
1

Bitstream Modification Attack on SNOW 3G
Michail Moraitis Elena Dubrova

Department of Electronics, Royal Institute of Technology (KTH)
Electrum 229, 196 40 Stockholm, Sweden

{micmor,dubrova}@kth.se

Abstract—SNOW 3G is one of the core algorithms for confidentiality
and integrity in several 3GPP wireless communication standards, includ-
ing the new Next Generation (NG) 5G. It is believed to be resistant
to classical cryptanalysis. In this paper, we show that a key can be
extracted from an unprotected FPGA implementation of SNOW 3G by
a fault attack. The faults are injected by modifying the content of Look-
Up Tables (LUTs) directly in the bitstream. The main challenge is to
identify target LUTs whose modification reduces the non-linear state
updating function of SNOW 3G to a linear one. We present an algorithm
for finding all k-input LUTs implementing a given k-variable Boolean
function in the bitstream. We also introduce a key independent bitstream
exploration technique which reduces the complexity of some search tasks
from exponential to linear. This idea has not been exploited in previous
bitstream modification attacks. Finally, we propose a countermeasure
which makes the identification of target LUTs an intractable problem by
considerably increasing the number of candidates into target LUTs.

SNOW 3G, stream cipher, fault attack, FPGA, bitstream modification,
reverse engineering.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are used in many
applications, including data centers, automotive, aerospace, defense,
medical, wired and wireless communications. Many of these applica-
tions require cryptographic protection of data. This brings the need
for evaluating the physical security of FPGA implementations of
cryptographic algorithms. It is particularly important to evaluate the
algorithms recommended by standards. In this paper, we focus on
SNOW 3G stream cipher which is the core of UEA2 and UIA2 algo-
rithms in 3G UMTS standard, 128-EEA1 and 128-EIA1 algorithms
in 4G LTE standard, and 128-NEA1 and 128-NIA1 algorithms in
the new NG 5G standard. The popularity of SNOW 3G is to a large
extent due to its known resistance to classical cryptanalysis [2]–[6].

One of the most popular types of physical attacks on FPGAs is
the reverse engineering of bitstream. Reverse engineering enables
copying designs which cost millions of dollars to develop [7].

Reverse engineering is difficult to stop. One of the countermeasures
is using undisclosed, proprietary bitstream formats. For example,
in Xilinx 7 series FPGAs, the truth table of the Boolean function
defining a k-input LUT is not stored as one block of 2k consecutive
bits in the bitstream. Rather, it is first permuted and then partitioned
into several blocks that are located on given offsets from each other.
Unfortunately, history shows that secrecy is not sufficient for assuring
an algorithm’s security.

Several reverse engineering tools have been created for older Xilinx
FPGA families [8]–[12]. A full Verilog-to-bitstream flow has been
developed for Lattice iCE40 [13]. Last year, information about the
bitstream format of the latest Xilinx series 7 FPGA family has been
revealed [14], [15].

Bitstream encryption is yet another countermeasure which, in
theory, should protect against reverse engineering. In reality, however,
the security of encryption (or any other cryptographic algorithm)
is not greater than the security of its secret key storage/generation

A short 4-page version of this paper was presented at the Design, Automa-
tion and Test in Europe (DATE) conference, Grenoble, France, March 9-13,
2020 [1].

mechanism. The two biggest vendors in the SRAM-based FPGA
market, Xilinx and Altera use an Advanced Encryption Standard
(AES)-256 based encryption scheme for their bitstreams. So far, it
has been shown that this encryption can be broken through a side-
channel attack [16]–[18], through an optical probing attack [19] and
a thermal laser stimulation attack [20].

Cryptographically secure methods such as Message Authentication
Codes (MACs) or digital signatures can be used to assure bitstream
authenticity and integrity. However, if we take a closer look at how
these methods are currently implemented in FPGAs, we can see that
they are vulnerable to physical attacks. For example, in Xilinx series
7 FPGA, the MAC-then-encrypt approach is used. This means that
a bitstream B is first authenticated by computing its 256-bit MAC
(HMAC) with a key KA. The bitstream with the MAC appended is
then encrypted with a key KE . The encryption key KE is stored on-
chip. However, the authentication key KA is stored in the bitstream,
in two places (see Fig. 1). This method of storing KA is believed to
be secure due to the follow-up encryption step. However, since the
encryption key KE can be extracted by a side-channel attack [16]–
[18], the encrypted bitstream can be decrypted, revealing KA.

To summarize, currently available methods do not seem to be
sufficient to protect against reverse engineering of FPGA bitstreams.
Apart from IP theft, reverse engineering enables the attacker to do
meaningful modifications on the bitstream. This attack vector has not
been thoroughly explored yet.
Previous Work. In several works [21]–[23] it has been shown that
direct bitstream manipulation is feasible in practice. Swierczynski
et al. pioneered attacks in which all LUTs implementing the DES
or the AES S-box are identified in the bitstream and their content
is replaced, e.g. with 0s, to weaken the algorithm [24], [25]. The
CRC checksums which verify the integrity of bitstream frames are
re-computed and replaced by the new ones. Our attack is based on
the same idea except that, in our case, LUTs implementing a specific
XOR gate rather than S-boxes are modified. So, our fault injection
point is of finer granularity. Cryptographic designs typically contain
many XORs, thus finding a specific one is challenging.

We are not aware of any previous bitstream modification attack on
SNOW 3G. Three other types of fault attacks have been presented.
In [26], an attack using 22 transient fault injections to recover the
key of SNOW 3G is described. In [27] it is stated that stream
ciphers, including SNOW 3G, may be vulnerable to faults caused
by intentional electromagnetic interference. In [28], a cache timing
attack capable of recovering the internal state of SNOW 3G from
empirical timing data is described.
Our Contributions. The main contributions of this paper are:

• We present a fault attack on an FPGA implementation of SNOW
3G in which a stuck-at-0 fault is injected into a specific XOR
gate by changing the content of LUTs implementing the gate
in the bitstream. As a result, SNOW 3G algorithm becomes
weaker and its key can be recovered from the keystream. To our
best knowledge, this is the first successful bitstream modification
attack on SNOW 3G.

2

SYNC

CTL

CBC IV

AKEY

Header Commands

FDRI

Footer Commands

ALIGN

AKEY

MAC

NOP

AKEY

Fig. 1. Xilinx bitstream format (Virtex-6/7) [29]. Area in blue is authenticated
and encrypted.

• We show that by exploring the bitstream in a key-independent
setting, we can reduce the complexity of some search tasks
from exponential to linear. This idea has not been exploited in
previous bitstream modification attacks.

• We created a tool which automatically finds a k-input LUT im-
plementing a given k-variable Boolean function and all Boolean
functions within the same P equivalence class1 in the bitstream.
The tool is intended to assist in evaluating resistance of FPGAs
to reverse engineering and bitstream modification.

• We propose a countermeasure against the presented attack which
increases the number of target LUT candidates making the attack
infeasible in practice. The proposed countermeasure is universal
and can be applied to any SRAM-based FPGA implementation
of any cryptographic algorithm.

Paper Outline. The paper is organized as follows. Section II gives
a background on FPGA technology mapping. Section III reviews
the SNOW 3G design. Section IV describes a general strategy
for attacking FPGA implementations of encryption algorithms by
bitstream modification. Section VI presents the features of the specific
attack on SNOW 3G. Section VII proposes a countermeasure and
demonstrates its efficacy. Section VIII concludes the paper.

II. BACKGROUND

In this section, we give a brief introduction to FPGA technology
mapping, see [31] for more details.

A. Notation

Let N = (V, E) denote a Boolean network, where V represents
a set of gates and primary inputs and E ⊆ V × V describes the
nets connecting the gates. Fanin(v) ⊂ V and Fanout(v) ⊂ V
sets of a node v ∈ V are defined as Fanin(v) = {u |(u, v) ∈ E}
and Fanout(v) = {u |(v, u) ∈ E}, respectively. PI ⊂ V and
PO ⊂ V denote the primary inputs and outputs of N , respectively.
The set of all nodes in the transitive fanin/fanout of v are denoted by
TrFanin(v) and TrFanout(v), respectively. The Boolean function
implemented by v is denoted by fv .

1Two Boolean functions belong to the same P equivalence class, if f can
be transformed into g through permutation of inputs [30].

R1 R2 R3

S15 S11 S5 S0S2...

SB2SB1

-1

FSM

LFSR

v
zt

Fig. 2. Block diagram of SNOW 3G during keystream generation.

R1 R2 R3

S15 S11 S5 S0S2...

SB2SB1

-1

FSM

LFSR

v

Fig. 3. Block diagram of SNOW 3G during initialization.

B. FPGA technology mapping

An FPGA consists of an array of programmable logic blocks,
programmable interconnect, and input/output pads. Many of the
commercial FPGAs use LUT-based logic blocks (Xilinx, Intel). A k-
input LUT can be programmed to implement any Boolean function
of up to k variables.

The technology mapping problem in the case of k-LUT based
FPGAs consists of finding a functionally equivalent k-LUT network
for a general Boolean network N = (V, E) [31].

Algorithms for FPGA technology mapping use different strategies
for finding the best k-LUT network for N and different objective
function, such as minimal area [32] or depth [33], or both [34] easy
routability [35], or power minimization [36].

A typical FPGA technology mapper traverses nodes v ∈ V in
backward topological order from POs to PIs, and compute LUTs
rooted in v by finding k-feasible cuts for v [34]. A set of nodes
C ⊂ V is a cut of a node v if any path from a PI to v passes
through at least one node in C. Node v itself is a trivial cut. A
cut C is called k-feasible if |C| ≤ k. Each k-feasible cut C of
v corresponds to a k-LUT which covers nodes in TrFanin(v) ∩
(
⋃
∀c∈C TrFanout(c)) and has nodes of C as inputs and v as output.

Cuts can be computed using the maximum flow algorithm, or cut
enumeration technique [37]. Typically FPGA technology mappers re-
use vertices which are already mapped while searching for k-feasible
cuts.

III. SNOW 3G DESIGN DESCRIPTION

SNOW 3G belongs to the class of binary additive stream ciphers.
A binary additive stream cipher generates a stream of pseudo-random
symbols, called the keystream, Z, based on a secret key K and an
initialization vector, IV [38]. To encrypt, the keystream is combined

3

with the plaintext, typically by the bitwise XOR. To decrypt, the
ciphertext is XORed with the keystream. SNOW 3G is a word-
oriented stream cipher. It generates a 32-bit word of keystream at
each clock cycle.

The main blocks of SNOW 3G design are a Linear Feedback Shift
Register (LFSR) and a Finite State Machine (FSM) (see Fig. 2). The
gates denoted by “⊕” and “�” stand for the bitwise XOR operation
and the integer addition modulo 232, respectively. The gates denoted
by “α �”/“α−1 �” perform a byte shift of the 32-bit input word to
the left/right and then XOR the result with the output of the 8-bit into
32-bit mapping MULα/DIVα whose definition can be found in [39].

The state of the LFSR is a vector consisting of the sixteen 32-
bit stages S = (s0, s1, . . . , s15). The LFSR’s feedback function is
defined by a primitive polynomial over GF (232). The FSM consists
of the three 32-bit registers R1, R2 and R3. The register R1 is
updated as (s5⊕R3)�R2. The registers R2 and R3 are updated by
the S-boxes SB1 and SB2 respectively and their definition can be
found in [39].

The 32-bit words of the keystream, zt, are produced by XORing
the content of the stage s0 with the FSM output word W computed
as W = (s15 �R1)⊕R2.

At the initialization stage, the LFSR is loaded with a combination
of a 128-bit key K consisting of four 32-bit words k0, k1, k2, k3 and
a 128-bit IV consisting of four 32-bit words iv0, iv1, iv, iv3. The
combination γ(K, IV) is defined as follows:

s15 = k3 ⊕ iv0 s7 = k3
s14 = k2 s6 = k2
s13 = k1 s5 = k1
s12 = k0 ⊕ iv1 s4 = k0
s11 = k3 ⊕ 1 s3 = k3 ⊕ 1
s10 = k2 ⊕ 1⊕ iv s2 = k2 ⊕ 1
s9 = k1 ⊕ 1⊕ iv3 s1 = k1 ⊕ 1
s8 = k0 ⊕ 1 s0 = k0 ⊕ 1

where 1 is the all-1s word.
The registers R1, R2 and R3 of the FSM are loaded with 0s. The

output of the FSM is connected to the XOR gate as shown in Fig. 3.
Then, the following two-step rounds are repeated 32 times:

1) The FSM is clocked, generating W .
2) The LFSR is clocked, consuming W .

No keystream is generated during the initialization.

IV. GENERAL STRATEGY

In this section, we describe a general strategy for attacking an
FPGA implementation of a binary additive stream cipher by bitstream
modification. In principle, other types of cryptographic algorithms,
e.g. block ciphers or hash functions, can be attacked similarly.

A. Attack Model

We use the attack model commonly used for bitstream modification
attacks on SRAM-based FPGAs [24], namely we assume that:

1) The attacker has physical access to the victim FPGA imple-
menting the encryption algorithm E under attack.

2) The encryption key K is stored in the bitstream.
The first assumption is realistic in today’s global supply chain of

electronic products. Its distribution stage involves multiple parties,
including third-party logistics providers, distributors, and retailers.
Any of these parties can potentially physically access a device during
its distribution. A device can also be accessed when it is returned for
repair or maintenance. The second assumption seems to be a common
option for key storage in FPGAs [40], [41].

The goal of the attack is to recover the key K. The attacker
first extracts the bitstream from the FPGA, e.g. by reading the
bitstream with a probe when it is transferred from the Flash memory
to the FPGA during configuration. If the bitstream is encrypted,
the attacker can mount a side-channel attack, e.g. [16]–[18], extract
the bitstream encryption key, and decrypt the bitstream. From the
decrypted bitstream, the attacker gets the authentication key which is
stored in the bitstream in plaintext, as shown in Fig. 1.

After that, the attacker makes the malicious bitstream modification,
encrypts the bitstream, if needed, and loads it into the victim FPGA
to generate the faulty keystream. Once K is extracted, the attacker
loads the original bitstream back into the FPGA and returns the
compromised device to its legitimate user.

B. Main steps

The presented attack consists of the following steps:
1) Based on the cryptographic algorithm E under attack, decide

on a target node v for fault injection and the type of fault α to
be injected.

2) Guess which k-variable Boolean function f implements v in
the netlist N = (V, E) realizing E.

3) Find in the bitstream B the set of all candidates into k-LUTs
implementing f .

4) Verify if the guess is correct.
5) If not, repeat the steps 2-4 until it is.

C. Finding LUTs in bitstream

The pseudo-code of the algorithm for finding k-LUTs imple-
menting a given Boolean function in the bitstream is shown as
Algorithm 1. FINDLUT() takes as input the following parameters:

1) Bitstream under attack, B.
2) Target Boolean function f : {0, 1}k → {0, 1}.
3) The number of LUT inputs k.
4) Offset d (depends on the FPGA).
5) The number of partitions r (depends on the FPGA).

It returns a set L of indexes l ∈ {0, . . . , |B| − 1} where a k-LUT
implementing f may be located in B. We use |B| to denote the size
of B, in bytes.

First, the truth table F = (F [0], F [1], . . . , F [2k − 1]), F [i] ∈
{0, 1}, for i ∈ {0, 1, . . . , 2k−1} of the function f is derived for the
order of inputs specified by the permutation (i1, . . . , ik) ∈ Pk, where
Pk is a set of all permutations of k elements. Then, F is mapped
according to the bitstream format function which is specific for a
given FPGA family. This is typically performed in two steps. First, F
is permuted using a bijective mapping ξ : F → B of type {0, 1}k →
{0, 1}k. The resulting vector B = (B[0], B[1], . . . , B[2k−1]) is then
partitioned into r sub-vectors B1, B2, . . . , Br of equal size. In the
pseudo-code, the sign “||′′ denotes the concatenation. The sub-vectors
B1, B2, . . . , Br are located on a fixed offset d from each other in
the bitstream, in varying order. In the pseudo-code, the order of sub-
vectors is described by the permutation (j1, j2, . . . , jr) ∈ Pr , where
Pr is a set of all permutations of r elements.

If for some input order (i1, . . . , ik) ∈ Pk and some sub-vector
order (j1, j2, . . . , jr) ∈ Pr the truth table F of f is found in the
bitstream at the index l, this index is added to the set L of previously
computed candidates. Then, l is marked in order to skip it during the
following iterations.

The set L returned by FINDLUT() may contain false positives.
We verify if a subset L ⊆ L represents the LUTs implementing f in
B as follows:

1) Use the FPGA to generate a keystream Z.

4

Algorithm 1 An algorithm for finding k-LUTs implementing a given Boolean function f in an FPGA bitstream.
Name: FINDLUT(B, k, f, d, r)
Input: Bitstream B = (b0, . . . , b|B|−1), bi ∈ {0, 1}8, number of LUT’s inputs k, Boolean function f of up to k variables, offset d, number of

partitions r
Output: Set L of indexes l ∈ {0, . . . , |B| − 1} where a k-LUT implementing f may be located in B
1: L = ∅;
2: Pk = COMPUTEPERMUTATIONS(k); /* set of all permutations of k elements */
3: Pr = COMPUTEPERMUTATIONS(r); /* set of all permutations of r elements */
4: for each (i1, . . . , ik) ∈ Pk do
5: F = GETTRUTHTABLE(f, i1, . . . , ik); /* computes the truth table of f for the input order (i1, . . . , ik) */
6: B = ξ(F); /* permutes the truth table F */
7: B = (B1, B2, . . . , Br), |Bi| = |Bj |, ∀i, j ∈ {1, . . . , r};
8: m = 2k/r − 1;
9: for each l from 0 to |B| − (r − 1)d do

10: if l is not marked then
11: for each (j1, j2, . . . , jr) ∈ Pr do
12: if ((bl, . . . , bl+m) = Bj1

)&((bl+d, . . . , bl+d+m) = Bj2
)& . . .&((bl+(r−1)d, . . . , bl+(r−1)d+m) = Bjr

) then
13: L = L ∪ {l};
14: MARK(l);
15: end if
16: end for
17: end if
18: end for
19: end for
20: return L

2) For each l ∈ L, modify the content of the LUT at index l in
B to inject the fault α.

3) Load Bα into the FPGA.
4) Use the FPGA to generate a keystream Zα.
5) Analyze Zα to extract the key K.
6) Simulate the keystream Z∗ using a software model. If Z∗ = Z,

K’s correctness is verified.

V. XILINX 7 SERIES SPECIFICS

In this section, we describe information required to apply the Al-
gorithm 1 to Xilinx 7 series FPGAs which we use in our experiments.

A. Finding LUTs in bitstream

In Xilinx 7 series FPGAs the configuration data describing LUT’s
content is located in the Frame Data Input Register (FDRI). The
configuration data is arranged into packets. Packets contain frames
that consists of 101 4-byte words each. There are two packet types:
Type 1 and Type 2 [42]. The former is used for register reads and
writes. The latter is used for writing long blocks. A Type 2 packet
always follows a Type 1 packet and uses the same packet address.

The FDRI can be found by searching for the command
0x30004000 which means

Packet Type 1: Write FDRI register, WORD_COUNT=0.

The last 3 bytes of the word following 0x30004000 contains
information about the number of data words in the FDRI, e.g.
0x50251c50 means

Packet Type 2: Write FDRI register, WORD_COUNT=2432080.

The mapping ξ for Xilinx 7 series FPGAs is defined in Ta-
ble I [14]. The resulting permuted 64-bit truth table B = ξ(F)
is partitioned into r = 4 sub-vectors B1 = (B[0], . . . , B[15),
B2 = (B[16], . . . , B[31]), B3 = (B[32], . . . , B[47), B4 =
(B[48], . . . , B[63]), which are placed on d = 101 bytes from each
other in the bitstream, in one of the two orders:

1) B1, B2, B3, B4 for functions implemented using LUTs in
SLICEL type of slices.

2) B4, B3, B1, B2 for functions implemented using LUTs in
SLICEM type of slices.

SLICEL type (“L” for logic) is used for implementing combinatorial
functions. SLICEM type (“M” for memory) can also be configured
to implement distributed memory or shift registers.

B. Disabling CRC Check

Xilinx 7 series FPGAs use a 32-bit Cyclic Redundancy Check
(CRC) for detecting random errors that may occur during device
configuration. The device computes the CRC value on-the-fly from
the configuration data packets as they are loaded. If the CRC value
computed by the device does not match the CRC value in the
bitstream, the device pulls INIT_B low and aborts configuration.
Therefore, if a bitstream is modified, the CRC has to be either re-
computed and replaced, or disabled.

By default, the CRC is included in the bitstream in two positions:
immediately after the last data word of the FDRI and close to the
end of the bitstream, before DESYNCH command (0x30008001
0x0000000d). These positions can be located by searching for the
command 0x30000001 which means

Packet Type 1: Write CRC register, WORD_COUNT=1.

Four bytes following 0x30000001 are the CRC value,
CRC[31:0]. In principle, one can re-compute and replace
the CRC. Bitstream CRC coverage begins right after the command
0x30008001 0x00000007 meaning

Packet Type 1: Write CMD register, WORD_COUNT=1.

CMD[4:0]=00111 (binary) = RCRC (Reset CRC register).

However, it is much easier to disable the CRC.
There are different opinions on how the CRC should be disabled,

e.g. see [43, p. 401]. We disabled the CRC by replacing the command
0x30000001 Write CRC re- gister and the follow-up CRC
word by all-0 words in both positions in the bitstream. For example, if
the CRC is 0x3395dd39, then the following replacement is made:

0x30000001 0x3395dd39 =⇒ 0x00000000 0x00000000

5

TABLE I
XILINX 7 SERIES LUT BITSTREAM FORMAT [14].

a6 a5 a4 a3 a2 a1 F B = ξ(F)
0 0 0 0 0 0 F[0] B[63]
0 0 0 0 0 1 F[1] B[47]
0 0 0 0 1 0 F[2] B[62]
0 0 0 0 1 1 F[3] B[46]
0 0 0 1 0 0 F[4] B[61]
0 0 0 1 0 1 F[5] B[45]
0 0 0 1 1 0 F[6] B[60]
0 0 0 1 1 1 F[7] B[44]
0 0 1 0 0 0 F[8] B[15]
0 0 1 0 0 1 F[9] B[31]
0 0 1 0 1 0 F[10] B[14]
0 0 1 0 1 1 F[11] B[30]
0 0 1 1 0 0 F[12] B[13]
0 0 1 1 0 1 F[13] B[29]
0 0 1 1 1 0 F[14] B[12]
0 0 1 1 1 1 F[15] B[28]
0 1 0 0 0 0 F[16] B[59]
0 1 0 0 0 1 F[17] B[43]
0 1 0 0 1 0 F[18] B[58]
0 1 0 0 1 1 F[19] B[42]
0 1 0 1 0 0 F[20] B[57]
0 1 0 1 0 1 F[21] B[41]
0 1 0 1 1 0 F[22] B[56]
0 1 0 1 1 1 F[23] B[40]
0 1 1 0 0 0 F[24] B[11]
0 1 1 0 0 1 F[25] B[27]
0 1 1 0 1 0 F[26] B[10]
0 1 1 0 1 1 F[27] B[26]
0 1 1 1 0 0 F[28] B[9]
0 1 1 1 0 1 F[29] B[25]
0 1 1 1 1 0 F[30] B[8]
0 1 1 1 1 1 F[31] B[24]
1 0 0 0 0 0 F[32] B[55]
1 0 0 0 0 1 F[33] B[39]
1 0 0 0 1 0 F[34] B[54]
1 0 0 0 1 1 F[35] B[38]
1 0 0 1 0 0 F[36] B[53]
1 0 0 1 0 1 F[37] B[37]
1 0 0 1 1 0 F[38] B[52]
1 0 0 1 1 1 F[39] B[36]
1 0 1 0 0 0 F[40] B[7]
1 0 1 0 0 1 F[41] B[23]
1 0 1 0 1 0 F[42] B[6]
1 0 1 0 1 1 F[43] B[22]
1 0 1 1 0 0 F[44] B[5]
1 0 1 1 0 1 F[45] B[21]
1 0 1 1 1 0 F[46] B[4]
1 0 1 1 1 1 F[47] B[20]
1 1 0 0 0 0 F[48] B[51]
1 1 0 0 0 1 F[49] B[35]
1 1 0 0 1 0 F[50] B[50]
1 1 0 0 1 1 F[51] B[34]
1 1 0 1 0 0 F[52] B[49]
1 1 0 1 0 1 F[53] B[33]
1 1 0 1 1 0 F[54] B[48]
1 1 0 1 1 1 F[55] B[32]
1 1 1 0 0 0 F[56] B[3]
1 1 1 0 0 1 F[57] B[19]
1 1 1 0 1 0 F[58] B[2]
1 1 1 0 1 1 F[59] B[18]
1 1 1 1 0 0 F[60] B[1]
1 1 1 1 0 1 F[61] B[17]
1 1 1 1 1 0 F[62] B[0]
1 1 1 1 1 1 F[63] B[16]

32:1
MUX8

8

8
8

6

32:1
MUX8

8

8
8

2:1
MUX

B[63:56]
B[47:40]
B[31:24]
B[15:8]

B[55:48]
B[39:32]
B[23:16]
B[7:0]

A[5:1] A6

O6

O5

Fig. 4. Xilinx 6-LUT structure [14].

For encrypted bitstreams, in Xilinx 7 series FPGAs the CRC check
is disabled by default because data integrity is verified using a 256-bit
message authentication code HMAC. Faults in the bitstream detected
by HMAC are reported in the boot history status register BOOTSTS.
The 256-bit authentication key is stored in two locations in the
bitstream.

To enable bitstream modifications, the HMAC should be re-
computed for the modified bitstream B∗ and changed.

VI. ATTACK ON SNOW 3G

We applied the strategy described in the previous section to SNOW
3G implemented in a Xilinx Artix-7 FPGA. In the experiments, we
used a VHDL implementation of SNOW 3G kindly provided to us
by the authors of SNOW 3G. The C code from [44] was used as the
software model of SNOW 3G.

A. Choosing fault injection point

From SNOW 3G design description in Section III, we can see that,
if we stuck the output word of the FSM to 0 during the initialization,
the FSM will not affect the next state of the LFSR. As a result,
the non-linear state updating function of the LFSR is reduced to a
linear one L defined by the LFSR’s characteristic polynomial over
GF (232). Such a fault can be injected by fixing to constant-0 the
node marked by v in Fig. 2 and 3. Note that SNOW 3G is a 32-
bit word-oriented cipher. Therefore, v represents a set of 32 2-input
XOR gates. We can also notice that v is contained in two paths,
the one that leads to the output(zt) and the one that gives the LFSR
feedback(s15).

In presence of the fault α : v = 0, the LFSR goes through the
following states during the initialization:

S0 = γ(K, IV)
S1 = L(γ(K, IV))
. . .
S32 = L32(γ(K, IV))

where Si is the LFSR state at the ith initialization round, for i ∈
{0, 1, . . . , 32}, and γ(K, IV) is defined in Section III.

If we let SNOW 3G generate 16 words of the keystream in presence
of the fault α : v = 0, the result is the LFSR state S33. We can reverse
the LFSR 33 steps backwards, from S33 to S0, to get γ(K, IV) and
hence the key K. An LFSR with a known characteristic polynomial
is easy to reverse [45].

6

TABLE II
NUMBER OF TARGET LUTS IN THE BITSTREAM.

Output Boolean function of 6-LUT n LUT
f1 = (a1 ⊕ a2 ⊕ a3)a4a5a6 12
f2 = (a1 ⊕ a2 ⊕ a3)a4a5a6 81 LUT1

f3 = (a1 ⊕ a2 ⊕ a3)a4a5a6 52
f4 = (a1 ⊕ a2 ⊕ a3)a4a5a6 6

zt f5 = (a1 ⊕ a2 ⊕ a3)a4a5 1
f6 = (a1 ⊕ a2 ⊕ a3)a4a5 12
f7 = (a1 ⊕ a2 ⊕ a3)a4a5 1
f8 = (a1 ⊕ a2)a3a4a5 ⊕ a6 24 LUT2

f9 = (a1 ⊕ a2)a3a4a5 ⊕ a6 3
f10 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f11 = (a1 ⊕ a2)a3a4a5 ⊕ a6 3
f12 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f13 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0

s15 f14 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f15 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f16 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f17 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f18 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f19 = (a1 ⊕ a2)a4 ⊕ a3a6 8 LUT3

f20 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f21 = (a1 ⊕ a2)a4 ⊕ a3a6 2

B. Finding LUTs in bitstream

We implemented the algorithm FINDLUT() in order to automate
the search for LUTs in the bitstream. For bitstreams of size less than
10MB and k = 6, our tool takes less than 4 sec to execute for a given
f . Table II shows results for different candidate LUTs covering the
target node v. After verifying the candidates, we found that three
LUTs listed in the last column contain the target node v. As we
mentioned in Section II-B, FPGA technology mappers usually re-use
nodes which are already mapped while searching for k-feasible cuts.
This means that nodes are often covered by more than one LUT.

Next, we explain how we guessed the candidate functions listed in
Table II. The Xilinx 7 series FPGAs use 6-input dual-output LUTs
(see Fig. 4). These LUTs can implement either a single Boolean
function of 6 independent variables, or two Boolean functions of 5
dependent variables 4.

Based on the block diagram of SNOW 3G shown in Fig. 2 and 3,
we can conclude that for both, initialization and keystream generation
modes, v is likely to be covered by a k-LUT which implements
an XOR of three or more inputs in combination with multiplexers
(MUXes) which switch between different modes of operation. Thus,
the number of inputs in the XOR is bounded by the k − c, where c
is the number of control variables.

From the specification of SNOW 3G [39], it is clear that c ≥ 2.
Apart from the initialization and keystream generation, the cipher
should be able to load the values of key K and IV . Table II
lists possible Boolean expressions for c = 2 and 3. Since we
do not know how the control variables are encoded, we need to
consider different possibilities. However, since FINDLUT() evaluates
all possible permutations of k inputs, it is sufficient to consider c+1
choices rather than 2c.

The next subsection describes how we verified the candidates.

C. Verifying LUTs

We verify the candidates targeting V in zt and s15 starting from
the ones with the largest number of matches n in Table II.

1) Path to zt: For the path to zt, the candidate f2 has 81 matches,
|Lf2 | = 81. To check if a LUT at index l covers v, for each l ∈ Lf2 ,
we modify its content in B from f2 to constant-0, α : f2 = 0, load

S15

S11
S0

S2

-1

zt
1

00

S15

R1 R2

0

10

c2 = 1, if KEYSTREAM
0, otherwise

1

0

Key, IV

c1 = 0, if INIT
1, otherwise

c3 = 1, if LOAD
0, otherwise

LUT1

LUT3

LUT2

v

Fig. 5. Covers for LUT1, LUT2 and LUT3 in Table II.

the faulty bitstream Bα into the FPGA, and compute w words of the
keystream (we used w = 16). If the ith bit of each 32-bit word of
the keystream is 0, then l passes the check. All LUTs corresponding
to other elements of Lf2 whose truth tables overlap with the truth
table of the LUT at index l in B are removed from Lf2 (because
two valid LUTs cannot overlap in a bitstream). If l does not pass the
check we remove l from Lf2 .

In this way, we identified 32 LUTs of Lf2 which implement the
ith XOR of v on the path to zt (see Fig. 5). In the sequel, we refer to
these LUTs as LUT1[i], for i ∈ {1, 2, . . . , 32}. Note that, in Fig. 5,
the MUX with the control input c2 can be optimized as c20+c2(a1⊕
a2 ⊕ a3) = c2(a1 ⊕ a2 ⊕ a3).

2) Feedback loop path: For the feedback loop path, none of the
candidate LUTs in Table II has 32 or more matches. However, the
sum of matches for f8 and f19 is |Lf8 | + |Lf19 | = 32. This is
expected since the operations “α �”/“α−1 �” perform a byte shift
to the 32-bit input word to the left/right and then XOR the result
with the output of the 8-bit into 32-bit mapping MULα/DIVα. Due
to the byte shift, the implementations of SNOW 3G may process 24
bits of the word in one way and the remaining byte in another.

Note that the sum of matches for f9, f11 and f21 is also 8.
However, by examining their byte positions in the bitstream we can
see that they are the same as for f19. Therefore, we make a hypothesis
that 24 LUT2 corresponding to f8 and 8 LUT3 corresponding to
f19 implement v on the feedback loop path (see Fig. 5). Note that,
in Fig. 5, the MUX with the control input c1 can be optimized as
c1(a1 ⊕ a2) + c10 = c1(a1 ⊕ a2).

D. Modifying the bitstream

To check our hypothesis, we need to apply the procedure described
in Section VI-C to the faulty bitstream Bα in which the fault α : v =
0 is injected into 32 LUT1[i], ∀i ∈ {1, 2, . . . , 32}, 24 LUT2 and 8
LUT3. We know that the fault α : v = 0 can be injected into LUT2

and LUT3 by modifying their functions as:

f8 = (a1 ⊕ a2)a3a4a5 ⊕ a6 → fα8 = a6
f19 = (a1 ⊕ a2)a4 ⊕ a3a6 → fα19 = a3a6,

(1)

but for the LUT1[i] we do not know which variables of f2 = (a1 ⊕
a2⊕a3)a4a5a6 correspond to the inputs of the node v. Clearly, they
are one of the pairs (a1, a2), (a1, a3) or (a2, a3). The 3rd variable of
the XOR corresponds to s0. But we cannot distinguish among XOR’s
inputs by analyzing keystream since the key is unknown and hence
keystream cannot be predicted. So, all possible 332 combinations
have to be considered to find which of the pairs (a1, a2), (a1, a3) or
(a2, a3) are inputs of v.

7

However, if we make the keystream key independent, we will
be able to distinguish among XOR’s inputs in constant time by
computing two keystreams. Key independence gives us another
degree of freedom in exploring bitstreams. This idea has not been
exploited in previous bitstream modification attacks.

1) Making keystream key independent: Keystream can be made
key independent by loading the all-0 vector instead of γ(K, IV) into
the LFSR at the initialization stage. On one hand, the LFSR initialized
to the all-0 state will remain in the all-0 state if the feedback path
contains the fault α : v = 0. On the other hand, the FSM initialized
to the all-0 state will end up in a non-0 state, independently of the
LFSR state. This allows us to distinguish between the input s0, which
always has 0 value, and the inputs of v.

Let Bα1,β be the bitstream B with the two faults injected. The
fault β causes the all-0 vector to be loaded into the LFSR instead of
γ(K, IV). We explain how β can be injected in the next subsection.
The fault α1 sets v = 0 in all LUTs implementing v on the
feedback path by modifying their functions as (1). In its essence,
the modification (1) disconnects the FSM from the LFSR during the
initialization.

To distinguish between the input s0 and the inputs of v, the
following loop is repeated. First, we check if (a1, a2) are the inputs
of v in LUT1[i], for all i ∈ {1, 2, . . . , 32}:

1) Modify the content of all LUT1[i] in Bα1,β from f2 = (a1 ⊕
a2 ⊕ a3)a4a5a6 to fα2

2 = a3a4a5a6, where α2 : v = 0 in
LUT1[i].

2) Load the faulty bitstream Bα1,α2,β into the FPGA.
3) Compute w words of the keystream.

If the ith bit of each word of the keystream is 0, (a1, a2) are the
inputs of v in LUT1[i]. Otherwise, repeat the steps 1-3 for the pair
(a1, a3). If the ith bit of each word of the keystream is 0, (a1, a3)
are the inputs of v in LUT1[i]. Otherwise, (a2, a3) are the inputs of
v in LUT1[i].

The above procedure requires two keystream computations to find
which variables of f2 correspond to the inputs of v in LUT1[i], for
all i ∈ {1, 2, . . . , 32}.

2) Loading the LFSR with 0s: The fault which causes the LFSR
to load the all-0 vector can be injected by finding in the bitstream
B all MUXes used to load γ(K, IV) into the LFSR and modifying
them to load 0s instead. If the key K and IV are loaded in parallel,
each LFSR stage sj , j ∈ {0, 1, . . . , 14}, takes as input the output
of a MUX which has sj−1 as one input and the jth element of
γ(K, IV) as another. Such a MUX can be implemented by 16 6-input
dual-output LUTs, LUTMUX2, each implementing a 2-to-1 MUX
functionality for each of the two outputs. This would result in a total
of 240 LUTs of type:

fMUX2 = a6(a1a2 + a1a3) + a6(a1a4 + a1a5),

where “+” in the Boolean OR, a6 is the input dedicated to switching
between the two outputs of a dual-output LUT (see Fig. 4), and a1
is the control input of the MUX. Note that, if the key is stored in
the bitstream, the above expression may get optimized. To load the
all-0 vector instead of the initial state γ(K, IV), all LUTMUX2 are
modified to

fαMUX2 = a6a1a3 + a6a1a5,

where α : γ(K, IV) = 0. The reduction above assumes that the
initial state γ(K, IV) is loaded into the LFSR when the MUX control
input has value a1 = 1.

The LUTs implementing MUXes which load k3 ⊕ iv0 into the
stage s15 can be found by searching through all possible candidates
similarly to the procedure described in Section VIC. Then, the LUTs
are modified to load 0 instead.

TABLE III
KEY-INDEPENDENT KEYSTREAM GENERATED BY SNOW 3G WHEN THE
FSM OUTPUT IS STUCK TO 0 DURING THE INITIALIZATION STAGE AND

THE LFSR IS INITIALIZED TO ALL-0 STATE.

t zt
1 a1fb4788
2 e4382f8e
3 3b72471c
4 33ebb59a
5 32ac43c7
6 5eebfd82
7 3a325fd4
8 1e1d7001
9 b7f15767
10 3282c5b0
11 103da78f
12 e42761e4
13 c6ded1bb
14 089fa36c
15 01c7c690
16 bf921256

TABLE IV
KEYSTREAM GENERATED BY SNOW 3G WHEN THE FSM OUTPUT IS

STUCK TO 0 DURING THE INITIALIZATION AND THE KEYSTREAM
GENERATION STAGES.

t zt
1 3ffe4851
2 35d1c393
3 5914acef
4 e98446cc
5 689782d9
6 8abdb7fc
7 a11b0377
8 5a2dd294
9 5deb29fa
10 c2c6009a
11 a82ee62f
12 925268ed
13 d04e2c33
14 3890311b
15 e8d27b84
16 a70aeeaa

The FPGA loaded with the modified bitstream generates the key-
stream shown in Table III. One can verify that the above keystream
is correct by simulating it using the software model of SNOW 3G
in which the LFSR is initialized to all-0 state and the FSM output is
stuck to 0 during the initialization stage.

3) Key extraction: After the fault α : v = 0 is injected into 32
LUT1[i], ∀i ∈ {1, 2, . . . , 32}, 24 LUT2 and 8 LUT3 by modifying
f2, f8 and f19 to fα2 , f

α
8 and fα19 as explained above, we load the

faulty bitstream Bα into the FPGA, compute the keystream Zα, and
recover the key K by analyzing Zα as described in Section VI-A.

The FPGA loaded with Bα generates the keystream shown in
Table IV. This keystream corresponds to the first LFSR state after
the initialization, S33. We can reverse the LFSR 33 steps backwards
to get the initial state S0 shown in Table V. From s4 − s7, we can
conclude that the key is:

2bd6459f 82c5b300 952c4910 4881ff48

One can verify that this key is correct by simulating the keystream
using a software model of SNOW 3G.

VII. ATTACKING PROTECTED SNOW 3G

In this section, we show how SNOW 3G can be protected from
bitstream modification attacks.

8

TABLE V
THE RECOVERED INITIAL LFSR STATE S0 .

i si
0 d429ba60
1 7d3a4cff
2 6ad3b6ef
3 b77e00b7
4 2bd6459f
5 82c5b300
6 952c4910
7 4881ff48
8 d429ba60
9 6131b8a0

10 b5cc2dca
11 b77e00b7
12 868a081b
13 82c5b300
14 952c4910
15 a283b85c

A. Countermeasure

As we mentioned in Section II-B, FPGA technology mappers
usually re-use nodes which are already mapped while searching for
k-feasible cuts. This often makes the number of nodes covered by a
LUT larger. LUTs covering a large number of nodes have a distinct
structure and may be an easier target for reverse engineering. On the
contrary, if nodes that occur many times in a design are covered by
small LUTs, determining which LUT is the right one becomes an
intractable problem.

We propose to constrain technology mappers to generate k-LUT
covers in which all nodes v which are a potential target for an attack,
as well as the nodes with the same functionality as v, are covered
by small LUTs. More formally, for a given a Boolean network N =
(V, E) and a set of target nodes Vt ⊆ V such that Fanin(v) ≤
k for each v ∈ Vt, the technology mapping for k-LUT FPGAs is
constrained as follows:

1) Each target node v ∈ Vt is covered by a trivial cut Cv = {v}.
2) Some nodes u ∈ U are covered by trivial cuts Cu = {u},

where U ⊆ V − Vt is the set of nodes implementing the same
functions as target nodes, U = {u |u ∈ V − Vt ∧ ∃v ∈ Vt :
fu = fv}.

The following Lemma shows how the size of the subset of U se-
lected in step 2 is related to security provided by the countermeasure.

Let m be the maximum number of nodes v ∈ Vt with the same
function fv . Let r be the number of nodes u ∈ U such that fu = fv .
For any functionally equivalent k-LUT network for N in which each
v ∈ Vt with function fv and each u ∈ U with function fu = fv are
covered by trivial cuts, at least

(
e(m+r)
m

)m
operations are required

to find all nodes of Vt by an exhaustive search. Proof: If there are
m nodes v ∈ Vt with function fv and r nodes u ∈ U with the
same function fu = fv , then there are

(
m+r
m

)
choices for selecting

a subset of m nodes out of the set of m+ r nodes. From Stirling’s
approximation

√
2πn(n/e)n ≤ n! ≤ e1/12n

√
2πn(n/e)n

we get (
n

m

)
=

n!

(n−m)!m!
≤
(en
m

)m
,

where n = m+ r.

�

Note that the bound derived in Lemma VII-A is an upper bound
because it may be possible to bound the search (depending on the
algorithm under attack).

In the case of SNOW 3G, the set of target nodes Vt consists for 32
2-input XOR gates, e.g. m = 32. Let us estimate how many nodes
u ∈ U have to be covered by trivial cuts to assure the exhaustive
search complexity of at least 2128. Since SNOW 3G has the 32-bit
organization, r is a multiple of 32. For m = 32 and r = 32x, we
get (

32(1 + x)

32

)
≤ (e(1 + x))32

To have (e(1 + x))32 ≥ 2128, we need x ≥ 16/e− 1 ≈ 4.9.
We implemented a protected version of SNOW 3G in which the

target node v as well as 5 other 32-bit XORs in Fig. 2 are covered
by the trivial cuts, each containing one 2-input XOR. In Xilinx
FPGAs, these constraints can be applied using primitives KEEP or
DONT TOUCH in the HDL code.

After optimization, the trivial cuts were mapped into two types of
dual-output LUTs:
• Both LUT outputs, O5 and O6, (see Fig. 4) implement the 2-

input XOR.
• One LUT output implements the 2-input XOR and another out-

put implements another function of up to 5 dependent variables.
A drawback of the proposed countermeasure is the constrained k-

LUT network is likely to have a larger depth than an unconstrained,
optimal-depth k-LUT network. In some cases, it might be possible
to minimize performance penalty by choosing to cover by trivial cuts
the nodes u ∈ U which are at non-critical paths.

In the non-protected implementation of SNOW 3G, the target node
v is located at the feedback path from s15 to s15, which is not in
the list of the ten slowest paths. The critical path (6.313 ns delay)
is between the registers R1 and R2, where S-box is evaluated by a
Block RAM (BRAM) lookup. Still, in the protected version, the path
from MULα to s15 becomes critical (7.514 ns delay).

B. Attack strategy

To evaluate the protected implementation, we first applied the
strategy described in Section VI-B to find possible candidate LUTs
covering the target node v. The results are shown in Table VI. As
one can see, the obtained information is not useful.

Next, we wrote a program which finds in the bitstream all LUTs
having the 2-input XOR in one half of their truth table and any
Boolean function of up to 5 dependent variables in another half of
their truth table. The unconstrained search over all byte positions in
the bitstream returns 481 hits. After experimenting with the functions
in Table VI, we can guess in which frames LUTs are located in the
bitstream and limit the search. The constrained search over an interval
of 200.000 byte positions (out of the 3.825.888 possible ones) returns
203 hits.

C. Complexity analysis

The 32 LUTs implementing 32 XORs with output zt can be
pruned from the set of candidates using the approach described in
Section VI-C. However, it does not seem possible to find which 32
out of 171 remaining candidates implement the target node v without
exhaustively searching through the

(
171
32

)
≈ 4.9 × 1034 ≈ 2115

possible choices. For each choice, all steps involved in making the
bitstream key independent have to be repeated until we find the
bitstream which generates the keystream shown in Table III. This
seems practically infeasible.

9

TABLE VI
NUMBER OF TARGET LUTS IN THE PROTECTED BITSTREAM.

Output Boolean function of 6-LUT n
f1 = (a1 ⊕ a2 ⊕ a3)a4a5a6 20
f2 = (a1 ⊕ a2 ⊕ a3)a4a5a6 48
f3 = (a1 ⊕ a2 ⊕ a3)a4a5a6 28
f4 = (a1 ⊕ a2 ⊕ a3)a4a5a6 5

zt f5 = (a1 ⊕ a2 ⊕ a3)a4a5 0
f6 = (a1 ⊕ a2 ⊕ a3)a4a5 8
f7 = (a1 ⊕ a2 ⊕ a3)a4a5 17
f8 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f9 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f10 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f11 = (a1 ⊕ a2)a3a4a5 ⊕ a6 0
f12 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f13 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0

s15 f14 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f15 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f16 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f17 = (a1 ⊕ a2)a4a5 ⊕ a3a6 0
f18 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f19 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f20 = (a1 ⊕ a2)a4 ⊕ a3a6 0
f21 = (a1 ⊕ a2)a4 ⊕ a3a6 0

VIII. CONCLUSION

We demonstrated that it is possible to extract the key from some
FPGA implementations of SNOW 3G by bitstream modification. We
presented an algorithm for finding all LUTs implementing a given
Boolean function in the bitstream. We introduced a key independent
bitstream exploration technique which makes it possible to reduce
the complexity of some search tasks from exponential to linear. This
technique is universal and can be applied to an SRAM-based FPGA
implementation of any cryptographic algorithm. We also proposed
a countermeasure which increases the number of target LUT candi-
dates, making the attack infeasible in practice. This countermeasure
can be automated and incorporated into industrial design tools.

Our results are expected to help FPGA designers protect their
products against reverse engineering and bitstream modifications.

Xilinx was notified about the results of our work via
psirt@xilinx.com.

REFERENCES

[1] M. Moraitis and E. Dubrova, “Bitstream modification attack on snow
3g,” in Proceedings of the 2015 Design, Automation & Test in Europe
Conf. & Exhibition (DATE’20), 2020.

[2] A. Biryukov, D. Priemuth-Schmid, and B. Zhang, “Analysis of SNOW
3G resynchronization mechanism,” pp. 327–333, 01 2010.

[3] A. Kircanski and A. M. Youssef, “On the sliding property of SNOW 3G
and SNOW 2.0,” IET Information Security, vol. 5, no. 4, p. 199, 2011.

[4] J. GUAN, L. DING, and S.-K. LIU, “Guess and Determine Attack on
SNOW3G and ZUC [J],” Journal of Software, vol. 6, pp. 1324–1333,
2013.

[5] M. S. N. Nia and T. Eghlidos, “Improved Heuristic guess and determine
attack on SNOW 3G stream cipher,” in 7’th Int. Symp. on Telecommu-
nications (IST’2014), pp. 972–976, IEEE, 2014.

[6] A. Biryukov, D. Priemuth-Schmid, and B. Zhang, “Multiset collision
attacks on reduced-round SNOW 3G and SNOW 3G⊕,” in Int. Conf. on
Applied Crypt. and Network Security, pp. 139–153, Springer, 2010.

[7] P. Trott, “Preventing overbuilding and cloning of electronic systems
secure production programming.” Microsemi Corporation Report, 2015.

[8] J.-B. Note and É. Rannaud, “From the bitstream to the netlist.,” in FPGA,
vol. 8, pp. 264–264, 2008.

[9] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an NCD file
from an FPGA bitstream: Methodology, architecture and evaluation,”
Microprocessors and Microsystems, vol. 37, no. 3, pp. 299–312, 2013.

[10] T. Zhang, J. Wang, S. Guo, and Z. Chen, “A comprehensive FPGA
Reverse Engineering Tool-Chain: From Bitstream to RTL Code,” IEEE
Access, vol. 7, pp. 38379–38389, 2019.

[11] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream
reverse-engineering,” in 22nd Int. Conf. on Field Programmable Logic
and Applications (FPL), pp. 735–738, IEEE, 2012.

[12] J. Yoon, Y. Seo, J. Jang, M. Cho, J. Kim, H. Kim, and T. Kwon, “A
bitstream reverse engineering tool for FPGA hardware trojan detection,”
in Proceedings of the 2018 ACM SIGSAC Conf. on Computer and
Communications Security, pp. 2318–2320, ACM, 2018.

[13] C. Wolf and M. Lasser, “Project IceStorm.” http://www.clifford.at/
icestorm/.

[14] M. Jeong, J. Lee, E. Jung, Y. H. Kim, and K. Cho, “Extract LUT logics
from a downloaded bitstream data in FPGA,” in 2018 IEEE Int. Symp.
on Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2018.

[15] SymbiFlow Team, “Project X-Ray.” https://prjxray.readthedocs.io/en/
latest/.

[16] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-channel
attacks on the bitstream encryption mechanism of Altera Stratix II:
facilitating black-box analysis using software reverse-engineering,” in
Proceedings of the ACM/SIGDA Int. Symp. on Field programmable gate
arrays, pp. 91–100, ACM, 2013.

[17] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability
of FPGA bitstream encryption against power analysis attacks: extracting
keys from Xilinx Virtex-II FPGAs,” in Proceedings of the 18th ACM
Conf. on Computer and communications security, pp. 111–124, ACM,
2011.

[18] A. Moradi and T. Schneider, “Improved side-channel analysis attacks
on Xilinx bitstream encryption of 5, 6, and 7 series,” in Int. Workshop
on Constructive Side-Channel Analysis and Secure Design, pp. 71–87,
Springer, 2016.

[19] S. Tajik, H. Lohrke, J.-P. Seifert, and C. Boit, “On the power of
optical contactless probing: Attacking bitstream encryption of fpgas,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1661–1674, 2017.

[20] H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, and J.-P. Seifert, “Key
extraction using thermal laser stimulation,” IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pp. 573–595, 2018.

[21] M. Alderighi, S. D’Angelo, M. Mancini, and G. R. Sechi, “A fault
injection tool for SRAM-based FPGAs,” in 9th IEEE On-Line Testing
Symp., 2003. IOLTS 2003., pp. 129–133, July 2003.

[22] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hard-
ware Trojan insertion by direct modification of FPGA configuration
bitstream,” IEEE Design & Test, vol. 30, no. 2, pp. 45–54, 2013.

[23] P. Swierczynski, G. Becker, A. Moradi, and C. Paar, “Bitstream fault in-
jections (BiFI) – automated fault attacks against SRAM-based FPGAs,”
IEEE Trans. on Computers, vol. 76, pp. 1–1, 2018.

[24] P. Swierczynski, M. Fyrbiak, P. Koppe, and C. Paar, “FPGA trojans
through detecting and weakening of cryptographic primitives,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, pp. 1236–1249, Aug 2015.

[25] P. Swierczynski, M. Fyrbiak, P. Koppe, A. Moradi, and C. Paar,
“Interdiction in practice—hardware trojan against a high-security USB
flash drive,” Journal of Cryptographic Engineering, vol. 7, pp. 199–211,
Sep 2017.

[26] B. Debraize and I. M. Corbella, “Fault analysis of the stream cipher
SNOW 3G,” in 2009 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pp. 103–110, IEEE, 2009.

[27] J. Takahashi, Y.-i. Hayashi, N. Homma, H. Fuji, and T. Aoki, “Feasibility
of fault analysis based on intentional electromagnetic interference,” in
2012 IEEE Int. Symp. on Electromagnetic Compatibility, pp. 782–787,
IEEE, 2012.

[28] B. B. Brumley, R. M. Hakala, K. Nyberg, and S. Sovio, “Consecutive
S-box lookups: A Timing Attack on SNOW 3G,” in Int. Conf. on
Information and Communications Security, pp. 171–185, Springer, 2010.

[29] S. M. Trimberger and J. J. Moore, “Fpga security: Motivations, features,
and applications,” Proceedings of the IEEE, vol. 102, pp. 1248–1265,
Aug 2014.

[30] S. Hurst, D. Miller, and J. Muzio, Spectral Techniques in Digital Logic.
Academic Press, 1985.

[31] S. Hassoun and S. Tsutomu, Logic Synthesis and Verification. Norwell,
MA, USA: Kluwer Academic Publishers, 2002.

[32] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast technology
mapping for lookup table-based FPGAs,” in Proceedings of the 28th
ACM/IEEE Design Automation Conf., pp. 227–233, 1991.

10

[33] K.-C. Chen, J. Cong, Y. Ding, and A. Kahng, “Dag-map: Graph-based
FPGA technology mapping for delay optimization,” IEEE Desings and
Test of Computers, vol. 9, pp. 7–20, September 1992.

[34] M. Teslenko and E. Dubrova, “Hermes: LUT FPGA technology mapping
algorithm for area minimization with optimum depth,” in IEEE/ACM Int.
Conf. on Computer Aided Design, pp. 748–751, Nov 2004.

[35] M. Schlag, J. Kong, and P. K. Chan, “Routability-driven technology
mapping for lookup table-based FPGAs,” in Proceedings of the Int. Conf.
on Computer Design, pp. 86–90, 1992.

[36] H. Li, S. Katkoori, and W.-K. Mak, “Power minimization algorithms
for LUT-based FPGA technology mapping,” ACM Trans. on Design
Automation of Electronic Systems, vol. 9, no. 1, pp. 33–51, 2004.

[37] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. ACM Intl. Symp.
on FPGA, pp. 29–35, February 1999.

[38] M. Robshaw, “Stream ciphers,” Tech. Rep. TR - 701, July 1994.
[39] ETSI/SAGE, “Specification of the 3GPP confidentiality and integrity

algorithms UEA2 & UIA2. document 2: SNOW 3G specification,” 2009.
http://cryptome.org/uea2-uia2/uea2-uia2.htm.

[40] S. Drimer, “Volatile fpga design security – a survey,” 2007.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10. 1.1.105.3354.

[41] J. Vliegen, N. Mentcns, and I. Verbauwhede, “A single-chip solution for
the secure remote configuration of fpgas using bitstream compression,”
in 2013 International Conference on Reconfigurable Computing and
FPGAs (ReConFig), pp. 1–6, Dec 2013.

[42]
[43] D. Mukhopadhyay and R. S. Chakraborty, Hardware Security: Design,

Threats, and Safeguards. Chapman & Hall/CRC, 1st ed., 2014.
[44] Jake ”KsirbJ” Brisk, “C++ code for SNOW 3G.” https://github.com/

KsirbJ/SNOW-3G.
[45] S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.

