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Abstract—SNOW 3G is one of the core algorithms for confidentiality
and integrity in several 3GPP wireless communication standards, includ-
ing the new Next Generation (NG) 5G. It is believed to be resistant to
classical cryptanalysis. In this paper, we show that SNOW 3G can be
broken by a fault attack based on bitstream modification. By changing
the content of some look-up tables in the bitstream, we reduce the non-
linear state updating function of SNOW 3G to a linear one. As a result,
it becomes possible to recover the key from the keystream. To our best
knowledge, this is the first successful bitstream modification attack on
SNOW 3G. We propose a countermeasure which blows-up the number of
candidate points for fault injection, making the presented attack infeasible
in practice. Index Terms—SNOW 3G, stream cipher, fault attack, FPGA,
bitstream modification, reverse engineering.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are used in many
applications, including data centers, automotive, aerospace, defense,
medical, wired and wireless communications. Many of these ap-
plications require cryptographic protection of data. This brings the
need for evaluating physical security of FPGA implementations of
cryptographic algorithms. It is particularly important to evaluate the
algorithms recommended by standards. In this paper, we focus on
SNOW 3G stream cipher which is the core of UEA2 and UIA2 algo-
rithms in 3G UMTS standard, 128-EEA1 and 128-EIA1 algorithms
in 4G LTE standard, and 128-NEA1 and 128-NIA1 algorithms in
the new NG 5G standard. The popularity of SNOW 3G is to a large
extent due to its known resistance to classical cryptanalysis [2]–[6].

One of the most popular type of physical attacks on FPGAs is
reverse engineering of the bitstream. Reverse engineering enables
copying designs which cost millions of dollars to develop [7].

Reverse engineering is difficult to stop. One of the countermeasures
is obfuscation of the bitstream. For example, for Look-Up Table
(LUT)-based FPGAs, the truth table of the Boolean function defining
a k-input LUT is not stored as one block of 2k consecutive bits in
the bitstream. Rather, it is first permuted and then partitioned into
several blocks which are located on given offsets from each other.
Obfuscation algorithms are proprietary and kept secret. Unfortunately,
history shows that secrecy is not sufficient for assuring algorithm’s
security.

Several reverse engineering tools have been created for older
Xilinx FPGA families [8]–[12]. A full Verilog-to-bitstream flow has
been developed for Lattice iCE40 [13]. Last year, information about
the bitstream format of the latest Xilinx series 7 FPGA has been
revealed [14], [15].

Bitstream encryption is yet another countermeasure which, in
theory, should protect against reverse engineering. In reality, however,
security of encryption (or any other cryptographic algorithm) is not
greater than security of its secret key storage/generation mechanism.
It is known that the encryption key used for the Advanced Encryption
Standard (AES)-256 based encryption of bitstreams in Altera and
Xilinx FPGAs can be extracted by a side-channel attack [16]–[18].

A short version of this paper was presented DATE’2020 conference [1],
9-13 March 2020, Grenoble, France.

Cryptographically secure methods such as Message Authentication
Codes (MACs) or digital signatures can be used to assure bitstream
authenticity and integrity. However, if we take a closer look on how
these methods are currently implemented in FPGAs, we can see that
they are vulnerable to physical attacks. For example, in Xilinx series
7 FPGA, the MAC-then-encrypt approach is used. This means that
a bitstream B is first authenticated by computing its 256-bit MAC
(HMAC) with a key KA. The bitstream with the MAC appended

is then encrypted with a key KE . The encryption key KE is
stored on-chip. However, the authentication key KA is stored in the
bitstream, in two places (see Fig. 1). This method of storing KA

is believed to be secure due to of the follow-up encryption step.
However, since the encryption key KE can be extracted by a side-
channel attack [16]–[18], the encrypted bitstream can be decrypted,
revealing KA.

To summarize, currently available methods do not seem to be
sufficient to protect against reverse engineering of FPGA bitstreams.
Apart from the IP theft, reverse engineering enables the attacker to
do meaningful modifications of the bitstream. This attack vector has
not been thoroughly explored yet.

Previous Work. In several works [19]–[21] it has been shown that
direct bitstream manipulation is feasible in practice. Swierczynski et
al. pioneered attacks in which all LUTs implementing the AES S-box
in the bitstream are modified to weaken the AES algorithm [22], [23].
Our attack is based on the same idea except that, in our case, LUTs
implementing a specific XOR gate rather than S-boxes are modified.
So, our fault injection point is of finer granularity. Cryptographic
designs typically contain many XORs, thus finding a specific one is
challenging.

We are not aware of any previous bitstream modification attack on
SNOW 3G. Three other types of fault attacks have been presented.
In [24], an attack using 22 transient fault injections to recover the
key of SNOW 3G is described. In [25] it is stated that stream
ciphers, including SNOW 3G, may be vulnerable to faults caused
by intentional electromagnetic interference. In [26], a cache timing
attack capable of recovering the internal state of SNOW 3G from
empirical timing data is described.

Our Contributions. The main contributions of this paper are:

• We present a fault attack on an FPGA implementation of SNOW
3G in which a stuck-at-0 fault is injected into a specific XOR
gate by changing the content of LUTs implementing the gate in
the bitstream. As a result,
SNOW 3G algorithm becomes weaker and its key can be
recovered from the keystream. To our best knowledge, this is
the first successful bitstream modification attack on SNOW 3G.

• We show that by exploring the bitstream in a key-independent
setting, we can reduce the complexity of some search tasks
from exponential to linear. This idea has not been exploited in
previous bitstream modification attacks.

• We created a tool which automatically finds a k-input LUT im-
plementing a given k-variable Boolean function and all Boolean
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Fig. 1. Xilinx bitstream format (Virtex-6/7) [28]. Area in blue is authenticated
and encrypted

functions within the same P equivalence class1 in the bitstream.
The tool is intended to assist in evaluating resistance of FPGAs
to reverse engineering and bitstream modification.

• We propose a countermeasure against the presented attack which
increases the number of candidate regions for fault injection
exponentially, making the presented attack infeasible in practice.

Paper Outline. The paper is organized as follows. Section II gives
a background on FPGA technology mapping. Section III reviews
the SNOW 3G design. Section IV describes a general strategy for
attacking FPGA implementations of encryption algorithms by bit-
stream modification. Section V presents features of the attack specific
for SNOW 3G. Section VI proposes countermeasures. Section VII
concludes the paper.

II. BACKGROUND

In this section, we give a brief introduction to FPGA technology
mapping, see [29] for more details.

A. Notation

Let N = (V, E) denote a Boolean network, where V represents a
set of gates and primary inputs and E ⊆ V × V describes the nets
connecting the gates. Fanin(v) ⊂ V and Fanout(v) ⊂ V sets of
a node v ∈ V are defined as Fanin(v) = {u |(u, v) ∈ E} and
Fanout(v) = {u |(v, u) ∈ E}, respectively. PI ⊂ V and PO ⊂ V
denote the primary inputs and outputs of N , respectively.

The set of all nodes in the transitive fanin/fanout of v are denoted
by TrFanin(v) and TrFanout(v), respectively.

B. FPGA technology mapping

An FPGA consists of an array of programmable logic blocks,
programmable interconnect, and input/output pads. Many of the
commercial FPGAs use LUT based logic blocks (Xilinx, Intel). A
k-input LUT, k-LUT, can be programmed to implement any Boolean
function of up to k variables.

The technology mapping problem in the case of k-LUT-based
FPGAs consists of finding a functionally equivalent k-LUT network
for a general Boolean network N = (V, E) [29].

Algorithms for FPGA technology mapping use different strategies
for finding the best k-LUT network for N and different objective

1Two Boolean functions belong to the same P equivalence class, if f can
be transformed into g through permutation of inputs [27].
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++

+

+

++

+

R1 R2 R3

S15 S11 S5 S0S2...

SB2SB1

-1

FSM

LFSR

v

Fig. 3. Block diagram of SNOW 3G during initialization

function, such as minimal area [30] or depth [31], or both [32] easy
routability [33], or power minimization [34].

A typical FPGA technology mapper traverses nodes v ∈ V in
backwards topological order from POs to PIs, and compute LUTs
rooted in v by finding k-feasible cuts for v [32]. A set of nodes
C ⊂ V is a cut of a node v if any path from a PI to v passes
through at least one node in C. Node v itself is a trivial cut. A
cut C is called k-feasible if |C| ≤ k. Each k-feasible cut C of
v corresponds to a k-LUT which covers nodes in TrFanin(v) ∩
(
⋃
∀c∈C TrFanout(c)) and has nodes of C as inputs and v as output.

Cuts can be computed using the maximum flow algorithm, or cut
enumeration technique [35]. Typically FPGA technology mappers re-
use vertices which are already mapped while searching for k-feasible
cuts.

III. SNOW 3G DESIGN DESCRIPTION

SNOW 3G belongs to the class of binary additive stream ciphers.
A binary additive stream cipher generates a stream of pseudo-random
symbols, called the keystream, Z, based on a secret key K and an
initialization vector, IV . To encrypt, the keystream is combined with
the plaintext, typically by the bitwise XOR. To decrypt, the ciphertext
is XORed with the keystream. SNOW 3G is a word-oriented stream
cipher. It generates a 32-bit word of keystream at each clock cycle.

The main blocks of SNOW 3G design are a Linear Feedback Shift
Register (LFSR) and a Finite State Machine (FSM) (see Fig. 2). The
gates denoted by “⊕” and “�” stand for the bitwise XOR operation
and the integer addition modulo 232, respectively. The gates denoted
by “α �”/“α−1 �” perform a byte shift of the 32-bit input word to
the left/right and then XOR the result with the output of the 8-bit into
32-bit mapping MULα/DIVα whose definition can be found in [36].

The state of the LFSR is a vector consisting of the sixteen 32-
bit stages S = (s0, s1, . . . , s15). The LFSR’s feedback function is
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defined by a primitive polynomial over GF (232). The FSM consists
of the three 32-bit registers R1, R2 and R3. The register R1 is
updated as (s5 ⊕ R3) � R2. The registers R2 and R3 are updated
by the S-boxes SB1 and SB2, respectively, their definition can be
found in [36].

The 32-bit words of the keystream, zt, are produced by XORing
the content of the stage s0 with the FSM output word W computed
as W = (s15 �R1)⊕R2.

At the initialization stage, the LFSR is loaded with a combination
of an 128-bit key K consisting of four 32-bit words k0, k1, k2, k3
and an 128-bit IV consisting of four 32-bit words iv0, iv1, iv, iv3.
The combination γ(K, IV ) is defined as follows:

s15 = k3 ⊕ iv0 s7 = k3
s14 = k2 s6 = k2
s13 = k1 s5 = k1
s12 = k0 ⊕ iv1 s4 = k0
s11 = k3 ⊕ 1 s3 = k3 ⊕ 1
s10 = k2 ⊕ 1⊕ iv s2 = k2 ⊕ 1
s9 = k1 ⊕ 1⊕ iv3 s1 = k1 ⊕ 1
s8 = k0 ⊕ 1 s0 = k0 ⊕ 1

where 1 is the all-1s word.
The registers R1, R2 and R3 of the FSM are loaded with 0s. The

output of the FSM is connected to the XOR gate as shown in Fig. 3.
Then, the following two-step rounds are repeated 32 times:

1) The FSM is clocked, producing W .
2) The LFSR is clocked, consuming W .

No keystream is generated during the initialization.

IV. GENERAL STRATEGY

In this section, we describe a general strategy for attacking
an FPGA implementation of an binary additive stream cipher by
bitstream modification. In principle, other types of cryptographic
algorithms, e.g. block ciphers or hash functions, can be attacked
similarly.

A. Attack Model

We use the attack model commonly used for bitstream modification
attacks, namely we assume that:

1) The encryption algorithm under attack, E, is implemented in
an SRAM-based FPGA.

2) The attacker has the bitstream B implementing E.
3) The attacker has a physical access to the FPGA.
4) B is neither encrypted, nor authenticated.

B. Main steps

The presented attack consists of the following steps:

1) Based on the cryptographic algorithm E under attack, decide
on target gate v for fault injection and the type of fault α to
be injected.

2) Guess which k-variable Boolean function f implements v in
the netlist N = (V, E) realizing E.

3) Find in the bitstream B the set of all candidates into k-LUTs
implementing f .

4) Verify if the guess is correct.
5) Repeat the steps 2-4 until the guess is correct.

Algorithm 1 An algorithm for finding k-LUTs implementing a given
Boolean function f in an FPGA bitstream.
Name: FINDLUT(B, f, k, d, r)
Input: Bitstream B = (b0, . . . , b|B|−1), bi ∈ {0, 1}, Boolean function f of up to

k variables, number of LUT’s inputs k, offset d, number of partitions r
Output: Set L of candidates into k-LUTs implementing f in B
1: L = ∅;
2: Pk = COMPUTEPERMUTATIONS(k);
3: Pr = COMPUTEPERMUTATIONS(r);
4: for each p ∈ Pk do
5: F = GETTRUTHTABLE(l, p);
6: B = ξ(F ); /* permutes the truth table F */
7: B = (B1||B2|| . . . ||Br), |Bi| = |Bj |, ∀i, j ∈ {1, 2, . . . , r};
8: m = 2k/r − 1;
9: for each i from 0 to |B| − (r − 1)d do

10: if i is not marked then
11: for each (j1, j2, . . . , jr) ∈ Pr do
12: if ((bi, . . . , bi+m) = Bj1

)&((bi+d, . . . , bi+d+m) =
Bj2

)& . . .&((bi+(r−1)d, . . . , bi+(r−1)d+m) = Bjr ) then
13: L = L ∪ {l};
14: MARK(i);
15: end if
16: end for
17: end if
18: end for
19: end for
20: return L

C. Finding LUTs in a bitstream

The pseudo-code of the algorithm for finding k-LUTs imple-
menting a given Boolean function in the bitstream is shown as
Algorithm 1. FINDLUT() takes as input the following parameters:

1) Bitstream under attack, B.
2) Target Boolean function f : {0, 1}k → {0, 1}.
3) Number of LUT inputs k.
4) Offset d (depends on the FPGA).
5) Number of partitions r (depends on the FPGA).

It returns a set L of candidate LUTs implementing f in B.
First, the truth table F = (F [0], F [1], . . . , F [2k − 1]), F [i] ∈
{0, 1}, for i ∈ {0, 1, . . . , 2k− 1} of the function f is derived. Then,
F is mapped according to the obfuscation function which is specific
for a given FPGA family. The obfuscation is typically performed
in two steps. First, F is permuted using a bijective mapping ξ :
F → B of type {0, 1}k → {0, 1}k. The resulting vector B =
(B[0], B[1], . . . , B[2k − 1]) is then partitioned into r sub-vectors
B1, B2, . . . , Br of equal size which are placed on a fixed offset d
from each other in the bitstream, in varying order.

For Xilinx 7 Series FPGAs which we use in our experiments the
obfuscation is implemented as follows. The truth table F is permuted
according to the mapping ξ is defined in Table I [14]. The resulting
vector B is partitioned into r = 4 sub-vectors B1, B2, B3, B4 of
equal size

B1 = (B[0], . . . , B[15),
B2 = (B[16], . . . , B[31]),
B3 = (B[32], . . . , B[47),
B4 = (B[48], . . . , B[63]).

which are placed on the fixed offset d = 404 from each other in the
bitstream, in two different orders.

1) B1, B2, B3, B4 for functions implemented in SLICEL LUTs
2) B4, B3, B1, B2 for functions implemented in SLICEM LUTs.

To the best of our knowledge, this is the first time this information
has been revealed.

If a LUT is found in the bitstream, its it added to the set L of
previously computed candidate LUTs.

The set L returned by FINDLUT() may contain false positives.
We verify if L ⊆ L is the set of LUTs implementing f in B as
follows:
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TABLE I
OBFUSCATION FUNCTION OF XILINX 7 SERIES FPGA [14]

a6 a5 a4 a3 a2 a1 F B = ξ(F )
0 0 0 0 0 0 F[0] B[63]
0 0 0 0 0 1 F[1] B[47]
0 0 0 0 1 0 F[2] B[62]
0 0 0 0 1 1 F[3] B[46]
0 0 0 1 0 0 F[4] B[61]
0 0 0 1 0 1 F[5] B[45]
0 0 0 1 1 0 F[6] B[60]
0 0 0 1 1 1 F[7] B[44]
0 0 1 0 0 0 F[8] B[15]
0 0 1 0 0 1 F[9] B[31]
0 0 1 0 1 0 F[10] B[14]
0 0 1 0 1 1 F[11] B[30]
0 0 1 1 0 0 F[12] B[13]
0 0 1 1 0 1 F[13] B[29]
0 0 1 1 1 0 F[14] B[12]
0 0 1 1 1 1 F[15] B[28]
0 1 0 0 0 0 F[16] B[59]
0 1 0 0 0 1 F[17] B[43]
0 1 0 0 1 0 F[18] B[58]
0 1 0 0 1 1 F[19] B[42]
0 1 0 1 0 0 F[20] B[57]
0 1 0 1 0 1 F[21] B[41]
0 1 0 1 1 0 F[22] B[56]
0 1 0 1 1 1 F[23] B[40]
0 1 1 0 0 0 F[24] B[11]
0 1 1 0 0 1 F[25] B[27]
0 1 1 0 1 0 F[26] B[10]
0 1 1 0 1 1 F[27] B[26]
0 1 1 1 0 0 F[28] B[9]
0 1 1 1 0 1 F[29] B[25]
0 1 1 1 1 0 F[30] B[8]
0 1 1 1 1 1 F[31] B[24]
1 0 0 0 0 0 F[32] B[55]
1 0 0 0 0 1 F[33] B[39]
1 0 0 0 1 0 F[34] B[54]
1 0 0 0 1 1 F[35] B[38]
1 0 0 1 0 0 F[36] B[53]
1 0 0 1 0 1 F[37] B[37]
1 0 0 1 1 0 F[38] B[52]
1 0 0 1 1 1 F[39] B[36]
1 0 1 0 0 0 F[40] B[7]
1 0 1 0 0 1 F[41] B[23]
1 0 1 0 1 0 F[42] B[6]
1 0 1 0 1 1 F[43] B[22]
1 0 1 1 0 0 F[44] B[5]
1 0 1 1 0 1 F[45] B[21]
1 0 1 1 1 0 F[46] B[4]
1 0 1 1 1 1 F[47] B[20]
1 1 0 0 0 0 F[48] B[51]
1 1 0 0 0 1 F[49] B[35]
1 1 0 0 1 0 F[50] B[50]
1 1 0 0 1 1 F[51] B[34]
1 1 0 1 0 0 F[52] B[49]
1 1 0 1 0 1 F[53] B[33]
1 1 0 1 1 0 F[54] B[48]
1 1 0 1 1 1 F[55] B[32]
1 1 1 0 0 0 F[56] B[3]
1 1 1 0 0 1 F[57] B[19]
1 1 1 0 1 0 F[58] B[2]
1 1 1 0 1 1 F[59] B[18]
1 1 1 1 0 0 F[60] B[1]
1 1 1 1 0 1 F[61] B[17]
1 1 1 1 1 0 F[62] B[0]
1 1 1 1 1 1 F[63] B[16]

1) Use the FPGA to generate a keystream Z.
2) For each l ∈ L, modify the content of l to lα in B, where α

is the fault to inject.
3) Load Bα into the FPGA.
4) Use the FPGA to generate a keystream Zα.
5) Analyze Zα to extract the key K.
6) Simulate the keystream Z∗ using a software model. If Z∗ = Z,

K is correct.

Note that FPGAs usually use Cyclic Redundancy Check (CRC) to
verify integrity of bitstream frames. However, since CRC generator
polynomials are public, CRC checkbits can re-computed and replaced
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Fig. 4. Xilinx 6-LUT structure [14]

in the modified bitstream Bα. Alternatively, the CRC check can be
disabled. In our experiments, we used the latter approach.

V. ATTACK ON SNOW 3G

A. Verifying LUTs

We applied the strategy described in the previous section to a
design of SNOW 3G implemented in a Xilinx Artix-7 FPGA. In the
experiments, we used a VHDL implementation of SNOW 3G kindly
provided to us by the authors of SNOW 3G. The C code from [37]
was used as the software model of SNOW 3G.

B. Choosing fault injection point

From SNOW 3G design description in Section III, we can see that,
if we stuck the output word of the FSM to 0 during the initialization,
the FSM will not affect the next state of the LFSR. As a result,
the non-linear state updating function of the LFSR is reduced to a
linear one L defined by the LFSR’s characteristic polynomial over
GF (232). Such a fault can be injected by fixing to constant-0 the
XOR gate marked by v in Fig. 2 and 3. Note that the SNOW 3G
is a 32-bit word-oriented cipher. Therefore, v represents a set of 32
2-input XOR gates.

In presence of the fault α : v = 0, the LFSR goes through the
following states during the initialization:

S0 = γ(K, IV )
S1 = L(γ(K, IV ))
. . .
S32 = L32(γ(K, IV ))

where Si is the LFSR state at the ith initialization round, for i ∈
{0, 1, . . . , 32}, and γ(K, IV ) is defined in Section III.

If we let SNOW 3G generate 16 words of the keystream in presence
of the fault α : v = 0, the result is the LFSR state S33. We can reverse
the LFSR 33 steps backwards, from S33 to S0, to get γ(K, IV ) and
hence the key K. An LFSR with a known characteristic polynomial
is easy to reverse [38].

C. Finding LUTs

We implemented the algorithm FINDLUT() in order to automate
the search for LUTs in the bitstream. For bitstreams of size less
than 10MB and k = 6, our tool takes less than 4 sec to execute
for a given f . Table II shows results for different candidate LUTs
covering the target gate v. After verifying the candidates, we found
that three LUTs listed in the last column contain the target gate v. As
we mentioned in Section II-B, FPGA technology mappers usually re-
use nodes which are already mapped while searching for k-feasible
cuts. This means that nodes are often covered by more than one LUT.
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TABLE II
NUMBER OF OCCURRENCES OF DIFFERENT FUNCTIONS IN THE

BITSTREAM.

Output Boolean function implemented by 6-LUT n LUT
f1 = (a1 ⊕ a2 ⊕ a3)a4a5a6 12
f2 = (a1 ⊕ a2 ⊕ a3)a4a5a6 81 LUT1

f3 = (a1 ⊕ a2 ⊕ a3)a4a5a6 52
f4 = (a1 ⊕ a2 ⊕ a3)a4a5a6 6

zt f5 = (a1 ⊕ a2 ⊕ a3)a4a5 1
f6 = (a1 ⊕ a2 ⊕ a3)a4a5 12
f7 = (a1 ⊕ a2 ⊕ a3)a4a5 1
f8 = (a1 ⊕ a2)a3a4a5 ⊕ a6 24 LUT2

f9 = (a1 ⊕ a2)a3a4a5 ⊕ a6 3
f10 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f11 = (a1 ⊕ a2)a3a4a5 ⊕ a6 3
f12 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f13 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0

s15 f14 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f15 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f16 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f17 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f18 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f19 = (a1 ⊕ a2)a4 ⊕ a3a6 8 LUT3

f20 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f21 = (a1 ⊕ a2)a4 ⊕ a3a6 2

Next, we explain how we guessed the candidate functions listed in
Table II. The FPGAs used in our experiments use 6-input dual-output
LUTs (see Fig. 4). These LUTs can implement either a single Boolean
function of 6 independent variables, or two Boolean functions of 5
dependent variables.

Based on the block diagram of SNOW 3G shown in Fig. 2 and 3,
we can conclude that for both, initialization and keystream generation
modes, v is likely to be covered by a k-LUT which implements an
XOR of three or more inputs in a combination with multiplexers
(MUXes) which switch between different modes of operation. Thus,
the number of inputs in the XOR is bounded by the k − c, where c
is the number of control variables.

From the specification of SNOW 3G [36], it is clear that c ≥ 2.
Apart from the initialization and keystream generation, the cipher
should be able to load the values of key K and IV . Table II lists
possible Boolean expressions for c = 2 and 3. Since we do not
know how control variables are encoded, we need to consider differ-
ent possibilities. However, since FINDLUT() evaluates all possible
permutations of k inputs, it is sufficient to consider c + 1 choices
rather than 2c.

The next subsection describes how we verified the candidates.

D. Verifying LUTs

The target gate v is contained in two paths: to the output zt and
to the feedback loop. First, we verify the candidates with the largest
number of matches.

1) Path to zt: For the path to zt, the candidate f2 has 81 matches,
|Lf2 | = 81. To check if a LUT l covers v, for each l ∈ Lf2 , we
modify the content of l in B from f2 to the constant-0, α : f2 = 0,
load the faulty bitstream Bα into the FPGA, and compute w words
of the keystream (we used w = 16). If the ith bit of each 32-bit word
of the keystream is 0, then l passes the check. All elements of Lf2
which overlap with l in B are removed from Lf2 (because two valid
LUTs cannot overlap in a bitstream). If l does not pass the check we
remove l from Lf2 .

In this way we identified 32 LUTs of Lf2 which implement the
ith XOR of v on the path to zt. In the sequel, we refer to these LUTs
as LUT1[i], for i ∈ {1, 2, . . . , 32}.

2) Feedback loop path: For the feedback loop path, none of the
candidate LUTs in Table II has 32 or more matches. However, the
sum of matches for f8 and f19 is |Lf8 | + |Lf19 | = 32. This is

expected since the operations “α �”/“α−1 �” perform a byte shift
of the 32-bit input word to the left/right and then XOR the result
with the output of the 8-bit into 32-bit mapping MULα/DIVα. Due
to the byte shift, the implementations of SNOW 3G may process 24
bits of the word in one way and the remaining byte in another.

Note that the sum of matches for f9, f11 and f21 is also 8.
However, by examining their byte positions in the bitstream we can
see that they are the same as for f19. Therefore, we make a hypothesis
that 24 LUT2 corresponding to f8 and 8 LUT3 corresponding to f19
implement v on the feedback loop path.

E. Modifying the bitstream

To check our hypothesis, we need to apply the procedure described
in Section V-A to the faulty bitstream Bα in which the fault α : v = 0
is injected into 32 LUT1[i], ∀i ∈ {1, 2, . . . , 32}, 24 LUT2 and 8
LUT3. We know that the fault α : v = 0 can be injected into LUT2

and LUT3 by modifying their functions as:

f8 = (a1 ⊕ a2)a3a4a5 ⊕ a6 → fα8 = a6
f19 = (a1 ⊕ a2)a4 ⊕ a3a6 → fα19 = a3a6,

(1)

but for the LUT1[i] we do not know which variables of f2 = (a1 ⊕
a2⊕ a3)a4a5a6 correspond to the inputs of the gate v. Clearly, they
are one of the pairs (a1, a2), (a1, a3) or (a2, a3). The 3rd variable of
the XOR corresponds to s0. But we cannot distinguish among XOR’s
inputs by analyzing keystream since the key is unknown and hence
keystream cannot be predicted. So, all possible 332 combinations
have to be considered to find which of the pairs (a1, a2), (a1, a3) or
(a2, a3) are inputs of v.

However, if we make the keystream key-independent, we will be
able to distinguish among XOR’s inputs in constant time by com-
puting two keystreams. Key-independence gives us another degree of
freedom in exploring bitstreams. This idea has not been exploited in
previous bitstream modification attacks.

1) Making keystream key-independent: Keystream can be made
key-independent by loading the all-0 vector instead of γ(K, IV ) into
the LFSR at the initialization stage. On one hand, the LFSR initialized
to the all-0 state will remain in the all-0 state if the feedback path
contains the fault α : v = 0. On the other hand, the FSM initialized
to the all-0 state will end up in a non-0 state, independently of the
LFSR state. This allows us to distinguish between the input s0, which
always has 0 value, and the inputs of v.

Let Bα1,β be the bitstream B with the two faults injected. The
fault β causes the all-0 vector to be loaded into the LFSR instead of
γ(K, IV ). We explain how β can be injected in the next subsection.
The fault α1 sets v = 0 in all LUTs implementing v on the
feedback path by modifying their functions as (1). In its essence,
the modification (1) disconnects the FSM from the LFSR during the
initialization.

To distinguish between the input s0 and the inputs of v, the
following loop is repeated. First we check if (a1, a2) are the inputs
of v in LUT1[i], for all i ∈ {1, 2, . . . , 32}:

1) Modify the content of all LUT1[i] in Bα1,β from f2 = (a1 ⊕
a2 ⊕ a3)a4a5a6 to fα2

2 = a3a4a5a6, where α2 : v = 0 in
LUT1[i].

2) Load the faulty bitstream Bα1,α2,β into the FPGA.
3) Compute w words of the keystream.

If the ith bit of each word of the keystream is 0, (a1, a2) are the
inputs of v in LUT1[i]. Otherwise, repeat the steps 1-3 for the pair
(a1, a3). If the ith bit of each word of the keystream is 0, (a1, a3)
are the inputs of v in LUT1[i]. Otherwise, (a2, a3) are the inputs of
v in LUT1[i].
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TABLE III
KEY-INDEPENDENT KEYSTREAM GENERATED BY SNOW 3G WHEN THE
FSM OUTPUT IS STUCK TO 0 DURING THE INITIALIZATION STAGE AND

THE LFSR IS INITIALIZED TO ALL-0 STATE.

t zt
1 a1fb4788
2 e4382f8e
3 3b72471c
4 33ebb59a
5 32ac43c7
6 5eebfd82
7 3a325fd4
8 1e1d7001
9 b7f15767

10 3282c5b0
11 103da78f
12 e42761e4
13 c6ded1bb
14 089fa36c
15 01c7c690
16 bf921256

The above procedure requires two keystream computations to find
which variables of f2 correspond to the inputs of v in LUT1[i], for
all i ∈ {1, 2, . . . , 32}.

2) Loading the LFSR with 0s: The fault which causes the LFSR
to load the all-0 vector can be injected by finding in the bitstream
B all MUXes used to load γ(K, IV ) into the LFSR and modifying
them to load 0s instead. If the key K and IV are loaded in parallel,
each LFSR stage sj , j ∈ {0, 1, . . . , 14}, takes as input the output
of a MUX which has sj−1 as one input and the jth element of
γ(K, IV ) as another. Such a MUX can be implemented by 16 6-input
dual-output LUTs, LUTMUX2, each implementing a 2-to-1 MUX
functionality for each of the two outputs. This would result in a total
of 240 LUTs of type:

fMUX2 = a6(a1a2 + a1a3) + a6(a1a4 + a1a5),

where “+” in the Boolean OR, a6 is the input dedicated to switching
between the two outputs of a dual-output LUT (see Fig. 4), and a1
is the control input of the MUX. Note that, if the key is stored in
the bitstream, the above expression may get optimized. To load the
all-0 vector instead of the initial state γ(K, IV ), all LUTMUX2 are
modified to

fαMUX2 = a6a1a3 + a6a1a5,

where α : γ(K, IV ) = 0. The reduction above assumes that the
initial state γ(K, IV ) is loaded into the LFSR when the MUX control
input has value a1 = 1.

The LUTs implementing MUXes which load k3 ⊕ iv0 into the
stage s15 can be found by searching through all possible candidates
similarly to the procedure described in Section VC. Then, the LUTs
are modified to load 0 instead.

The FPGA loaded with the modified bitstream generates the
keystream shown in Table III. One can verify that the above
keystream is correct by simulating it using the software model of
SNOW 3G in which the LFSR is initialized to all-0 state and the
FSM output is stuck to 0 during the initialization stage.

3) Key extraction: After the fault α : v = 0 is injected into 32
LUT1[i], ∀i ∈ {1, 2, . . . , 32}, 24 LUT2 and 8 LUT3 by modifying
f2, f8 and f19 to fα2 , f

α
8 and fα19 as explained above, we load the

faulty bitstream Bα into the FPGA, compute the keystream Zα, and
recover the key K by analyzing Zα as described in Section V-B.

The FPGA loaded with Bα generates the keystream shown in
Table IV.

This keystream corresponds to the first LFSR state after the
initialization, S33. We can reverse the LFSR 33 steps backwards

TABLE IV
KEYSTREAM GENERATED BY SNOW 3G WHEN THE FSM OUTPUT IS

STUCK TO 0 DURING THE INITIALIZATION AND THE KEYSTREAM
GENERATION STAGES.

t zt
1 3ffe4851
2 35d1c393
3 5914acef
4 e98446cc
5 689782d9
6 8abdb7fc
7 a11b0377
8 5a2dd294
9 5deb29fa
10 c2c6009a
11 a82ee62f
12 925268ed
13 d04e2c33
14 3890311b
15 e8d27b84
16 a70aeeaa

TABLE V
THE RECOVERED INITIAL LFSR STATE S0 .

i si
0 d429ba60
1 7d3a4cff
2 6ad3b6ef
3 b77e00b7
4 2bd6459f
5 82c5b300
6 952c4910
7 4881ff48
8 d429ba60
9 6131b8a0

10 b5cc2dca
11 b77e00b7
12 868a081b
13 82c5b300
14 952c4910
15 a283b85c

to get the initial state S0 shown in Table V. From s4 − s7, we can
conclude that the key is:

2bd6459f 82c5b300 952c4910 4881ff48

One can verify that the key is correct by simulating the keystream
using a software model of SNOW 3G.

VI. COUNTERMEASURES

As we mentioned in Section II-B, FPGA technology mappers
usually re-use nodes which are already mapped while searching for
k-feasible cuts. This often makes the size of LUTs larger (LUT’s
size is the number of nodes covered by a LUT). Large LUTs have a
distinct structure and may be an easier target for reverse engineering.

We recommend FPGA designers to constrain technology mappers
to generate a k-LUT cover with smaller LUTs, ideally covering only
one node. In this case locating a common gate such as an XOR in
a bitstream becomes a much more difficult problem. For example,
in Xilinx products, such constraints can be applied with the use
of primitives like KEEP or DONT TOUCH in the source code. To
minimize performance penalty due to the non-optimal depth of the
k-LUT cover, critical paths may be covered with larger LUTs and
non-critical paths with smaller ones.

As a proof of concept, we applied the proposed countermeasure
to SNOW 3G and evaluated its resistance. In the unprotected SNOW
3G implementation, the critical path (6.313 ns delay) is between the
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TABLE VI
NUMBER OF OCCURRENCES OF DIFFERENT FUNCTIONS IN THE

PROTECTED BITSTREAM.

Output Boolean function implemented by 6-LUT n
f1 = (a1 ⊕ a2 ⊕ a3)a4a5a6 20
f2 = (a1 ⊕ a2 ⊕ a3)a4a5a6 48
f3 = (a1 ⊕ a2 ⊕ a3)a4a5a6 28
f4 = (a1 ⊕ a2 ⊕ a3)a4a5a6 5

zt f5 = (a1 ⊕ a2 ⊕ a3)a4a5 0
f6 = (a1 ⊕ a2 ⊕ a3)a4a5 8
f7 = (a1 ⊕ a2 ⊕ a3)a4a5 17
f8 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f9 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f10 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f11 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f12 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f13 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0

s15 f14 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f15 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f16 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f17 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f18 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f19 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f20 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f21 = (a1 ⊕ a2)a4 ⊕ a3a6 0

registers R1 and R2, where S-box is evaluated by a block RAM
(BRAM) lookup. The feedback path from s15 to s15 is not in the list
of the ten slowest paths. We constrained the six 32-bit XORs shown
in Fig. 2 to be covered by separate LUTs. Note that, as a result, the
path from MULα to s15 became critical (7.514 ns delay).

To evaluate the protected design, we first applied the strategy
described in Section V-C to find possible candidates covering the
target XOR gate v. The results are shown in Table VI. As one can
see, the obtained information is not useful.

Next, we wrote a program which finds all LUTs having a 2-
input XOR as one half of their truth table and any 5-variable
Boolean function as the other in the bitstream. The unconstrained
search over all byte positions in the bitstream returns 481 hits.
After experimenting with the functions in Table VI, we can guess
where LUTs are located in the bitstream and limit the search. The
constrained search over an interval of 200.000 byte positions (out of
the 3.825.888 possible ones) returns 203 hits.

The 32 LUTs implementing 32 XORs with output zt can be
pruned from the set of candidates using the approach described in
Section V-D. However, it does not seem possible to find which 32
out of 171 remaining candidates implement the target gate v without
exhaustively searching through the

(
171
32

)
= 4.9 × 1034 possible

choices. For each choice, all steps involved in making the bitstream
key-independent have to be repeated until we find the bitstream which
generates the keystream shown in Table III. This seems practically
infeasible.

VII. CONCLUSION

We demonstrated that it is possible to extract the key from some
FPGA implementations of SNOW 3G by the means of bitstream
modification. We proposed a countermeasure which increases the
number of candidate points for fault injection exponentially, making
the presented attack infeasible in practice.

Our results are expected to help FPGA designers protect their
products against reverse engineering and bitstream modifications.

Xilinx was notified about the results our work via
psirt@xilinx.com.
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