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ABSTRACT
Many studies focus on the blockchain privacy protection. Unfortu-
nately, the privacy protection brings regulatory issues (e.g., coun-
teringmoney-laundering). Tracing users’ identities is a critical step
in addressing blockchain regulatory issues. In this paper, we pro-
pose SkyEye, a traceable scheme for blockchain. SkyEye can be ap-
plied to the blockchain applications that satisfy the following con-
ditions: (I) The users have public and private information, where
the public information is generated by the private information;
(II) The users’ public information is disclosed in the blockchain
data. SkyEye enables the regulator to trace users’ identities. The
design of SkyEye leverages some cryptographic primitives, includ-
ing chameleon hash and zero-knowledge succinct non-interactive
arguments of knowledge (zk-SNARKs). Moreover, we demonstrate
the security of SkyEye under specific cryptographic assumptions.
Finally, we implement two prototypes of SkyEye, and evaluate the
running time and related data storage requirements by performing
the aforementioned prototypes.
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1 INTRODUCTION
The blockchain was first introduced in Bitcoin[35], and quickly
became the supporting technology of decentralized cryptocurren-
cies such as PPcoin[25] and Litecoin[1]. The blockchain integrates
multiple technologies (e.g., cryptography and peer-to-peer networ-
king) and includes a variety of features: distributed, decentralized,
anonymity, transparency, and so on. Today, the blockchain is not
only applied in decentralized cryptocurrencies, but also has broad
applications in other fields, including defense, finance, and smart
contract.

The blockchain can be considered a distributed database that
only appends data (e.g., transactions). The data is stored in the
block that contains the block header and block body. Every block
header includes the hash of the previous block, forming a chain.
The strategy of appending a block to the blockchain uses a consen-
sus mechanism such as proof of work (PoW)[35], proof of stake
(PoS) [5, 14, 24], or practical byzantine fault tolerance (PBFT)[10].

∗The corresponding author.

In many blockchain applications, every user generally has pub-
lic/private information (e.g., the public key address and the signa-
ture private key for each user in Bitcoin[35], more details about
the public/private information are described in Section 2.3).

Many studies focus on the blockchain privacy protection [7, 38].
Unfortunately, the privacy protection brings regulatory issues. On
one hand, if a user’s private information is lost or stolen, the user
loses control of the data corresponding to the private information
forever. For example, if the Bitcoin’s user loses the signature pri-
vate keys in his wallet, there is no way to recover the coins in
this wallet. In other words, the user loses the coins controlled by
these signature private keys forever. On the other hand, strong pri-
vacy protection in the blockchain facilitates many criminal activi-
ties (e.g., ransomware[2], money laundering). CipherTrace’s sec-
ond quarter 2019 cryptocurrency anti-money laundering report
shows that the total amount of funds that cybercriminals directly
steal, scam, andmisappropriate from users and trading platforms is
approximately $4.4 billion in aggregate for 2019. These regulatory
issues not only present a serious threat to the interests of users,
but also have seriously hindered the development and application
of the blockchain.

We stress that tracing users’ identities is a critical step in ad-
dressing blockchain regulatory issues. When each user’s identity
in the blockchain data is determined, the regulator can conduct
some regulatory operations (such as Big Data analysis) to decide
who should be punished orwho should own the lost data. Although
there has been progress in designing traceable mechanisms, such
as zkLedger[36] and several others[4, 15, 20, 23], these approaches
are designed for specific application environment and do not seem
to have been extended to other applications; see Section 9 for more
details.
Our contributions. In this paper, we present a traceable scheme
that can be applied to a class of blockchain applications. The main
contributions of this paper are as follows.

First, we introduce the notion of a traceable scheme for blockcha-
in and formalize the security properties to be satisfied, namely iden-
tity proof indistinguishability and identity proof unforgeability.

Second, we propose SkyEye, a traceable scheme for blockchain.
SkyEye can be applied to the blockchain applications that satisfy
the following conditions: (I) The users have public and private in-
formation, where the public information is generated by the pri-
vate information; (II) The users’ public information is disclosed



in the blockchain data. These blockchain applications are called
SkyEye-friendly blockchain applications; see Section 2.3 for
details. SkyEye requires the user to register only once, and en-
ables the regulator to trace users’ identities. In our design strategy,
we add identity proofs, associated with the users’ private informa-
tion, to the blockchain data. SkyEye is designed by using some
cryptographic primitives (including chameleon hash[27] and zk-
SNARKs[21]). In addition, we demonstrate the security of SkyEye
under specific cryptographic assumptions.

Finally, we implement two prototypes of SkyEye: 𝑆𝑘𝑦𝐸𝑦𝑒𝐻 and
𝑆𝑘𝑦𝐸𝑦𝑒𝑆 . These correspond to the two primary ways of generat-
ing public and private information in the blockchain applications.
The first way is through a pseudorandom function, and the second
way is using elliptic curve scalar multiplication. We evaluate the
running time and related data storage requirements by performing
𝑆𝑘𝑦𝐸𝑦𝑒𝐻 and 𝑆𝑘𝑦𝐸𝑦𝑒𝑆 . Our evaluation results illustrate that using
an i7 processor, a 16 GB RAM desktop machine, and a Merkle tree
depth of 34, the time taken by a verifier to verify a user’s identity
proof is nearly 4.6 ms in the first way and less than 25 ms in the
second way.
Paper organization. The remainder of this paper is organized
as follows. Section 2 provides the background. Section 3 provides
key ideas in SkyEye design and an overview of SkyEye. Section
4 defines the algorithm and security of the traceable scheme for
blockchain. Section 5 details SkyEye. Section 6 describes our im-
plementation and the evaluation results. We present the potential
applications of SkyEye in Section 7. We discuss remaining issues
of SkyEye and future work in Section 8. We discuss related work
in Section 9 and summarize this paper in Section 10.

2 BACKGROUND
2.1 Cryptographic Preliminaries
The cryptographic building blocks in our construction include the
following: chameleon hash scheme, zk-SNARKs, and public key en-
cryption. Below, we informally describe these notions.
Chameleon hash scheme. Compared with the traditional hash
scheme, the chameleon hash scheme has a special property: the
userwho knows the trapdoor can easily find collision. A chameleon
hash scheme 𝐶ℎ𝑎𝑠ℎ = (G𝑐ℎ𝑎𝑠ℎ,K𝑐ℎ𝑎𝑠ℎ,H𝑐ℎ𝑎𝑠ℎ, CF 𝑐ℎ𝑎𝑠ℎ) is de-
scribed below:

• G𝑐ℎ𝑎𝑠ℎ (𝜆) → 𝑝𝑝𝑐ℎ𝑎𝑠ℎ . Given a security parameter 𝜆, G𝑐ℎ𝑎𝑠ℎ
returns the public parameters 𝑝𝑝𝑐ℎ𝑎𝑠ℎ .

• K𝑐ℎ𝑎𝑠ℎ (𝑝𝑝𝑐ℎ𝑎𝑠ℎ) → (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ). Given the public pa-
rameters 𝑝𝑝𝑐ℎ𝑎𝑠ℎ , K𝑐ℎ𝑎𝑠ℎ returns a pair of public/private keys
(𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ), where 𝑠𝑘𝑐ℎ𝑎𝑠ℎ is also known as the trapdoor.

• H𝑐ℎ𝑎𝑠ℎ (𝑝𝑘𝑐ℎ𝑎𝑠ℎ,𝑚, 𝑟 ) → 𝐶𝐻 . Given the public key 𝑝𝑘𝑐ℎ𝑎𝑠ℎ , a
message𝑚, and a random number 𝑟 , H𝑐ℎ𝑎𝑠ℎ returns a chameleon
hash value 𝐶𝐻 about𝑚.

• CF 𝑐ℎ𝑎𝑠ℎ (𝑠𝑘𝑐ℎ𝑎𝑠ℎ,𝑚,𝑚′, 𝑟 ) → 𝑟 ′. Given the trapdoor 𝑠𝑘𝑐ℎ𝑎𝑠ℎ ,
two messages𝑚,𝑚′, and the random number 𝑟 , CF 𝑐ℎ𝑎𝑠ℎ returns
𝑟 ′ such that H𝑐ℎ𝑎𝑠ℎ (𝑝𝑘𝑐ℎ𝑎𝑠ℎ,𝑚, 𝑟 ) = H𝑐ℎ𝑎𝑠ℎ (𝑝𝑘𝑐ℎ𝑎𝑠ℎ,𝑚′, 𝑟 ′).

A chameleon hash scheme satisfies three secure properties: (i)
collision resistance; (ii) trapdoor collision; and (iii) semantic security.
More details are available in [3, 27].

There is a relationship between the public key 𝑝𝑘𝑐ℎ𝑎𝑠ℎ and the
trapdoor 𝑠𝑘𝑐ℎ𝑎𝑠ℎ , which we refer to as the generation relationship.

As in [27], the public parameters 𝑝𝑝𝑐ℎ𝑎𝑠ℎ = (𝑝, 𝑞, 𝑔), where 𝑝, 𝑞 are
prime numbers such that 𝑝 = 𝑘𝑞 + 1, and the order of 𝑔 is 𝑞 in
Z∗
𝑝 . The public key 𝑝𝑘𝑐ℎ𝑎𝑠ℎ = ℎ is computed as follows: ℎ = 𝑔𝑥

mod p, where 𝑥 ∈ Z∗
𝑞 is the trapdoor. Let equation 𝑝𝑘𝑐ℎ𝑎𝑠ℎ =

𝑐ℎ𝑎𝑠ℎ_𝑔𝑒𝑛(𝑠𝑘𝑐ℎ𝑎𝑠ℎ) describe this relation, where 𝑐ℎ𝑎𝑠ℎ_𝑔𝑒𝑛(·) de-
notes the generation algorithm between 𝑝𝑘𝑐ℎ𝑎𝑠ℎ and 𝑠𝑘𝑐ℎ𝑎𝑠ℎ .
Zero-knowledge succinct non-interactive arguments of kno-
wledge. Let R𝐴𝐶 = {(𝑥,𝑤) ∈ F𝑛 × Fℎ |𝐴𝐶 (𝑥,𝑤) = 0𝑙 } be an NP
relation, where F denotes a finite field, and 𝐴𝐶 : F𝑛 × Fℎ → F𝑙

denotes an F-arithmetic circuit. The language for R𝐴𝐶 is L𝐴𝐶 =
{𝑥 ∈ F𝑛 |∃𝑤 ∈ Fℎ 𝑠 .𝑡 . 𝐴𝐶 (𝑥,𝑤) = 0𝑙 }. A zk-SNARK scheme
𝑁𝐼𝑍𝐾 = (K𝑛𝑖𝑧𝑘 ,P𝑛𝑖𝑧𝑘 ,V𝑛𝑖𝑧𝑘 ) corresponds to the language L𝐴𝐶 ,
which is described below:

• K𝑛𝑖𝑧𝑘 (𝜆,𝐴𝐶) → (𝑝𝑘, 𝑣𝑘). Given a security parameter 𝜆 and
an F-arithmetic circuit 𝐴𝐶 , K𝑛𝑖𝑧𝑘 returns a proving/verification
key pair (𝑝𝑘, 𝑣𝑘).

• P𝑛𝑖𝑧𝑘 (𝑝𝑘, 𝑥,𝑤) → 𝜋 . Given the proving key 𝑝𝑘 , a statement
𝑥 , and a witness𝑤 , P𝑛𝑖𝑧𝑘 returns a proof 𝜋 for a statement 𝑥 using
a witness𝑤 .

• V𝑛𝑖𝑧𝑘 (𝑣𝑘, 𝑥, 𝜋) → {0, 1}. Given the verification key 𝑣𝑘 , the
statement 𝑥 , and the proof 𝜋 , V𝑛𝑖𝑧𝑘 returns 1 if verification suc-
ceeds, or 0 if verification fails.

A zk-SNARK scheme satisfies five secure properties: (i) complete-
ness; (ii) soundness; (iii) succinctness; (iv) proof of knowledge; and (v)
perfectly zero knowledge. More details are available in [7, 9, 21].
Public key encryption. A public key encryption scheme 𝐸𝑛𝑐 =
(G𝑒𝑛𝑐 ,K𝑒𝑛𝑐 , E𝑒𝑛𝑐 ,D𝑒𝑛𝑐 ) is described below:

• G𝑒𝑛𝑐 (𝜆) → 𝑝𝑝𝑒𝑛𝑐 . Given a security parameter 𝜆, G𝑒𝑛𝑐 returns
the public parameters 𝑝𝑝𝑒𝑛𝑐 .

• K𝑒𝑛𝑐 (𝑝𝑝𝑒𝑛𝑐 ) → (𝑝𝑘𝑒𝑛𝑐 , 𝑠𝑘𝑒𝑛𝑐 ). Given the public parameters
𝑝𝑝𝑒𝑛𝑐 , K𝑒𝑛𝑐 returns a pair of public/private keys (𝑝𝑘𝑒𝑛𝑐 , 𝑠𝑘𝑒𝑛𝑐 ).

• E𝑒𝑛𝑐 (𝑝𝑘𝑒𝑛𝑐 ,𝑚) → 𝑐 . Given the public key 𝑝𝑘𝑒𝑛𝑐 and a mes-
sage𝑚, E𝑒𝑛𝑐 returns a ciphertext c.

• D𝑒𝑛𝑐 (𝑠𝑘𝑒𝑛𝑐 , 𝑐) → 𝑚/⊥. Given the private key 𝑠𝑘𝑒𝑛𝑐 and the
ciphertext c,D𝑒𝑛𝑐 returns a message𝑚, or returns ⊥ if decryption
fails.

The public encryption scheme 𝐸𝑛𝑐 satisfies a security property:
ciphertext indistinguishability under adaptive chosen ciphertext
attack (IND-CCA2 security). More details are provided in [11].

2.2 Notation
We use 𝑢 to denote a user, 𝑖𝑑𝑢 to denote the identity of 𝑢, and
𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 to denote 𝑢’s identity proof. Let (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑠𝑘𝑐ℎ𝑎𝑠ℎ𝑢 ) de-
note 𝑢’s chameleon hash public/private key pair and 𝐶𝐻𝑖𝑑𝑢 de-
note the chameleon hash value of identity 𝑖𝑑𝑢 . We denote 𝑢’s pub-
lic/private information as (𝑝𝑢𝑏𝑢 , 𝑝𝑟𝑖𝑣𝑢 ).

We use 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 | |𝐶𝐻𝑖𝑑𝑢 to denote the concatenation of 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢
and 𝐶𝐻𝑖𝑑𝑢 , where | | denotes the concatenate symbol. Let 𝑀𝑇 =
(𝑟𝑡 ;𝑝𝑘𝑐ℎ𝑎𝑠ℎ1

| |𝐶𝐻𝑖𝑑1
, ..., 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑛 | |𝐶𝐻𝑖𝑑𝑛 ) denote a Merkle tree, w-

here 𝑟𝑡 denotes the root of the Merkle Tree and (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑖 | |𝐶𝐻𝑖𝑑𝑖 )
denotes one leaf node in the Merkle tree. Let (𝑝𝑘𝑟𝑒𝑔, 𝑠𝑘𝑟𝑒𝑔) denote
the encryption public/private key pair of the regulator. Moreover,
we use 𝐵𝑠𝐵𝑠𝐵𝑠 to denote SkyEye-friendly blockchain applications and
𝐵𝑠𝑒𝐵𝑠𝑒𝐵𝑠𝑒 to denote 𝐵𝑠𝐵𝑠𝐵𝑠 using SkyEye.
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Figure 1: Overview of 𝐵𝑠𝐵𝑠𝐵𝑠 .

2.3 SkyEye-friendly blockchain applications
Here, we describe the blockchain data in𝐵𝑠𝐵𝑠𝐵𝑠 and an overview of𝐵𝑠𝐵𝑠𝐵𝑠 .

2.3.1 The Blockchain Data in 𝐵𝑠𝐵𝑠𝐵𝑠 . 𝐵𝑠𝐵𝑠𝐵𝑠 satisfies two conditions: (I)
The users have public and private information, where the public
information is generated by the private information; (II) The users’
public information is disclosed in the blockchain data.

We use equation 𝑝𝑢𝑏 = 𝑔𝑒𝑛(𝑝𝑟𝑖𝑣) to describe the generation
relation in the condition (I), where 𝑝𝑢𝑏 denotes the public infor-
mation, 𝑝𝑟𝑖𝑣 denotes the private information, and 𝑔𝑒𝑛(·) denotes
the generation algorithm between 𝑝𝑢𝑏 and 𝑝𝑟𝑖𝑣 , which has one-
wayness, i.e., it is easy to compute 𝑝𝑢𝑏 using the private informa-
tion 𝑝𝑟𝑖𝑣 but is hard to invert. In many blockchain applications,
every user generally has private information that corresponds to
public information. For example, the public key address and the sig-
nature private key in Bitcoin[35] are the user’s public/private infor-
mation. In Zerocash[7], (𝑠𝑛, (𝑎𝑠𝑘 , 𝜌)) is the user’s public/private in-
formation, where 𝑠𝑛 is the serial number, 𝑎𝑠𝑘 is the address private
key, and 𝜌 is the random number used to generate the serial num-
ber.The public information is generated by the private information
via a cryptographic method, such as the pseudorandom function,
or elliptic curve scalar multiplication.

According to the condition (II), the blockchain data in𝐵𝑠𝐵𝑠𝐵𝑠 can be
divided into two parts: one part is the users’ public information,
such as the input/output addresses in Bitcoin[35], and the other
part is the data contents, such as the payment amount and the exe-
cutable contract code. Therefore, the blockchain data in 𝐵𝑠𝐵𝑠𝐵𝑠 can be
represented as the equation 𝑑𝑎𝑡𝑎𝐵𝑠

𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠 = [(𝑝𝑢𝑏𝑖 )𝑖∈{1,...,𝑛},𝐶]𝑐𝑟𝑦𝑡𝑜𝑜𝑙 ,
where (𝑝𝑢𝑏𝑖 )𝑖∈{1,...,𝑛} denotes the set of the users’ public infor-
mation, 𝑛 is the number of the users’ public information in the
blockchain data such as the number of pubic key addresses in a
Bitcoin transaction, 𝐶 denotes the data contents, and 𝑐𝑟𝑦𝑡𝑜𝑜𝑙 de-
notes the cryptographic tools (e.g., digital signature) that guaran-
tee blockchain features such as tamper-resistance and privacy pro-
tection.

For example, Bitcoin[35], Ethereum[41], and RSCoin[13] are the
applications that belong to𝐵𝑠𝐵𝑠𝐵𝑠 . In these blockchain applications, the
public key address and the signature private key are the user’s pub-
lic/private information, where the public key address is generated
by the signature private key. Moreover, the user’s public key ad-
dress is disclosed in the blockchain data. We briefly describe how
to use SkyEye in these three applications in Section 7.
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Figure 2: Design idea.

2.3.2 An overview of 𝐵𝑠𝐵𝑠𝐵𝑠 . As shown in Figure 1, in (1) and (2), the
user 𝑢 generates (𝑝𝑢𝑏𝑢 , 𝑝𝑟𝑖𝑣𝑢 ), and publishes 𝑝𝑢𝑏𝑢 to the node
network. In (3), for creating data, the user 𝑢 obtains others’ pub-
lic information (𝑝𝑢𝑏𝑖 )𝑖∈{1,...,𝑛−1} from the node network. In (4),
the user 𝑢 creates 𝑑𝑎𝑡𝑎𝐵𝑠

𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠 = [(𝑝𝑢𝑏𝑖 )𝑖∈{1,...𝑛−1,𝑛},𝐶]𝑐𝑟𝑦𝑡𝑜𝑜𝑙 , where
𝑝𝑢𝑏𝑛 denotes the public information 𝑝𝑢𝑏𝑢 , and publishes 𝑑𝑎𝑡𝑎𝐵𝑠

𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠

to the node network. In (5) and (6), a verifier receives𝑑𝑎𝑡𝑎𝐵𝑠
𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠 from

the node network and verifies data contents. If the verification is
successful, 𝑑𝑎𝑡𝑎𝐵𝑠

𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠 is valid and is added to the block generated by
the verifier. In (7), the block is published in the node network by
the verifier. In (8), according to a consensus mechanism, the nodes
in the network select a final block and add it to the blockchain.

3 KEY IDEAS AND SKYEYE OVERVIEW
In this section, we provide key ideas in SkyEye design and an over-
view of SkyEye.

3.1 Key Ideas
As shown in Figure 2, the design idea of SkyEye is to add identity
proofs to𝑑𝑎𝑡𝑎𝐵𝑠

𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠 . The blockchain data in 𝐵𝑠𝑒𝐵𝑠𝑒𝐵𝑠𝑒 can be represented as
the equation𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 = [(𝑝𝑢𝑏𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑖 )𝑖∈{1,...,𝑛},𝐶]𝑐𝑟𝑦𝑡𝑜𝑜𝑙 , where
𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑖 denotes the identity proof of the user whose identity is
𝑖𝑑𝑖 , and the other variables are the same as those in the equation
𝑑𝑎𝑡𝑎𝐵𝑠
𝑑𝑎𝑡𝑎𝐵𝑠𝑑𝑎𝑡𝑎𝐵𝑠 . (𝑝𝑢𝑏𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑖 ) can be viewed as the new public informa-
tion 𝑝𝑢𝑏𝑖 ′ of the user whose identity is 𝑖𝑑𝑖 .

The identity proof is the core of SkyEye. The two purposes of
the identity proof are to prove the user’s legitimacy and to achieve
tracing. Next, we briefly describe the identity proof according to
the above two purposes. More details are described in Section 5.

3.1.1 Proving the user’s legitimacy. We assume that the user 𝑢 has
generated (𝑝𝑢𝑏𝑢 , 𝑝𝑟𝑖𝑣𝑢 ), (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑠𝑘𝑐ℎ𝑎𝑠ℎ𝑢 ) and𝐶𝐻𝑖𝑑𝑢 = H𝑐ℎ𝑎𝑠ℎ
(𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑖𝑑𝑢 , 𝑟 ), where 𝑟 is the random number sampled by 𝑢.

Step 1: user registration. To prove the user’s legitimacy, there
must be something (similar to a certificate) that can indicate the
user’s legitimacy. In SkyEye, this is done through user registration.
Here, we briefly introduce user registration in SkyEye.More details
on user registration appear in Section 5.1.2.

As shown in Figure 3, the user 𝑢 sends registration information
(𝐶𝑖𝑛𝑓 𝑜 , 𝜋𝑖𝑛𝑓 𝑜 ) to the regulator, where 𝐶𝑖𝑛𝑓 𝑜 is the ciphertext that
is the encryption of the plaintext (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑖𝑑𝑢 ,𝐶𝐻𝑖𝑑𝑢 ) under the
public key 𝑝𝑘𝑟𝑒𝑔 and 𝜋𝑖𝑛𝑓 𝑜 is the zk-SNARK proof that is used
to prove: “I know (𝑠𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑟 ) which can generate 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 and
𝐶𝐻𝑖𝑑𝑢 ”.
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Figure 3: User registration.

If the verification of (𝐶𝑖𝑛𝑓 𝑜 , 𝜋𝑖𝑛𝑓 𝑜 ) is successful, the regulator
stores (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑖𝑑𝑢 ,𝐶𝐻𝑖𝑑𝑢 ), and adds 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 | |𝐶𝐻𝑖𝑑𝑢 to the Me-
rkle tree 𝑀𝑇 . The regulator publishes the Merkle tree 𝑀𝑇 at the
right time.The registration of𝑢 is successful only if𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 | |𝐶𝐻𝑖𝑑𝑢
appears in the Merkle tree𝑀𝑇 .

The Merkle tree 𝑀𝑇 can be regarded as a credential of proving
the user’s legitimacy. In other words, to prove the legitimacy of 𝑢,
the user 𝑢 must prove that 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 | |𝐶𝐻𝑖𝑑𝑢 appears in the Merkle
tree𝑀𝑇 . Therefore, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 generated by the user 𝑢 must be able
to prove the following.

“I know (𝑠𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑖𝑑𝑢 , 𝑟 ) that can generate 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 and 𝐶𝐻𝑖𝑑𝑢 ,
and 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 | |𝐶𝐻𝑖𝑑𝑢 appears as a leaf of the Merkle tree 𝑀𝑇 with
the root rt”.

Step 2: establishing the binding relationship between𝑝𝑢𝑏𝑢𝑝𝑢𝑏𝑢𝑝𝑢𝑏𝑢
and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 . Although 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 described above can prove the
legitimacy of 𝑢, an issue remains. It can be seen from Figure 4
that (𝑝𝑢𝑏𝑢 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 ) needs to be published in the node network.
The adversary who has registered with the regulator can generate
an identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑎𝑑𝑣 and publish (𝑝𝑢𝑏𝑢 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑎𝑑𝑣 ) to the
node work. At this time, 𝑝𝑢𝑏𝑢 corresponds to two different users’
identity proofs (i.e., 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑎𝑑𝑣 ). This presents a great
obstacle to trace. We need to establish a relation between 𝑝𝑢𝑏𝑢 and
𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 to ensure that only the user 𝑢 can generate the identity
proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 corresponding to 𝑝𝑢𝑏𝑢 .

The key idea behind establishing this relation is that we estab-
lish the binding relationship between 𝑝𝑟𝑖𝑣𝑢 and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 . Because
𝑝𝑢𝑏𝑢 is generated by 𝑝𝑟𝑖𝑣𝑢 , there is binding relationship between
𝑝𝑢𝑏𝑢 and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 .

We leverage the special property of chameleon hash scheme (i.e.,
the user who knows the trapdoor can easily find collision) to estab-
lish the binding relationship between 𝑝𝑟𝑖𝑣𝑢 and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 . Given
the private information 𝑝𝑟𝑖𝑣𝑢 , the user 𝑢 who knows 𝑠𝑘𝑐ℎ𝑎𝑠ℎ𝑢 can
easily find 𝑟 ′ such that 𝐶𝐻𝑖𝑑𝑢 = H𝑐ℎ𝑎𝑠ℎ (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑝𝑟𝑖𝑣𝑢 , 𝑟 ′). To
achieve the binding of 𝑝𝑟𝑖𝑣𝑢 and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 , we require the identity
proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 to prove the following.

•The public information 𝑝𝑢𝑏𝑢 is generated by the private infor-
mation 𝑝𝑟𝑖𝑣𝑢 .

• I know (𝑠𝑘𝑐ℎ𝑎𝑠ℎ𝑢 , 𝑝𝑟𝑖𝑣𝑢 , 𝑟 ′) that generates 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 and𝐶𝐻𝑖𝑑𝑢 .
• 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 | |𝐶𝐻𝑖𝑑𝑢 appears as a leaf of a Merkle tree with the

root rt.
This binding relationship between 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 and 𝑝𝑟𝑖𝑣𝑢 ensures

that only the user 𝑢 who knows the private information 𝑝𝑟𝑖𝑣𝑢 can
generate the identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 , and others cannot forge the
identity proof corresponding to 𝑝𝑢𝑏𝑢 .

u

node network

node network

Blockchain

u

upub

upriv

regulator

uid
proof

( , )
uidu proofpub

{1,..., -1}( , )
id i nii proofpub Î

verifier

verify identity

proofs

Bse
data block

valid

verify data

contents

final
block

*
1

*
2

*
3

*
4

Bse
data

Bse
data

Figure 4: Overview of 𝐵𝑠𝑒𝐵𝑠𝑒𝐵𝑠𝑒 . The red lines 1∗1∗1∗, 2∗2∗2∗, 3∗3∗3∗ and 4∗4∗4∗ rep-
resent the operations of the SkyEye scheme. The red line 1∗1∗1∗
denotes user registration. The red line 2∗2∗2∗ denotes generat-
ing identity proof.The red line 3∗3∗3∗ denotes verifying identity
proof. The red line 4∗4∗4∗ denotes tracing.

Moreover, the special property of chameleon hash schememakes
the user 𝑢 just register once, and then can generate identity proofs
without involving the regulator.

3.1.2 Achieving tracing. To achieve tracing, we add 𝐶𝑖𝑑𝑢 , which
is the ciphertext of 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 under the regulator public key 𝑝𝑘𝑟𝑒𝑔 ,
to 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 , and require 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 to prove that the plaintext corre-
sponding to the ciphertext𝐶𝑖𝑑𝑢 is 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 . Because the regulator
has the record (𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑖 , 𝑖𝑑𝑖 ,𝐶𝐻𝑖𝑑𝑖 )𝑖∈{1,...,𝑛} , the regulator can ob-
tain 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑢 through decrypting 𝐶𝑖𝑑𝑢 and determine the identity
𝑖𝑑𝑢 of the user 𝑢 based on the record.

Remark. There are many ways to verify the user’s identity in
reality, such as, face recognition, identity card, or short message
service (SMS) verification. Therefore, we assume there is an effi-
cient way of verifying the user’s real identity in the user registra-
tion of SkyEye.

3.2 SkyEye Overview
As can be seen from Figure 4, SkyEye’s application strategy in𝐵𝑠𝐵𝑠𝐵𝑠 is
that the user𝑢 generates the identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑢 corresponding
to the public information 𝑝𝑢𝑏𝑢 so that every verifier can verify the
legitimacy of 𝑢 and the regulator can trace 𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 .
From Figure 4, it can also be seen that the SkyEye schememainly

has the following operations between the regulator, users, and ver-
ifiers.

• User registration. The user generates registration information
and sends it to the regulator. The regulator is responsible for the
verification of registration information.

• Generating identity proof. The user who registers successfully
can generate the identity proof. There is a binding relationship be-
tween the identity proof and the private information.



• Verifying identity proof. Different from traditional verification
process in the blockchain, the verifier (e.g., the miner) verifies iden-
tity proofs in addition to verifying data contents. If the data con-
tents and identity proofs are simultaneously verified successfully,
the data will be added to the block generated by the verifier.

• Tracing. The regulator traces the users’ true identities in the
blockchain data.

4 DEFINITION OF A TRACEABLE SCHEME
4.1 Definition
A traceable scheme for blockchain is a tuple of polynomial-time al-
gorithms Π = (Setup,𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 ,𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 ,𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 ,𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 , Trace)
described below:

• Setup(𝜆) → pp. Given a security parameter 𝜆, Setup returns
public parameters pp.This algorithm is executed by a trusted party
and is done only once.The public parameters 𝑝𝑝 are published and
made available to all parties.

•𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 (pp,id)→ reginfo. Given the public parameters pp and
a user identity id, this algorithm returns the registration informa-
tion reginfo.

•𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 (pp,reginfo,𝑠𝑘𝑟𝑒𝑔)→ b. Given the public parameters 𝑝𝑝 ,
the registration information reginfo and the regulator private key
𝑠𝑘𝑟𝑒𝑔 , this algorithm returns a bit b. If verification succeeds, this
algorithm returns 1; otherwise, it returns 0.

• 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 (𝑝𝑝, 𝑝𝑢𝑏, 𝑝𝑟𝑖𝑣,𝐶𝐻𝑖𝑑 , 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟 , 𝑟𝑡, 𝑝𝑎𝑡ℎ𝑖𝑑 )
→ 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 . Given the public parameters 𝑝𝑝 , a public/private in-
formation (𝑝𝑢𝑏, 𝑝𝑟𝑖𝑣), the chameleon hash value 𝐶𝐻𝑖𝑑 of 𝑖𝑑 , the
chameleon hash public/private key (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ), the random
element 𝑟 for computing 𝐶𝐻𝑖𝑑 , the Merkle tree root 𝑟𝑡 , and the
path 𝑝𝑎𝑡ℎ𝑖𝑑 from 𝑝𝑘𝑐ℎ𝑎𝑠ℎ | |𝐶𝐻𝑖𝑑 to 𝑟𝑡 , 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 returns the user
identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 .

• 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 (pp,pub,𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ) → b. Given the public parameters
pp, the user public information 𝑝𝑢𝑏 and the user identity proof
𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ,𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 returns a bit b. If the verification of 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 suc-
ceeds, this algorithm returns 1; otherwise, it returns 0.

• Trace(𝑑𝑎𝑡𝑎𝐵𝑠𝑒
𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 , 𝑠𝑘𝑟𝑒𝑔)→ ID. Given the blockchain data𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒

and the regulator private key 𝑠𝑘𝑟𝑒𝑔 , Trace returns the identity set
𝐼𝐷 for 𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 .

4.2 Security
We assume that in 𝐵𝑠𝐵𝑠𝐵𝑠 relevant cryptographic techniques (e.g., dig-
ital signatures) have been used to ensure that the blockchain data
generated by the users cannot be tampered with. Therefore, the
identity proofs added to the blockchain data also cannot be tam-
pered with. We also assume that the regulator is trusted and has
an efficient way of verifying user identity. Therefore, the goals of
the adversary are to forge the user identity proof and to distinguish
two distinct user identity proofs.The security of a traceable scheme
must satisfy two properties: identity proof indistinguishability and
identity proof unforgeability.

Definition 4.1. A traceable scheme
∏

= (Setup,𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 ,𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 ,
𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 ,𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 , Trace) is secure if it satisfies identity proof in-
distinguishability and identity proof unforgeability.

Below, we briefly describe each property, and defer formal defi-
nition of each property to Appendix A.

• Identity proof indistinguishability.This property requires
that even if the adversary can adaptively induce honest parties
to perform operations of his choice, the identity proof reveals no
information except for some public information, such as public
addresses and serial numbers. In other words, even if the adver-
sary queries two different honest parties (one identity is 𝑖𝑑0, and
the other identity is 𝑖𝑑1), no polynomial-time adversary can dis-
tinguish between the identity proofs 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑0

and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑1
. The

meaning of this property is that if the blockchain is indistinguish-
able, adding the identity proofs to the blockchain data does not
affect the indistinguishability of the blockchain.

• Identity proof unforgeability. This property requires that
even if the adversary can adaptively induce honest parties to per-
form operations of his choice, no polynomial-time adversaries can
forge the identity proof of honest parties. This property ensures
that the adversary cannot forge the honest user’s identity proof to
create blockchain data for evading tracing.

5 CONSTRUCTION
5.1 SkyEye Construction
5.1.1 SkyEye Initialization. The public parameters 𝑝𝑝 created by
the Setup algorithm include the following information: the prov-
ing/verification key (𝑝𝑘𝑖𝑛𝑓 𝑜 , 𝑣𝑘𝑖𝑛𝑓 𝑜 ) used to generate and verify
the zk-SNARK proof 𝜋𝑖𝑛𝑓 𝑜 for the NP relation 𝑅𝑖𝑛𝑓 𝑜 (see Section
5.1.2 for details), the proving/verification key (𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 )
used to generate and verify the zk-SNARK proof 𝜋𝑝𝑟𝑜𝑜 𝑓 for the
NP relation 𝑅𝑝𝑟𝑜𝑜 𝑓 (see Section 5.1.3 for details), the regulator pub-
lic key 𝑝𝑘𝑟𝑒𝑔 for public key encryption, and the public parameters
𝑝𝑝𝑐ℎ𝑎𝑠ℎ of the chameleon hash scheme. Because the regulator is
trusted, 𝑆𝑒𝑡𝑢𝑝 algorithm is performed by the regulator. (See Setup
algorithm in Algorithm 1 for specific operations.)

5.1.2 User Registration. As shown in Algorithm 1, the𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 al-
gorithm is responsible for the generation of registration informa-
tion and the𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 algorithm is used to verify the user’s registra-
tion information.

In the𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 algorithm, a user generates the chameleon hash
public-private pair (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ) based on 𝑝𝑝𝑐ℎ𝑎𝑠ℎ , then com-
putes the chameleon hash value 𝐶𝐻𝑖𝑑 of identity 𝑖𝑑 , and stores
(𝑖𝑑, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟 ,𝐶𝐻𝑖𝑑 ). At this point, the user can produce
a zk-SNARK proof 𝜋𝑖𝑛𝑓 𝑜 for the following NP relation, which we
call 𝑅𝑖𝑛𝑓 𝑜 :
“Given 𝑥𝑖𝑛𝑓 𝑜 = (𝑖𝑑, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ,𝐶𝐻𝑖𝑑 ), I know 𝑤𝑖𝑛𝑓 𝑜 = (𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟 )
such that:
�The chameleon hash private key matches the chameleon hash

public key: 𝑝𝑘𝑐ℎ𝑎𝑠ℎ = 𝑐ℎ𝑎𝑠ℎ_𝑔𝑒𝑛(𝑠𝑘𝑐ℎ𝑎𝑠ℎ).
�The chameleon hash is computed correctly: 𝐶𝐻𝑖𝑑 = H𝑐ℎ𝑎𝑠ℎ (

𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑖𝑑, 𝑟 ).”
The𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 algorithm outputs registration information reginfo,

which consists of the ciphertext𝐶𝑖𝑛𝑓 𝑜 and zk-SNARK proof 𝜋𝑖𝑛𝑓 𝑜 .
𝐶𝑖𝑛𝑓 𝑜 is the ciphertext of 𝑥𝑖𝑛𝑓 𝑜 encrypted by 𝑝𝑘𝑟𝑒𝑔 .

The verification operations in the𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 algorithm include ver-
ifying the identity 𝑖𝑑 and verifying the zk-SNARK proof 𝜋𝑖𝑛𝑓 𝑜 . If
the above two operations are verified successfully, the regulator
stores (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑖𝑑,𝐶𝐻𝑖𝑑 ), and then publishes 𝑝𝑘𝑐ℎ𝑎𝑠ℎ | |𝐶𝐻𝑖𝑑 stored



Algorithm 1 SkyEye Construction

Setup
Input: security parameter 𝜆;
Output: public parameters 𝑝𝑝 ;
1: construct arithmetic circuit 𝐴𝐶𝑖𝑛𝑓 𝑜 for relation 𝑅𝑖𝑛𝑓 𝑜 at secu-

rity 𝜆;
2: construct arithmetic circuit 𝐴𝐶𝑝𝑟𝑜𝑜 𝑓 for relation 𝑅𝑝𝑟𝑜𝑜 𝑓 at se-

curity 𝜆;
3: (𝑝𝑘𝑖𝑛𝑓 𝑜 , 𝑣𝑘𝑖𝑛𝑓 𝑜 ) = K𝑛𝑖𝑧𝑘 (𝜆,𝐴𝐶𝑖𝑛𝑓 𝑜 ) ;
4: (𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 ) = K𝑛𝑖𝑧𝑘 (𝜆,𝐴𝐶𝑝𝑟𝑜𝑜 𝑓 );
5: compute 𝑝𝑝𝑒𝑛𝑐 = G𝑒𝑛𝑐 (𝜆);
6: compute (𝑝𝑘𝑟𝑒𝑔, 𝑠𝑘𝑟𝑒𝑔) = K𝑒𝑛𝑐 (𝑝𝑝𝑒𝑛𝑐 );
7: compute 𝑝𝑝𝑐ℎ𝑎𝑠ℎ = G𝑐ℎ𝑎𝑠ℎ (𝜆);
8: return 𝑝𝑝 = (𝑝𝑘𝑖𝑛𝑓 𝑜 , 𝑣𝑘𝑖𝑛𝑓 𝑜 , 𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑘𝑟𝑒𝑔,
𝑝𝑝𝑐ℎ𝑎𝑠ℎ);

𝐺𝑒𝑛𝑖𝑛𝑓 𝑜𝐺𝑒𝑛𝑖𝑛𝑓 𝑜𝐺𝑒𝑛𝑖𝑛𝑓 𝑜
Input:

public parameters 𝑝𝑝 ,
user identity 𝑖𝑑 ;

Output:
registration information 𝑟𝑒𝑔𝑖𝑛𝑓 𝑜 ;

1: (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ) = K𝑐ℎ𝑎𝑠ℎ (𝑝𝑝𝑐ℎ𝑎𝑠ℎ);
2: randomly sample 𝑟 ;
3: compute 𝐶𝐻𝑖𝑑 = H𝑐ℎ𝑎𝑠ℎ (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑖𝑑, 𝑟 );
4: set 𝑥𝑖𝑛𝑓 𝑜 = (𝑖𝑑, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ,𝐶𝐻𝑖𝑑 ),𝑤𝑖𝑛𝑓 𝑜 = (𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟 );
5: 𝜋𝑖𝑛𝑓 𝑜 = P𝑛𝑖𝑧𝑘 (𝑝𝑘𝑖𝑛𝑓 𝑜 , 𝑥𝑖𝑛𝑓 𝑜 ,𝑤𝑖𝑛𝑓 𝑜 );
6: set 𝐶𝑖𝑛𝑓 𝑜 = E𝑒𝑛𝑐 (𝑝𝑘𝑟𝑒𝑔, 𝑥𝑖𝑛𝑓 𝑜 );
7: store (𝑖𝑑, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟 ,𝐶𝐻𝑖𝑑 );
8: return 𝑟𝑒𝑔𝑖𝑛𝑓 𝑜 = (𝐶𝑖𝑛𝑓 𝑜 , 𝜋𝑖𝑛𝑓 𝑜 );

𝑉𝑒𝑟𝑖𝑛𝑓 𝑜𝑉𝑒𝑟𝑖𝑛𝑓 𝑜𝑉𝑒𝑟𝑖𝑛𝑓 𝑜
Input:

public parameters 𝑝𝑝 ,
registration information 𝑟𝑒𝑔𝑖𝑛𝑓 𝑜 ,
regulator private key 𝑠𝑘𝑟𝑒𝑔 ;

Output: bit b;
1: parse 𝑟𝑒𝑔𝑖𝑛𝑓 𝑜 as (𝐶𝑖𝑛𝑓 𝑜 , 𝜋𝑖𝑛𝑓 𝑜 );
2: 𝑥𝑖𝑛𝑓 𝑜 = D𝑒𝑛𝑐 (𝑠𝑘𝑟𝑒𝑔,𝐶𝑖𝑛𝑓 𝑜 );
3: parse 𝑥𝑖𝑛𝑓 𝑜 as (𝑖𝑑, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ,𝐶𝐻𝑖𝑑 );
4: if id not valid then
5: return b=0;
6: end if
7: if V𝑛𝑖𝑧𝑘 (𝑣𝑘𝑖𝑛𝑓 𝑜 , 𝑥𝑖𝑛𝑓 𝑜 , 𝜋𝑖𝑛𝑓 𝑜 ) = 0 then
8: return b=0;
9: else
10: store (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑖𝑑,𝐶𝐻𝑖𝑑 );
11: publish 𝑝𝑘𝑐ℎ𝑎𝑠ℎ | |𝐶𝐻𝑖𝑑 via the Merkle tree𝑀𝑇 ;
12: return b=1;
13: end if

𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓
Input:

public parameters 𝑝𝑝 ,
user public/private information (𝑝𝑢𝑏, 𝑝𝑟𝑖𝑣),
chameleon hash value 𝐶𝐻𝑖𝑑 of 𝑖𝑑 ,
chameleon hash public/private key (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑠𝑘𝑐ℎ𝑎𝑠ℎ),
random element 𝑟 for computing 𝐶𝐻𝑖𝑑 ,
Merkle tree root 𝑟𝑡 ,
path 𝑝𝑎𝑡ℎ𝑖𝑑 from 𝑝𝑘𝑐ℎ𝑎𝑠ℎ | |𝐶𝐻𝑖𝑑 to 𝑟𝑡 ;

Output:
user identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ;

1: compute 𝑟 ′ = CF 𝑐ℎ𝑎𝑠ℎ (𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑖𝑑, 𝑝𝑟𝑖𝑣, 𝑟 );
2: randomly sample 𝑟𝑛 for encrypting;
3: compute 𝐶𝑖𝑑 = E𝑒𝑛𝑐 (𝑝𝑘𝑟𝑒𝑔, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟𝑛);
4: set 𝑢𝑝𝑟𝑜𝑜 𝑓 = (𝑟𝑡, 𝑝𝑘𝑟𝑒𝑔,𝐶𝑖𝑑 );
5: set 𝑥𝑝𝑟𝑜𝑜 𝑓 = (𝑝𝑢𝑏,𝑢𝑝𝑟𝑜𝑜 𝑓 ),
𝑤𝑝𝑟𝑜𝑜 𝑓 = (𝑝𝑎𝑡ℎ𝑖𝑑 ,𝐶𝐻𝑖𝑑 , 𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑝𝑟𝑖𝑣, 𝑟

′, 𝑟𝑛);
6: compute 𝜋𝑝𝑟𝑜𝑜 𝑓 = P𝑛𝑖𝑧𝑘 (𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑥𝑝𝑟𝑜𝑜 𝑓 ,𝑤𝑝𝑟𝑜𝑜 𝑓 );
7: set 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 = (𝑢𝑝𝑟𝑜𝑜 𝑓 , 𝜋𝑝𝑟𝑜𝑜 𝑓 );
8: return 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑

𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓
Input:

public parameters 𝑝𝑝 ,
user public information 𝑝𝑢𝑏,
identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ;

Output:
bit b;

1: parse 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 as (𝑢𝑝𝑟𝑜𝑜 𝑓 , 𝜋𝑝𝑟𝑜𝑜 𝑓 )
2: set 𝑥𝑝𝑟𝑜𝑜 𝑓 = (𝑝𝑢𝑏,𝑢𝑝𝑟𝑜𝑜 𝑓 )
3: if (V𝑛𝑖𝑧𝑘 (𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑥𝑝𝑟𝑜𝑜 𝑓 , 𝜋𝑝𝑟𝑜𝑜 𝑓 ) = 0) then
4: return b=0;
5: else
6: return b=1;
7: end if

Trace
Input:

blockchain data 𝑑𝑎𝑡𝑎𝐵𝑠𝑒
𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 ,

regulator private key 𝑠𝑘𝑟𝑒𝑔 ;
Output:

identity set 𝐼𝐷 for 𝑑𝑎𝑡𝑎𝐵𝑠𝑒
𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 ;

1: set 𝐼𝐷 = 𝜙 ;
2: get ciphertext set 𝐶 = {𝐶𝑖𝑑𝑖 }𝑖∈{1,...,𝑛} from 𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 , where 𝑛
is the number of the users’ public information in 𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 ;
3: for (each 𝐶𝑖𝑑𝑖 ∈ 𝐶) do
4: compute 𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑖 = D𝑒𝑛𝑐 (𝑠𝑘𝑟𝑒𝑔,𝐶𝑖𝑑𝑖 );
5: search (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑖𝑑,𝐶𝐻𝑖𝑑 ) records, get 𝑖𝑑𝑖 corresponding to

𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑖 ;
6: put 𝑖𝑑𝑖 in 𝐼𝐷 ;
7: end for
8: return 𝐼𝐷 ;



in the Merkle tree 𝑀𝑇 in which the root is denoted by 𝑟𝑡 . Mean-
while, this algorithm returns 1.

5.1.3 Generating and Verifying Identity Proof. As shown in Algo-
rithm 1, the 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm is used to generate the identity
proof for each user.

In the 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm, assume a user has generated pub-
lic/private information (𝑝𝑢𝑏, 𝑝𝑟𝑖𝑣). According to the known trap-
door 𝑠𝑘𝑐ℎ𝑎𝑠ℎ , the user can calculate a value 𝑟 ′ such that 𝐶𝐻𝑖𝑑 =
H𝑐ℎ𝑎𝑠ℎ (𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑝𝑟𝑖𝑣, 𝑟 ′). Next, the user computes ciphertext𝐶𝑖𝑑 =
E𝑒𝑛𝑐 (𝑝𝑘𝑟𝑒𝑔, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟𝑛), where 𝑝𝑘𝑟𝑒𝑔 is the public key of the reg-
ulator, and 𝑟𝑛 is the random number used for encryption. Finally,
the user produces a zk-SNARK proof 𝜋𝑝𝑟𝑜𝑜 𝑓 for the following NP
relation, which we term 𝑅𝑝𝑟𝑜𝑜 𝑓 :
“Given a statement 𝑥𝑝𝑟𝑜𝑜 𝑓 = (𝑝𝑢𝑏, 𝑟𝑡, 𝑝𝑘𝑟𝑒𝑔,𝐶𝑖𝑑 ), I know𝑤𝑝𝑟𝑜𝑜 𝑓 =
(𝑝𝑎𝑡ℎ𝑖𝑑 ,𝐶𝐻𝑖𝑑 , 𝑠𝑘𝑐ℎ𝑎𝑠ℎ, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑝𝑟𝑖𝑣, 𝑟

′, 𝑟𝑛) such that:
�Theprivate informationmatches the public information: 𝑝𝑢𝑏 =

𝑔𝑒𝑛(𝑝𝑟𝑖𝑣).
�The chameleon hash private key matches the chameleon hash

public key: 𝑝𝑘𝑐ℎ𝑎𝑠ℎ = 𝑐ℎ𝑎𝑠ℎ_𝑔𝑒𝑛(𝑠𝑘𝑐ℎ𝑎𝑠ℎ).
�The chameleon hash is computed correctly: 𝐶𝐻𝑖𝑑 = H𝑐ℎ𝑎𝑠ℎ (

𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑝𝑟𝑖𝑣, 𝑟
′).

�The ciphertext𝐶𝑖𝑑 corresponds to the plaintext 𝑝𝑘𝑐ℎ𝑎𝑠ℎ :𝐶𝑖𝑑 =
E𝑒𝑛𝑐 (𝑝𝑘𝑟𝑒𝑔, 𝑝𝑘𝑐ℎ𝑎𝑠ℎ, 𝑟𝑛).
�The 𝑝𝑘𝑐ℎ𝑎𝑠ℎ | |𝐶𝐻𝑖𝑑 appears as a leaf of a Merkle tree with the

root rt.”
The 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 algorithm in Algorithm 1 is used to verify the

user’s identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 .The verification operation verifies the
zk-SNARK proof 𝜋𝑝𝑟𝑜𝑜 𝑓 . This algorithm returns 1 if and only if the
above operation verifies successfully.

5.1.4 Tracing. As shown in Algorithm 1, the 𝑇𝑟𝑎𝑐𝑒 algorithm is
used to trace the blockchain data 𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 . The regulator obtains
𝑝𝑘𝑐ℎ𝑎𝑠ℎ𝑖 by decrypting the ciphertext 𝐶𝑖𝑑𝑖 for each 𝑖 ∈ {1, ..., 𝑛},
and according to the record that stores each user’s chameleon hash
public key, chameleon hash value, and identity, the regulator can
determine the true identities of the users in the𝑑𝑎𝑡𝑎𝐵𝑠𝑒

𝑑𝑎𝑡𝑎𝐵𝑠𝑒𝑑𝑎𝑡𝑎𝐵𝑠𝑒 . This algo-
rithm returns the identity set 𝐼𝐷 .

5.2 SkyEye Security
TheoRem 5.1. Assuming that the 𝐶ℎ𝑎𝑠ℎ scheme is collision resis-

tant, trapdoor collision and semantic security, the NIZK scheme is
perfectly zero-knowledge and simulation sound extractable, the en-
cryption scheme 𝐸𝑛𝑐 satisfies IND-CCA2 security, and 𝑔𝑒𝑛(·) has
one-wayness property. Our scheme

∏
= (Setup, 𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 , 𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 ,

𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 , 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 , Trace) described in Algorithm 1 is a secure (cf.
Definition 4.1) traceable scheme.

We provide the proof of Theorem 5.1 in Appendix B.

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation
There are two main ways of generating public and private infor-
mation in blockchain applications. One is through the pseudoran-
dom function (e.g., Zerocash[7], Hawk[26]), i.e. 𝑝𝑢𝑏 = 𝑃𝑅𝐹𝑝𝑟𝑖𝑣 (𝑠),
where 𝑃𝑅𝐹 denotes the pseudorandom function, 𝑝𝑢𝑏 is the pseu-
dorandom number, 𝑝𝑟𝑖𝑣 is the private key used to generate 𝑝𝑢𝑏,

and 𝑠 is the uniform seed. The other way is to use elliptic curve
scalar multiplication (e.g., Bitcoin) to generate the public and pri-
vate information, i.e., 𝑝𝑢𝑏 = 𝑝𝑟𝑖𝑣 ·𝐺 , where 𝑝𝑟𝑖𝑣 is a scalar, 𝐺 is a
base point on the elliptical curve, and 𝑝𝑢𝑏 is a point on the ellipti-
cal curve. We use 𝑆𝑘𝑦𝐸𝑦𝑒𝐻 to represent the scheme that generates
public and private information in the first way, and 𝑆𝑘𝑦𝐸𝑦𝑒𝑆 to rep-
resent the scheme that generates public and private information in
the second way. We use the C++ programming language to imple-
ment the prototype of the above two different schemes based on
the zk-SNARK library, libsnark[8].

There are some cryptographic building blocks in 𝑆𝑘𝑦𝐸𝑦𝑒𝐻 : the
pseudorandom function, chameleon hash scheme, hash function in
the Merkle tree, public encryption scheme, and zk-SNARK scheme.
For the chameleon hash scheme,we use the chameleon hash scheme
proposed by Hugo Krawczyk and Tal Rabin[27]. For efficiency, we
use the SHA256 compression function to implement the pseudo-
random function and hash function in the Merkle tree, which is
similar to the approach used in Zerocash[7]. We use the practical
public key encryption scheme proposed by Cramer and Shoup[11],
an IND-CCA2 secure public encryption scheme, as our encryption
scheme. We use the scheme proposed by Parno et al.[37] as the
zk-SNARK scheme. In the concrete implementation, we use the
Barreto-Naehrig elliptic curve[6] that provides 128-bit security as
the underlying curve of the zk-SNARK scheme. The implementa-
tion of the chameleon hash and public key encryption scheme is
based on a prime field of 254 bits.

In 𝑆𝑘𝑦𝐸𝑦𝑒𝑆 , the main cryptographic building block differs from
the former in that the pseudorandom function is replaced by ellip-
tic curve scalar multiplication. The chameleon hash scheme, pub-
lic key encryption scheme, and zk-SNARK scheme are the same
as those in the 𝑆𝑘𝑦𝐸𝑦𝑒𝐻 . In the concrete implementation, we use
the MNT4 elliptic curve[34] as the underlying curve of the zk-
SNARK scheme. The implementation of elliptic curve scalar multi-
plication is based on the MNT6 elliptic curve [34]. We implement
the chameleon hash scheme and public key encryption scheme in
a prime field of 298 bits. To improve efficiency, in the formation
of the Merkle tree, because the length of the leaf node is 298 bits,
two leaf nodes together cannot form 512 bits. Therefore, the upper
node is generated by the leaf node using the standard SHA256. In
addition, the data length of the node above the leaf node is 256
bits, so each node that is not generated through the leaf node is
generated by the SHA256 compression function.

6.2 Evaluation
We evaluate the performance of every algorithm in the two afore-
mentioned schemes in two different configurations: configuration
1, with an Intel i5 processor and 4 GB memory laptop; and config-
uration 2, with an Intel i7 processor and 16 GB memory desktop
machine. The depth of the Merkle tree in our evaluation is 10, 20,
30, and 34, respectively. In other words, the maximum number of
users which the Merkle tree supports is 210, 220, 230, and 234.
This fully meets demand, because the current global population is
about 7.5 billion, and 234 reaches more than 17 billion. Moreover,
we evaluate the performance of the𝑇𝑟𝑎𝑐𝑒 algorithm under the con-
dition that there are already 1024 successfully registered users at
the regulator.



Table 1: Performance of 𝑆𝑘𝑦𝐸𝑦𝑒𝐻

Configuration 1:
intel(R) core(TM) i5-2450M

@2.50GHz
4GB of RAM

Configuration 2:
intel(R) core(TM) i7-6700

@ 3.40GHz
16GB of RAM

𝑆𝑘𝑦𝐸𝑦𝑒𝐻
Tree depth

10 20 30 34 10 20 30 34

Setup

time(s) 69 114 156 175 37 61 83 94
|𝑝𝑘𝑖𝑛𝑓 𝑜 |(KB) 480
|𝑣𝑘𝑖𝑛𝑓 𝑜 |(B) 574

|𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 |(MB) 90 149 209 231 90 149 209 231
|𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 |(KB) 21

𝐺𝑒𝑛𝑖𝑛𝑓 𝑜
time(ms) 475.7 494.3 530.1 538.5 231.5 248.0 266.2 272.4
|𝜋𝑖𝑛𝑓 𝑜 |(B) 287

𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 time(ms) 15.3 15.3 15.7 15.1 7.1 7.0 7.0 6.9

𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓
time(s) 29 46 59 66 15 24 30 35

|𝜋𝑝𝑟𝑜𝑜 𝑓 |(B) 287
𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 time(ms) 10.1 10.2 10.1 10.2 4.5 4.5 4.8 4.6
𝑇𝑟𝑎𝑐𝑒 time(ms) 0.13 0.075

Table 2: Performance of 𝑆𝑘𝑦𝐸𝑦𝑒𝑆

Configuration 1:
intel(R) core(TM) i5-2450M

@2.50GHz
4GB of RAM

Configuration 2:
intel(R) core(TM) i7-6700

@ 3.40GHz
16GB of RAM

𝑆𝑘𝑦𝐸𝑦𝑒𝐻
Tree depth

10 20 30 34 10 20 30 34

Setup

time(s) 187 296 403 451 101 162 220 244
|𝑝𝑘𝑖𝑛𝑓 𝑜 |(KB) 661
|𝑣𝑘𝑖𝑛𝑓 𝑜 |(B) 667

|𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 |(MB) 105 174 243 268 105 174 243 268
|𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 |(KB) 13

𝐺𝑒𝑛𝑖𝑛𝑓 𝑜
time(ms) 1398.0 1413.3 1456.3 1523.9 754.9 772.6 787.8 793.8
|𝜋𝑖𝑛𝑓 𝑜 |(B) 337

𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 time(ms) 51.8 52.4 53.4 54.4 27.3 27.8 27.0 27.3

𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓
time(s) 56 83 109 120 30 45 58 64

|𝜋𝑝𝑟𝑜𝑜 𝑓 |(B) 337
𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 time(ms) 47.8 47.9 48.0 47.9 24.9 24.9 24.7 24.9
𝑇𝑟𝑎𝑐𝑒 time(ms) 0.14 0.09

Table 1 and Table 2 illustrate the performance results of the
𝑆𝑒𝑡𝑢𝑝 ,𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 ,𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 ,𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 ,𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 and𝑇𝑟𝑎𝑐𝑒 algorithms
in 𝑆𝑘𝑦𝐸𝑦𝑒𝐻 and 𝑆𝑘𝑦𝐸𝑦𝑒𝑆 , respectively (the time in the two tables
is the average of 10 runs per algorithm). In the two tables, time rep-
resents the running time of the algorithm, and | · | represents the
data length. For example, the |𝑝𝑘𝑖𝑛𝑓 𝑜 | represents the length of the
proving key in the registration. Without loss of generality, using
an i7 processor, a 16 GB memory desktop machine, and with a tree
depth of 34 in Table 1, we can obtain the results of the 𝑆𝑘𝑦𝐸𝑦𝑒𝐻
scheme:

• 𝑆𝑒𝑡𝑢𝑝 algorithm takes 94 s. The size of the proving key and
verification key used for user registration are 480 KB and 574 B,

respectively. And the size of the proving key and verification key
used for user identity proof are 231 MB and 21 KB, respectively.

•𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 requires 272.4 ms, and the size of the zk-SNARK proof
𝜋𝑖𝑛𝑓 𝑜 is 287 B.

• 𝑉𝑒𝑟𝑖𝑛𝑓 𝑜 algorithm takes 6.9 ms.
• 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm takes 35 s to generate a user’s identity

proof, and the size of the zk-SNARK proof 𝜋𝑝𝑟𝑜𝑜 𝑓 is 287 B.
• 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 algorithm takes 4.6 ms.
• 𝑇𝑟𝑎𝑐𝑒 algorithm takes 0.075 ms to trace a user’s identity.

The tables reveal the following:
• In each configuration, the time required for verification by

the regulator and the verifiers is small and does not substantially
change as the depth of the tree changes. As shown in Table 1, the



regulator takes approximately 15 ms to verify the user registration
information in configuration 1 and approximately 7 ms in config-
uration 2; and the time taken by a verifier to verify the user iden-
tity proof is approximately 10 ms in configuration 1 and approxi-
mately 5 ms in configuration 2. From Table 2, we can observe that
the time taken for verifying the user registration information is ap-
proximately 53 ms in configuration 1 and approximately 28 ms in
configuration 2; and the time taken for verifying the user identity
proof is approximately 48 ms in configuration 1 and approximately
25 ms in configuration 2.

• Not all of the information in SkyEye must be on-chain. Only
the information 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 generated by the 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm is
added to the user data. Furthermore, the size of the user’s proof
𝜋𝑝𝑟𝑜𝑜 𝑓 in the 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 is dominant. As can be observed from the two
tables, the length of the zk-SNARK proof 𝜋𝑝𝑟𝑜𝑜 𝑓 will not change
as the configuration environment and tree depth change. The size
of 𝜋𝑝𝑟𝑜𝑜 𝑓 is small, and the length is 287 B in 𝑆𝑘𝑦𝐸𝑦𝑒𝐻 and 337 B
in 𝑆𝑘𝑦𝐸𝑦𝑒𝑆 .

7 POTENTIAL APPLICATIONS
The SkyEye scheme provides an alternative traceable strategy for
the blockchain applications that belong to 𝐵𝑠𝐵𝑠𝐵𝑠 . If a blockchain ap-
plication that does not belong to 𝐵𝑠𝐵𝑠𝐵𝑠 wants to use SkyEye, this ap-
plication can modify some rules to make it belong to 𝐵𝑠𝐵𝑠𝐵𝑠 .

In this section, we briefly describe how to apply SkyEye to some
applications: Bitcoin[35], Ethereum[41], and RSCoin[13].

7.1 Bitcoin
In decentralized cryptocurrencies, Bitcoin is undoubtedly the most
eye-catching one. It has achieved widespread adoption, and many
alt-coins[1, 25] are derived from Bitcoin. Below, we briefly describe
the application of SkyEye in Bitcoin.

1) Certifiable user. It is well known that users in Bitcoin are
anonymous (pseudonyms). However, users wish to trade with cer-
tifiable merchants in many cases, which is more secure and more
assured. At this point, SkyEye can be used in Bitcoin to allow the
merchants that need to be certified to register with the regulator,
and when merchants open their addresses, they also disclose their
identity proofs for others to use. In this way, the miner sometimes
needs to verify the identity proof. Finally, the public address with
an identity proof in the blockchain indicates a certifiable user.

2) Full tracing. Because of the anonymity in Bitcoin, it is diffi-
cult to trace some illegal activities (such as money laundering and
ransomware), which makes many countries ban Bitcoin transac-
tions. If one day, Bitcoin demands tracing user identity, our Sky-
Eye scheme can be applied. Every user who wishes to use Bitcoin
must register with the regulator. Users must add identity proofs
when generating a transaction, and because Bitcoin transactions
are linkable, the user only needs to add identity proofs to the out-
puts of the transaction. When the miner verifies the transaction,
he must also verify the identity proofs. Ultimately, the regulator
can fully trace all data in the Bitcoin blockchain.

Both of the above strategies need tomodify the underlying script
code and the underlying rules in Bitcoin to support the application
of the SkyEye scheme.
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Figure 5: RSCoin with SkyEye

7.2 Ethereum
Smart contract was first proposed by Nick Szabo[39]. However, be-
cause of the absence of a credible execution environment and other
technical limitations at the time, smart contract was not applied to
the real world. Blockchain technology provides a natural, trusted
execution environment for smart contract, and makes the applica-
tion of smart contract possible. Ethereum is one of the representa-
tive smart contract platforms. Next, we describe how to use SkyEye
in Ethereum.

1) Providing a tracing strategy for some applications. When an
application in Ethereum demands tracing user identity, SkyEye
can provide tracing functionality for this application.TheEthereum
transaction has a data area, which allows users to add data. There-
fore, the identity proofs can be appended to the data area. When
the transaction triggers application contract code execution, the
application contract code will first call the SkyEye contract code
to verify identity proofs in this transaction. When this transaction
is in the blockchain, the regulator can determine the identities in
this transaction.

2) Tracing the entire Ethereum platform. This must modify the
underlying rules of Ethereum that make only users registered with
the regulator can use the Ethereum platform to develop contract
codes or conduct transactions. The regulator can trace the data in
the Ethereum platform using the 𝑇𝑟𝑎𝑐𝑒 algorithm.

7.3 RSCoin
Although existing private digital currency systems (such as Bit-
coin) exhibit advantages such as cost savings, transaction trans-
parency and high security, their problems (e.g., low transaction
throughput, resource consumption, and difficulty in supervision)
have severely restricted the application of digital currency. Tomake
better use of the advantages of digital currency and to prevent the



risks and harms caused by private digital currency, many countries
in the world such as China, Britain, and America have performed
studies on digital currency, striving to issue legal digital currency
as soon as possible to enhance their international competitiveness.
The representative is RSCoin[13], the first digital currency frame-
work.

The SkyEye can combine with the RSCoin framework to enable
the central bank to trace transactions in the blockchain. As can be
seen from Figure 5, the user first calls the 𝐺𝑒𝑛𝑖𝑛𝑓 𝑜 algorithm to
register with the central bank. After the central bank passes the
verification, the user can generate the transaction 𝑡𝑥 , which con-
tains the data body and the identity proofs (each user generates an
identity proof using the 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm) and send 𝑡𝑥 to the
mintettes that have been certified by the central bank. Mintettes
are divided into two groups: group 1 verifies whether the user’s
input address is legal (such as whether the input belongs to the
UTXO collection). In addition to the original verification of RScoin,
group 1 must also verify the identity proofs in the transaction 𝑡𝑥 .
Finally, the group 2 provides several low-level blocks to the central
bank. The central bank merges the blocks to produce a high-level
block and adds it to the blockchain. At this point, the central bank
can obtain the identities of the users using the Trace algorithm in
SkyEye to complete the tracing of the blockchain.

8 DISCUSSION AND FUTUREWORK
In SkyEye, the centralization of the regulator is a major issue. The
regulator can arbitrarily trace the identity of blockchain data with-
out any restrictions and oversight.

From the data tracing process of the regulator, it can be seen
that the regulator must first use its private key 𝑠𝑘𝑟𝑒𝑔 to decrypt
the ciphertext of each user’s chameleon hash public key in the
blockchain data. Therefore, we can restrict the regulator through
the distributed key generation (DKG) protocol[22]. Specifically, the
public/private key pair (𝑝𝑘𝑟𝑒𝑔, 𝑠𝑘𝑟𝑒𝑔) is generated by a committee
with a threshold of 𝑡 through the DKG protocol. In this way, 𝑝𝑘𝑟𝑒𝑔
is made public, and each committee member has a share of 𝑠𝑘𝑟𝑒𝑔 .
The regulator submits the data and tracing evidence to the commit-
tee. If at least t+1 members of the committee accept the data and
tracing evidence, the regulator will obtain 𝑠𝑘𝑟𝑒𝑔 from the commit-
tee.

However, this approach does not completely restrict the regu-
lator. Even if the committee regularly updates the public/private
key pair, as long as the regulator obtains the private key 𝑠𝑘𝑟𝑒𝑔 in
a cycle, it can trace not only the data submitted to the committee,
but also all user data in this cycle. In future work, we will consider
how to restrict the regulator to make the regulator only trace the
data submitted to the committee.

9 RELATEDWORK
Blockchain research focuses primarily on enhancing blockchain
privacy protection [7, 12, 33, 38], improving blockchain scalabil-
ity [16, 31, 42], analyzing blockchain security[17–19, 30], and ap-
plying blockchain to other areas[28, 29, 32, 40]. However, research
on traceable mechanisms is limited.

Narula, Vasquez, and Virza proposed zkLedger[36], the first dis-
tributed ledger system, that provides strong privacy protection,

public verifiability, and practical auditing. zkLedger uses table con-
struction in the ledger. Each user identity corresponds to each col-
umn in the ledger. Therefore, the regulator can determine every
user identity through the ledger. However, this traceable mecha-
nism in zkLedger cannot be applied to environments with a large
number of users and is used only for auditing digital asset transac-
tions over some banks.

Defrawy and Lampkins[15] proposed a proactively-private dig-
ital currency (PDC) scheme that can provide privacy-preserving
and accountability. In their scheme, the ledger is kept by a group
of ledger servers. Every ledger sever has a balance ledger that con-
tains a share of every user identity.Therefore, the regulator can de-
termine every user identity through those ledger servers. However,
their traceable mechanism does not seem to have been extended
to other applications.

Ateniese and Faonio[4] constructed a scheme that provides cer-
tified Bitcoin addresses to enable Bitcoin users to trade with certi-
fiable users authenticated by the trusted certificate authority. The
regulator can determine every user identity through the authority.
However, if a user wants to use a new certified address for each
transaction, the user must contact the certificate authority to ob-
tain a certified address. This reduces the efficiency of the entire
system and exerts considerable pressure on the certificate author-
ity when the number of users is large. Moreover, their approach
only applies to Bitcoin.

Garman et al.[20] designed new decentralized anonymous pay-
ment (DAP) systems to address the regulatory issue by adding pri-
vacy preseving policy-enforcement mechanisms that guarantee re-
gulatory compliance, allow selective user tracing, and admit trac-
ing of tainted coins. The regulator can determine every user iden-
tity through the identity escrow policy. However, the DAP system
are based on Zerocash[7].

The traceable mechanisms proposed above can only be applied
to specific application environments and do not seem to have been
extended to other applications. We propose SkyEye, a traceable
scheme for blockchain. Our scheme can be applied to a class of
blockchain applications, which is denoted by 𝐵𝑠𝐵𝑠𝐵𝑠 .

10 CONCLUSION
In this paper, we design SkyEye, a traceable scheme for blockchain.
SkyEye can be applied to the blockchain applications that satisfy
the following conditions: (I) The users have public and private in-
formation, where the public information is generated by the pri-
vate information; (II) The users’ public information is disclosed in
the blockchain data. SkyEye just requires the user to register only
once, and enables the regulator to trace users’ identities. More-
over, we implement two different SkyEye prototypes: 𝑆𝑘𝑦𝐸𝑦𝑒𝐻
and 𝑆𝑘𝑦𝐸𝑦𝑒𝑆 . Our evaluation results show that even if the num-
ber of users is very large, the registration information and identity
proof are verified quickly.
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A SECURITY OF THE TRACEABLE SCHEME
We describe identity proof indistinguishability and identity proof
unforgeability. Every property is formalized as an experiment be-
tween an adversary A and a challenger C. The behavior of the
honest user with identity 𝑖𝑑 is realized by the oracle 𝑂𝑖𝑑 , and the
behavior of the regulator is realized by the oracle𝑂𝑟𝑒𝑔 . We assume
that the honest users and adversary in the experiment have already
registered successfully in the regulator, i.e., they can generate any
identity proof. Below, we describe how 𝑂𝑖𝑑 and 𝑂𝑟𝑒𝑔 work.

Oracles 𝑂𝑖𝑑 and 𝑂𝑟𝑒𝑔 are initialized by challenger C using the
public parameters 𝑝𝑝 .𝑂𝑟𝑒𝑔 stores: (1)Record, a set of information
used to trace true identities of all registered users; (2) the encryp-
tion public/private key pair (𝑝𝑘𝑟𝑒𝑔, 𝑠𝑘𝑟𝑒𝑔). 𝑂𝑟𝑒𝑔 accepts different
queries, which are described below:

• 𝑄 = ( 𝑗𝑢𝑑𝑔𝑒, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑1
, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑2

).
𝑂𝑟𝑒𝑔 determines whether 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑1

and 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑2
belong to the

same user, and sends the result to the inquirer.
• 𝑄 = (𝑐ℎ𝑎𝑠ℎ𝑠𝑒𝑡, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ).
𝑂𝑟𝑒𝑔 sends the chameleon hash set 𝑃𝑐ℎ𝑎𝑠ℎ to the inquirer, where

𝑃𝑐ℎ𝑎𝑠ℎ includes the chameleon hash value of the user who gener-
ates 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 .
𝑂𝑖𝑑 stores: (1) RegPriInfo, the secret information used to gen-

erate registration information; (2) IdProof, a set of identity proofs
generated by the user whose identity is 𝑖𝑑 ; (3)IdProofPriInfo, the
set of evidence that the user uses to generate the identity proofs.
The oracle 𝑂𝑖𝑑 accepts different queries, which are described be-
low:

• 𝑄 = (𝑔𝑒𝑛𝑖𝑑𝑝𝑟𝑜𝑜 𝑓 ). The adversary is not aware of the private
information 𝑝𝑟𝑖𝑣 . The oracle O𝑖𝑑 first randomly selects 𝑝𝑟𝑖𝑣 , and
then generates the public information 𝑝𝑢𝑏. Finally, the oracle O𝑖𝑑
calls the𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm to generate the identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ,
and sends (𝑝𝑢𝑏, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ) to the inquirer.

• 𝑄 = (𝑔𝑒𝑛𝑖𝑑𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑟𝑖𝑣).
The adversary knows the private information 𝑝𝑟𝑖𝑣 , and the ora-

cle O𝑖𝑑 uses the 𝑝𝑟𝑖𝑣 selected by the adversary to generate the pub-
lic information 𝑝𝑢𝑏 and then calls the 𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm to gen-
erate the identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 . Finally, O𝑖𝑑 sends (𝑝𝑢𝑏, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 )
to the inquirer.

• 𝑄 = (𝑔𝑒𝑛𝑖𝑑𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑢𝑏𝑖 ).
Here, 𝑝𝑢𝑏𝑖 ∈ 𝑇𝑝𝑢𝑏 , and 𝑇𝑝𝑢𝑏 = {𝑝𝑢𝑏𝑖 }𝑖∈{1,...,𝑛} is the public

information set of the user whose identity is 𝑖𝑑 .The oracleO𝑖𝑑 calls
the𝐺𝑒𝑛𝑝𝑟𝑜𝑜 𝑓 algorithm to generate the identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 , and
sends (𝑝𝑢𝑏𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ) to the inquirer.

A.1 Identity proof indistinguishability
This property is formalized by 𝐸𝑥𝑝𝐼𝐷𝑃−𝐼𝑁𝐷

A,Π (𝜆), which is shown
below:
1. The challenger C randomly samples 𝑏 ∈ {0, 1}, gets pp by run-
ning Setup(𝜆), and sends pp to adversary A. Next, C initializes two
separate oracles O𝑖𝑑0

and O𝑖𝑑1
.

2. At each query phase, the adversary A issues a pair of queries
(𝑄,𝑄 ′), where (𝑄,𝑄 ′) is one of the following::

•𝑄 and𝑄
′
are both genidproof queries. C forwards𝑄 to O𝑖𝑑0

, and
forwards𝑄

′
toO𝑖𝑑1

.C replies toA with ((𝑝𝑢𝑏𝑏 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑏 ), (𝑝𝑢𝑏1−𝑏 ,
𝑝𝑟𝑜𝑜 𝑓𝑖𝑑1−𝑏 )), which is the two oracle answer.

• {𝑄,𝑄 ′} = {(𝑔𝑒𝑛𝑖𝑑𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑟𝑖𝑣), (𝑔𝑒𝑛𝑖𝑑𝑝𝑟𝑜𝑜 𝑓 , 𝑝𝑟𝑖𝑣 ′)}, where
𝑝𝑟𝑖𝑣 = 𝑝𝑟𝑖𝑣

′
. C forwards 𝑄 to O𝑖𝑑0

, and forwards 𝑄
′
to O𝑖𝑑1

. C
replies to A with ((𝑝𝑢𝑏, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑𝑏 ), (𝑝𝑢𝑏, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑1−𝑏 )), which is the
two oracle answer.
3. At the end of the query, A sends C a guess 𝑏

′ ∈ {0, 1}. If 𝑏 = 𝑏
′
,

C outputs 1; otherwise, C outputs 0.
Identity proof indistinguishability requires that the adversary

Awins the above experimentwith only negligible probability. Next,
we formally define this property.

Definition A.1. A traceable scheme
∏

satisfies identity proof
indistinguishability if for all probabilistic polynomial-time adver-
saries A, there is a negligible function 𝑛𝑒𝑔𝑙 (·) such that

𝐴𝑑𝑣𝐼𝐷𝑃−𝐼𝑁𝐷
𝐴,Π ≤ 𝑛𝑒𝑔𝑙 (𝜆), (1)

where 𝐴𝑑𝑣𝐼𝐷𝑃−𝐼𝑁𝐷
𝐴,Π = 𝑃𝑟 [𝐸𝑥𝑝𝐼𝐷𝑃−𝐼𝑁𝐷

A,Π (𝜆) = 1] − 1/2 is A’s ad-
vantage in the experiment 𝐸𝑥𝑝𝐼𝐷𝑃−𝐼𝑁𝐷

A,Π (𝜆).

A.2 Identity proof unforgeability
This property is formalized by 𝐸𝑥𝑝𝐼𝐷𝑃−𝑈𝑁𝐹

A,Π (𝜆), which is shown
below:
1. The challenger C obtains pp by running Setup(𝜆), and sends pp to
adversary A. Next, C initializes two separate oracles O𝑖𝑑 and O𝑟𝑒𝑔 .
Let𝑇𝑝𝑢𝑏 = {𝑝𝑢𝑏1, ..., 𝑝𝑢𝑏𝑛} be the public information set for the user
whose identity is 𝑖𝑑 .
2.The adversaryA issues queries𝑞1, ..., 𝑞𝑚 , where𝑞𝑖 is (𝑔𝑒𝑛𝑖𝑑𝑝𝑟𝑜𝑜 𝑓 ,
𝑝𝑢𝑏𝑖 ), and 𝑝𝑢𝑏𝑖 ∈ 𝑇𝑝𝑢𝑏 . C forwards 𝑄 to O𝑖𝑑 , C replies to A with
(𝑝𝑢𝑏𝑖 , 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ), which is the oracle O𝑖𝑑 ’s answer.
3. At the end of the query, let 𝑃 = {𝑝𝑟𝑜𝑜 𝑓1, ..., 𝑝𝑟𝑜𝑜 𝑓𝑚} is the identity
proof set that is generated by O𝑖𝑑 . A sends (𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
) to C. C

checks as follows:
• If 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
∉ 𝑃 ∧ 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 (𝑝𝑝, 𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗𝑖𝑑 ) = 1, C proceeds

as follows; otherwise it aborts.
• C sends ( 𝑗𝑢𝑑𝑔𝑒, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑∗ , 𝑝𝑟𝑜𝑜 𝑓𝑖 ) to O𝑟𝑒𝑔 , where 𝑖 ∈ [1,𝑚]. If

𝑝𝑟𝑜𝑜 𝑓𝑖𝑑∗ and 𝑝𝑟𝑜𝑜 𝑓𝑖 belong to the user whose the identity is 𝑖𝑑 , O𝑟𝑒𝑔

sends 𝑐 = 1 to C; otherwise it returns 𝑐 = 0.
If 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
∉ 𝑃 ∧ 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 (𝑝𝑝, 𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗𝑖𝑑 ) = 1 ∧ 𝑐 = 1, C

outputs 1; otherwise, C outputs 0.
The adversary A wins the above experiment if 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
such

that: (i) 𝑝𝑟𝑜𝑜 𝑓 ∗
𝑖𝑑

∉ 𝑃 ; (ii) 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 (𝑝𝑝, 𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗𝑖𝑑 ) = 1; (iii)
𝑝𝑟𝑜𝑜 𝑓𝑖𝑑∗ belongs to the user whose identity is 𝑖𝑑 . In other words,
A can forge the identity proof of honest parties. Identity proof
unforgeability requires that the adversary wins the above exper-
iment with only negligible probability. Next, we formally define
this property.
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Definition A.2. A traceable scheme
∏

satisfies identity proof un-
forgeability if for all probabilistic polynomial time adversaries A,
there is a negligible function 𝑛𝑒𝑔𝑙 (·) such that

𝐴𝑑𝑣𝐼𝐷𝑃−𝑈𝑁𝐹
𝐴,Π ≤ 𝑛𝑒𝑔𝑙 (𝜆), (2)

where 𝐴𝑑𝑣𝐼𝐷𝑃−𝑈𝑁𝐹
𝐴,Π = 𝑃𝑟 [𝐸𝑥𝑝𝐼𝐷𝑃−𝑈𝑁𝐹

A,Π (𝜆) = 1] − 1/2 is A’s
advantage in the experiment 𝐸𝑥𝑝𝐼𝐷𝑃−𝑈𝑁𝐹

A,Π (𝜆).

B PROOF OF THEOREM 5.1
B.1 Proof of identity proof indistinguishability

TheoRem B.1. Assuming that the NIZK scheme is perfectly zero-
knowledge and simulation sound extractable, the encryption scheme
Enc satisfies IND-CCA2 security, then, our scheme

∏
described in

Algorithm 1 satisfies identity proof indistinguishability.

We prove the Theorem B.1 through a sequence of hybrid exper-
iments. Let 𝑞𝑚 be the number of queries issued by the adversary
A.

𝒆𝒙𝒑𝒓𝒆𝒂𝒍 .The experiment 𝑒𝑥𝑝𝑟𝑒𝑎𝑙 is the same as the experiment
𝐸𝑥𝑝𝐼𝐷𝑃−𝐼𝑁𝐷

A,Π (𝜆).
𝒆𝒙𝒑1. This experiment is the same as the experiment 𝑒𝑥𝑝𝑟𝑒𝑎𝑙

except that the challenger C simulates the 𝑁𝐼𝑍𝐾 . More precisely,
C calls a polynomial-time simulator 𝑆𝑛𝑖𝑧𝑘 (𝜆,𝐴𝐶𝑝𝑟𝑜𝑜 𝑓 ) to obtain
(𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑡𝑟𝑎), where 𝑡𝑟𝑎 is the trapdoor, instead of in-
vokingK𝑛𝑖𝑧𝑘 (𝜆,𝐴𝐶𝑝𝑟𝑜𝑜 𝑓 ).When an oracleO𝑖𝑑 sends aNIZK proof
𝜋𝑝𝑟𝑜𝑜 𝑓 to C, C replaces the real proof with a simulated proof by in-
voking 𝑆𝑛𝑖𝑧𝑘 (𝑝𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝑥𝑝𝑟𝑜𝑜 𝑓 , 𝑡𝑟𝑎), without using the witness. Be-
cause the NIZK scheme is perfectly zero-knowledge, the distribu-
tion of the simulated 𝜋𝑝𝑟𝑜𝑜 𝑓 is identical to that of the proof com-
puted in 𝑒𝑥𝑝𝑟𝑒𝑎𝑙 . Therefore, 𝐴𝑑𝑣𝑒𝑥𝑝𝑟𝑒𝑎𝑙 = 𝐴𝑑𝑣𝑒𝑥𝑝1 .

𝒆𝒙𝒑𝒇 𝒊𝒏𝒂𝒍 . The experiment 𝑒𝑥𝑝 𝑓 𝑖𝑛𝑎𝑙 is the same as the experi-
ment 𝑒𝑥𝑝1 except that the challenger C replaces𝐶𝑖𝑑 in 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 by
encrypting a random string. More precisely, when an oracle O𝑖𝑑

sends an identity proof 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 to C, C replaces the𝐶𝑖𝑑 with a𝐶′
𝑖𝑑

generated by E𝑒𝑛𝑐 (𝑝𝑘𝑟𝑒𝑔, 𝑟 , 𝑟𝑛), where 𝑟 is a random string sam-
pled uniformly from the plaintext space of the encryption scheme.
Because the responses to the adversary A in 𝑒𝑥𝑝 𝑓 𝑖𝑛𝑎𝑙 are inde-
pendent of the bit b. Therefore, 𝐴𝑑𝑣𝑒𝑥𝑝𝑓 𝑖𝑛𝑎𝑙 = 0 in the experiment
𝑒𝑥𝑝 𝑓 𝑖𝑛𝑎𝑙 .

Next, we prove that no polynomial-time adversary can distin-
guish 𝑒𝑥𝑝1 from 𝑒𝑥𝑝 𝑓 𝑖𝑛𝑎𝑙 except with negligible probability(see
below lemma).

Lemma 1. After 𝑞𝑚 queries, |𝐴𝑑𝑣𝑒𝑥𝑝𝑓 𝑖𝑛𝑎𝑙 − 𝐴𝑑𝑣𝑒𝑥𝑝1 | ≤ 𝑞𝑚 ·
𝐴𝑑𝑣𝑒𝑛𝑐 , where𝐴𝑑𝑣𝑒𝑛𝑐 denotes the adversary’s advantage in the IND-
CCA2 experiment.

Proof sketch.We construct an algorithm B, using A as a sub-
routine, to win the IND-CCA2 experiment.

Let 𝜖 = 𝐴𝑑𝑣𝑒𝑥𝑝𝑓 𝑖𝑛𝑎𝑙 − 𝐴𝑑𝑣𝑒𝑥𝑝1 . For some 𝑖 ∈ {1, ..., 𝑞𝑚}, when
A issues an i-th query, B use the same method as 𝒆𝒙𝒑1 to gen-
erate 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 except for the ciphertext 𝐶𝑖𝑑 generation method. B
chooses a random string 𝑟 that has the same length as plaintext𝑚
corresponding to𝐶𝑖𝑑 . B sends (𝑚0,𝑚1) = (𝑚, 𝑟 ) to the IND-CCA2
challenger and receives 𝐶∗ = E𝑒𝑛𝑐 (𝑝𝑘𝑟𝑒𝑔,𝑚𝑏

, 𝑟𝑛), where 𝑏 is the
bit chosen by the IND-CCA2 challenger. B replaces 𝐶𝑖𝑑 included
in 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 with 𝐶∗. B return 𝑏 ′, which A outputs as the guess

in the IND-CCA2 experiment. We know that when 𝑏 = 0, A’s
view of the interaction is distributed identically to that of 𝑒𝑥𝑝1.
And when 𝑏 = 1, A’s view represents the 𝑒𝑥𝑝1 in which one ci-
phertext 𝐶𝑖𝑑 has been replaced. Based on a standard hybrid argu-
ment over each of the 𝑞𝑚 ciphertexts, we can conclude that over
the randomness of the experiment, B must succeed in the IND-
CCA2 experiment with the advantage of at least 𝜖/𝑞𝑚 . Therefore,
|𝐴𝑑𝑣𝑒𝑥𝑝𝑓 𝑖𝑛𝑎𝑙 −𝐴𝑑𝑣𝑒𝑥𝑝1 | ≤ 𝑞𝑚 · 𝐴𝑑𝑣𝑒𝑛𝑐 .

B.2 Proof of identity proof unforgeability
TheoRem B.2. Assuming that the𝐶ℎ𝑎𝑠ℎ scheme is collision resis-

tant, trapdoor collision and semantic security, the NIZK scheme is
perfectly zero-knowledge and simulation sound extractable, 𝑔𝑒𝑛(·) is
one-wayness, then, our scheme

∏
described in Algorithm 1 satisfies

identity proof unforgeability.

From experiment 𝐸𝑥𝑝𝐼𝐷𝑃−𝑈𝑁𝐹
A,Π (𝜆), we can observe that A suc-

ceeds only if it outputs (𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗
𝑖𝑑
) such that: (i) 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
∉ 𝑃 ;

(ii) 𝑉𝑒𝑟𝑝𝑟𝑜𝑜 𝑓 (𝑝𝑝, 𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗𝑖𝑑 ) = 1; (iii) 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑∗ belongs to the
user whose identity is 𝑖𝑑 . We define the two disjoint events which
A succeeds: (i) 𝐸𝑣𝑒𝑛𝑡 , A succeeds, and 𝑝𝑢𝑏∗ ∈ 𝑇𝑝𝑢𝑏 ; (ii) 𝐸𝑣𝑒𝑛𝑡 , A
succeeds, and 𝑝𝑢𝑏∗ ∉ 𝑇𝑝𝑢𝑏 .

Obviously, 𝐴𝑑𝑣𝐼𝐷𝑃−𝑈𝑁𝐹
𝐴,Π = 𝑃𝑟 [𝐸𝑣𝑒𝑛𝑡] + 𝑃𝑟 [𝐸𝑣𝑒𝑛𝑡]. Define 𝜖1 =

𝑃𝑟 [𝐸𝑣𝑒𝑛𝑡] and 𝜖2 = 𝑃𝑟 [𝐸𝑣𝑒𝑛𝑡].
When 𝐸𝑣𝑒𝑛𝑡 occurs, we construct the algorithm B. It usesA as

a subroutine, and solves the one-wayness of 𝑔𝑒𝑛(·). Let 𝜀 be the
NIZK extractor for A. The algorithm B works as follows.

1. B randomly selects 𝑖 ∈ {1, ..., 𝑛}.
2. B performs the experiment 𝐸𝑥𝑝𝐼𝐷𝑃−𝑈𝑁𝐹

A,Π (𝜆) with A to ob-
tain (𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
).

3. B runs the 𝜀 (𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝜋∗𝑝𝑟𝑜𝑜 𝑓 ) to obtain𝑤𝑝𝑟𝑜𝑜 𝑓 = {𝑝𝑎𝑡ℎ∗
𝑖𝑑
,

𝐶𝐻∗
𝑖𝑑
, 𝑝𝑘∗

𝑐ℎ𝑎𝑠ℎ
, 𝑠𝑘∗

𝑐ℎ𝑎𝑠ℎ
, 𝑝𝑟𝑖𝑣∗, 𝑟∗, 𝑟𝑛∗}.

4. If 𝑝𝑢𝑏∗ = 𝑝𝑢𝑏𝑖 , then B outputs 𝑝𝑟𝑖𝑣∗; otherwise, B aborts.
Because the index 𝑖 is selected at random,B succeeds with prob-

ability 𝜖1/𝑛. Because of the one-wayness of the 𝑔𝑒𝑛(·), 𝜖1 must be
negligible in 𝜆.

When 𝐸𝑣𝑒𝑛𝑡 occurs, we construct algorithm Z. It uses A as a
subroutine and finds collision for the chameleon hash scheme. Z
sends (𝑐ℎ𝑎𝑠ℎ𝑠𝑒𝑡, 𝑝𝑟𝑜𝑜 𝑓𝑖𝑑 ) toO𝑟𝑒𝑔 , and obtains 𝑃𝑐ℎ𝑎𝑠ℎ = {𝐶𝐻𝑖𝑑1

, ...,
𝐶𝐻𝑖𝑑𝑘 } from the oracle O𝑟𝑒𝑔 , where 𝑘 ≪ 𝜆. The set 𝑃𝑐ℎ𝑎𝑠ℎ includes
the chameleon hash 𝐶𝐻𝑖𝑑 of the user whose identity is 𝑖𝑑 . The al-
gorithmZ performs as follows.

1.Z randomly selects 𝑖 ∈ {1, ..., 𝑘}.
2. Z performs the experiment 𝐸𝑥𝑝𝐼𝐷𝑃−𝑈𝑁𝐹

A,Π (𝜆) with A to ob-
tain (𝑝𝑢𝑏∗, 𝑝𝑟𝑜𝑜 𝑓 ∗

𝑖𝑑
).

3.Z runs the 𝜀 (𝑣𝑘𝑝𝑟𝑜𝑜 𝑓 , 𝜋∗𝑝𝑟𝑜𝑜 𝑓 ) to obtain𝑤𝑝𝑟𝑜𝑜 𝑓 = {𝑝𝑎𝑡ℎ∗
𝑖𝑑
,

𝐶𝐻∗
𝑖𝑑
, 𝑝𝑘∗

𝑐ℎ𝑎𝑠ℎ
, 𝑠𝑘∗

𝑐ℎ𝑎𝑠ℎ
, 𝑝𝑟𝑖𝑣∗, 𝑟∗, 𝑟𝑛∗}.

4. If 𝐶𝐻∗
𝑖𝑑

= 𝐶𝐻𝑖𝑑𝑖 , then Z outputs (𝑝𝑟𝑖𝑣∗, 𝑟∗); otherwise, B
aborts.

Because the index 𝑖 is selected at random,Z succeeds with prob-
ability 𝜖2/𝑘 . Furthermore, because of the collision resistance of the
chameleon hash scheme, 𝜖2 must be negligible in 𝜆.
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