
Scalable Open-Vote Network on Ethereum

Mohamed Seifelnasr, Hisham S. Galal, and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract McCorry et al. (Financial Cryptography 2017) presented the
first implementation of a decentralized self-tallying voting protocol on
Ethereum. However, their implementation did not scale beyond 40 vot-
ers since all the computations were performed on the smart contract. In
this paper, we tackle this problem by delegating the bulk computations
to an off-chain untrusted administrator in a verifiable manner. Specifi-
cally, the administrator tallies the votes off-chain and publishes a Merkle
tree that encodes the tallying computation trace. Then, the adminis-
trator submits the Merkle tree root and the tally result to the smart
contract. Subsequently, the smart contract transits to an intermediate
phase where at least a single honest voter can contend the administra-
tor’s claimed result if it was not computed correctly. Then, in the worst
case, the smart contract verifies the dispute at the cost of an elliptic
curve point addition and scalar multiplication, and two Merkle proofs of
membership which are logarithmic in the number of voters. This allows
our protocol to achieve higher scalability without sacrificing the public
verifiability or voters’ privacy. To assess our protocol, we implemented
an open-source prototype on Ethereum and carried out multiple experi-
ments for different numbers of voters. The results of our implementation
confirm the scalability and efficiency of our proposed solution which does
not exceed the current block gas limit for any practical number of voters.

Keywords: Open Vote Network, Merkle Tree, Smart Contract

1 Introduction

A blockchain is a decentralized append-only immutable ledger over a peer-to-
peer network. It utilizes a consensus algorithm that ensures different users have
access to a consistent ledger state. Furthermore, mining nodes have an economic
incentive to behave honestly and compete in solving a cryptographic puzzle,
referred to as Proof of Work (PoW), to receive block rewards.

As of November 2019, Ethereum capitalization exceeds 16 billion USD, which
makes it the second most valuable blockchain after Bitcoin [2]. Ethereum is
considered as a platform for running smart contracts in a world computer referred
to as Ethereum Virtual Machine (EVM). Once a smart contract is deployed on
the EVM, it becomes immutable, i.e., its code cannot be changed or patched
afterward. Furthermore, it stays dormant until triggered either by a transaction

submitted from an Externally Owned Account (EOA) (i.e., a user account) or
by a call from another contract. The underlying consensus protocol ensures that
the smart contract state gets modified only as its code dictates.

In all transactions, the sender has to pay upfront in Ether for the execution of
the contract’s code. The computational complexity of a transaction is measured
in gas, which can be bought for a gas price specified by the sender. Therefore,
the transaction fee is the gas cost multiplied by the gas price. Furthermore, the
sender also has to specify a gas limit which does not allow the transaction to
burn more gas than the specified limit. During execution, if a transaction runs
out of gas, then all the state changes are reverted while the transaction fee is
paid to the miner. On the other hand, if the transaction is successful, then the
sender gets the remaining gas.

Additionally, there exists a block gas limit, which limits the computational
complexity of transactions in one block. Currently, the block gas limit is about
10,000,000 gas [1]. Obviously, it is important to minimize the gas cost of trans-
actions in order to spend as little as possible on transaction fees. Furthermore,
small gas costs are also crucial from a scalability point of view, since the less gas
burnt for each transaction, the more transaction can fit into a single block.

McCorry et al. [10] presented the first implementation of the Open Vote
Network protocol on the Ethereum blockchain. To hide their votes, voters send
encrypted votes to the smart contract. These encrypted votes are accompanied
by one-out-of-two Zero Knowledge Proof (ZKP) of either a 0 or 1 to prove the
validity of the vote. Although their implementation tackles the voter privacy on
Ethereum, it barely scaled up to 40 voters before exceeding the block gas limit.
We identified two main reasons for this scalability problem from computation
and storage perspectives. First, the smart contract computes the tally which
involves running elliptic curve operations. Furthermore, this computation scales
linearly with the number of voters. Secondly, at the deployment phase, the ad-
ministrator sends the list of the eligible voters to be stored on the smart contract
which also scales linearly with the number of voters.

Contribution. In this paper, we propose a protocol that efficiently reduces
the computation and storage cost of the Open Vote Network without sacrificing
its inherent security properties. More precisely, we make the following modifica-
tions:

1. We utilize a Merkle tree to accumulate the list of eligible voters. Thus, the
smart contract stores only the tree root rather than the full list. Certainly,
each voter will have to provide a proof-of-membership along with their votes.

2. We delegate the tally computation to an untrusted administrator in a verifi-
able manner even in the presence of a malicious majority. In fact, we require
only a single participant, which could be a regulator or one of the voters, to
be honest in order to maintain the protocol’s security.

The rest of this paper is organized as follows. Section 2 presents a very brief
review of some related work on voting protocols implemented on the Ethereum

2

blockchain. Section 3 presents the cryptographic primitives utilized in our pro-
tocol. Section 4 provides the design of the election contract and its execution
phases. Also, it provides an analysis of the gas used in every transaction by the
voter/election administrator. Lastly, Section 5 presents our conclusions.

2 Related Work

A cryptographic voting system is one that provides proof to each voter that her
vote was included in the final tally. Public verifiability requires that the tallying
process can be validated by anyone who wants to do so, even those who did not
vote. Cryptographic voting systems should not leak any information about how
the voter voted, beyond what can be inferred from the tally alone, including the
cases where voters may deliberately craft their ballot to leak how they voted.
Based on his mix network protocol [5], Chaum proposed the first cryptographic
voting system in 1981. Interestingly, blind signature schemes [4], which formed
the basis for the first cryptographic payment systems, have also been applied
extensively in the design of e-voting protocols.

Traditionally, e-voting protocols rely on a trusted authority for collecting
the encrypted votes from the voters to maintain the voters’ privacy. Later, that
trusted authority computes the final tally from the casted votes. The problem in
this approach is giving a single centralized authority the full control of collecting
and computing the tally. Instead, multiple authorities can be utilized for collect-
ing the votes and in the tally computation phase, e.g., see Helios [3]. Yet, the
collusion of the tally authorities is still a threat against voters’ privacy. Removing
the tally authorities completely was first accomplished by Kiayias and Yung [9]
who introduced a boardroom self-tallying protocol. In a self-tallying voting pro-
tocol, once the vote casting phase is over, any voter or a third-party can perform
the tally computation. Self-tallying protocols are regarded as the max-privacy
voting protocols since breaching the voter privacy requires full collusion of all
the other voters.

McCorry et al. [10] implemented the Open Vote Network protocol to build
the first Boardroom voting on Ethereum. The protocol does not require a trusted
party to compute the tally, however, it is a self-tallying protocol. Furthermore,
each voter is in control of her vote’s privacy such that it can only be breached
by full collusion involving all other voters. To ensure the correct execution of
votes tallying, the authors developed a smart contract that computes the votes
tallying. Certainly, the consensus mechanism of Ethereum secures the tallying
computation, however, running elliptic curve operations in smart contracts are
cost-prohibitive. Therefore, the smart contract can tally a relatively small num-
ber of votes, up to 40, before consuming the block gas limit. Furthermore, a
second drawback with this implementation is that at the deployment phase, the
smart contract stores the list of all eligible voters. Technically speaking, storing
large data on smart contracts is prohibitively expensive as the op-code SSTORE

costs 20000 gas to store non-zero 32 bytes. For instance, storing a list of 500
voters’ addresses will exceed the current block gas limit (≈ 10 million gas).

3

3 Preliminaries

In this section, we briefly review the cryptographic primitives utilized in our
protocol.

3.1 Merkle Tree

Merkle trees [11] are cryptographic accumulators with efficient proofs of set mem-
bership. Generally speaking, to accumulate a set of elements, one builds a binary
tree where the leaf nodes correspond to the hash values of the elements. The par-
ent nodes are assigned the hash of their children using a collision-resistant hash
function. The set membership proof, known as Merkle proof, has a logarithmic
size in terms of the number of leaves. For example, given a Merkle tree MT
with a root r, to prove that an element x ∈MT , the prover sends to the verifier
a Merkle proof π which consists of the sibling nodes on the path from x to r
as illustrated in Fig. 1. The verifier initially computes r′ ← H(x). Then, she
iterates sequentially over each hash in π and reconstructs the parent r′. Finally,
the verifier accepts the proof π if r′ = r.

a b c d

Ha Hb Hc Hd

Hab Hcd

Habcd

Figure 1: An example illustrating the Merkle proof for element c ∈ MT which
consists of the nodes Hd and Hab

3.2 Pedersen Commitment

A commitment scheme enables a sender to commit to a value. After a while, the
sender opens the commitment and reveals the committed value. The receiver

4

can check that the revealed value is the original committed value by doing the
commitment again and checking that the two commitments match. Any commit-
ment scheme must satisfy two properties: the hiding property and the binding
property. The hiding property protects the sender’s message from being compro-
mised by the receiver while the binding property protects the receiver against a
malicious sender who may change her committed message.

Pedersen commitment scheme [12] is computationally binding, perfectly hid-
ing, and additively homomorphic. The commitment is computed as c = gmha,
where m is the message, a is a blinding value, and g and h are two generators.
For the sender to reveal her commitment, she reveals both the message m and
the blinding value a. Then, the receiver checks whether these values commit to
the previously received commitment c.

3.3 Schnorr Zero-Knowledge Proof of Discrete Log Knowledge

A Zero-Knowledge Proof of Knowledge is an interactive protocol that runs be-
tween a prover and a verifier. It enables the prover to convince the verifier of
her knowledge of a secret without revealing that secret to the verifier. Schnorr
protocol [13] is a Σ protocol that consists of three interactions between the
prover and verifier. These interactions are: commit, challenge and response. Let
v = gs mod P where s ∈ Zp. In Schnorr ZKP, the prover knows a secret s (the
discrete log of v) and she wants to convince the verifier of her knowledge without
telling him the secret. ZKP protocol must achieve three properties: completeness,
soundness, and zero-knowledge.

The Schnorr ZKP proceeds as follows: it starts by a commit phase where the
prover sends the verifier her commitment x = gr mod p where r ∈ Zp. Then, the
verifer sends back her challenge e where e ∈ Zp. Then, the prover responds with
y = (r − se) mod p. In the end, the verifier checks x = gy · ve.

3.4 Σ Protocol for a Commitment is either 0 or 1

Groth and Kohlweiss [8] presented a Σ protocol for commitment to either a 0
or 1, see Fig. 2. More precisely, the protocol proves the relation:

R = {(c, (m, r)) | c = gm · hr where m ∈ {0, 1} and r ∈ Zq}

Using the homomorphic property of Pedersen commitments, cx−fcb is a com-
mitment to the message m(x − f) + am = m(x −mx − a) = mx(1 −m) −
am+ am = x(1−m)m which is 0 if m ∈ {0, 1}.

3.5 Open Vote Network

The Open Vote Network is a two-round self-tallying protocol that does not
require a trusted party. In the first round, the administrator generates a cyclic
group G of prime order q and a generator g. Then, each voter picks a random
value xi ∈ Zq as a secret key and publishes her voting keys as gxi along with

5

P(C;m, r) V(C)

a, s, t←$Zq

ca ← gahs

cb ← gamht

ca, cb

x←$Zq

f ← mx+ a

za ← rx+ s

zb ← r(x− f) + t

f, za, zb

Accept if and only if:

cxca = gfhza

cx−fcb = hza

Figure 2: Σ protocol to prove that a committed m is either 0 or 1

a Schnorr proof of knowledge of discrete log. In the second round, each voter
computes her blinding key as

Yi =

i−1∏
j=1

gxj/

n∏
j=i+1

gxj

By implicitly setting Yi = gyi , then it is clear that
∏

i Y
xi
i = g

∑
i xiyi = g0 = 1.

Furthermore, note that the discrete log of yi = logg(Yi) is unknown to anyone.
Therefore, one can utilize Yi and g as the generators for Pedersen commitments.
Hence, each voter broadcast commitments to their vote as ci = gviY xi

i along
with a zero-knowledge proof that ci is a commitment to either vi = 1 or vi = 0.
As Pedersen commitment is additively homomorphic, then

∏
i

ci =
∏
i

gxiyigvi = g
∑

i xiyi+vi = g
∑

i vi

Finally, the tally result
∑

i vi can be easily obtained by performing an exhaustive
search on the discrete log which is bounded by the number of voters.

6

4 Protocol Design and Implementation

In this section, we present the design of our proposed protocol and explain the
various details regarding its implementation.

4.1 Protocol Overview

To bring scalability and efficiency to the deployment of Open Vote Network on
Ethereum, we have to solve the computational and storage problems that we
identified in [10]. First, we delegate the votes tallying process to an off-chain [6]
untrusted administrator in a verifiable and efficient way. The proof verification
of the delegated tally computation is logarithmic in the number of voters and
involves a single elliptic curve point addition. Secondly, to significantly reduce
the storage requirements of the smart contract deployment, we accumulate the
list of eligible voters in a Merkle tree and store its root, which corresponds to a
256-bit hash value.

Our voting protocol is divided into six chronologically ordered phases. Start-
ing with the deployment phase, the administrator Alice constructs a Merkle tree
of all eligible voters MTE and generates a set of public parameters. Then, she
deploys the smart contract and initializes it with the rootE = root(MTE) and
a set of public parameters. Afterward, in the registration phase, all voters have
to register their voting keys within its time window. For instance, suppose that
Bob, who is one of the eligible voters, wants to cast his vote. Bob generates a
voting key gx along with Schnorr proof of discrete log knowledge πx. Then, he
submits gx, πx, in addition to a Merkle proof of membership πBob. Next, in the
vote casting phase, the voters cast Pedersen commitments of their votes to the
smart contract. Hence, Bob computes a commitment c = gvY x and generates a
proof πv that the committed vote v is either 0 or 1.

In the votes tallying phase, Alice obtains the committed votes stored on the
smart contract, tallies them, and brute-forces the discrete log

∑
i vi, which is

bounded by the number of registered voters. We observe that the tally compu-
tation can be represented as a program that loops over the committed votes
and accumulates their multiplications at each iteration. As a result, Alice can
efficiently encode her the program execution trace by building a Merkle tree
MTC over the intermediate accumulated multiplication result of each iteration.
Subsequently, she publishes MTC , for example, on the Interplanetary file system
(IPFS) for public verifiability. Finally, she submits the rootC = root(MTC) in
addition to

∑
i vi to the smart contract.

Once MTC is published, any voter or regulatory body can verify the tally
computation trace done by Alice to determine whether the result has been com-
puted correctly. One needs to count for scenarios where Alice could maliciously
alter the inputs in one of the trace steps to affect the final tally result. Conse-
quently, Bob, as an honest voter, can verify her computation trace and dispute
her on the first invalid step i he finds. In other words, Bob does not have to
verify the whole computation trace, instead, he simply disputes the first erro-
neous step. When the smart contract transits to the dispute phase, Bob submits

7

Merkle proofs for the inputs at step i encoded by Alice in MTC . After verify-
ing the Merkle proofs, the smart contract will recompute the step i using the
committed votes in its storage to detect whether Alice acted maliciously. If so,
the smart contract will penalize her and reward Bob. On the other hand, if Bob
tries to dispute a correct operation, the smart contract will simply reject Bob’s
transaction. Therefore, it is irrational for Bob to pay gas in that case. Eventually,
in the reclaim phase, honest parties can request the release of their collateral
deposits. In what follows, we explain the different phases of our protocol in more
detail.

4.2 Phase 1: Smart Contract Deployment

In the beginning, Alice sets the interval for the phases: voters registration, vote
casting, tally computation, dispute, and fund reclaim. She also establishes a list
of all eligible voters. Then, she constructs a Merkle tree MTE of the voters in this
list. Then, Alice publishes it so that each voter can construct her own Merkle
proof of membership. Upon deploying the contract, Alice sends the interval of
each phase and the rootE = Root(MTE) to the contract rather than storing the
full list in the smart contract permanent storage.

Initialize: upon receiving (rootE , T1, T2, T3, T4, T5) from administrator A:
Assert value = F
Store rootE , T1, T2, T3, T4, T5

Init voters := {} , votes := {}, keys := {} index := 1

Figure 3: Pseudocode for deployment of the smart contract.

As illustrated in Fig. 3, the voting administrator deploys the voting contract
on Ethereum with the following set of parameters:

1. rootE : Root of the Merkle tree of the eligible voters.
2. T1, T2, T3, T4, T5: The block heights which define the end of the phases: reg-

istration, vote casting, tally computation, dispute, and reclaim, respectively.
3. F : A collateral deposit that is paid by Alice and the voters. This deposit is

used to penalize malicious behavior if any.

4.3 Phase 2: Voters Registration

This phase starts immediately after the contract deployment where interested
voters can participate by registering their voting keys. For instance, Bob as one
of the eligible voters generates a voting key gx along with Schnorr proof of DL πx.
Then, he submits a transaction containing gx, πx, a Merkle proof of membership

8

RegisterVoter:upon receiving (gx, πx, πB) from voter B:
Assert value = F
Assert T < T1

Assert verifyMerkleProof(πB , B, rootE)
Assert verifyDL(gx, πx)

Set keys[index] := gx

Set voters[index] := B
Set index := index+ 1

Figure 4: Pseudocode for register voter function

πBob as parameters, and pays a collateral deposit F as shown in Fig. 4. The
smart contract ensures that registration transactions are accepted only within
the allowed interval and verifies both the Schnorr proof of DL knowledge and the
Merkle proof of membership. For verifying membership of voters in the MTE ,
we use the VerifyMerkleProof algorithm implemented in [7]. Furthermore, recall
that in the Open Vote Network, voters have fixed positions which allow them to
properly compute Yi. In our protocol, we impose that each voter takes the order
at which his voting keys were stored in the smart contract (i.e., an index in the
array of voting keys).

4.4 Phase 3: Vote Casting

After all the voting keys have been submitted, voters can generate Pedersen
commitments to their votes. More precisely, suppose Bob’s voting key is stored
at index i, then he computes:

Yi =

i−1∏
j=1

gxj/

n∏
j=i+1

gxj

Furthermore, since yi = logg(Yi) can only be known by the full collusion among
all voters, which is assumed not to be the case in the Open Vote Network proto-
col, then Bob can safely use g and Yi as the generators for Pedersen commitment.
Hence, Bob commits to his vote v as c = gvY xi

i where the blinding value is his
secret voting key xi. Next, Bob submits a transaction containing c, Yi, and a
zero-knowledge proof πv that the committed v is either 0 or 1. The smart con-
tract will store the commitment c if the transaction is sent within the right time
window and the proof πv is verified successfully as shown in Fig. 5.

4.5 Phase 4: Tally Computation

This is the phase in our implementation which aims to bring scalability to the
Open Vote Network protocol. Basically, we show how to significantly reduce

9

CastVote: upon receiving (c, Y, πv) from voter B

Assert T1 < T < T2

Assert verifyZeroOrOne(c, Y, πv)

Set index := IndexOf(B, voters)
Set votes[index] := c

Figure 5: Pseudocode for cast vote function

the transaction fees by delegating the tally computation to an untrusted ad-
ministrator, Alice, in a publically verifiable manner. Suppose that the vector
c = (c1, ..., cn) contains the n committed votes sent to the smart contract. We
observe that the tally computation

∏
i ci =

∏
i g

viY xi
i can be computed by a pro-

gram that iterates over the vector c and accumulates intermediate multiplication
result as shown in Fig. 6.

de f Tal lyVotes (c : array []) :
t = 1
f o r i=1 to n :

t = Mul(c [i] , t)
r e turn t

Figure 6: Program tally function

The program execution trace is represented as a 4× n array where the first
column denotes the step number, and the remaining columns denote the two
input operands and the accumulated multiplication result as shown in Table 1.

Table 1: Computation tally execution trace

Step i ci ti−1 ti

1 c1 t0 = 1 t1 = c1
2 c2 t1 t2 = c2 · t1
.
n cn tn−1 tn = cn · tn−1

10

Afterwards, Alice constructs a Merkle tree MTC to encode the result ti at
each row. Specifically, the data for each leaf node is formatted as (i||ti) where
|| denotes concatenation. Furthermore, she brute-forces logg(tn) =

∑
i vi which

corresponds to the sum of the committed votes. Finally, she creates a transaction

SetTally: upon receiving (res, rootC) from administrator A:
Assert sender = A

Assert T2 < T < T3

Store res, rootC
Set tallySubmitted := true

Figure 7: Pseudocode for set tally function

to the smart contract with the parameters rootC = root(MTC) and the tally
result res =

∑
i vi as shown in Fig. 7. The smart contract stores these parameters

provided that the transaction within the interval of this phase.

4.6 Phase 5: Tally Dispute

After publishing the Merkle tree MTC on IPFS, any voter or regulatory body
can verify the correctness of the intermediate accumulated multiplication result
of each trace step. Alice could attempt to maliciously affect the tally result by
using a different vote commitment c′i which is different from the ci stored on the
smart contract. For example, suppose Alice incorrectly set ti = c′i · ti−1. Note
that, she could make multiple errors, however, it is sufficient to dispute the first
one. Bob disputes her by sending i, ti, ti−1 along with Merkle proofs πi, πi−1 to
the smart contract as shown in Fig. 8.

There are three different cases for how the smart contract handles the dispute
based on the parameter i:

1. When the disputed step is the first one (i.e., i = 1), then the smart contract
will only verify whether t1 6= c1 since we assume t0 = 1.

2. For other steps where i ∈ [2, n], the smart contract will verify the Merkle
proofs πi−1 and checks if ti 6= ci · ti−1.

3. Finally, the last step is related to the case where Alice has encoded the correct
computation trace. However, she submitted an incorrect discrete log res in
the previous phase. Thus, the smart contract will test whether gres 6= tn.

If any of these cases is verified successfully, the smart contract will reward Bob
and set the flag disputed to prevent Alice from reclaiming her collateral deposit
in the reclaim phase.

11

Dispute: upon receiving (i, ti, ti−1, πi, πi−1) from voter B:
Assert T3 < T < T4

Assert disputed 6= true
Assert VerifyMerkleProof(πi, (i||ti), rootC)
Set ci := votes[i]
Set n := votes.length
IF (i > 1 and i ≤ n)

Assert VerifyMerkleProof(πi, (i− 1||ti−1), rootC)
IF ti 6= ci · ti−1

Set disputed := true
IF (i = 1 and ti 6= ci)

Set disputed := true
IF (i = n and gres 6= ti)

Set disputed := true
IF disputed := true

B.transfer(F)

Figure 8: Pseudocode for the dispute function

4.7 Phase 6: Reclaim

After the dispute phase, each honest participant can submit a transaction to
reclaim her collateral deposit. The smart contract checks whether the sender
has not been refunded before. Then, it checks whether the sender has behaved
honestly in following the specified protocol steps. More precisely, if the sender
is one of the voters, then the smart contract checks if that voter has already
submitted the vote commitments. On the other hand, if the sender is the ad-
ministrator, then it checks whether the flag disputed is not set. On success, the
smart contract sends the deposit back to the sender as shown in Fig. 9.

Reclaim: upon receiving() from a sender:
Assert T4 < T < T5

Assert refund[sender] = false
Assert (sender ∈ voters and votes[sender] 6= null) or

(sender = A and tallySubmitted and disputed = false)
Set refund[sender] := true
sender.transfer(F)

Figure 9: Pseudocode for reclaiming collateral deposit

12

4.8 Gas Cost Analysis

In order to assess our protocol, we developed a prototype and tested it with
a local private Ethereum blockchain. The prototype is available as open-source
on the Github repository1. On the day of carrying out our experiments, during
November 2019, the ether exchange rate to USD is 1 ether ≈ 140$ and the gas
price is approximately 10 Gwei = 10 × 10−9 ether. The genesis initialization file
of the local blockchain contains {”byzantiumBlock” : 0} attribute in order to
support our elliptic curve point addition and scalar multiplication over alt bn128
curve [14]. The test scenario is implemented with 40 local Ethereum accounts
to compare our results with the implementation of McCorry et al. [10]. In Table
2, we show the gas used per voter/administrator for every function in the smart
contract and the corresponding gas cost in USD.

Table 2: The gas cost for functions in the voting contract

Function Gas units Gas cost (USD)

CryptoCon 883,113 1.24
VoteCon 1,858,544 2.06

RegisterVoter 206,433 0.28
CastVote 346,655 0.49
SetTallyResult 64,723 0.09
Dispute 98,310 0.14
Reclaim 50,104 0.07

It should be noted that, in our implementation, the total gas paid by the
administrator is constant. In particular, the administrator pays the gas for the
deployment of two smart contracts: CryptoCon and VoteCon, in addition to a
transaction setTallyResult. Neither any of these transactions involve opera-
tions that depend on the number of voters. On the other hand, for the voters,
the transaction cost of RegisterVote scales logarithmically with the number of
voters since it verifies the Merkle proof of membership. Similarly, the transac-
tion Dispute scales logarithmically as it verifies two Merkle proofs in addition
to carrying two elliptic curve operations (one point addition and one scalar mul-
tiplication) at maximum. All the other transactions have a constant cost.

Although the Open Vote Network protocol is suitable for a small number
of voters, we carried out some experiments to determine the highest number of
voters that can be supported in our prototype without exceeding the block gas
limit. Recall that all transactions have constant gas cost except RegisterVoter
and Dispute which scales logarithmically with the number of voters due to verifi-
cation of Merkle proofs. Furthermore, the primitive unit of storage on Ethereum
is uint256, hence theoretically the largest number of voters supported by the
smart contract is 2256. Therefore, in the RegisterVoter transaction, the voter

1 https://github.com/HSG88/eVoting

13

sends a Merkle proof of membership which consists of 256 hash values (i.e.,
256×32 bytes). Interestingly, we found the total gas cost in this theoretical case
to be 667,254 ≈ 6.6% of the current block gas limit. Furthermore, we followed
the same approach to find the gas cost for the Dispute transaction. In that case,
the smart contract verifies two Merkle proofs and carries out elliptic curve single
scalar multiplication and point addition at a total estimated gas cost 1,426,593
≈ 14.3% of the current block gas limit. Since these two numbers serve as upper
bounds for the gas cost in any practical scenario, the results of this experiment
clearly confirm that the operations within the smart contract in our prototype
does not limit the number of supported voters in practice.

In McCorry et al. implementation, all computations are performed on the
smart contract. Thus, while there is no dispute phase, the number of voters it
can support is significantly limited. For the administrator, the gas used comes
from VoteCon, CryptoCon, Eligible, Begin Signup, Begin Election and Tally
transactions [10] which is equal to about 12 million gas units. For the voter,
the gas cost comes from Register, Commit and Vote transactions which sum to
3 million gas units. Table 3 compares the total gas cost in our implementation
versus theirs for the same number of the 40 voters.

Table 3: Gas cost comparison between the two implementations

Sender Our Implementation McCorry et al. [10]

Voter 701502 3323642
Admin 2856484 12436190

5 Conclusion

In this paper, we presented a protocol that efficiently reduces the computation
and storage cost of the Open Vote Network without sacrificing its inherent secu-
rity properties. More precisely, we utilize a Merkle tree to accumulate the list of
eligible voters. Additionally, we delegate the tally computation to an untrusted
administrator in a verifiable manner even in the presence of a malicious majority.
In fact, we require only a single participant, which could be a regulatory body
or one of the voters, to be honest in order to maintain the protocol’s security.
Also, we developed a prototype to assess our protocol and carried out multi-
ple experiments. The results of our experiments confirm that our prototype is
efficient and can support a very large number of voters without exceeding the
current block gas limit.

14

References

1. Ethereum gaslimit history (2018). https://etherscan.io/chart/gaslimit. [On-
line; accessed 24-Novemebr-2019].

2. Top 100 Cryptocurrencies by Market Capitalization. https://coinmarketcap.

com. [Online; accessed 22-Novemebr-2019].
3. B. Adida. Helios: Web-based open-audit voting. In USENIX security symposium,

volume 17, pages 335–348, 2008.
4. D. Chaum. Blind signatures for untraceable payments. In Advances in cryptology,

pages 199–203. Springer, 1983.
5. D. Chaum. Untraceable electronic mail, return addresses and digital pseudonyms.

In Secure electronic voting, pages 211–219. Springer, 2003.
6. J. Eberhardt and S. Tai. On or off the blockchain? insights on off-chaining computa-

tion and data. In European Conference on Service-Oriented and Cloud Computing,
pages 3–15. Springer, 2017.

7. H. S. Galal, M. ElSheikh, and A. M. Youssef. An efficient micropayment channel
on ethereum. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 211–218. Springer, 2019.

8. J. Groth and M. Kohlweiss. One-out-of-many proofs: Or how to leak a secret and
spend a coin. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 253–280. Springer, 2015.

9. A. Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy. In
International Workshop on Public Key Cryptography, pages 141–158. Springer,
2002.

10. P. McCorry, S. F. Shahandashti, and F. Hao. A smart contract for boardroom
voting with maximum voter privacy. In International Conference on Financial
Cryptography and Data Security, pages 357–375. Springer, 2017.

11. R. C. Merkle. Protocols for public key cryptosystems. In 1980 IEEE Symposium
on Security and Privacy, pages 122–122. IEEE, 1980.

12. T. Pedersen and B. Petersen. Explaining gradually increasing resource commitment
to a foreign market. International business review, 7(5):483–501, 1998.

13. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of cryptology,
4(3):161–174, 1991.

14. E. P. Team. Ethereum improvement proposals, 2017. https://github.com/

ethereum/EIPs.

15

https://etherscan.io/chart/gaslimit
https://coinmarketcap.com
https://coinmarketcap.com
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs

	Scalable Open-Vote Network on Ethereum

