }, { 743, 23, 32, 1, 39 },
{ 744, 26, 28, 1, 44 }, { 745, 26, 28, 1, 45 }, { 746, 23, 32, 1, 42 }, { 747, 25, 30, 1, 27 },
{ 748, 22, 34, 0, 0 }, { 749, 26, 28, 1, 49 }, { 750, 25, 30, 0, 0 }, { 751, 23, 33, 1, 25 },
{ 752, 26, 28, 1, 52 }, { 753, 25, 30, 1, 33 }, { 754, 26, 28, 1, 54 }, { 755, 27, 28, 1, 27 },
{ 756, 27, 28, 0, 0 }, { 757, 19, 39, 1, 55 }, { 758, 27, 28, 1, 30 }, { 759, 23, 33, 0, 0 },
{ 760, 20, 38, 0, 0 }, { 761, 27, 28, 1, 33 }, { 762, 27, 28, 1, 34 }, { 763, 24, 32, 1, 27 },
{ 764, 27, 28, 1, 36 }, { 765, 17, 45, 0, 0 }, { 766, 27, 28, 1, 38 }, { 767, 27, 28, 1, 39 },
{ 768, 24, 32, 0, 0 }, { 769, 25, 30, 1, 49 }, { 770, 14, 55, 0, 0 }, { 771, 23, 33, 1, 45 },
{ 772, 27, 28, 1, 44 }, { 773, 27, 28, 1, 45 }, { 774, 25, 30, 1, 54 }, { 775, 25, 30, 1, 55 },
{ 776, 27, 28, 1, 48 }, { 777, 27, 28, 1, 49 }, { 778, 27, 28, 1, 50 }, { 779, 20, 39, 1, 38 },
{ 780, 26, 30, 0, 0 }, { 781, 24, 32, 1, 45 }, { 782, 23, 34, 0, 0 }, { 783, 27, 28, 1, 55 },
{ 784, 28, 28, 0, 0 }, { 785, 24, 32, 1, 49 }, { 786, 26, 30, 1, 36 }, { 787, 24, 33, 1, 28 },
{ 788, 26, 30, 1, 38 }, { 789, 26, 30, 1, 39 }, { 790, 26, 30, 1, 40 }, { 791, 24, 32, 1, 55 },
{ 792, 24, 33, 0, 0 }, { 793, 25, 32, 1, 25 }, { 794, 26, 30, 1, 44 }, { 795, 26, 30, 1, 45 },
{ 796, 25, 32, 1, 28 }, { 797, 24, 33, 1, 38 }, { 798, 21, 38, 0, 0 }, { 799, 26, 30, 1, 49 },
{ 800, 25, 32, 0, 0 }, { 801, 25, 32, 1, 33 }, { 802, 26, 30, 1, 52 }, { 803, 24, 33, 1, 44 },
{ 804, 26, 30, 1, 54 }, { 805, 26, 30, 1, 55 }, { 806, 26, 30, 1, 56 }, { 807, 27, 30, 1, 27 },
{ 808, 27, 30, 1, 28 }, { 809, 24, 33, 1, 50 }, { 810, 27, 30, 0, 0 }, { 811, 24, 33, 1, 52 },
{ 812, 27, 30, 1, 32 }, { 813, 27, 30, 1, 33 }, { 814, 27, 30, 1, 34 }, { 815, 24, 33, 1, 56 },
{ 816, 24, 34, 0, 0 }, { 817, 25, 32, 1, 49 }, { 818, 27, 30, 1, 38 }, { 819, 21, 39, 0, 0 },
{ 820, 27, 30, 1, 40 }, { 821, 24, 34, 1, 39 }, { 822, 27, 30, 1, 42 }, { 823, 25, 32, 1, 55 },
{ 824, 27, 30, 1, 44 }, { 825, 25, 33, 0, 0 }, { 826, 25, 33, 1, 34 }, { 827, 26, 32, 1, 27 },
{ 828, 23, 36, 0, 0 }, { 829, 27, 30, 1, 49 }, { 830, 27, 30, 1, 50 }, { 831, 25, 33, 1, 39 },
{ 832, 26, 32, 0, 0 }, { 833, 17, 49, 0, 0 }, { 834, 27, 30, 1, 54 }, { 835, 27, 30, 1, 55 },
{ 836, 22, 38, 0, 0 }, { 837, 25, 33, 1, 45 }, { 838, 28, 30, 1, 28 }, { 839, 26, 32, 1, 39 },
{ 840, 28, 30, 0, 0 }, { 841, 25, 33, 1, 49 }, { 842, 28, 30, 1, 32 }, { 843, 28, 30, 1, 33 },
{ 844, 28, 30, 1, 34 }, { 845, 26, 32, 1, 45 }, { 846, 28, 30, 1, 36 }, { 847, 25, 33, 1, 55 },
{ 848, 28, 30, 1, 38 }, { 849, 28, 30, 1, 39 }, { 850, 25, 34, 0, 0 }, { 851, 22, 39, 1, 32 },
{ 852, 28, 30, 1, 42 }, { 853, 26, 33, 1, 28 }, { 854, 28, 30, 1, 44 }, { 855, 19, 45, 0, 0 },
{ 856, 26, 32, 1, 56 }, { 857, 26, 33, 1, 32 }, { 858, 26, 33, 0, 0 }, { 859, 28, 30, 1, 49 },
{ 860, 28, 30, 1, 50 }, { 861, 26, 33, 1, 36 }, { 862, 28, 30, 1, 52 }, { 863, 26, 33, 1, 38 },
{ 864, 27, 32, 0, 0 }, { 865, 28, 30, 1, 55 }, { 866, 28, 30, 1, 56 }, { 867, 26, 33, 1, 42 },
{ 868, 27, 32, 1, 36 }, { 869, 26, 33, 1, 44 }, { 870, 29, 30, 0, 0 }, { 871, 27, 32, 1, 39 },
{ 872, 29, 30, 1, 32 }, { 873, 29, 30, 1, 33 }, { 874, 23, 38, 0, 0 }, { 875, 26, 33, 1, 50 },
{ 876, 29, 30, 1, 36 }, { 877, 27, 32, 1, 45 }, { 878, 29, 30, 1, 38 }, { 879, 29, 30, 1, 39 },
{ 880, 22, 40, 0, 0 }, { 881, 27, 32, 1, 49 }, { 882, 21, 42, 0, 0 }, { 883, 26, 34, 1, 33 },
{ 884, 26, 34, 0, 0 }, { 885, 29, 30, 1, 45 }, { 886, 27, 32, 1, 54 }, { 887, 27, 32, 1, 55 },
{ 888, 29, 30, 1, 48 }, { 889, 29, 30, 1, 49 }, { 890, 29, 30, 1, 50 }, { 891, 27, 33, 0, 0 },
{ 892, 29, 30, 1, 52 }, { 893, 20, 45, 1, 38 }, { 894, 29, 30, 1, 54 }, { 895, 29, 30, 1, 55 },
{ 896, 28, 32, 0, 0 }, { 897, 23, 39, 0, 0 }, { 898, 28, 32, 1, 34 }, { 899, 26, 34, 1, 49 },
{ 900, 30, 30, 0, 0 }, { 901, 24, 38, 1, 27 }, { 902, 28, 32, 1, 38 }, { 903, 28, 32, 1, 39 },
{ 904, 28, 32, 1, 40 }, { 905, 26, 34, 1, 55 }, { 906, 28, 32, 1, 42 }, { 907, 27, 33, 1, 49 },
{ 908, 28, 32, 1, 44 }, { 909, 28, 32, 1, 45 }, { 910, 27, 33, 1, 52 }, { 911, 27, 34, 1, 27 },
{ 912, 24, 38, 0, 0 }, { 913, 28, 32, 1, 49 }, { 914, 28, 32, 1, 50 }, { 915, 22, 42, 1, 33 },
{ 916, 28, 32, 1, 52 }, { 917, 27, 34, 1, 33 }, { 918, 27, 34, 0, 0 }, { 919, 28, 32, 1, 55 },
{ 920, 23, 40, 0, 0 }, { 921, 28, 33, 1, 30 }, { 922, 27, 34, 1, 38 }, { 923, 28, 33, 1, 32 },
{ 924, 28, 33, 0, 0 }, { 925, 28, 33, 1, 34 }, { 926, 29, 32, 1, 30 }, { 927, 28, 33, 1, 36 },
{ 928, 29, 32, 0, 0 }, { 929, 29, 32, 1, 33 }, { 930, 29, 32, 1, 34 }, { 931, 19, 49, 0, 0 },
{ 932, 29, 32, 1, 36 }, { 933, 28, 33, 1, 42 }, { 934, 29, 32, 1, 38 }, { 935, 17, 55, 0, 0 },
{ 936, 26, 36, 0, 0 }, { 937, 25, 38, 1, 25 }, { 938, 29, 32, 1, 42 }, { 939, 28, 33, 1, 48 },
{ 940, 29, 32, 1, 44 }, { 941, 29, 32, 1, 45 }, { 942, 26, 36, 1, 42 }, { 943, 28, 33, 1, 52 },
{ 944, 29, 32, 1, 48 }, { 945, 21, 45, 0, 0 }, { 946, 29, 32, 1, 50 }, { 947, 28, 33, 1, 56 },
{ 948, 29, 32, 1, 52 }, { 949, 26, 36, 1, 49 }, { 950, 25, 38, 0, 0 }, { 951, 29, 32, 1, 55 },
{ 952, 28, 34, 0, 0 }, { 953, 24, 39, 1, 56 }, { 954, 29, 33, 1, 30 }, { 955, 26, 36, 1, 55 },
{ 956, 29, 32, 1, 60 }, { 957, 29, 33, 0, 0 }, { 958, 30, 32, 1, 30 }, { 959, 24, 40, 1, 39 },
{ 960, 30, 32, 0, 0 }, { 961, 30, 32, 1, 33 }, { 962, 30, 32, 1, 34 }, { 963, 29, 33, 1, 39 },
{ 964, 30, 32, 1, 36 }, { 965, 24, 40, 1, 45 }, { 966, 23, 42, 0, 0 }, { 967, 30, 32, 1, 39 },

26

{ 968, 22, 44, 0, 0 }, { 969, 29, 33, 1, 45 }, { 970, 30, 32, 1, 42 }, { 971, 20, 49, 1, 40 },
{ 972, 27, 36, 0, 0 }, { 973, 30, 32, 1, 45 }, { 974, 29, 33, 1, 50 }, { 975, 25, 39, 0, 0 },
{ 976, 30, 32, 1, 48 }, { 977, 30, 32, 1, 49 }, { 978, 30, 32, 1, 50 }, { 979, 29, 33, 1, 55 },
{ 980, 20, 49, 0, 0 }, { 981, 27, 36, 1, 45 }, { 982, 30, 32, 1, 54 }, { 983, 30, 32, 1, 55 },
{ 984, 30, 32, 1, 56 }, { 985, 29, 34, 1, 33 }, { 986, 29, 34, 0, 0 }, { 987, 30, 33, 1, 30 },
{ 988, 26, 38, 0, 0 }, { 989, 30, 33, 1, 32 }, { 990, 30, 33, 0, 0 }, { 991, 30, 33, 1, 34 },
{ 992, 31, 32, 0, 0 }, { 993, 31, 32, 1, 33 }, { 994, 31, 32, 1, 34 }, { 995, 30, 33, 1, 38 },
{ 996, 31, 32, 1, 36 }, { 997, 30, 33, 1, 40 }, { 998, 31, 32, 1, 38 }, { 999, 31, 32, 1, 39 },
{ 1000, 25, 40, 0, 0 }, { 1001, 30, 33, 1, 44 }, { 1002, 31, 32, 1, 42 }, { 1003, 26, 39, 1, 28 },
{ 1004, 31, 32, 1, 44 }, { 1005, 31, 32, 1, 45 }, { 1006, 30, 33, 1, 49 }, { 1007, 30, 33, 1, 50},
{ 1008, 28, 36, 0, 0 }, { 1009, 31, 32, 1, 49 }, { 1010, 31, 32, 1, 50 }, { 1011, 30, 33, 1, 54 },
{ 1012, 23, 44, 0, 0 }, { 1013, 30, 33, 1, 56 }, { 1014, 26, 39, 0, 0 }, { 1015, 31, 32, 1, 55 },
{ 1016, 31, 32, 1, 56 }, { 1017, 30, 33, 1, 60 }, { 1018, 30, 34, 1, 32 }, { 1019, 30, 34, 1, 33},
{ 1020, 30, 34, 0, 0 }, { 1021, 28, 36, 1, 49 }, { 1022, 31, 33, 1, 32 }, { 1023, 31, 33, 0, 0 },
{ 1024, 32, 32, 0, 0 }
};

A.5 Generating Pseudorandom Index Sequences for Bit Reordering

We have used the following routine to implement the assignment
$← Permutation(), which is

used by procedure BitReorderingIndexes():

compute reordering indexes(int indexes [], int n)

{
int i = 0, m = 0, u = 0, v = 0;

for (i = 0; i < 10; i++)

{
v = (int)((double)n * (double)rand() / (double)RAND MAX);

}
for (i = 0; i < n; i++)

{
indexes[i] = -1;

}
v = n;

while (v >= n)

{
v = (int)((double)n * (double)rand() / (double)RAND MAX);

}
indexes[n - 1] = v;

u = v;

for (i = 0; i < n - 1; i++)

{
if (i == u)

continue;

bool placed = false;

do

{
v = n;

while (v >= n)

{
v = (int)((double)n * (double)rand() / (double)RAND MAX);

}
if (indexes[v] < 0)

{
indexes[v] = i;

placed = true;

}
} while (placed == false);

}
for (i = 0; i < n; i++)

{
if (indexes[i] < 0)

{
indexes[i] = n - 1;

}
}

27

return 1;

}

We have also used the standard C library call rand() to implement the assignment
$← Range(),

which is found in line 19 of procedure BitReorderingIndexes(). This is done in the following way:

val = (int)((double)rangeval * (double)rand() / (double)RAND MAX);

Using the default seed for rand() we produced index sequences for all block lengths in the
range [24, 1024]. The following index sequences are used by some block lengths:

int k cipher 24 bit reordering 0[24] = {
7, 4, 14, 22, 0, 11, 18, 9, 6, 20, 1, 21, 10, 15, 3, 8,

2, 16, 5, 19, 12, 13, 17, 23};

int k cipher 24 bit reordering 1[24] = {
1, 19, 7, 10, 16, 21, 15, 2, 5, 13, 18, 12, 23, 8, 17, 4,

9, 22, 0, 3, 11, 6, 14, 20};

int k cipher 24 bit reordering 2[24] = {
22, 17, 2, 14, 7, 10, 9, 20, 6, 3, 16, 21, 11, 15, 0, 18,

4, 12, 5, 1, 8, 13, 23, 19};

int k cipher 24 bit reordering 3[24] = {
7, 16, 12, 1, 2, 13, 20, 23, 14, 19, 21, 6, 9, 4, 0, 11,

5, 3, 17, 18, 15, 22, 10, 8};

//index sequences 4, 5, 6 and 7 are not used by the block length n <- 24

int k cipher 24 bit reordering 8[24] = {
23, 15, 18, 5, 8, 0, 3, 12, 10, 19, 21, 7, 16, 9, 13, 4,

20, 11, 6, 1, 17, 2, 22, 14};

int k cipher 24 bit reordering 9[24] = {
12, 3, 19, 16, 22, 13, 1, 5, 4, 8, 7, 21, 17, 11, 15, 18,

14, 23, 10, 6, 2, 20, 0, 9};

int k cipher 24 bit reordering 10[24] = {
4, 10, 16, 14, 1, 18, 8, 0, 15, 7, 12, 5, 20, 21, 2, 13,

17, 22, 6, 19, 9, 11, 3, 23};
int k cipher 24 bit reordering 11[24] = {
18, 0, 7, 19, 15, 8, 21, 2, 13, 16, 3, 20, 11, 9, 22, 6,

4, 14, 10, 1, 23, 5, 17, 12};

int k cipher 24 bit reordering 12[24] = {
14, 19, 2, 9, 16, 18, 8, 4, 20, 6, 5, 12, 17, 21, 3, 13,

10, 1, 15, 23, 7, 11, 0, 22};

int k cipher 24 bit reordering 13[24] = {
14, 3, 4, 17, 13, 16, 11, 0, 23, 12, 22, 15, 2, 5, 8, 20,

1, 18, 19, 9, 6, 10, 21, 7};

int k cipher 33 bit reordering 0[33] = {
27, 3, 29, 7, 13, 0, 9, 20, 23, 15, 8, 2, 30, 26, 11, 24,

17, 1, 28, 31, 16, 18, 21, 10, 5, 12, 14, 19, 4, 6, 32, 25,

22};

int k cipher 33 bit reordering 1[33] = {
17, 27, 5, 2, 10, 31, 24, 0, 15, 13, 21, 29, 28, 12, 4, 6,

19, 7, 3, 9, 25, 23, 18, 14, 30, 11, 26, 8, 32, 22, 1, 16,

20};

int k cipher 33 bit reordering 2[33] = {
18, 15, 21, 32, 4, 28, 10, 0, 5, 8, 26, 11, 29, 3, 23, 17,

14, 2, 16, 24, 12, 19, 30, 27, 7, 6, 25, 9, 13, 1, 22, 31,

20};

28

int k cipher 33 bit reordering 3[33] = {
0, 3, 11, 16, 23, 30, 6, 27, 17, 8, 15, 32, 4, 18, 9, 26,

24, 12, 19, 31, 22, 5, 2, 28, 14, 29, 13, 21, 7, 25, 10, 20,

1};

//index sequences 4, 5, 6 and 7 are not used by the block length n <- 33

int k cipher 33 bit reordering 8[33] = {
20, 14, 25, 23, 12, 1, 0, 30, 8, 2, 27, 16, 11, 7, 22, 29,

18, 3, 32, 9, 13, 21, 6, 28, 17, 10, 4, 5, 19, 15, 24, 26,

31};

int k cipher 33 bit reordering 9[33] = {
8, 18, 21, 25, 14, 29, 0, 2, 12, 7, 9, 27, 4, 16, 32, 17,

22, 20, 10, 24, 28, 15, 5, 3, 30, 26, 11, 31, 23, 19, 6, 13,

1};

int k cipher 33 bit reordering 10[33] = {
5, 17, 11, 1, 28, 24, 29, 3, 10, 6, 23, 14, 25, 4, 26, 9,

20, 16, 21, 27, 7, 22, 32, 8, 15, 31, 13, 0, 18, 2, 12, 19,

30};

int k cipher 33 bit reordering 11[33] = {
7, 30, 3, 18, 14, 2, 15, 17, 27, 19, 4, 25, 13, 9, 23, 8,

31, 0, 22, 16, 32, 10, 29, 21, 6, 20, 26, 1, 12, 11, 24, 5,

28};

int k cipher 33 bit reordering 12[33] = {
7, 29, 17, 13, 4, 8, 25, 24, 9, 27, 6, 11, 20, 28, 16, 1,

18, 15, 0, 21, 32, 2, 30, 14, 19, 26, 10, 23, 5, 12, 22, 31,

3};

int k cipher 33 bit reordering 13[33] = {
0, 32, 22, 1, 12, 21, 6, 28, 9, 14, 30, 2, 17, 26, 24, 10,

3, 8, 13, 18, 31, 27, 20, 4, 16, 29, 15, 7, 23, 25, 5, 19,

11};

int k cipher 128 bit reordering 0[128] = {
79, 121, 89, 83, 99, 31, 64, 21, 40, 62, 7, 33, 9, 114, 111, 54,

4, 68, 73, 90, 103, 110, 37, 115, 41, 52, 84, 124, 8, 16, 28, 63,

10, 96, 93, 32, 50, 2, 43, 109, 86, 125, 60, 119, 29, 66, 74, 18,

53, 20, 97, 42, 81, 12, 1, 106, 30, 70, 35, 59, 118, 78, 120, 95,

108, 6, 47, 58, 116, 23, 11, 82, 127, 65, 26, 36, 48, 91, 72, 100,

46, 104, 56, 80, 0, 27, 76, 51, 67, 22, 117, 38, 126, 92, 98, 13,

17, 101, 88, 123, 57, 45, 15, 75, 107, 5, 69, 49, 113, 39, 85, 25,

3, 122, 44, 77, 55, 105, 24, 112, 61, 14, 87, 102, 34, 19, 71, 94};

int k cipher 128 bit reordering 1[128] = {
73, 33, 14, 45, 95, 83, 1, 110, 52, 124, 16, 99, 115, 27, 64, 56,

2, 71, 92, 126, 39, 101, 12, 53, 109, 116, 77, 41, 26, 22, 59, 82,

63, 36, 105, 18, 121, 86, 11, 118, 46, 75, 66, 5, 89, 54, 103, 29,

125, 3, 47, 81, 76, 15, 51, 102, 114, 28, 88, 108, 21, 57, 67, 38,

20, 34, 84, 106, 113, 42, 91, 120, 98, 78, 55, 62, 7, 68, 8, 24,

79, 65, 10, 31, 60, 122, 6, 49, 43, 32, 96, 85, 90, 23, 107, 119,

100, 40, 72, 112, 58, 4, 123, 93, 13, 111, 50, 19, 37, 70, 25, 80,

44, 74, 17, 117, 87, 30, 94, 9, 69, 35, 48, 0, 61, 127, 97, 104};

int k cipher 128 bit reordering 2[128] = {
106, 116, 18, 98, 70, 7, 95, 125, 50, 9, 85, 59, 26, 45, 78, 34,

111, 83, 94, 39, 4, 127, 48, 68, 75, 96, 28, 56, 20, 114, 8, 42,

122, 101, 47, 63, 115, 6, 77, 29, 36, 17, 107, 87, 51, 11, 65, 93,

104, 55, 124, 37, 46, 119, 91, 103, 13, 64, 79, 16, 30, 82, 61, 0,

120, 84, 71, 23, 27, 118, 88, 57, 32, 15, 108, 52, 102, 40, 1, 72,

19, 66, 92, 24, 117, 60, 10, 105, 123, 5, 49, 81, 33, 76, 41, 100,

109, 89, 31, 112, 69, 97, 126, 43, 54, 14, 74, 86, 2, 58, 21, 35,

73, 62, 12, 113, 3, 121, 110, 44, 99, 38, 67, 90, 80, 22, 25, 53};

int k cipher 128 bit reordering 3[128] = {

29

25, 65, 83, 115, 76, 48, 10, 3, 47, 18, 110, 126, 98, 56, 90, 38,

99, 24, 40, 72, 6, 84, 89, 69, 20, 54, 59, 33, 112, 12, 106, 120,

34, 15, 46, 2, 16, 70, 101, 82, 61, 50, 118, 88, 79, 121, 104, 29,

0, 62, 22, 114, 26, 75, 8, 123, 44, 107, 52, 71, 93, 100, 37, 86,

103, 51, 109, 39, 11, 57, 119, 64, 95, 30, 42, 19, 73, 125, 1, 81,

9, 49, 87, 23, 91, 45, 7, 97, 68, 32, 28, 124, 63, 108, 78, 117,

27, 80, 17, 77, 122, 41, 14, 5, 35, 113, 67, 55, 102, 92, 105, 60,

36, 74, 96, 127, 43, 94, 4, 85, 21, 13, 111, 31, 66, 116, 58, 53};

int k cipher 128 bit reordering 4[128] = {
20, 92, 2, 104, 59, 67, 8, 100, 37, 85, 49, 113, 77, 121, 44, 28,

110, 6, 10, 71, 56, 93, 118, 32, 55, 16, 29, 82, 43, 98, 76, 126,

124, 66, 99, 83, 17, 25, 88, 48, 39, 3, 12, 60, 47, 75, 112, 111,

87, 90, 4, 33, 13, 46, 68, 24, 54, 105, 18, 123, 117, 103, 78, 57,

122, 26, 53, 19, 64, 34, 116, 89, 81, 62, 107, 79, 102, 45, 14, 5,

15, 114, 36, 61, 72, 95, 86, 109, 7, 65, 120, 96, 41, 31, 23, 52,

80, 11, 101, 70, 21, 106, 119, 42, 73, 0, 35, 51, 58, 91, 30, 127,

74, 94, 1, 125, 97, 38, 27, 63, 9, 115, 50, 84, 108, 22, 40, 69};

int k cipher 128 bit reordering 5[128] = {
28, 34, 78, 58, 106, 118, 86, 100, 95, 46, 6, 65, 11, 19, 127, 50,

107, 89, 122, 16, 25, 51, 81, 32, 42, 97, 8, 69, 116, 72, 1, 62,

48, 68, 111, 87, 119, 39, 20, 124, 102, 59, 91, 44, 24, 15, 5, 77,

103, 12, 75, 33, 83, 105, 21, 43, 90, 52, 27, 117, 7, 66, 63, 126,

55, 112, 64, 120, 56, 110, 47, 101, 10, 35, 4, 26, 18, 85, 76, 94,

22, 61, 41, 3, 73, 30, 98, 125, 93, 84, 113, 13, 70, 53, 104, 36,

80, 115, 92, 17, 79, 54, 123, 31, 37, 9, 40, 57, 2, 96, 71, 109,

74, 38, 67, 121, 60, 99, 14, 88, 29, 108, 82, 49, 0, 114, 23, 45};

int k cipher 128 bit reordering 6[128] = {
64, 85, 78, 43, 37, 118, 122, 107, 12, 30, 100, 1, 18, 51, 94, 63,

3, 10, 23, 95, 62, 81, 40, 50, 36, 99, 66, 79, 105, 119, 27, 125,

90, 117, 38, 14, 5, 57, 55, 87, 73, 111, 20, 123, 25, 103, 44, 69,

17, 32, 126, 97, 28, 13, 106, 114, 58, 42, 88, 54, 80, 6, 75, 71,

101, 0, 39, 124, 41, 29, 84, 8, 70, 76, 109, 48, 113, 59, 92, 22,

31, 112, 108, 53, 33, 47, 82, 65, 4, 60, 16, 91, 98, 121, 11, 77,

15, 115, 24, 67, 74, 2, 86, 52, 93, 19, 127, 110, 35, 56, 102, 46,

72, 26, 61, 21, 7, 96, 45, 9, 49, 34, 120, 116, 104, 83, 89, 68};

int k cipher 128 bit reordering 7[128] = {
94, 84, 8, 115, 61, 48, 0, 106, 29, 23, 127, 71, 98, 44, 75, 37,

19, 3, 25, 66, 99, 125, 40, 112, 52, 107, 15, 88, 33, 80, 57, 78,

51, 83, 104, 58, 123, 38, 103, 93, 67, 6, 30, 43, 20, 13, 113, 73,

74, 124, 105, 101, 85, 70, 34, 92, 1, 11, 116, 56, 31, 42, 22, 55,

4, 47, 54, 86, 90, 114, 17, 12, 72, 122, 26, 100, 59, 32, 68, 108,

2, 41, 62, 69, 110, 121, 16, 81, 14, 27, 102, 77, 118, 39, 50, 91,

87, 36, 5, 89, 96, 49, 60, 45, 28, 9, 18, 120, 64, 109, 117, 79,

21, 119, 111, 46, 63, 53, 82, 126, 76, 35, 97, 7, 24, 10, 95, 65};

int k cipher 128 bit reordering 8[128] = {
63, 69, 122, 29, 40, 96, 117, 89, 54, 6, 87, 13, 21, 73, 106, 34,

119, 36, 30, 91, 52, 107, 67, 76, 124, 16, 84, 14, 44, 100, 2, 58,

26, 56, 0, 126, 83, 105, 112, 70, 55, 23, 47, 93, 75, 102, 15, 39,

98, 113, 1, 85, 71, 50, 45, 78, 111, 61, 120, 95, 32, 8, 18, 24,

90, 77, 33, 49, 114, 66, 80, 103, 20, 62, 3, 31, 11, 121, 41, 110,

127, 101, 17, 51, 42, 9, 86, 64, 104, 5, 60, 92, 35, 118, 28, 72,

65, 53, 79, 97, 88, 12, 7, 109, 25, 37, 115, 22, 57, 125, 46, 82,

74, 123, 99, 38, 94, 27, 48, 116, 68, 81, 4, 10, 59, 108, 19, 43};

int k cipher 128 bit reordering 9[128] = {
27, 108, 119, 45, 72, 21, 4, 87, 58, 15, 127, 97, 92, 54, 35, 67,

107, 125, 24, 39, 98, 90, 47, 7, 73, 83, 68, 16, 53, 63, 118, 10,

106, 66, 20, 86, 8, 116, 51, 6, 100, 25, 94, 78, 60, 124, 42, 34,

102, 74, 59, 52, 5, 115, 43, 29, 65, 12, 88, 37, 122, 85, 22, 105,

80, 19, 89, 9, 123, 61, 70, 99, 109, 77, 26, 49, 2, 33, 117, 41,

103, 30, 55, 79, 17, 14, 56, 36, 104, 112, 126, 81, 46, 71, 3, 93,

31, 69, 91, 62, 76, 40, 114, 48, 110, 82, 13, 120, 1, 38, 101, 23,

84, 28, 0, 113, 32, 96, 75, 57, 64, 50, 18, 11, 121, 95, 111, 44};

30

int k cipher 128 bit reordering 10[128] = {
84, 54, 37, 112, 16, 105, 65, 10, 28, 12, 32, 70, 53, 95, 121, 102,

29, 96, 47, 125, 49, 7, 89, 69, 118, 111, 74, 85, 30, 44, 56, 5,

35, 11, 124, 58, 75, 22, 91, 109, 8, 24, 51, 38, 114, 101, 80, 66,

76, 107, 36, 87, 25, 48, 15, 116, 82, 100, 67, 59, 42, 120, 9, 31,

6, 73, 45, 88, 17, 106, 57, 126, 78, 18, 46, 103, 86, 115, 61, 0,

83, 52, 71, 3, 26, 110, 40, 122, 98, 2, 19, 77, 93, 34, 127, 63,

33, 50, 94, 4, 79, 97, 123, 20, 81, 117, 55, 104, 64, 39, 21, 14,

119, 108, 13, 23, 68, 90, 60, 43, 62, 1, 113, 99, 27, 41, 92, 72};

int k cipher 128 bit reordering 11[128] = {
123, 6, 16, 49, 101, 43, 86, 76, 78, 119, 82, 38, 22, 104, 2, 53,

10, 114, 35, 107, 64, 60, 29, 93, 79, 110, 28, 13, 57, 47, 117, 83,

89, 1, 65, 121, 33, 108, 63, 20, 97, 27, 69, 88, 112, 3, 40, 50,

122, 87, 106, 54, 8, 23, 45, 74, 15, 61, 100, 30, 84, 124, 75, 32,

14, 81, 42, 62, 77, 120, 109, 17, 98, 0, 113, 41, 52, 26, 73, 80,

111, 51, 31, 5, 66, 91, 37, 116, 58, 44, 92, 70, 18, 103, 118, 4,

90, 126, 72, 11, 96, 21, 55, 46, 127, 34, 67, 94, 59, 24, 7, 105,

99, 68, 56, 12, 25, 115, 39, 95, 71, 36, 85, 102, 9, 48, 19, 125};

int k cipher 128 bit reordering 12[128] = {
63, 78, 108, 116, 20, 89, 37, 5, 30, 9, 86, 45, 114, 56, 105, 73,

59, 41, 2, 80, 28, 110, 125, 67, 83, 126, 12, 68, 26, 39, 60, 98,

72, 92, 15, 111, 40, 51, 121, 19, 77, 94, 31, 103, 119, 13, 52, 34,

22, 90, 8, 44, 75, 127, 104, 49, 27, 71, 109, 11, 85, 62, 113, 35,

57, 46, 81, 122, 23, 100, 4, 66, 79, 112, 106, 24, 93, 38, 14, 58,

124, 91, 61, 17, 65, 10, 107, 43, 70, 97, 123, 54, 82, 47, 18, 6,

25, 101, 3, 120, 95, 33, 76, 55, 48, 87, 0, 42, 74, 96, 118, 16,

99, 115, 29, 36, 1, 84, 69, 53, 64, 117, 32, 88, 50, 7, 102, 21};

int k cipher 128 bit reordering 13[128] = {
48, 78, 35, 7, 118, 103, 20, 86, 54, 80, 6, 68, 29, 121, 102, 33,

36, 98, 9, 75, 24, 120, 50, 83, 17, 0, 52, 96, 90, 47, 73, 123,

89, 27, 32, 104, 112, 62, 15, 67, 18, 101, 74, 116, 56, 85, 34, 8,

5, 81, 41, 65, 58, 127, 25, 107, 13, 69, 126, 26, 111, 40, 49, 92,

71, 1, 124, 106, 88, 23, 37, 59, 19, 76, 113, 53, 4, 99, 94, 44,

97, 79, 39, 2, 21, 119, 63, 82, 43, 22, 14, 84, 109, 60, 117, 72,

114, 87, 12, 16, 61, 38, 108, 64, 46, 110, 30, 57, 93, 66, 10, 122,

28, 105, 51, 3, 125, 95, 42, 70, 31, 45, 100, 55, 91, 77, 11, 115};

A.6 Flex Flow Test Vectors

uint32 t k cipher 24 flex plain = 0x318f00;

uint32 t k cipher 24 flex tweak = 0x5c1703;

uint32 t k cipher 24 flex key[3] = {0x597a95ce, 0x2cbed1e4, 0x4d82b5db};
uint32 t k cipher 24 flex cipher = 0xd89875;

uint64 t k cipher 33 flex plain = 0x071fc2a25;

uint64 t k cipher 33 flex tweak = 0x0f3b9df4c;

uint64 t k cipher 33 flex key[2] = {0x2a9a999187600201, 0x84ccc79a0e5972a9};
uint64 t k cipher 33 flex cipher = 0x11db7d054;

uint64 t k cipher 128 flex plain[2] = {0xd7c635db3c752489, 0x06d64b43649bfefe};
uint64 t k cipher 128 flex tweak[2] = {0x9bbb62981bbdf274, 0xfc83cc6c39265c91};
uint64 t k cipher 128 flex key[2] = {0x4546ea020eac175f, 0x77bd347bb9d5b095};
uint64 t k cipher 128 flex cipher[2] = {0xd2a60c5b43ccd3e1, 0xca718842e3900a4a};

A.7 CPA Flow Test Vectors

uint32 t k cipher 24 cpa plain = 0x318f00;

uint32 t k cipher 24 cpa tweak = 0x9a0e59;

uint64 t k cipher 24 cpa key[4] = {0x2cbed1e4597a95ce, 0x255c17034d82b5db, 0x876002011e71fc2a,

0x000072a92a9a9991};
uint32 t k cipher 24 cpa cipher = 0x9ebd08;

uint64 t k cipher 33 cpa plain = 0x14c84ccc7;

31

uint64 t k cipher 33 cpa tweak = 0x05c919bbb;

uint64 t k cipher 33 cpa key[6] = {0xdb3c752489ecf3b9, 0x43649bfefed7c635, 0x020eac175f06d64b,

0x7bb9d5b0954546ea, 0x981bbdf27477bd34, 0x0000000000000022};
uint64 t k cipher 33 cpa cipher = 0x09467b3f7;

uint64 t k cipher 128 cpa plain[2] = {0x2b58bffc83cc6c39, 0x24f22580b2107da7};
uint64 t k cipher 128 cpa tweak[2] = {0xe40ced6f189f18fe, 0x739aa03368c43949};
uint64 t k cipher 128 cpa key[14] = {0x27aef6116c4db0e6, 0x2779d02d3094d1df, 0xb8c0ad914767ba80,

0x6ca98308d45d1f79, 0xd75f78588ceaf21a, 0x3190bc4bfa457450,

0x92fd07e27f65d6c2, 0xd632a79fd631870c, 0x235548ef50bd1c1f,

0x002440be99b4d4ba, 0x1d038d1d35d9cd0f, 0xb1336f128aaebf73,

0x8028a087933b6f4a, 0x74fd2d5530ebb1f5};
uint64 t k cipher 128 cpa cipher[2] = {0xa3f53f715d01e6eb, 0xa8c1904ee7567837};

32

