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Abstract—Machine learning tools have illustrated their poten-
tial in many significant sectors such as healthcare and finance, to
aide in deriving useful inferences. The sensitive and confidential
nature of the data, in such sectors, raise natural concerns
for the privacy of data. This motivated the area of Privacy-
preserving Machine Learning (PPML) where privacy of the data
is guaranteed. Typically, ML techniques require large computing
power, which leads clients with limited infrastructure to rely on
the method of Secure Outsourced Computation (SOC). In SOC
setting, the computation is outsourced to a set of specialized and
powerful cloud servers and the service is availed on a pay-per-
use basis. In this work, we explore PPML techniques in the
SOC setting for widely used ML algorithms– Linear Regression,
Logistic Regression, and Neural Networks.

We propose BLAZE, a blazing fast PPML framework in the
three server setting tolerating one malicious corruption over a
ring (Z2` ). BLAZE achieves the stronger security guarantee of
fairness (all honest servers get the output whenever the corrupt
server obtains the same). Leveraging an input-independent pre-
processing phase, BLAZE has a fast input-dependent online phase
relying on efficient PPML primitives such as: (i) A dot product
protocol for which the communication in the online phase is
independent of the vector size, the first of its kind in the three
server setting; (ii) A method for truncation that shuns evaluating
expensive circuit for Ripple Carry Adders (RCA) and achieves
a constant round complexity. This improves over the truncation
method of ABY3 (Mohassel et al., CCS 2018) that uses RCA and
consumes a round complexity that is of the order of the depth
of RCA (which is same as the underlying ring size).

An extensive benchmarking of BLAZE for the aforementioned
ML algorithms over a 64-bit ring in both WAN and LAN
settings shows massive improvements over ABY3. Concretely,
we observe improvements up to 333× for Linear Regression,
53× for Logistic Regression and 276× for Neural Networks
over WAN. Similarly, we show improvements up to 2610× for
Linear Regression, 54× for Logistic Regression and 278× for
Neural Networks over LAN.

I. INTRODUCTION

Machine learning (ML) is increasingly becoming one of
the dominant research fields. Advancement in the domain has
myriad real-life applications– from smart keyboard predictions
to more involved operations such as self-driving cars. It also
finds useful applications in impactful fields such as healthcare
and medicine, where ML tools are being used to assist health-
care specialists in better diagnosing abnormalities. This surge
in interest in the field is bolstered by the availability of a large
amount of data with the rise of companies such as Google
and Amazon. This is also due to improved, more robust and
accurate ML algorithms in use today. With better machinery
and tools such as deep learning and reinforcement learning,

ML techniques are starting to beat humans at some difficult
tasks such as classifying echocardiograms [1].

In order to be deployed in practice, ML models face
numerous challenges. The primary challenge is to provide
a high level of accuracy and robustness, as it is imperative
for the functioning of some mission-critical fields such as
health care. Accuracy and robustness are contingent on a high
amount of computing power and availability of data from more
varied sources. Accumulating data from different and various
sources is not practical for a single company/stake-holder to
realize. Moreover, policies like the European Union General
Data Protection Regulation (GDPR) or the EFF’s call for
information fiduciary rules for businesses have made it difficult
and even illegal for companies to share datasets with each other
without the prior consent of customers. In some cases, it might
even be infeasible for companies to share their data with each
other as it is proprietary information and sharing it may give
rise to concerns such as competitive advantage. While in other
cases, the data might be too sensitive, such as medical and
financial records, that a breach of privacy cannot be tolerated.
It is also possible that the companies providing ML services
to clients risk leaking the model parameters rendering its
services redundant, and the individual client’s or company’s
data no longer private. In the light of huge interest in using
ML and simultaneous requirement of security of data, the field
of privacy-preserving machine learning (PPML) has emerged
as a flourishing research area. These techniques can be used to
ensure that no information about the query or dataset is leaked
other than what is permissible by the algorithm, which in some
cases might be only the prediction output.

The primary challenge that inhibits widespread adoption
of PPML is that the additional demand on privacy makes
the already compute-intensive ML algorithms all the more
demanding not just in terms of high compute power but also
in terms of other complexity measures such as communica-
tion complexity that the privacy-preserving techniques entail.
Many everyday end-users are not equipped with computing
infrastructure capable of efficiently executing these algorithms.
It is economical and convenient for end-users to outsource an
ML task to more powerful and specialized systems. However,
even while outsourcing to servers, the privacy of data must
be ensured. Towards this, we use Secure Outsourced Compu-
tation (SOC) as a potential solution. SOC allows end-users
to securely outsource computation to a set of specialized and
powerful cloud servers and avail its services on a pay-per-
use basis. SOC guarantees that individual data of the end-
users remain private, tolerating reasonable collusion amongst
the servers.



PPML, both for training and inference, can be realized
in the SOC setting. Firstly, an end-user posing as a model-
owner can host its trained machine learning model, in a secret-
shared way, to a set of (untrusted) servers. An end-user as a
customer can secret-share its query amongst the same servers
to allow the prediction to be computed in a shared fashion and
to finally obtain the prediction result. Secondly, multiple data-
owners can host their datasets in a shared way amongst a set
of (untrusted) servers and can train a common model on their
joint datasets while keeping their individual dataset private.
Recently, many works [2]–[6], solve the aforementioned goals
using the techniques of Secure Multiparty Computation (MPC)
where the untrusted servers are taken as the participants (or
parties) of the MPC. The corrupt server(s) can collude with
an arbitrary number of data-owners in case of training and with
either the model-owner or the customer in case of inference.
Privacy of the end-users is ensured leveraging the security
guarantees of MPC.

MPC is arguably the standard-bearer problem in cryp-
tography. It allows n mutually distrusting parties to perform
computations together on their private inputs, so that an
adversary controlling at most t parties, can not learn any
information beyond what is already known and permissible
by the computation. MPC for a small number of parties in the
honest majority setting, specifically the setting of 3 parties with
one corruption, has become popular over the last few years due
to its spectacular performance [7]–[17], leveraging the pres-
ence of single corruption. Applications such as financial data
analysis [18], email spam filtering [19], distributed credential
encryption [12], privacy-preserving statistical studies [20] and
popular MPC frameworks such as Sharemind [21], VIFF [22]
involve 3 parties.

In an effort to improve the practical efficiency, many
recent works divide their protocol into two phases, namely– i)
input-independent preprocessing phase and ii) input-dependent
online phase. This has become a prominent approach in both
theoretical [23]–[28] and practical [4], [29]–[36] domains. The
preprocessing phase is used to perform a relatively expensive
computation that is independent of the input. In the online
phase, once the inputs become available, the actual compu-
tation can be performed in a fast way making use of the
pre-computed data. This paradigm suits scenarios analogous
to our setting, where functions typically need to be evaluated
a large number of times, and the function description is known
beforehand.

There has been a recent paradigm shift of designing MPC
over rings, considering the fact that computer architectures
use rings of size 32 or 64 bits. Designing and implementing
MPC protocols over rings can leverage CPU optimizations and
have been proven to have a significant impact on efficiency
[21], [34], [37]–[39]. Furthermore, operating over rings avoids
the need to overload basic operations such as addition and
multiplication during implementation, or rely on an external
library as compared to working over prime order fields.

Although MPC techniques can be used to realize SOC,
the current best MPC techniques cannot be directly plugged
into ML algorithms, largely due to the following reasons.
Firstly, in ML domain, most of the computation happens over
decimal values, requiring us to embed the decimal values
in 2’s complement form over a ring (Z2` ), where the MSB

represents the sign bit, followed by a designated number of bits
representing the integer part and fractional part. As a natural
consequence of this embedding, repeated multiplications cause
an overflow in the ring, with the fractional part doubling up
in size after each multiplication and occupying double the
number of its original bit assignment. The naive solution is
to pick a ring large enough to avoid the overflow, but the
number of sequential multiplications in a typical ML algorithm
makes this solution impractical. The existing works [2], [5],
[6] tackled this problem through a secure truncation, a very
important primitive by now, which approximates the value by
sacrificing the accuracy by an infinitesimal amount, performed
after every multiplication. Essentially, the truncation applied in
a privacy-preserving way gets the result of the multiplication
back to the same format as that of the inputs, by right-shifting
it and thereby slashing the expansion of the fractional part
caused by the multiplication. Secondly, certain functions such
as comparison or the widely used activation such as ReLU or
Sigmoid, requiring extraction of MSB in a privacy-preserving
manner, needs involvement of the boolean world (over the ring
Z21 ), while functions such as addition, dot product are more
efficient when performed in the arithmetic domain (over the
ring Z2` ). The ML algorithms involve a mix of operations,
constantly alternating between these two worlds. As shown
in some of the recent works [2], [5], [38], using mixed world
computation is orders of magnitude more efficient as compared
to most of the current best MPC techniques which operate only
in either of the two worlds. Thirdly, while a typical MPC offers
a way to tackle a multiplication gate, ML algorithms invoke its
variant dot product. A naive way of doing privacy-preserving
dot product would invoke the method of multiplication ` times,
with ` being the size of the input vectors. With ML algorithms
dealing with humongous size data vectors, the naive approach
may turn expensive and so customized way of performing
dot product that attains independence from the vector size
in its complexity is called for. In other words, PPML would
need customized privacy-preserving building blocks, such as
dot product, truncation, comparison, ReLU, Sigmoid etc.,
rather than the typical building blocks such as addition and
multiplication of MPC.

A. Related Work

In the regime of PPML using MPC, earlier works consid-
ered the widely-used ML algorithms such as Decision Trees
[40], Linear Regression [41], [42], k-means clustering [43],
[44], SVM Classification [45], [46], and Logistic Regression
[47]. However, these solutions are far from practical due to
the high overheads that they incur. SecureML [2] proposed
a practically-efficient PPML framework in the two-server
model using a mix of 2PC protocols that perform computation
in Arithmetic, Boolean and Yao style (aka. ABY frame-
work [38]). One of their key contributions is a novel method for
truncating decimal numbers. They consider training for linear
regression, logistic regression, and neural network models. The
work of Chameleon [4] considered a 2PC setting where parties
availed the help of a semi-trusted third party and consider
SVMs and Neural Networks. Both SecureML and Chameleon
considered semi-honest corruption only. The ABY framework
was extended to the three-party setting by ABY3 [5] and
SecureNN [6] (the latter consider neural networks only). These
works consider malicious security and demonstrate that the
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honest-majority setting can be leveraged to improve the perfor-
mance by several orders of magnitude. Recently, ASTRA [48]
furthered this line of work and improve upon ABY3. However,
ASTRA presents a set of primitives to build protocols for
Linear Regression and Logistic Regression inference. For the
training of these ML algorithms and NN prediction, additional
primitives like truncation, bit to arithmetic conversions are
required, which are not considered in ASTRA.

B. Our Contribution

We propose an efficient PPML framework over the ring Z2`

in a SOC setting, with three servers amongst which at most one
can be maliciously corrupt. The framework consists of a range
of ML tools realized in a privacy-preserving way which is
ensured via running computation in a secret-shared fashion. We
introduce a new secret-sharing semantics for three servers over
a ring Z2` tolerating up to one malicious corruption, which is
the basis for all our constructions. We use the sharing over
both Z2` and its special instantiation Z21 and refer them as
arithmetic and respectively boolean sharing.

Our framework, as depicted in Fig. 1, consists of three
layers with the 3rd and final layer consisting of the privacy-
preserving realization of various ML algorithms and forming
the end goal of our framework– i) Linear Regression, ii)
Logistic Regression, and iii) Neural Networks (NN). The 3rd
layer builds upon the privacy-preserving realisation of 2nd
layer primitives– (i) Dot Product: This is used to generate
arithmetic sharing of ~x � ~y, given the arithmetic sharing of
each element of vectors ~x and ~y, (ii) Truncation: Given the
arithmetic sharing of a value v, this generates the arithmetic
sharing of truncated version of the value for a publicly known
truncation parameter, and (iii) Non-linear Activation functions
(Sigmoid and ReLU): Given the arithmetic sharing of a value,
this is used to generate the arithmetic sharing of the resultant
value obtained after applying the respective activation func-
tion on it. The 2nd layer builds upon the privacy-preserving
realization of 1st layer primitives– (i) Multiplication: This is
used to generate arithmetic sharing of x·y, given the arithmetic
sharing of values x and y, (ii) Bit Extraction: Given arithmetic
sharing of a value v, this is used to generate boolean sharing
of the most significant bit (msb) of the value, and (iii) Bit to
Arithmetic sharing Conversion (Bit2A): This is used to convert
the boolean sharing of a single bit value to its arithmetic
sharing. The above tools, designed with a focus on practical
efficiency, are cast in input-independent preprocessing phase,
and input-dependent online phase. Our contributions, presented
in top-down fashion starting with the end-goals (3rd layer), can
be summed up as follows.

Performance of PPML Algorithms (Layer-III).
– Relying on our efficient Layer-II building blocks, our frame-
work BLAZE results in blazing fast PPML protocols for Linear
Regression, Logistic Regression, and NN. We consider both
training and inference for Linear Regression and Logistic Re-
gression and inference alone for NN. Our 2nd layer primitives
are enough to provide support to build all the above. Extending
our framework for NN training will require Garbled circuit
techniques, and seamless transitions across the three worlds
arithmetic, boolean and Yao. We leave this as an interesting
open direction.

Linear
Regression

Logistic
Regression

Neural
Networks

Dot Product Truncation Sigmoid ReLU

Multiplication Bit Extraction Bit2A

Fig. 1: Hierarchy of primitives in BLAZE Framework

We illustrate the performance of BLAZE via thorough bench-
marking and compare with its closest competitors ABY3 [5]
and ASTRA [48]. While the primitives built in ASTRA
suffice for secure inference of Linear Regression and Logistic
Regression, they do not suffice for secure training of the
aforementioned algorithms and secure NN inference. These
require additional tools such as truncation, bit to arithmetic
conversion. Also, in ASTRA, the inference phase of Logistic
Regression produces a boolean sharing of the output (as an
efficiency optimization), while an arithmetic sharing is needed
to continue with further computation in case of training. For
these reasons, we apply the same optimizations as proposed in
ASTRA while comparing the performance of Linear Regres-
sion and Logistic Regression inferences with ASTRA.
We provide benchmarking for both preprocessing and online
phase separately over a 64-bit ring (Z2` ) in both WAN and
LAN settings. We use throughput as the benchmarking param-
eter, which denotes the number of operations (“iterations” for
the case of training and “queries” for the case of inference) that
can be performed in unit time. For training, we benchmarked
over batch sizes 128, 256 and 512 and feature size ranging
from 100 to 900. For inference, in addition to the benchmark-
ing over the aforementioned feature sizes, we benchmarked
over real-world datasets as well. Table I summarizes the gain
in throughput of our protocols over ABY3 for different ML
algorithms.

Layer-III: PPML Algorithms

Algorithm
Preprocessing Online

WAN LAN WAN LAN

Linear Regression
(Training)

4.01×
to 4.08×

4.01×
to 4.08×

18.54×
to 333.72×

138.89×
to 2610.76×

Logistic Regression
(Training)

1.97×
to 2.96×

1.92×
to 2.98×

6.13×
to 53.19×

6.11×
to 53.21×

Linear Regression
(Inference)

4.02×
to 5.00×

4.02×
to 5.21×

2.81×
to 194.86×

52.00×
to 3600.00×

Logistic Regression
(Inference)

1.32×
to 2.36×

1.34×
to 2.41×

3.18×
to 27.52×

3.16×
to 27.04×

Neural Networks
(Inference)

4.02×
to 4.07×

4.02×
to 4.07×

65.46×
to 276.31×

64.89×
to 276.84×

TABLE I: Summary of BLAZE’s Gain in Throughput over ABY3

In order to emphasise the improved communication of our
protocols, we benchmarked over varied bandwidth from 25
to 75Mbps in WAN.
When compared with ASTRA, we observe improvements up to
194× and 15× over Linear Regression and Logistic Regression
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inference respectively over WAN. The respective improve-
ments over LAN are 1800× and 16×. Note that ASTRA has
not considered the training of the above algorithms and NN
inference.

Primary Building Blocks for PPML (Layer-II).
– Dot Product: Dot Product forms the fundamental building
block for most of the ML algorithms and hence designing
efficient constructions for the same are of utmost importance.
We propose an efficient dot product protocol for which the
communication in the online phase is independent of the size
of the underlying vectors. Ours is the first solution in the three-
party honest-majority and malicious setting, to achieve such
a result. Concretely, our solution requires communication of
3n and 3 ring elements respectively in the preprocessing and
online phases, where n denotes the size of the underlying
vectors. When compared with the dot product protocol of
ABY3, which requires communication of 12n and 9n ring
elements in the preprocessing phase and online phase, our
protocol results in the corresponding improvement of 4× and
3n×. Similar comparison with ASTRA [48], which requires
communication of 21n and 2n + 2 ring elements in the
preprocessing phase and online phase, our protocol results in
respective improvements of 7× and ≈ 0.67n×.
– Truncation: For ML applications where the inputs are
floating-point numbers, the protocol for truncation plays a cru-
cial role in determining the overall efficiency of the proposed
solution. Towards this, we propose an efficient truncation
protocol for the three server setting. When incorporated into
our dot product protocol, our truncation method adds a very
minimal overhead of just two ring elements in the preprocess-
ing phase of the dot product protocol and more importantly
keeps its online complexity intact. In contrast, the state-of-the-
art protocol of ABY3 requires expensive Ripple Carry Adder
(RCA) circuits in the preprocessing phase which consumes
rounds proportional to the underlying ring size. Moreover, their
solution demands an additional round of communication with
3 ring elements in the online phase.
– Non-linear Activation functions: We provide efficient in-
stantiation for Sigmoid and ReLU activation functions. The
former is used in Logistic Regression, while the latter is used
in Neural Networks. Our constructions require only constant
round of communication (≤ 4) in the online phase as opposed
to ABY3. Moreover, we improve upon ABY3 in terms of
online communication by a factor of ≈ 4.5×.

The performance comparison in terms of concrete cost for
communication and round both for the preprocessing and
online phase of these primitives appear in Table II.

Layer-I: Secondary Building Blocks for PPML

– Multiplication: We propose a new and efficient multipli-
cation protocol for the 3 server setting that can tolerate at
most one malicious corruption. Our construction invokes the
multiplication protocol of [17] (which uses distributed Zero
Knowledge) in the preprocessing phase to facilitate an efficient
online phase. Concretely, our protocol requires an amortized
communication of 3 ring elements in both the preprocessing
and online phases. Apart from the improvement in commu-
nication, the asymmetric nature of our protocol enables one
among the three servers to be idle majority of the time during

Building
Blocks Ref.

Preprocessing Online

R C (`) R C (`)
Layer-II: Building Blocks for PPML

Dot Product
ABY3 4 12n 1 9n

ASTRA 6 21n 1 ≈ 2n
BLAZE 4 3n 1 3

Dot Product
with Truncation

ABY3 2` - 2 ≈ 12n + 84 2 9n + 3
BLAZE 4 3n + 2 1 3

Sigmoid ABY3 4 ≈ 108 log ` + 4 ≈ 81
BLAZE 5 ≈ 5κ+ 23 5 ≈ κ+ 11

ReLU ABY3 4 60 log ` + 3 45
BLAZE 5 ≈ 5κ+ 14 4 ≈ κ+ 7

Layer-I: Privacy-preserving Primitives

Multiplication
ABY3 4 12 1 9

ASTRA 6 21 1 4
BLAZE 4 3 1 3

Bit
Extraction

ABY3 4 24 1 + log ` 18
ASTRA 7 46 3 ≈ 6
BLAZE 4 9 1 + log ` 9
BLAZE 5 ≈ 5κ+ 2 2 ≈ κ

Bit2A ABY3 4 24 2 18
BLAZE 5 9 1 4

– Notations: ` - size of ring in bits, κ - computational security parameter,
n - size of vectors for dot product, ‘R’ - number of rounds, ‘C’ - total
communication in units of ` bits.
– ABY3, ASTRA and BLAZE requires an additional two rounds of
interaction in the Online Phase for verification.

TABLE II: Comparison of ABY3 [5], ASTRA [48] and BLAZE in
terms of Communication and Round Complexity

the input-dependent phase. This construct serves as the primary
building block for our dot product protocol.
While the multiplication protocol of [17] performs better than
ours with a communication complexity of 3 ring elements
overall yet in an amortized sense, we choose our construct over
it mainly due to the huge benefits it brings for the case of dot
product protocol. The dot product for n-length vectors can be
viewed as n multiplications. Using [17] for the same will result
in a communication of 3n (amortized) ring elements in the
online phase. For the communication cost to get amortized, the
protocol of [17] requires a large number of multiplications to
be performed together, which cannot be guaranteed for several
instances such as inference phases of Linear Regression and
Logistic Regression. Furthermore, their protocol makes use
of expensive public-key cryptography, which is undesirable in
settings similar to ours, where practical efficiency is of utmost
importance in the online phase.
On the other hand, our construct for multiplication when
tweaked to obtain a dot product protocol requires communica-
tion of 3n + 3 ring elements overall, where the preprocessing
phase takes care of the expensive part involving invoking [17]
and bearing heavy communication of 3n elements. This results
in a blazing fast online phase for dot product which requires
communication of just 3 ring elements and symmetric key
operations. Lastly, as our setting calls for the computation of
many multiplication operations in the preprocessing phase, the
protocol of [17] is used to perform them, and the communica-
tion cost gets amortized over many multiplication operations.

– Bit Extraction: We provide two constructions based on the
solutions proposed by ASTRA [48] and ABY3 [5]. In the
solution based on ASTRA, servers use a garbled circuit that
computes a masked version of the most significant bit (MSB)
of the input. This results in constant round complexity but the
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communication will be dependent on the security parameter
κ. On the other hand, the solution based on ABY3 results in
communication independent of κ but with a round complexity
of 1 + log(`) where ` denotes the size of the underlying ring
in bits.
– Bit to Arithmetic sharing Conversion (Bit2A): The arithmetic
equivalent of a bit b = b1 ⊕ b2 can be written as (b)A =
(b1)A + (b2)A − 2(b1)A(b2)A. Here (b)A denotes the value
of bit b in ring Z2` . Thus the servers generate the arithmetic
sharing of each of the shares of bit b and their product and
use the aforementioned relation to compute the final result.
Our protocol, when compared to ABY3, gives 3× and 4×
improvement with respect to the communication cost, in the
preprocessing and online phase, respectively.

The performance comparison of these primitives appear in
Table II.

II. PRELIMINARIES AND DEFINITIONS

We consider a set of three servers P = {P0, P1, P2} that
are connected by pair-wise private and authentic channels in
a synchronous network. We consider a static and Byzantine
adversary, who can corrupt at most one of the three servers.
In the case of ML training, many data-owners who wish to
jointly train the model, secret-shares (as per schemes discussed
latter) their data amongst the three servers. In the case of ML
inference, a model-owner and a client secret-share the trained
model and query respectively among the three servers. Once all
the inputs are available in shared fashion, servers perform the
computation to generate the output in a shared format among
them. For training, the output model is then reconstructed back
to the data owners while for inference, the prediction result
is reconstructed towards the client alone. We assume that an
arbitrary number of data owners can collude with the corrupt
server for training, while for inference, either the model-owner
or the client can collude with the corrupt server. The same
setting has been considered by ASTRA [48], ABY3 [5], and
other related papers.

The ML algorithms to be evaluated (Layer-III), relevant
to our setting, can be expressed as a circuit ckt with publicly
known topology, consisting of the Layer-II gates– Dot Product,
Truncation, Sigmoid, and ReLU. The gates in the Layer-II
are realized using the Layer-I primitives– Multiplication, Bit
Extraction, and Bit2A.

For a vector ~x, xi denotes the ith element in the vector. For
two vectors ~x and ~y of length n, the dot product is given by,
~x � ~y =

∑n
i=1 xiyi. Given two matrices X,Y, the operation

X ◦Y denotes the matrix multiplication.

a) Input-independent and Input-dependent Phases:
The protocols of this work are cast into two phases: input-
independent preprocessing phase and input-dependent online
phase. This approach is useful in outsourced setting where the
servers execute several instances of an agreed-upon function.
The preprocessing for multiple instances can be executed in
parallel. It is plausible for some of the protocols to have empty
input-independent phase.

b) Shared Key Setup: To facilitate non-interactive com-
munication, parties use a one-time key setup that establishes
pre-shared random keys for a pseudo-random function (PRF)

among them. A similar setup for the three-party case was used
in [4], [5], [8], [9], [48]. We model the above as functionality
Fsetup (Fig. 17) and all our proofs are cast in Fsetup-hybrid
model.

c) Basic Primitives: In our protocols, we make use of
a collision-resistant hash function, denoted by H(), to save
communication. Also, we use a commitment scheme, denoted
by Com(), to boost the security of our constructions from abort
to fairness. We defer the formal details of key setup, hash
function, and the commitment scheme to Appendix A.

We use real-world / ideal-world simulation based approach
to prove the security of our constructions and the details appear
in Appendix F.

III. BUILDING LAYER-I PRIMITIVES

In this section, we start with the sharing semantics that
serve as the basis for all our primitives. The computation
in each primitive is executed in shared fashion to obtain the
privacy-preserving property.

A. Secret Sharing Semantics

We use three types of secret sharing, as detailed below.

a) [·]-sharing: A value v ∈ Z2` is said to be [·]-shared
among servers P1, P2, if the servers P1 and P2 respectively
hold the values [v]1 ∈ Z2` and [v]2 ∈ Z2` such that v =
[v]1 + [v]2.

b) 〈·〉-sharing: A value v ∈ Z2` is 〈·〉-shared among
servers in P , if
– there exist [λv]1 , [λv]2 ∈ Z2` such that λv = [λv]1 + [λv]2.
– P0 holds ([λv]1 , [λv]2), while Pi for i ∈ {1, 2} holds
([λv]i , v + λv)

c) J·K-sharing: A value v ∈ Z2` is said to be J·K-shared
among servers in P , if
– v is 〈·〉-shared i.e. P0 holds ([αv]1 , [αv]2), while Pi for i ∈
{1, 2} holds ([αv]i , βv) for αv, βv ∈ Z2` with βv = v + αv

and αv = [αv]1 + [αv]2
– additionally, there exists γv ∈ Z2` such that P1, P2 hold γv,
while P0 holds βv + γv.

The table below summarises the individual shares of the
servers for the aforementioned secret sharings. [v]i, 〈v〉i and
JvKi respectively denote the ith share held by Pi for [v], 〈v〉
and JvK.

[v] 〈v〉 JvK

P0 − ([λv]1 , [λv]2) ([αv]1 , [αv]2 , βv + γv)

P1 [v]1 ([λv]1 , v + λv) ([αv]1 , βv = v + αv, γv)

P2 [v]2 ([λv]2 , v + λv) ([αv]2 , βv = v + αv, γv)

TABLE III: Shares held by the parties under different sharings

d) Arithmetic and Boolean Sharing: We use the sharing
over both Z2` and Z21 and refer them as arithmetic and
respectively boolean sharing. The latter sharing is demarcated
using a B in the superscript (e.g. JbKB).
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e) Linearity of the secret sharing schemes: Given the
[·]-sharing of x, y and public constants c1, c2, servers can
locally compute [c1x + c2y] as c1 [x] + c2 [y]. Notice that
linearity trivially extends to the case of 〈·〉-sharing and J·K-
sharing as well. Linearity allows the servers to perform the fol-
lowing operations non-interactively: i) addition of two shared
values and ii) multiplication of the shared value with a public
constant.

B. Secret Sharing and Reconstruction protocols

We dedicate this section to describe some of the secret
sharing and reconstruction protocols that we need. We defer the
communication complexity analysis and security proof of all
the constructs to Appendix C-A and Appendix F respectively.

a) Sharing Protocol: Protocol Πsh (Fig. 2) enables
server Pi to generate J·K-sharing of value v ∈ Z2` . During
the preprocessing phase, servers P0, P1 along with Pi together
sample random value [αv]1, while servers P0, P2 and Pi
sample [αv]2 using the shared randomness. This enables server
Pi to obtain the entire αv. Also, servers P1, P2 together sample
a random γv ∈ Z2` . For the case when Pi = P0, we optimize
the protocol by making P0 sample the γv value along with
P1, P2. This eliminates the need for servers P1, P2 to send
βv+γv to P0 during the online phase. Furthermore, the sharing
does not need to hide the input from P0 (who is the input
contributor) by keeping γv private.

During the online phase, Pi computes βv and sends it to
P1, P2 who then verify the sanity of the received value by
exchanging its hash with the fellow recipient. To complete
the J·K-sharing, P1 sends βv + γv to P0 while P2 sends a
hash of the same to P0, who aborts if the received values
mismatch.

Preprocessing:

– If Pi = P0: Servers P0, Pj together sample random [αv]j ∈
Z2` for j ∈ {1, 2}, while servers in P sample random γv ∈ Z2` .

– If Pi = P1: Servers P0, P1 together sample random [αv]1 ∈
Z2` , while servers in P together sample random [αv]2 ∈ Z2` .
Servers P1, P2 together sample random γv ∈ Z2` .

– If Pi = P2: Similar to the case of Pi = P1.

Online:

– Pi computes βv = v + αv and sends to both P1 and P2.

– If Pi = P0, servers P1, P2 mutually exchange H(βv) and abort
if there is a mismatch.

– If Pi 6= P0, P1 computes and sends βv + γv to P0 while P2

sends a hash of the same to P0, who abort if the received values
are inconsistent.

Protocol Πsh(Pi, v)

Fig. 2: J·K-sharing of a value v ∈ Z2` by server Pi

In the outsourced setting, input sharing is performed by
the parties and not the servers. Concretely, for the case of
ML training, data owners perform the input sharing while for
the case of ML inference, input sharing is performed by the
model owner and the client. For a party P to perform the input
sharing of value v, server Pj for j ∈ {1, 2} sends [αv]j to P

while P0 sends a hash of the same to P . Party P computes
αv = [αv]1 + [αv]2 if the received values are consistent and
abort otherwise. P then computes βv = v + αv and sends to
both P1 and P2. The rest of the protocol proceeds similar to
Πsh where servers P1, P2 mutually exchanges the hash of βv
and verifies the consistency of βv.

b) Joint Sharing Protocol: Protocol Πjsh(Pi, Pj , v)
(Fig. 3) enables servers Pi, Pj (an unordered pair) to jointly
generate J·K-sharing of value v ∈ Z2` , known to both of them.
Towards this, server Pi executes protocol Πsh on the value v
to generate its J·K-sharing. Server Pj helps in verifying the
correctness of the sharing performed by Pi.

– If (Pi, Pj) = (P1, P0): Server P1 executes protocol Πsh(P1, v).
P0 computes βv = v +[αv]1 +[αv]2. P0 then sends H(βv) to P2

who aborts if the received value is inconsistent with the same
received from P1.

– If (Pi, Pj) = (P2, P0): Similar to the case above.

– If (Pi, Pj) = (P1, P2): During the preprocessing phase, P1, P2

together sample random γv ∈ Z2` . Servers set [αv]1 = [αv]2 = 0
and βv = v. P1 computes and sends v+γv to P0 while P2 sends
corresponding hash to P0, who aborts if the received values are
inconsistent.

Protocol Πjsh(Pi, Pj , v)

Fig. 3: J·K-sharing of a value v ∈ Z2` by servers Pi, Pj

Protocol Πjsh can be made non-interactive for the case
when the value v is available to both Pi and Pj in the
preprocessing phase. Towards this, servers in P sample random
r ∈ Z2` and locally set their shares as described in Table IV.
Looking ahead, protocol Πjsh offers tolerance against one
active corruption, leveraging the fact that the secret to be
shared is available amongst two servers, with one of them is
guaranteed to be honest.

(P1, P2) (P1, P0) (P2, P0)

[αv]1 = 0, [αv]2 = 0

βv = v, γv = r − v

[αv]1 = −v, [αv]2 = 0

βv = 0, γv = r

[αv]1 = 0, [αv]2 = −v

βv = 0, γv = r

P0

P1

P2

(0, 0, r )

(0, v, r − v)

(0, v, r − v)

(−v, 0, r)

(−v, 0, r)

( 0, 0, r)

(0, − v, r)

(0, 0, r)

(0, − v, r)

TABLE IV: The columns consider the three distinct possibility
of input contributing pairs. The first row shows the assignment to
various components of the sharing. The last row (with three sub-
rows) specifies the shares held by the three servers.

c) Reconstruction Protocol: Protocol Πrec(P, JvK)
(Fig. 4) enables servers in P to reconstruct the secret v from
its J·K-sharing. Towards this, each server receives her missing
share from one of the other two servers and the hash of the
same from the third one. If the received values are consistent,
the server proceeds with the reconstruction and otherwise,
it aborts. Reconstruction towards a single server Pi can be
viewed as a special case of this protocol and we use Πrec(Pi, v)
to denote the same.
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Online:

– P1 receives [αv]2 and H([αv]2) from P2 and P0 respectively.
– P2 receives [αv]1 and H([αv]1) from P0 and P1 respectively.
– P0 receives βv and H(βv) from P1 and P2 respectively.

Server Pi for i ∈ {0, 1, 2} abort if the received values are
inconsistent. Else computes v = βv − [αv]1 − [αv]2.

Protocol Πrec(P, JvK)

Fig. 4: Reconstruction of value v ∈ Z2` among servers in P

In the outsourced setting where reconstruction happens towards
the parties (data owners for ML training and client for ML
inference), the servers will send their shares towards the parties
directly. To reconstruct a value v towards party P , servers
P0, P1 and P2 sends (JαvKA,H(JαvKB)), (βv,H(JαvKA)) and
(JαvKB,H(βv)) respectively to P . Party P will accept the
shares if the corresponding hash match and abort otherwise.

d) Fair Reconstruction Protocol: The security goal of
fairness is well-motivated. Consider an outsourced setting
where a machine learning service that is instantiated with a
protocol with abort is offered against payment. Here, during
the reconstruction of output, adversary can instruct the corrupt
server to send inconsistent values (either shares or hash values)
to honest parties and make them abort. At the same time,
adversary will learn the output from the honest shares received
on behalf of the corrupt parties. This leads to a situation
where some parties who have control over the corrupt server
obtain the protocol output, while the other honest parties obtain
nothing. This is a strong deterrent for the honest parties to
participate in the protocol in the future. On the other hand,
a system with fairness property guarantees that the honest
parties will get the output whenever the corrupt parties gets
the output. In our 3PC setting, the presence of at least a single
honest server ensures that all the participating honest parties
will eventually get the output. This will attract more people to
participate in the protocol and is crucial to applications like
ML training where more data leads to a better-trained model.

We use the techniques proposed by ASTRA [48] to achieve
fairness and modify it for our sharing scheme. We defer formal
details to the appendix (Section C-A4).

C. Layer-I Primitives

We are now ready to describe our Layer-I primitives–
Multiplication, Bit Extraction, and Bit2A. We defer the com-
munication complexity analysis and security proof of all the
constructs to Appendix C-B and Appendix F respectively.

a) Multiplication Protocol: Protocol Πmult(P, JxK, JyK)
enables the servers in P to compute J·K-sharing of z = xy,
given the J·K-sharing of x and y. We begin with a protocol for
the semi-honest setting, which is a slightly modified variant of
the protocol proposed by ASTRA. During the preprocessing
phase, P0, Pj for j ∈ {1, 2} sample random [αz]j ∈ Z2` ,
while P1, P2 sample random γz ∈ Z2` . In addition, P0 locally
computes Γxy = αxαy and generates [·]-sharing of the same
between P1, P2. Since

βz = z + αz = xy + αz = (βx − αx)(βy − αy) + αz

= βxβy − βxαy − βyαx + Γxy + αz (1)

holds, servers P1, P2 locally compute [βz]j = (j−1)βxβy−
βx [αy]j − βy [αx]j + [Γxy]j + [αz]j during the online phase
and mutually exchange their shares to reconstruct βz. Server
P1 then computes and sends βz + γz to P0, completing the
semi-honest protocol. The correctness that asserts z = xy or
in other words βz − αz = xy holds due to Equation 1.

In the malicious setting, we observe that the aforemen-
tioned protocol suffers from three issues:

1. When P0 is corrupt, the [·]-sharing of Γxy performed by
P0 during the preprocessing phase might not be correct,
i.e. Γxy 6= αxαy.

2. When P1 (or P2) is corrupt, the [·]-share of βz handed
over to the fellow honest evaluator during the online
phase might not be correct, causing reconstruction of an
incorrect βz.

3. When P1 is corrupt, the value βz + γz that is sent to P0

during the online phase may not be correct.

While the first two issues in the above list are inherited
from the protocol of ASTRA, the third one is due to our new
sharing semantics (compared to ASTRA where γv and βv +
γv were not part of the shares) that imposes an additional
component of βz + γz held by P0. We begin with solving the
last issue first. In order to verify the correctness of βz + γz
sent by P1, server P2 computes a hash of the same and send
it to P0, who aborts if the received values are inconsistent.

For the remaining two issues, though they are quite distinct
in nature, we make use of the asymmetric roles played by
the servers {P0} and {P1, P2} to introduce a single check
that solves both the issues at the same time. Though the
check is inspired from the protocol of ASTRA, our technical
innovation lies in the way in which the check is performed. In
ASTRA, servers first execute the semi-honest protocol and the
correctness of the computation is verified with the help of 〈·〉-
sharing of a multiplication triple generated in the preprocessing
phase. Unlike ASTRA, we perform a single multiplication (and
nothing additional) in the preprocessing phase to generate the
correct preprocessing data required for a multiplication gate
in the online phase. This brings down the communication in
the preprocessing phase drastically from 21 ring elements to
3 ring elements. The details of our method are provided next.

To solve the second issue, where a corrupt P1 (or P2)
sends an incorrect [·]-share of βz, we make use of server P0

as follows: Using the values β?x = βx + γx and β?y = βy + γy,
P0 computes β?z = −β?xαy − β?yαx + 2Γxy + αz. Now β?z can
be written as below:

β?z = −β?xαy − β?yαx + 2Γxy + αz

= −(βx + γx)αy − (βy + γy)αx + 2Γxy + αz

= (−βxαy − βyαx + Γxy + αz)− (γxαy + γyαx − Γxy)

= (βz − βxβy)− (γxαy + γyαx − Γxy + ψ) + ψ [Equation 1]

= (βz − βxβy + ψ)− χ [where χ = γxαy + γyαx − Γxy + ψ]

Assuming that (a) ψ ∈ Z2` is a random value sampled
together by P1 and P2 (and unknown to P0) and (b) P0 knows
the value χ, P0 can send β?z + χ to P1 and P2 who using the
knowledge of βx, βy and ψ can verify the correctness of βz
by computing βz − βxβy + ψ and checking against the value
β?z + χ received from P0. Now we describe how to enable
P0 to obtain the value χ. Note that server Pj for j ∈ {1, 2}
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can locally compute [χ]j = γx [αy]j + γy [αx]j − [Γxy]j + [ψ]j
where [ψ]j can be generated non-interactively by P1, P2 using
shared randomness. P1, P2 can then send their [·]-shares of
χ to P0 to enable him obtain the value χ. To verify if P0

computed χ correctly, we leverage the following relation. The
values d = γx − αx, e = γy − αy and f = (γxγy + ψ) − χ
should satisfy f = de if and only if χ is correctly computed,
because:

de = (γx − αx)(γy − αy) = γxγy − γxαy − γyαx + Γxy

= (γxγy + ψ)− (γxαy + γyαx − Γxy + ψ)

= (γxγy + ψ)− χ = f

Therefore, the correctness of χ reduces to verifying if the
triple (d, e, f) is a multiplication triple or not. Interestingly,
the same check suffices to resolve the first issue of corrupt P0

generating incorrect [Γxy]-sharing. This is because, if P0 would
have shared Γxy + ∆ where ∆ denotes the error introduced,
then de = f + ∆ 6= f.

Equipped with the aforementioned observations (Table V),
our final trick, that distinguishes BLAZE’s multiplication from
that of ASTRA’s, is to compute a 〈·〉-sharing of f starting
with 〈·〉-sharing of d, e using the efficient maliciously secure
multiplication protocol of [17] referred to as ΠmulZK henceforth
and described in Appendix B for completeness, and extract
out the values for Γxy, ψ and χ from f which are bound to
be correct. This can be executed entirely in the preprocessing
phase. Protocol ΠmulZK works over 〈·〉-sharing (Section III-A),
which is why this part our computation is done over this type
of sharing, and requires a per party communication of 1 ring
element, when amortized over large circuits (ref. Theorem 1.4
of [17]1). Concretely, given the J·K-sharing of the inputs x and
y of the multiplication protocol, servers locally compute 〈·〉-
sharing of values d and e as follows. (The sharing semantics
for [v] for any v is recalled below.)

P0 P1 P2

〈v〉 ([λv]1 , [λv]1) ([λv]1 , v + λv) ([λv]2 , v + λv)

〈d〉 ([αx]1 , [αx]2) ([αx]1 , γx) ([αx]2 , γx)

〈e〉 ([αy]1 , [αy]1) ([αy]1 , γy) ([αy]2 , γy)

TABLE V: The 〈·〉-sharing of values d and e

Upon executing protocol ΠmulZK(P, d, e), servers obtain
〈f〉 = ([λf ] , f + λf). To be precise, P0 obtains ([λf ]1 , [λf ]2)
while Pj for j ∈ {1, 2} obtains ([λf ]j , f + λf). Servers then
map the values [χ] and γxγy +ψ to [λf ] and f +λf respectively
followed by extracting the required values as:

[χ]1 = [λf ]1 and [χ]2 = [λf ]2 → χ = [λf ]1 + [λf ]2
γxγy + ψ = f + λf → ψ = f + λf − γxγy

[Γxy]j = γx [αy]j + γy [αx]j + [ψ]j − [χ]j [j ∈ {1, 2}]

where [ψ] is generated non-interactively by servers P1, P2

by sampling a random value r ∈ Z2` together and setting
[ψ]1 = r and [ψ]2 = ψ − r. We claim that after extracting the
values as mentioned above, servers P1, P2 hold [Γxy] = [αxαy].
To see this, note that

1https://eprint.iacr.org/2019/188

Γxy = γxαy + γyαx + ψ − χ
= (d + λd)λe + (e + λe)λd + (f + λf − γxγy)− λf
= (d + λd)(e + λe)− de + λdλe + (f − γxγy)
= γxγy − f + λdλe + (f − γxγy) = λdλe = αxαy

This concludes the informal discussion. Our protocol Πmult

appears in Fig. 5.

Preprocessing:

– Servers P0, Pj for j ∈ {1, 2} together sample a random [αz]j ∈
Z2` , while P1, P2 sample a random γz ∈ Z2` .

– Servers in P locally compute 〈·〉-sharing of d = γx − αx and
e = γy − αy by setting the shares as (as per Table V):

[λd]1 = [αx]1 , [λd]2 = [αx]2 , (d + λd) = γx

[λe]1 = [αy]1 , [λe]2 = [αy]2 , (e + λe) = γy

– Servers in P execute ΠmulZK(P, d, e) to generate 〈f〉 = 〈de〉.
– P0, Pj for j ∈ {1, 2} locally set [χ]j = [λf ]j , while P1, P2 set
ψ = f + λf − γxγy. P0 then computes χ = [χ]1 + [χ]2.

– P1, P2 sample random r ∈ Z2` and set [ψ]1 = r, [ψ]2 = ψ− r.

– Pj for j ∈ {1, 2} set [Γxy]j = γx [αy]j + γy [αx]j + [ψ]j − [χ]j

Online:

– Pj for j ∈ {1, 2} computes and exchanges [βz]j = (j −
1)βxβy − βx [αy]j − βy [αx]j + [Γxy]j + [αz]j to reconstruct
βz = [βz]1 + [βz]2.

– P0 computes β?
z = −(βx+γx)αy−(βy +γy)αx+αz+2Γxy +χ

and sends H(β?
z ) to both P1 and P2.

– Pj for j ∈ {1, 2} aborts if H(βz − βxβy + ψ) 6= H(β?
z ).

– P1 sends βz + γz and P2 sends the H(βz + γz) to P0. P0 will
abort if it receives inconsistent values.

Protocol Πmult(P, JxK, JyK)

Fig. 5: Multiplication Protocol

Looking ahead, our multiplication protocol lends its technical
strength to all our layer-II primitives, especially the dot prod-
uct. The preprocessing phase of dot product protocol invokes
its preprocessing phase in a black-box way many times that
lets its optimal complexity (of 3 elements per multiplication)
kick in. However, the online phase of dot product is not
plain invocation of online phase of multiplication protocol
in a black-box way. In fact, the tweaks here are crucial for
achieving a complexity that is independent of the feature
length. The other layer-II primitives use multiplication protocol
in a block-box way.

b) Bit Extraction Protocol: Protocol Πbitext(P, JvK)
(Fig. 6) enables servers in P to compute the boolean sharing
(J·KB) of most significant bit (msb) of value v ∈ Z2` , given
its arithmetic sharing JvK. The first approach is to use an opti-
mized Parallel Prefix Adder (PPA) proposed by ABY3 [5]. The
PPA circuit consists of 2` AND gates and has a multiplicative
depth of log(`). We refer readers to ABY3 for more details.
The next approach is to use a garbled circuit that results in
a constant round solution. We provide details for the latter
approach below.

Let GC = (u1, u2, u3, u4, u5) denote a garbled circuit with
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inputs u1, u2, u3 ∈ Z2` and u4, u5 ∈ {0, 1} and output y =
msb(u1 − u2 − u3)⊕ u4 ⊕ u5. Note that the MSB calculation
portion of the circuit can be instantiated using the optimized
PPA of ABY3. Let u1 = βv + γv, u2 = γv + [αv]2 and u3 =
[αv]1 so that u1 = u2 − u3 = v. Let u4 = r1, u5 = r2 where
r1 and r2 denote random bits sampled by P0, P1 and P0, P2

respectively.

Let GC = (u1, u2, u3, u4, u5) denote a garbled circuit with inputs
u1, u2, u3 ∈ Z2` and u4, u5 ∈ {0, 1} and output y = msb(u1 −
u2 − u3) ⊕ u4 ⊕ u5. Let u1 = βv + γv, u2 = γv + [αv]2 and
u3 = [αv]1 so that u1 − u2 − u3 = v.

Preprocessing:

– P0, Pj for j ∈ {1, 2} sample random rj ∈ {0, 1} and execute
Πjsh on rj to generate JrjKB. Let u4 = r1 and u5 = r2.

– P0, P1 garbles the circuit GC and sends GC to P2 along with
the decoding information. Note that the values u3 and u4 are
embedded in the GC itself since they are known to P0, P1.

– Corresponding to each bit of u2, P0, P1 compute commitments
for both the keys (zero key and one key) using common random-
ness and send these commitments to P2. In addition, P1 sends
the decommitment of actual key for the bit to P2 who abort if
the values are inconsistent. Similar steps are executed for the bit
u5 = r2.

Online Phase:

– P1 sends the actual keys corresponding to each bit of u1 to P2

while P0 sends a hash of the same to P2 for verification.

– P2 evaluates GC and obtains v = msb(v) ⊕ r1 ⊕ r2 in clear.
P2 sends v to P1 along with a hash of the key corresponding to
v. P1 abort if the received values are inconsistent.

– P1, P2 execute Πjsh on v to generate JvKB. Servers locally
compute Jmsb(v)KB = JvKB ⊕ Jr1KB ⊕ Jr2KB.

Protocol Πbitext(P, JvK)

Fig. 6: Extraction of MSB bit of value v ∈ Z2`

On a high level, protocol proceeds as follows: P0, P1 garbles
the circuit GC and send GC to P2 along with the keys
corresponding to the inputs and the decoding information. P2

upon evaluating GC obtains v = msb(v)⊕ r1⊕ r2 in clear and
sends v along with a hash of the actual key corresponding to
v to P1. P1, P2 then jointly generate JvKB. Servers then XOR
JvKB to Jr1KB and Jr2KB that are generated in the preprocessing
phase to obtain the final result.

c) Bit2A: Protocol Πbit2A(P, JbKB) (Fig. 7) enables
servers in P to compute the arithmetic sharing of a single
bit b, given its J·KB-sharing. We denote the value of bit
b in the ring Z2` as (b)A. Now observing that (b)A =
(βb ⊕ αb)

A = (βb)
A + (αb)

A − 2(βb)
A(αb)

A, we compute
an arithmetic sharing of (βb)

A, (αb)
A and their product

(βb)
A(αb)

A to obtain arithmetic sharing of (b)A. To compute
an arithmetic sharing of (αb)

A, we use (αb)
A = ([αb]1 ⊕

[αb]2)A = ([αb]1)A + ([αb]2)A − 2([αb]1)A([αb]2)A and
compute an arithmetic sharing of ([αb]1)A, ([αb]2)A and their
product ([αb]1)A([αb]2)A as follows. P0, Pj for j ∈ {1, 2}
execute Πjsh on ([αb]j)

A to generate J([αb]j)
AK. Servers

then execute Πmult on J([αb]1)AK and J([αb]2)AK to generate

J([αb]1)A([αb]2)AK, followed by locally computing the result.
The computation of J(b)AK follows similarly.

Preprocessing:

– P0, Pj for j ∈ {1, 2} execute Πjsh on ([αb]j)
A to generate

J([αb]j)
AK.

– Servers in P execute Πmult(P, ([αb]1)A, ([αb]2)A) to generate
JuK where u = ([αb]1)A([αb]2)A, followed by locally computing
J(αb)

AK = J([αb]1)AK + J([αb]2)AK− 2JuK.

– Servers in P execute the preprocessing phase of
Πmult(P, (βb)A, (αb)

A) where v = (βb)
A(αb)

A.

Online:

– P1, P2 execute Πjsh on (βb)
A to generate J(βb)AK.

– Servers in P execute online phase of Πmult(P, (βb)A, (αb)
A)

to generate JvK where v = (βb)
A(αb)

A, followed by locally
computing J(b)AK = J(βb)AK + J(αb)

AK− 2JvK.

Protocol Πbit2A(P, JbKB)

Fig. 7: Bit2A Protocol

IV. BUILDING LAYER-II PRIMITIVES

Since ML algorithms involve operating over decimals, we
use signed two’s complement form [2], [5], [48] over the
ring Z2` to represent the decimal numbers. Here, the most
significant bit (msb) denotes the sign and the last d bits are
reserved for the fractional part. We choose ` = 64 and d = 13,
which leaves 50 bits for the integer part. The `-bit strings
are treated as elements of Z2` . A product of two numbers
from this domain requires d to be 26 bits if we do not want
to compromise on the accuracy. However, for training tasks
which require many sequential multiplications, this might lead
to an overflow. Hence, a method for truncation is required in
order to cast the product result back in the aforementioned
format. Also, typically ML algorithms perform multiplication
in the form of dot product. We present below protocols for–
(a) dot product, (b) truncation, (c) dot product with truncation,
(d) secure comparison, and (e) non-linear activation functions.
We defer the communication complexity analysis and security
proof of all our constructs to Appendix C-C and Appendix F
respectively.

a) Dot Product: Protocol Πdotp (Fig. 8) enables servers
in P to generate J·K-sharing of ~x � ~y, given the J·K-sharing
of vectors ~x and ~y. By J·K-sharing of a vector ~x of size n,
we mean each element xi ∈ Z2` of it, for i ∈ [n], is J·K-
shared. A naive solution is to view the problem as n instances
of Πmult, where the ith instance computes zi = xi · yi. The
final result can then be obtained by locally adding the shares
of zi corresponding to all the instances. But this would require
a communication that is linearly dependent on the size of the
vectors (i.e. n). We make the communication of Πdotp in the
online phase independent of n as follows: Instead of recon-
structing each βzi separately to compute βz with z = ~x � ~y,
P1, P2 locally compute [βz] = [βz1 ]+. . .+[βzn ] and reconstruct
βz. Moreover, instead of sending β?zi for each zi = xi · yi, P0

can “combine” all the β?zi values and send a single β?z to P1, P2

for verification. In detail, P0 computes β?z =
∑n
i=1 β

?
zi and
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sends a hash of the same to both P1 and P2, who then can cross
check with a hash of βz−

∑n
i=1(βxi ·βyi−ψi).

Preprocessing:

– Servers in P execute preprocessing phase of Πmult(P, xi, yi)
for each pair (xi, yi) where i ∈ [n] and zi = xiyi. P0 obtains
χi, while Pj , for j ∈ {1, 2}, obtains [Γxiyi ]j and ψi.

– P0 computes χ =
∑n

i=1 χi,Γxy =
∑n

i=1 Γxiyi , while Pj for
j ∈ {1, 2} computes [Γxy]j =

∑n
i=1 [Γxiyi ]j , ψ =

∑
i ψi.

– P0, Pj for j ∈ {1, 2} compute [αz]j =
∑n

i=1 [αzi ]j .

Online Phase:

– Pj for j ∈ {1, 2} computes [βz]j =
∑n

i=1((j − 1)βxiβyi −
βxi [αyi ]j − βyi [αxi ]j) + [Γxy]j + [αz]j and mutually exchanges
[βz]j to reconstruct βz.

– P0 computes β?
z = −

∑n
i=1(βxi + γxi)αyi −

∑n
i=1(βyi +

γyi)αxi + αz + 2Γxy + χ and sends H(β?
z ) to P1, P2.

– Pj for j ∈ {1, 2} abort if H(β?
z ) 6= H(βz−

∑n
i=1 βxiβyi +ψ).

– P1 sends βz + γz and P2 sends the H(βz + γz) to P0. P0 will
abort if it receives inconsistent values.

Protocol Πdotp(P, {JxiK, JyiK}i∈[n])

Fig. 8: Dot Product Protocol

b) Truncation: A truncation protocol enables the
servers to compute JvdK from JvK, where vd denotes the
truncated value of v (right-shifted value of v by d bit positions,
where d is the number of bits allocated for the fractional
part). SecureML [2] proposed an efficient truncation method
for 2 parties where the parties locally truncate their shares
after every multiplication. ABY3 [5] showed that this method
fails when extended to 3-party, and proposed an alternative
way using a shared truncated pair (r, rd), for a random r,
to achieve truncation. Their method of truncating the shares
of the product after evaluating a multiplication gate preserves
the underlying truncated value with very high probability. We
follow the technique of ABY3 and primarily differ in the way
in which (r, rd) is generated. With the random truncation pair
(r, rd) and a value v to be truncated, both available in J·K-shared
form, the truncated v in J·K-shared format can be obtained by
opening (v− r), truncating it and then adding it to JrdK. Below
we present a protocol that prepares the random truncation pair.

– P0, Pj for j ∈ {1, 2} sample random Rj ∈ Z2` . P0 sets r =
R1 + R2 while Pj sets [r]j = Rj . Pj sets [rd]j as the ring
element that has last d bits of rj in the last d positions and 0
elsewhere.

– P0 locally truncates r to obtain rd and executes Πsh(P0, r
d) to

generate JrdK. P1 locally sets
[
rd
]
1

= βrd − [αrd ]1, while P2

sets
[
rd
]
2

= − [αrd ]2.

– P1 computes u = [r]1−2d
[
rd
]
1
− [rd]1 and sends H(u) to P2.

– P2 locally computes v = 2d
[
rd
]
2

+ [rd]2 − [r]2 and abort if
H(u) 6= H(v).

Protocol Πtrgen(P)

Fig. 9: Generating Random Truncated Pair (r, rd)

Protocol Πtrgen(P) (Fig. 9) generates a pair ([r] , JrdK) for a
random r. Servers P0, Pj for j ∈ {1, 2} sample random value

Rj ∈ Z2` followed by P0 locally truncating r = R1 + R2

to obtain rd. Note that r = 2drd + rd where rd denotes the
ring element that has last d bits of r in the last d positions
and 0 elsewhere. P0 then generates JrdK by executing the
sharing protocol Πsh. To verify the correctness of sharing
performed by P0, servers P1, P2 compute a [·]-sharing of
a = (r − 2drd + rd), given ([r] , JrdK) and checks if a = 0. To
optimize communication, P1 sends a hash of his share H([a]1)
to P2, who aborts if the received hash value mismatches with
H(− [a]1).

To see the correctness, it suffices to show that u = v where
u = [r]1 − 2d

[
rd
]
1
− [rd]1 and v = 2d

[
rd
]
2

+ [rd]2 − [r]2. We
start from the observation that r = 2drd + rd.

r = 2drd + rd

[r]1 + [r]2 = 2d(
[
rd
]
P1

+
[
rd
]
P2

) + ([rd]P1
+ [rd]P2

)

[r]1 − 2d
[
rd
]
1
− [rd]1 = 2d

[
rd
]
2

+ [rd]2 − [r]2
u = v

Πtrgen(P) can entirely be run in the preprocessing phase. Our
dot product with truncation, presented below, will invoke it in
the preprocessing phase.

c) Dot Product with Truncation: Protocol Πdotpt(P,
{JxiK, JyiK}i∈[n]) (Fig. 10) enables servers in P to generate J·K-
sharing of truncated value of z = ~x� ~y denoted as zd, given
the J·K-sharing of vectors ~x and ~y. To achieve the goal, we
modify our dot product protocol Πdotp in a way that does not
inflate the online cost. This is unlike ABY3, which requires
an additional reconstruction in the online phase.

In the preprocessing phase, along with the steps of Πdotp,
the servers execute Πtrgen to generate a truncation pair (r, rd).
In the online phase, the servers P1, P2 locally compute [·]-
sharing of (z − r) (instead of [βz]) where z = ~x � ~y. This
is followed by P1, P2 locally truncating (z − r) to obtain
(z− r)d and generating J·K-sharing of the same by executing
Πjsh protocol. Finally, the servers locally compute J·K-sharing
of z by adding the shares of (z− r)d and JrdK. To ensure the
correctness of the computation, the steps of P0 are modified
such that P0 will be computing (z− r)? instead of β?z .

Preprocessing:

– Servers in P execute preprocessing phase of
Πdotp(P, {JxiK, JyiK}i∈[n]).

– In parallel, servers execute Πtrgen(P) to generate the truncation
pair ([r] , JrdK). Moreover P0 obtains the value r in clear.

Online:

– Pj for j ∈ {1, 2} computes [(z− r)]j = [z]j−[r]j where [z]j =
[βz]j − [αz]j =

∑n
i=1((j− 1)βxiβyi −βxi [αyi ]j −βyi [αxi ]j) +

[Γxy]j .

– Pj for j ∈ {1, 2} mutually exchange [(z− r)]j to reconstruct
(z− r), followed by locally truncating it to obtain (z− r)d.

– P1, P2 execute Πjsh(P1, P2, (z− r)d) to generate J(z− r)dK.

– Servers in P locally compute JzK = J(z− r)dK + JrdK
– P0 computes Ψ = −

∑n
i=1(βxi + γxi)αyi −

∑n
i=1(βyi +

γyi)αxi +2Γxy− r, sets (z− r)? = Ψ+χ and sends H((z− r)?)
to both P1 and P2.

Protocol Πdotpt(P, {JxiK, JyiK}i∈[n])
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– Pj for j ∈ {1, 2} aborts if H((z− r)−
∑n

i=1 βxiβyi + ψ) 6=
H((z− r)?).

Fig. 10: Dot Product Protocol with Truncation

d) Secure Comparison: Given two values x, y ∈ Z2` in
J·K-shared format, secure comparison allows parties to check
whether x < y or not. In fixed-point arithmetic representation,
this can be accomplished by checking the sign of v = x −
y, which is stored in its msb position. Towards this, servers
locally compute JvK = JxK − JyK followed by extracting the
msb using protocol Πbitext on JvK. For the cases that demand
the result in arithmetic sharing format, servers can apply the
Bit2A protocol Πbit2A on the outcome of Πbitext.

e) Activation Functions: We consider two widely used
activation functions– i) Rectified Linear Unit (ReLU) and ii)
Sigmoid (Sig).

– ReLU: The ReLU function, defined as relu(v) =
max(0, v) can be viewed as relu(v) = b ·v where the bit b = 1
if v < 0 and 0 otherwise. Here b denotes the complement of
bit b. Protocol Πrelu(P, JvK) enables servers in P to compute
J·K-sharing of relu(v) given the J·K-sharing of v ∈ Z2` .

For this, servers first execute the msb extraction protocol
Πbitext on v to obtain JbKB. Given JbKB, servers locally
compute JbKB by setting βb = 1 ⊕ βb. Servers then execute
Bit2A protocol Πbit2A on JbKB to generate JbK. Lastly, servers
execute multiplication protocol Πmult on b and v to generate
J·K-sharing of the result.

– Sig: We use the MPC-friendly version of the Sigmoid
function [2], [5], [48], which is defined as:

sig(v) =

 0 v < − 1
2

v + 1
2 − 1

2 ≤ v ≤ 1
2

1 v > 1
2

Note that sig(v) = b1b2(v + 1/2) + b2, where b1 = 1 if
v + 1/2 < 0 and b2 = 1 if v− 1/2 < 0. Protocol Πsig(P, JvK)
is similar to that of Πrelu and therefore we omit the details.

V. BUILDING PPML AND BENCHMARKING

We consider three widely used ML algorithms for our
benchmarking and compare with their closest competitors–
i) Linear Regression (training and inference), ii) Logistic
Regression (training and inference) and iii) Neural Networks
(inference). Training for NN requires conversions to and from
Garbled Circuits (for tackling some functions) which are not
considered in this work. To obtain fairness in our protocols, the
final outcome is reconstructed via fair reconstruction protocol
Πfrec(P, JvK) (Fig. 21). In addition to the above, we also
benchmark the dot product protocol separately as it is a major
building block for PPML. We start with the experimental setup.

a) Benchmarking Environment: We use a 64-bit ring
(Z264 ). The benchmarking is performed over a LAN of 1Gbps
bandwidth and a WAN of 75Mbps bandwidth. Over the LAN,
we use machines equipped with 3.6 GHz Intel Core i7-7700
CPU processor and 32 GB of RAM Memory. The WAN was

instantiated using n1-standard-8 instances of Google Cloud2

with machines located in East Australia (P0), South Asia
(P1) and South East Asia (P2). Over the WAN, machines are
equipped with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors
supporting hyper-threading, with 8 vCPUs, and 30 GB of
RAM Memory. The average round-trip time (rtt) was taken
as the time for communicating 1 KB of data between a pair of
parties. Over the LAN, the rtt turned out to be 0.296ms. In
the WAN, the rtt values for the pairs P0-P1, P0-P2 and P1-P2

are 152.3ms, 60.19ms and 92.63ms respectively.

b) Software Details: We implement our protocols using
the publicly available ENCRYPTO library [49] in C++17.
We implemented the code of ABY3 [5] and ASTRA [48] in
our environment since they were not publicly available. The
collision-resistant hash function was instantiated using SHA-
256. We have used multi-threading and our machines were
capable of handling a total of 32 threads. Each experiment is
run for 20 times and the average values are reported.

c) Benchmarking Parameter: We use throughput (TP)
as the benchmarking parameter following ABY3 [5] and
ASTRA [48] as it would help to analyse the effect of improved
communication and round complexity in a single shot. Here
TP denotes the number of operations (“iterations” for the
case of training and “queries” for the case of inference) that
can be performed in unit time. We consider minute as the
unit time since most of our protocols over WAN requires
more than a second to complete. To analyse the performance
of our protocols under various bandwidth settings, we report
the performance under the following bandwidths: 25 Mbps,
50Mbps and, 75Mbps.

We provide the benchmarking for the WAN setting below
and defer the same for the LAN setting to Appendix E.

A. Dot Product

Here the throughput is computed as the number of dot
products performed per minute (#dotp/min) and the same is
computed for both preprocessing and online phases separately.
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Fig. 11: Throughput (TP) Comparison of ABY3 and BLAZE over
varying Bandwidths

For the preprocessing phase, we plot the throughput of the
dot product protocol of BLAZE (Fig. 11a) and ABY3 over
vectors of length ranging from 100 to 1000. We note at least
a gain of 4×, which is a consequence of 4× improvement in
communication, over ABY3. An interesting observation to be

2https://cloud.google.com/
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made here is that our protocol, over the bandwidth of 25Mbps,
gives better throughput when compared to ABY3 even over a
higher bandwidth of 75Mbps.

For the online phase (Fig. 11b), we plot the gain over
ABY3 in terms of throughput. We observe an appreciable gain
in throughput which is a direct corollary of the communica-
tion cost our protocol being independent of the vector size.
Concretely, for a bandwidth of 50 Mbps, our gain ranges from
64× to 580×. Note that, with an increase in bandwidth there
is a drop in the gain. This is because even at a bandwidth of 25
Mbps the maximum attainable throughput cannot be handled
by our processors. For a bandwidth of 8 Mbps, the maximum
attainable throughput is within our processing capacity, where
we observe throughput gain ranging from 400× to 3600×. This
showcases the practicality of our constructions over low-end
networks.

In the preprocessing phase, over all the bandwidths under
consideration, the maximum attainable throughput lies well
within the processing capacity of our machines. Consequen-
tially, we do not observe a drop in the throughput gain with
increasing bandwidth, as is seen in the online phase. This is
the reason why we choose to plot the actual throughput values
instead of the gain in the case of the preprocessing phase. On
increasing the processing capacity we expect a consistent gain
in online throughput with increasing bandwidth.

B. ML Training

In this section, we explore the training phase of Linear
Regression and Logistic Regression algorithms. The training
phase can be divided into two stages– (i) a forward propa-
gation phase, where the model computes the output given the
input; (ii) a backward propagation phase, where the model
parameters are adjusted according to the difference in the
computed output and the actual output. For our benchmarking,
we define one iteration in the training phase as one forward
propagation followed by a backward propagation. Our perfor-
mance improvement over ABY3 is reported in terms of the
number of iterations over feature size varying from 100 to
1000, and a batch size of B ∈ {128, 256, 512}. Batching [2],
[5] is a common optimization where n samples are divided into
batches of size B and a combined update function is applied
to the weight vectors. In order to analyse the performance
over a wide range of features and batch sizes, we choose to
benchmark over synthetic datasets following ABY3 [5].

a) Linear Regression: In Linear Regression, one it-
eration comprises of updating the weight vector ~w using the
gradient descent algorithm (GD). It is updated according to
the following function:

~w = ~w − α

B
XT
i ◦ ((Xi ◦ ~w)−Yi)

where α denotes the learning rate and Xi denotes a subset
of batch size B, randomly selected from the entire dataset in
the ith iteration. The forward propagation involves computing
Xi ◦ ~w, while the backward propagation consists of updating
the weight vector. The update function requires computation
of a series of matrix multiplications, which can be achieved
using dot product protocols. The update function, as mentioned

earlier, can be computed entirely using J·K shares as:

J~wK = J~wK− α

B
JXT

j K ◦ ((JXjK ◦ J~wK)− JYjK)

The operations of subtraction as well as multiplication by a
public constant can be performed locally.

We compare the throughput for Linear Regression in
Fig. 12. Fig. 12a depicts throughput in the preprocessing
phase, and Fig. 12b illustrates the online throughput gain over
ABY3. Since Linear Regression primarily involves computing
multiple dot products, the underlying efficient dot product
protocol improves the performance drastically. As a result, in
the preprocessing phase, we observe a gain of 4× and, in the
online phase, performance gain for a batch size of 128 ranges
from 9.2× to 83.4×. The performance gain in the online phase
increases significantly for larger batch sizes and goes all the
way up to 333× for a batch size of 512.

b) Logistic Regression: The training in Logistic Re-
gression, is similar to the case of Linear Regression, with
an additional application of sigmoid activation function over
Xi ◦ ~w in the forward propagation. Precisely, the update
function for ~w is as follows:

~w = ~w − α

B
XT
i ◦ (sig(Xi ◦ ~w)−Yi)

The performance of the training phase in Logistic Regres-
sion is analysed in Fig. 12. The throughput in the preprocessing
phase is depicted in Fig. 12c, while Fig. 12d showcases the
online throughput gains. The improvements seen in Linear
Regression are carried over to this case as well. An overall
drop in the throughput is observed both in the preprocessing
as well as in the online phase because of the overhead caused
by the sigmoid activation function. In the preprocessing phase,
our protocol for the largest batch size under consideration
outperforms that of ABY3 over the smallest batch size. In
the online phase, improvements range from 4.17× to 36.60×
for the batch size of 128, compared to ABY3. The primary
reason for this gain is our efficient method for msb extraction,
which requires 2 rounds in the online phase, as opposed to
1+log ` rounds of communication in ABY3. Similar to Linear
Regression, an increase in the online throughput gain can be
observed for larger batch sizes.

Table VI provides concrete details for the training phase of
Linear Regression and Logistic Regression algorithms over a
batch size of 128 and a feature size of 784. More details are
provided in Appendix D.

Algorithm Ref.
Preprocessing Online

TP Gain TP Gain

Linear
Regression

ABY3 61.02
4.01× 30.61

145.35×BLAZE 244.74 4449.55

Logistic
Regression

ABY3 60.71
4.02× 60.99

31.89×BLAZE 243.81 1945.24

TABLE VI: Throughput (TP) for ML Training for a batch size B-
128 and feature size n-784
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Fig. 12: Throughput (TP) Comparison of ABY3 and BLAZE for ML Training

c) Comparison over varying Bandwidths: Here, we
analyse the performance of the training algorithms in the
online phase over varying bandwidths. In Fig. 13a, we plot
the gain in online throughput of Our protocol over ABY3 for
the Linear Regression algorithm for the bandwidths– 25Mbps,
50Mbps, and 75Mbps. We observe that the improvement
in communication cost is even more conspicuous for lower
bandwidth. The gain over the bandwidth of 75Mbps ranges
from 6.18× to 55.62× over various feature sizes, while over a
bandwidth of 25Mbps it ranges from 18.54× to 166.86×. This
shows the practicality of our protocol over low bandwidths.
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Fig. 13: Online Throughput (TP) Comparison of ABY3 and BLAZE
over varying Bandwidths

A similar trend is observed for the case of Logistic Regres-
sion and the plot is presented in Fig. 13b. For a bandwidth of
75Mbps, the gain in online throughput ranges from 2.78× to
22.95×, while for 25Mbps, the range is from 6.11 to 51.21.

C. ML Inference

In this section, we benchmark the inference phase of Linear
Regression, Logistic Regression, and NN. For inference, the
benchmarking parameter is the number of queries processed
per minute (#queries/min). While the details for the online
phase are presented here, we defer the details for the prepro-
cessing phase to Appendix D-B.

Like ABY3 and SecureML [2], our method for truncation
introduces a bit-error at the least significant bit position. The
accuracy of the prediction itself, however, ranges from 93.2%
for linear regression to 97.8% for NN.

a) Linear Regression and Logistic Regression: Infer-
ence in the case of Linear Regression and Logistic Regression
can be viewed as a single pass of the forward propagation
phase. Below we provide the benchmarking for the same over
the protocols of ABY3.
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Fig. 14: Online Throughput (TP) Comparison of ABY3 and BLAZE
for Linear Regression and Logistic Regression Inference

For Linear Regression, we observe that the gain in online
throughput over ABY3 ranging from 14× to 216× across dif-
ferent bandwidths. The respective gain for Logistic Regression
ranges from 3× to 27×.

In ASTRA, the inference phase of Linear and Logistic
Regression are optimized further. For instance, the output of
Logistic Regression is the boolean sharing of a single bit.
Hence, we benchmarked our protocol with the optimizations
of ASTRA and the benchmarking appears in Section V-C2.
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Fig. 15: Comparison of Online Throughput (TP) of BLAZE and
ABY3 for Neural Network Inference

b) Neural Networks: Here we consider a NN with two
hidden layers, each having 128 nodes followed by an output
layer of 10 nodes. The activation function ReLU (relu) is
applied after the evaluation of each layer. For a bandwidth
of 25Mbps, our protocol could process the online phase of
16, 866 queries in a minute and the throughput goes all the
way up to 50, 602 queries/min for a bandwidth of 75Mbps.
ABY3, on the other hand, can process 70 and 210 queries/min
for 25Mbps and 75Mbps, respectively.
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Fig. 15 plots the gain in online throughput of BLAZE over
ABY3 for varying feature sizes. Unlike Linear Regression
and Logistic Regression, the gain is not dropped with the
increase in bandwidth. This is because of the huge communi-
cation incurred for NN which makes the maximum attainable
throughput within our processing capacity.

Table VII provides concrete details for the inference phase
of the aforementioned algorithms for feature size of 784.

Algorithm Ref.
Preprocessing Online

TP (×103) Gain TP (×103) Gain

Linear
Regression

ABY3 15.57
4.02× 15.67

169.75×BLAZE 62.61 2660.53

Logistic
Regression

ABY3 15.41
4.03× 15.55

23.57×BLAZE 62.13 366.68

Neural
Networks

ABY3 0.10
4.01× 0.14

245.74×BLAZE 0.41 33.74

TABLE VII: Throughput (TP) for ML Inference for a feature size
of n-784

1) ML Inference on Real World Datasets: Here we bench-
mark the online phase of ML inference of all the three
algorithms over real-world datasets (Table IX). The datasets
are obtained from UCI Machine Learning Repository [50] and
the details are provided in Table VIII.

Algorithm Dataset #features #samples

Linear
Regression

Superconductivity Critical
Temperature Data Set [51] 81 21263

Logistic
Regression

FMA Music Analysis
Dataset [52] 518 106574

Neural
Networks

Parkinson Disease
Classification Dataset [53] 754 754

TABLE VIII: Real World Datasets used for ML Inference

Bandwidth
Linear Regression Logistic Regression Neural Networks

(Superconductivity) (FMA) (Parkinson)
ABY3 BLAZE ABY3 BLAZE ABY3 BLAZE

25 Mbps 75852 2660532 11725 183339 70 16867
50 Mbps 151704 2660532 23450 366678 140 33735
75 Mbps 227556 2660532 35175 550017 210 50603

TABLE IX: Comparison of Online TP of ABY3 and BLAZE for
Inference over Real World Datasets (Datasets are given in Brackets).
Values are given in #queries/min.

In Table IX, we observe that the online throughput of our
protocols for the case of Linear Regression is not increasing
with the increase in bandwidth. This can be justified as the
processing capacity becomes the bottleneck and prevents our
protocols from reaching the maximum attainable throughput
even for a bandwidth of 25Mbps. This can be prevented by
introducing more computing power to the environment.

2) Comparison with ASTRA: Here we compare Linear
Regression and Logistic Regression inference of BLAZE and
ASTRA. For a fair comparison, we apply the optimizations
proposed by ASTRA in our protocols. Since Linear Regression
inference essentially reduces to a dot product, the benchmark-
ing for the former can be used to analyse the performance of

dot product of BLAZE and ASTRA. Hence we omit a separate
benchmarking for dot product.

In Fig. 16, we plot the online throughput of BLAZE
and ASTRA for Linear Regression (Fig. 16a) and Logistic
Regression (Fig. 16b) inference. Concretely, we plot the gain
in online throughput over ASTRA over different batch sizes
and bandwidths. For the preprocessing phase, our protocols
clearly outperforms that of ASTRA and hence we omit the
plot for the same.
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Fig. 16: Online Throughput (TP) Comparison of ASTRA and
BLAZE for Linear Regression and Logistic Regression Inference

For both Linear Regression and Logistic Regression in-
ference, we observe that the gain in online throughput over
ASTRA drops with an increase in bandwidth. This is because
of our limited processing capacity which prevents our protocols
from attaining the maximum attainable throughput even for a
bandwidth of 25 Mbps. On the other hand, the throughput of
ASTRA increases with the increase in bandwidth. To see this,
we limited the bandwidth further to 3Mbps. At 3Mbps, the
gain in online throughput over ASTRA ranges from 180× to
1623× for Linear Regression inference.

VI. CONCLUSION

In this work, we presented a blazing fast framework,
BLAZE, for PPML. Our framework, designed for three servers
tolerating at most one malicious corruption, works seamlessly
over a ring Z2` . Cast in the preprocessing model, our constructs
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outperform the state-of-the-art solutions by several orders of
magnitude both in the round and communication complexity.
We showcased the application of our framework in Linear
Regression, Logistic Regression, and Neural Networks. We
leave open the problem of extending our framework to support
training of Neural Networks. Another interesting line of work
is to explore the potential of Trusted Execution Environments
(TEE) [4] in improving the overall efficiency of the frame-
work.
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APPENDIX A
PRELIMINARIES

a) Shared Key Setup: Let F : 0, 1κ × 0, 1κ → X be a
secure pseudo-random function PRF, with co-domain X being
Z2` . The set of keys established among the servers are:
– One key shared between every pair– k01, k02, k12 for the

parties (P0, P1), (P0, P2), (P1, P2) respectively.
– One shared key amongst all– kP .

If the servers P0, P1 wish to sample a random value r ∈ Z2`

non-interactively, they invoke Fk01(id01) to obtain r, where
id01 is a counter which the servers update locally after every
PRF invocation. The key used to sample a value will be clear
from the context (from the identities of the pair that samples or
from the fact that it is sampled by all) and will be omitted. We
model the key setup via a functionality Fsetup (Fig. 17) that can
be realised using any secure MPC protocol.

Fsetup interacts with the servers in P and the adversary S. Fsetup

picks random keys kij for i, j ∈ {0, 1, 2} and kP . Let yi denote
the keys corresponding to server Pi. Then
– yi = (k01, k02 and kP) when Pi = P0.

– yi = (k01, k12 and kP) when Pi = P1.

– yi = (k02, k12 and kP) when Pi = P2.

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, yi) to the adversary
S, where yi denotes the keys corresponding to the corrupt server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, yi).

Functionality Fsetup

Fig. 17: Functionality for Shared Key Setup

b) Collision Resistant Hash Function: Consider a hash
function family H = K × L → Y . The hash function
H is said to be collision resistant if for all probabilistic
polynomial-time adversaries A, given the description of Hk
where k ∈R K, there exists a negligible function negl() such
that Pr[(x1, x2) ← A(k) : (x1 6= x2) ∧ Hk(x1) = Hk(x2)] ≤
negl(κ), where m = poly(κ) and x1, x2 ∈R {0, 1}m.

c) Commitment Scheme: Let Com(x) denote the com-
mitment of a value x. The commitment scheme Com(x)
possesses two properties; hiding and binding. The former
ensures that given just the commitment, privacy of value x is
guaranteed. The latter prevents a corrupt party from opening
the commitment to a different value x′ 6= x. The commitment
scheme can be instantiated using a hash function H(), whose
security can be proved in the random-oracle model (ROM).
For instance, (c, o) = (H(x||r), x||r) = Com(x; r).

APPENDIX B
MULTIPLICATION PROTOCOL OF [17]

In this section, we provide details of the multiplication
protocol proposed by [17] on 〈·〉-shared values. For a value
v, the 〈·〉-sharing is defined as:

〈v〉0 = ([λv]1 , [λv]2), 〈v〉1 = ([λv]1 , v + λv), 〈v〉2 = ([λv]2 , v + λv)

Given the 〈·〉-shares of d and e, ΠmulZK(P, 〈d〉, 〈e〉)
(Fig. 18) computes 〈·〉-share of f = de.

Computation:

– Servers P0, Pj for j ∈ {1, 2} locally sample a random [λf ]j ∈
Z2` . Also, P0, P1 samples a random [λd,e]1 ∈ Z2`

– P0 computes λd,e = λd · λe and sets [λd,e]2 = λd,e − [λd,e]1.
P0 sends [λd,e]2 to P2.

– Server Pj for j ∈ {1, 2} computes and mutually exchanges
[f + λf ]j = (j−1)(d +λd)(e +λe)− [λd]j (e +λe)− [λe]j (d +
λd) + [λd,e]j + [λf ]j to reconstruct (f + λf).

Verification: Using distributed zero-knowledge, each server proves
the correctness of the following statement to the other two:
– Server P0: λd,e = λd · λe.

– Server Pj : [f + λf ]j = (j − 1)(d + λd)(e + λe) − [λd]j (e +
λe)− [λe]j (d + λd) + [λd,e]j + [λf ]j . Here j ∈ {1, 2}.

Protocol ΠmulZK(P, 〈d〉, 〈e〉)

Fig. 18: 〈·〉-shared Multiplication Protocol of [17]

Now we explain the verification method of [17] in detail.
The technique enables prover P to prove to the verifiers V1,V2

in zero knowledge that it knows w such that (x,w) ∈ R. Let
ckt denotes the circuit corresponding to the statement being
verified such that ckt(x,w) = 0 iff (x,w) ∈ R. The statement
x is shared among the verifiers; x1 with V1 and x2 with V2

such that x = x1||x2, where || denotes concatenation, |x1| =
n1, |x2| = n2 and n = n1 + n2. Let M be the number of
multiplication gates in ckt.

Without loss of generality and for easy explanation, we
consider the circuit given in Figure 19 and the prover and
verifiers being P0 and (P1, P2) respectively.
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The prover P0 first constructs three polynomials f(),
g() and h() on the values on left, right and output wires,
respectively, of the multiplication gates. The constant terms
of f() and g() are set as random ring elements z1 and z2
respectively, while the constant term for h() is set as z1z2.
More precisely,

f(0) = z1, g(0) = z2, h(0) = z1z2
f(1) = x2, g(1) = x1, h(1) = x1x2
f(2) = v2 = 7 + w, g(2) = v1 = x1x2, h(2) = v1v2

With the above values set, P0 interpolates the polynomials
f(), g() and h(). While f(), g() are polynomials of degree
at most M , h() is a polynomial of degree at most d = 2M .
The proof π is then defined as (w, z1, z2, ch) ∈ Zσ2` where ch
denotes the coefficients of h(). The size of proof is denoted
by σ = s+ d+ 3 where s is the size of the witness. P0 then
provides additive shares of π, denoted by πi, to the verifiers;
πi to Pi for i ∈ {1, 2}. Note that if P0 is honest then ∀r ∈
Z2` , h(r) = f(r)g(r) and h(M) = 0.

Verifiers P1, P2 together sample a random value r ∈
Z2` \{z1, z2} and generate corresponding query vectors qf , qg
and qh ∈ Zn+σ

2`
. Each verifier Pi for i ∈ {1, 2} then construct

three query vectors from qf , qg and qh. More precisely,
corresponding to polynomial f(), verifier Pi constructs vector
Qif ∈ Fni+σ from qf such that the first ni positions are
reserved for entries corresponding to xi followed by qf . Pi
for i ∈ {1, 2} then locally computes the dot product (�) of
the vectors (xi||πi) and Qif as fi(r) = (xi||πi)�Qif and sends
it to verifier P1. P1 after receiving the shares of fi(r) computes
the value f(r) = f1(r) + f2(r). This comes from the fact that
each query vector q defines a linear combination of the input
x and proof π. Hence, the verifiers can form additive shares of
the answers to the queries, which is the polynomials evaluated
at r, using their parts of input xi and additive share πi. This
comes from the fact that each query vector q defines a linear
combination of the input x and proof π. Hence, the verifiers
can form additive shares of the answers to the queries, which
is the polynomials evaluated at r, using their parts of input xi
and additive share πi. Similar steps are done for polynomials
g() and h() which enables P1 to obtain g(r) and h(r). P1

aborts if h(r) 6= f(r)g(r). A cheating prover P0 will pass
this check with probability at most 2M−1

2`−2 , which for a large
enough ` is negligible.

Now for the second check, ie. h(M) = 0, verifiers generate
query vector q in a similar fashion. More precisely, Pi for i ∈
{1, 2} forms Qi, computes hi(M) and sends his share of h(M)
to P1. Verifier P1 abort if h(M) 6= h1(M) + h2(M) = 0.

[17] propose two variants of the above technique. The first
variant gives a 2 round fully linear interactive oracle proofs
with query complexity O (

√
n), where n is the size of the

input. The second variant gives O (log(M)) rounds fully linear
interactive oracle proofs with query complexity of O (log(M)),
where M is the number of multiplication gates in ckt. We
use the former result in our work. We refer the readers to
[17] for a more detailed description of the verification and its
optimizations.

Lemma B.1 (Communication). Protocol ΠmulZK requires 4
rounds and an amortized communication of 3` bits.

The ideal-world functionality realising ΠmulZK protocol is
presented in Fig. 20.

FmulZK interacts with the servers in P and the adversary S. FmulZK

receives the 〈·〉-shares of values d and e from the servers where,

〈d〉0 = ([λd]1 , [λd]2), 〈d〉1 = ([λd]1 , d + λd), 〈d〉2 = ([λd]2 , d + λd)
〈e〉0 = ([λe]1 , [λe]2), 〈e〉1 = ([λe]1 , e + λe), 〈e〉2 = ([λe]2 , e + λe)

If the functionality receives ⊥ from S, then send ⊥ to every
server, else do the following:

Computation of output: Compute d = (d +λd)− [λd]1− [λd]2
and e = (e + λe) − [λe]1 − [λe]2 followed by computing f = de.
Randomly select [λf ]1 , [λf ]2 from Z2` and set λf = [λf ]1 + [λf ]2.
The output shares are set as

〈f〉0 = ([λf ]1 , [λf ]2), 〈f〉1 = ([λf ]1 , f + λf), 〈f〉2 = ([λf ]2 , f + λf)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, 〈f〉S) to the adversary
S, where 〈f〉S denotes the share of f corresponding to the corrupt
server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, 〈f〉i), where 〈f〉i denotes the share of f corresponding to
the honest server Pi.

Functionality FmulZK

Fig. 20: Functionality for ΠmulZK

APPENDIX C
BUILDING BLOCKS

A. Secret Sharing and Reconstruction Protocols

1) Sharing Protocol:

Lemma C.1 (Communication). Protocol Πsh (Fig. 2) is non-
interactive in the preprocessing phase and requires 1 round
and an amortized communication of 2` bits in the online phase.

Proof: During the preprocessing phase, servers sample the
shares of α and γ values non-interactively using the shared
key setup. During the online phase, when Pi = P0, he/she
computes and sends β to both P1 and P2 resulting in 1 round
and a communication of 2` ring elements. This is followed
by P1, P2 mutually exchanging hash of β value received from
P0. Servers can combine β-values for several instances into a
single hash and hence the cost gets amortized over multiple
instances. For the case when Pi = P1, she sends β and
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β + γ to P2 and P0 respectively, resulting in 1 round and
a communication of 2` ring elements. This is followed by P2

sending a hash of β+γ to P0. As mentioned earlier, combining
values for multiple instances into a single hash amortizes the
cost. The case for Pi = P2 follows similarly.

2) Joint Sharing Protocol:

Lemma C.2 (Communication). Protocol Πjsh (Fig. 3) is non-
interactive in the preprocessing phase and requires 1 round
and an amortized communication of at most 2` bits in the
online phase.

Proof: In this protocol, one of the servers executes Πsh

protocol. In parallel, another server sends a hash of β to both
P1 and P2, whose cost gets amortized over multiple instances.
Hence the overall cost follows from that of an instance of the
sharing protocol (Lemma C.1).

3) Reconstruction Protocol:

Lemma C.3 (Communication). Protocol Πrec (Fig. 4) requires
1 round and an amortized communication of 3` bits in the
online phase.

Proof: During the protocol, each server receives her
missing share from another server, resulting in 1 round and
a communication of 3` bits. Also, each server receives a hash
of the missing share from another server for verification. The
hash for multiple instances can be combined to a single hash
and thus this cost gets amortized over multiple instances.

4) Fair Reconstruction Protocol: Protocol Πfrec(P, JvK)
(Fig. 21) ensures fair reconstruction of the secret v for servers
in P . This implies that the honest servers are guaranteed to
obtain the secret v whenever the corrupt server obtains the
same. The techniques for fair reconstruction introduced in
ASTRA to achieve fairness are adapted for our sharing scheme.

Preprocessing:

– Servers P0, Pj for j ∈ {1, 2} locally sample a random rj ∈
Z2` , prepare commitments of [αv]j and rj . P0, Pj then send
(Com([αv]j) , Com(rj)) to P2−j .

– Pj for j ∈ {1, 2} abort if the received commitments mis-
match.

Online:

– P1, P2 compute a commitment of βv and send it to P0.

– If the commitments do not match, P0 sends (abort, oj) to P2−j

for j ∈ {1, 2} and aborts, where oj denotes opening information
for the commitment of rj . Else P0 sends continue to both P1

and P2.

– P1, P2 exchange the messages received from P0.

– P1 aborts if he receives either (i) (abort, o2) from P0 and o2
opens the commitment of r2 or (ii) (abort, o1) from P2 and
o1 is the correct opening information of r1. The case for P2 is
similar to that of P1

– If no abort happens, servers obtain their missing share of v as
follows:
– P0, P1 open [αv]1 towards P2.

– P0, P2 open [αv]2 towards P1.

Protocol Πfrec(P, JvK)

– P1, P2 open βv towards P0.

– Servers reconstruct the value v using missing share that matches
with the agreed upon commitment.

Fig. 21: Fair Reconstruction of value v ∈ Z2` among P

The protocol proceeds as follows: In order to fairly re-
construct v, servers together commit to their common shares.
Concretely, in the preprocessing phase, the servers P0, P1

commit [αv]1 to P2 and P0, P2 commit [αv]2 to P1. In the
online phase, the servers P1, P2 commit βv to P0. The recipient
in each case can abort if the received commitments do not
match. In the case of no abort, P0 signals P1 and P2 to start
opening the commitments which provides each server with the
missing share so that they can reconstruct v. It is fair because at
least one honest party would have provided the missing share
that would allow reconstruction. Lastly, if the protocol aborts
before, then none receive the output. Note that a corrupt P0 can
send distinct signals to P1 and P2 (abort to one and continue to
the other), breaching unanimity. To resolve this without relying
on a broadcast channel, P0, P1 together commit a value r1 to
P2 and P0, P2 together commit a common value r2 to P1 in the
preprocessing phase. In the online phase, if P0 aborts, it sends
opening of r2 to P1 and r1 to P2, along with the abort signal.
Now a server, say P1 on receiving the abort can convince P2

that it has indeed received abort from P0, using r2 as the
proof of origin for the abort message. This is because P1 can
secure r2 only via P0. A single pair of (r1, r2) can be used
as a proof of origin for multiple instances of reconstruction
running in parallel.

In the outsourced setting, the fair reconstruction of a
value v proceeds as follows: Servers execute all the steps of
fair reconstruction protocol (Fig. 21) except the opening of
the commitments in the online phase. If no abort happens,
then each of the three servers sends the commitment of
JαvKA, JαvKB, and βv) to the party P towards which the output
needs to be reconstructed. Since we are in the honest majority
setting, there will be a majority value among each of the
commitment which the party P accepts. In the next round,
servers open the shares towards party P as follows: P0, P1

open [αv]1; P0, P2 open [αv]2; P1, P2 open βv. For each of
share, party P will accept the opening that matches with the
commitment that it accepted.

Lemma C.4 (Communication). Protocol Πfrec (Fig. 21) re-
quires 4 rounds and an amortized communication of 6` bits in
the online phase.

Proof: During the preprocessing phase, servers P0, P1

prepare and send commitment of α shares corresponding to
P2. The commitment can be instantiated using a hash function
(Appendix A) and the commitment for multiple instances can
be clubbed together amortizing its cost.

The online phase proceeds as follows: In round 1, servers
P1, P2 prepare a commitment of β value and send it to P1.
In round 2, based on the consistency of the values received,
P0 sends back either an abort or continue signal. This is
followed by round 3, where P1, P2 mutually exchange the
value received from P0. If no mismatch is found, servers
exchange their missing share for the output in round 4,
resulting in the communication of 6 ring elements. Note that
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the communication for the first three rounds can be clubbed
together and thus the communication cost gets amortized over
multiple instances.

B. Layer-I Primitives

1) Multiplication Protocol:

Lemma C.5 (Communication). Protocol Πmult (Fig. 5) re-
quires 4 rounds and an amortized communication of 3` bits
in the preprocessing phase and requires 1 round and an
amortized communication of 3` bits in the online phase.

Proof: During the preprocessing phase, servers non-
interactively generate γ value and shares for α value corre-
sponding to the output using the shared key setup. This is
followed by servers executing one instance of ΠmulZK protocol,
which requires 4 rounds and an amortized communication of
3 ring elements (Lemma B.1). The rest of the steps in the
preprocessing phase are non-interactive.

During the online phase, servers P1, P2 mutually exchange
their shares of β corresponding to the output, resulting in 1
round and communication of 2 ring elements. In parallel, P0

computes and sends hash of β? corresponding to the output
to both P1 and P2. P1 then sends β + γ corresponding to the
output to P0 resulting in an additional communication of 1
ring element. In parallel, P2 sends a hash of the same to P0.
The hash for multiple instances can be combined and hence
the cost gets amortized over multiple instances. Note that the
communication to and from P0 can be deferred to the end but
before the output reconstruction.

2) Bit Extraction protocol:

Lemma C.6 (Communication). Protocol Πbitext (Fig. 6) re-
quires 5 rounds and an amortized communication of 5`κ+ κ
bits in the preprocessing phase and requires 2 round and an
amortized communication of `κ + 2 bits in the online phase.
Here κ denotes the computational security parameter.

Proof: During the preprocessing phase, servers execute
two instances of Πjsh protocol on boolean values. The protocol
can be made non-interactive as mentioned in Section IV. The
garbled circuit GC consists of 2` AND gates (cf. optimized
PPA of ABY3 [5]) and requires a communication of 4`κ
bits for the communication from garbler to the evaluator.
Moreover, communicating the keys corresponding to inputs
u2 = γv+[αv]2 and u5 = r2 require a communication of `κ and
κ bits respectively. So, in total, preprocessing phase requires
an overall communication of 5`κ+κ bits. This is equivalent to
(5κ+ 2)` bits in our setting where κ = 128 = 2` for ` = 64.

During the online phase, garbler communicate the key
corresponding to u1 = βv + γv to evaluator which results in
one round and a communication of `κ bits. After evaluation,
P2 sends the resultant bit to P1 which results in another round
and a communication of 1 bit. This is followed by servers
P1, P2 executing one instance of Πjsh on a boolean value
resulting in an additional communication of 1 bit. Note that
the communication to P0 can be deferred to the end of the
protocol but before output reconstruction.

3) Bit2A Conversion protocol:

Lemma C.7 (Communication). Protocol Πbit2A (Fig. 7) re-
quires 5 rounds and an amortized communication of 9` bits
in the preprocessing phase and requires 1 round and an
amortized communication of 4` bits in the online phase.

Proof: During the preprocessing phase, servers execute
two instances of Πjsh protocol both of which can be made
non-interactive as mentioned in Section IV. This is followed
by entire multiplication of two ring values which costs 5
rounds and communication of 6 ring elements (Lemma C.5).
In parallel, servers perform the preprocessing corresponding to
a multiplication resulting in an additional communication of 3
ring elements (Lemma C.5).

During the online phase, servers P1, P2 executing one
instance of Πjsh protocol resulting in the communication of 1
ring element. Note that the communication to P0 in this step
can be deferred to the end of the protocol but before output
reconstruction. This is followed by servers executing the online
phase corresponding to a multiplication resulting in 1 round
and communication of 3 ring elements.

C. Layer-II Primitives

1) Dot Product Protocol:

Lemma C.8 (Communication). Protocol Πdotp (Fig. 8) re-
quires 4 rounds and an amortized communication of 3n` bits
in the preprocessing phase and requires 1 round and an
amortized communication of 3` bits in the online phase. Here
n denotes the size of the underlying vectors.

Proof: During the preprocessing phase, servers execute
the preprocessing phase of Πmult corresponding to each of
the n multiplications in parallel resulting in 4 rounds and an
amortized communication of 3n ring elements (Lemma C.5).

The online phase is similar to that of Πmult protocol apart
from servers combine their shares corresponding to all the n
multiplications into one and then exchange. This results in 1
round and an amortized communication of 3 ring elements.

2) Truncation:

Lemma C.9 (Communication). Protocol Πtrgen (Fig. 9) re-
quires 2 rounds and an amortized communication of 2n` bits.

Proof: In this protocol, servers first non-interactively
sample additive shares of r using the shared randomness.
Server P0 then executes Πsh protocol on truncated value of
r resulting in 1 round and a communication of 2 ring elements
(Lemma C.1). This is followed by P1 sending a hash of u to
P2. Note that the cost for hash gets amortized over multiple
instances.

3) Dot Product with Truncation:

Lemma C.10 (Communication). Protocol Πdotpt (Fig. 10)
requires 4 rounds and an amortized communication of 3n`+2`
bits in the preprocessing phase and requires 1 round and an
amortized communication of 3` bits in the online phase.

Proof: During the preprocessing phase, servers execute
the preprocessing phase corresponding to n instances of Πmult
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protocol, resulting in a communication of 3n ring elements
(Lemma C.8). In parallel, servers execute one instance of
Πtrgen protocol resulting in an additional communication of
2 ring elements (Lemma C.9).

The online phase is similar to that of Πdotp protocol apart
from servers P1, P2 computing additive shares of z− r, where
z = ~x � ~y, which results in a communication of 2 ring
elements. This is followed by servers P1, P2 executing one
instance of Πjsh protocol on the truncated value of z to generate
its arithmetic sharing. This incurs a communication of 1 ring
element. This is followed by servers locally adding their shares.
Hence, the online phase requires 1 round and an amortized
communication of 3 ring elements.

4) Activation Functions:

Lemma C.11 (Communication). Protocol relu requires 5
rounds and an amortized communication of 12`+9p bits in the
preprocessing phase and requires 3 rounds and an amortized
communication of 7` + 3p + 1 bits in the online phase. Here
p denotes the size of the larger field which is p = ` + 25 in
this work.

Proof: One instance of relu protocol involves the execu-
tion of one instance of Πbitext, Πbit2A, and Πmult. Hence the
cost follows from Lemma C.6, Lemma C.7 and Lemma C.5.

Lemma C.12 (Communication). Protocol sig requires 5
rounds and an amortized communication of 21` + 18p + 3
bits in the preprocessing phase and requires 4 rounds and an
amortized communication of 11` + 6p + 5 bits in the online
phase.

Proof: One instance of sig protocol involves the execution
of the following protocols in order– i) two instances of Πbitext

protocol, ii) once instance of Πmult protocol over boolean
value, iii) two instances of Πbit2A protocol, and iv) one instance
of Πmult protocol over ring elements. The cost follows from
Lemma C.6, Lemma C.7 and Lemma C.5.

APPENDIX D
MICRO BENCHMARKING OVER WAN

In this section, we provide detailed benchmarking of ML
algorithms over the WAN setting.

A. ML Training

In Table X, we tabulate the performance in the preprocess-
ing phase of the protocol of BLAZE and ABY3 for Linear Re-
gression and Logistic Regression Training. The data for batch
size B ∈ {128, 256, 512} and feature sizes {100, 500, 900}
are provided. The values in the table shows the number of
iterations in the preprocessing phase that can be completed in
a minute. A higher value in the table corresponds a protocol
with lower latency.

Similarly, in Table XI, we tabulate the performance in the
online phase of the protocol of BLAZE and ABY3 for Linear
Regression and Logistic Regression Training. The values in
the table shows the number of online iterations that can be
completed in a minute.

Algorithm Batch
Size Ref.

Feature Size

n = 100 n = 500 n = 900

Linear
Regression

(#iterations/min)

128 ABY3 73.50 68.42 64.72
BLAZE 97.08 97.47 91.72

256 ABY3 72.38 64.36 55.96
BLAZE 96.60 91.31 84.38

512 ABY3 70.23 55.04 43.30
BLAZE 95.65 83.67 70.55

Logistic
Regression

(#iterations/min)

128 ABY3 19.77 19.38 19.07
BLAZE 31.91 31.51 31.31

256 ABY3 19.68 19.04 18.23
BLAZE 31.86 31.26 30.40

512 ABY3 19.52 18.13 16.64
BLAZE 31.75 30.31 28.40

TABLE X: Preprocessing Phase: Comparison of ABY3 and
BLAZE for ML Training (higher = better)

Algorithm Batch
Size Ref.

Feature Size

n = 100 n = 500 n = 900

Linear
Regression

(#iterations/min)

128 ABY3 97.57 95.07 89.94
BLAZE 139.05 139.05 139.05

256 ABY3 97.11 89.94 80.09
BLAZE 139.05 139.05 139.05

512 ABY3 95.08 80.10 68.94
BLAZE 139.05 139.05 139.05

Logistic
Regression

(#iterations/min)

128 ABY3 20.54 20.43 20.18
BLAZE 60.79 60.79 60.79

256 ABY3 20.52 20.18 19.63
BLAZE 60.79 60.79 60.79

512 ABY3 20.40 19.61 18.87
BLAZE 60.79 60.79 60.79

TABLE XI: Online Phase: Comparison of ABY3 and BLAZE
for ML Training (higher = better)

B. ML Inference

Here we provide the details of the benchmarking done
on the preprocessing phase of ML Inference. The details for
Linear Regression, Logistic Regression, and Neural Networks
appear in Fig. 22, Fig. 23, and Fig. 24 respectively.
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For all of the algorithms above, we observe ≈ 4× gain in
the preprocessing throughput over ABY3.

APPENDIX E
MICRO BENCHMARKING OVER LAN

In this section, we provide the benchmarking details over
the LAN setting.

A. Dot Product

For the preprocessing phase, we plot the throughput of
BLAZE and ABY3 for dot product protocol (Fig. 25) over
vectors of length ranging from 100 to 1000. We note at least
a gain of 4×, which is a consequence of 4× improvement in
communication, over ABY3.

For the case of online throughput (Fig. 26), the gain over
ABY3 ranges from 363× to 3272× across varying feature
sizes. We observe a huge gain in the online throughput over
ABY3 in the LAN when compared with that of WAN. This
is because, in LAN, the communication time scales with the
communication size unlike WAN, where the communication
time remains almost same for a wide range of communication
sizes.
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Fig. 26: Comparison of Online Throughput (TP) of BLAZE and
ABY3 for Dot Product Protocol for different Bandwidths (BW)

B. ML Training

In this section, we explore the training phase of Linear Re-
gression and Logistic Regression algorithms. Our performance
improvement over ABY3 (Fig. 27) is reported in the terms of
number of iterations over feature size varying from 100 to
1000, and batch size of B ∈ {128, 256, 512}.

For the online phase of Linear Regression Training
(Fig. 27b), the performance gain for batch size of 128 ranges
from 138× to 83.4×. The performance gain in the online phase
increases significantly for larger batch sizes, and goes all the
way up to 2610× for batch size of 512. Similarly, for the case
of Logistic Regression, the gain ranges from 6.11× to 53.19×.

Table XII provides concrete details for the training phase
of Linear Regression and Logistic Regression algorithms over
a batch size of 128 and feature size of 784.

In Table XIII, we tabulate the performance in the pre-
processing phase of the protocol of BLAZE and ABY3 for
Linear Regression and Logistic Regression training, for batch
size B ∈ {128, 256, 512} and feature sizes {100, 500, 900}.
The values in the table shows the number of iterations in the
preprocessing phase that can be completed in a minute.

Similarly, in Table XIV, we tabulate the performance in
the online phase of the protocol of BLAZE and ABY3 for
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Fig. 27: Throughput (TP) Comparison of ABY3 and BLAZE for ML Training over LAN

Algorithm Ref.
Preprocessing Online

TP (×103) Gain TP (×106) Gain

Linear
Regression

ABY3 156.21
4.01× 0.16

880.28×This 626.54 137.97

Logistic
Regression

ABY3 155.42
2.86× 0.16

44.92×This 443.81 7.19

TABLE XII: Throughput (TP) for ML Training for a batch
size B-128 and feature size n-784

Algorithm Batch
Size Ref.

Feature Size

n = 100 n = 500 n = 900

Linear
Regression

128 ABY3 4236.09 941.40 675.01
BLAZE 8511.85 1961.87 1585.79

256 ABY3 2807.94 649.96 337.27
BLAZE 6335.80 1587.89 790.92

512 ABY3 1516.80 324.34 172.74
BLAZE 3564.43 790.82 410.43

Logistic
Regression

128 ABY3 2810.17 846.01 624.51
BLAZE 2378.97 1230.64 1071.28

256 ABY3 1954.21 590.25 320.45
BLAZE 1169.23 753.12 509.58

512 ABY3 1175.87 305.40 167.22
BLAZE 636.94 391.55 268.39

TABLE XIII: Preprocessing Phase: Comparison of ABY3 and
BLAZE for ML Training (higher = better)

Linear Regression and Logistic Regression training. The values
in the table shows the number of online iterations that can be
completed in a minute.

C. ML Inference

In this section, we benchmark the inference phase of
Linear Regression, Logistic Regression, and Neural Networks.
For inference, the benchmarking parameter is the number of
queries processed per minute (#queries/min).

The benchmarking for the inference phase of Linear Re-
gression, Logistic Regression, and Neural Network appears
in Fig. 28, Fig. 29, and Fig. 30 respectively. For the online
phase of Linear Regression Inference, the performance gain
over ABY3 ranges from 400× to 3600×. Similarly, for the
case of Logistic Regression, the gain ranges from 3.16× to

Algorithm Batch
Size Ref.

Feature Size

n = 100 n = 500 n = 900

Linear
Regression

128 ABY3 6622.52 1591.93 810.58
BLAZE 41666.67 34285.71 29542.10

256 ABY3 3724.39 810.59 412.67
BLAZE 35502.96 30456.85 26654.82

512 ABY3 1755.93 412.65 205.21
BLAZE 34883.72 27272.73 25740.03

Logistic
Regression

128 ABY3 2623.75 1165.43 683.27
BLAZE 7863.70 7556.68 7556.68

256 ABY3 1696.98 643.34 364.43
BLAZE 5008.35 4893.96 4783.16

512 ABY3 982.90 348.27 187.89
BLAZE 2542.37 2491.69 2478.21

TABLE XIV: Online Phase: Comparison of ABY3 and
BLAZE for ML Training (higher = better)

27.04×. For the case of Neural Networks, the gain range is
from 65× to 276×.
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Fig. 28: Throughput (TP) Comparison of ABY3 and BLAZE
for Linear Regression Inference over LAN

Table XV provides concrete details for the inference phase
of the aforementioned algorithms for feature size of 784.
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Fig. 29: Throughput (TP) Comparison of ABY3 and BLAZE
for Logistic Regression Inference over LAN
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Fig. 30: Throughput (TP) Comparison of ABY3 and BLAZE
for Neural Network Inference over LAN

Algorithm Ref.
Preprocessing Online

TP (×103) Gain TP (×106) Gain

Linear
Regression

ABY3 311.384
4.02× 0.31

3136×This 1252.28 983.04

Logistic
Regression

ABY3 308.25
2.23× 0.31

23.57×This 686.93 7.33

Neural
Networks

ABY3 2.04
4.01× 0.003

245.74×This 8.14 0.65

TABLE XV: Throughput (TP) for ML Inference for a feature
size of n-784

APPENDIX F
SECURITY OF OUR CONSTRUCTIONS

In this section, we prove the security of our constructions
using the standard real/ideal world paradigm. Our proofs work
in the {Fsetup,FmulZK}-hybrid model, where Fsetup (Fig. 17)
and FmulZK (Fig. 20) denote the ideal-world functionalities for
the shared key-setup and ΠmulZK protocol respectively.

Let A denote the real-world adversary corrupting one of
the servers in P . We use S to denote an ideal-world adversary
(simulator) for A, who plays the roles of the honest servers
and simulates the messages received by A during the protocol.
The simulator initializes a boolean variable flag = 0, which
indicates whether an honest server aborts during the protocol.
For the case of abort, flag is set to 1. To distinguish the
simulators for various constructions, we use the corresponding
protocol name as the subscript of S.

For a circuit ckt, the simulation proceeds as follows: The

simulation start with the input sharing phase, where S sets the
input of honest parties to 0. From the sharing protocol Πsh, S
extracts the input of A (details are provided in the simulation
for Πsh protocol). This enables S to obtain the entire input for
the ckt, which in turn enables S to know all of the intermediate
values and the output of the circuit. Looking ahead, S will be
using these information to simulate each of the components of
the ckt.

We now provide the simulation details for each of the
constructions in detail. For each of these, we provide the
simulation for a corrupt P0 and a corrupt P1 separately. The
case for P2 is similar to that of P1 and we omit details of the
same.

A. Sharing Protocol

The ideal functionality realising protocol Πsh is presented
in Fig. 31.

Fsh interacts with the servers in P and the adversary S. Fsh

receives the input v from server Pi while it receives ⊥ from the
other servers. If v = ⊥, then send ⊥ to every server, else proceed
with the computation.

Computation of output: Randomly select [αv]1 , [αv]2 , γv from
Z2` and set βv = v + [αv]1 + [αv]2. The output shares are set as:

JvK0 = ([αv]1 , [αv]2 , βv + γv),

JvK1 = ([αv]1 , βv, γv),

JvK2 = ([αv]2 , βv, γv)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, JvKS) to the adversary
S, where JvKS denotes the share of v corresponding to the corrupt
server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, JvKi), where JvKi denotes the share of v corresponding
to the honest server Pi.

Functionality Fsh

Fig. 31: Functionality for protocol Πsh

The simulator for the case of corrupt P0 appears in
Fig. 32.

Preprocessing Phase: Ssh emulates Fsetup and gives the keys
(k01, k02 and kP) to A. By emulating Fsetup, it learns the α-values
corresponding to input v. If Pi = P0, then Ssh computes γv using
the key kP , else it samples a random γv on behalf of P1, P2.

Online Phase:

– If Pi = P0, Ssh receives βv of behalf of P1, P2. Ssh sets flag =
1 if the received values mismatch. Else, it computes the input
v = βv − αv.

– If Pi 6= P0, Ssh sets v = 0 by assigning βv = αv. Ssh sends
βv+γv and H(βv+γv) to A on behalf of P1 and P2 respectively.

Simulator Ssh
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If flag = 0 and Pi = P0, Ssh invokes Fsh with input v on behalf
of P0. Else it invokes Fsh with input ⊥ on behalf of P0.

Fig. 32: Simulator Ssh for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 33.

Preprocessing Phase: Ssh emulates Fsetup and gives the keys
(k01, k12 and kP) to A. By emulating Fsetup, it learns the α-values
corresponding to input v. If Pi = P0, then Ssh computes γv using
the key kP , else it computes γv using the key k12 .

Online Phase:

– If Pi = P1, then Ssh receives βv on behalf of P2 and βv + γv
on behalf of P0. Ssh sets flag = 1 if the received values are
inconsistent. Else, it computes the input v = βv − αv.

– If Pi = Pj for j ∈ {0, 2}, then
– Ssh sets v = 0 by assigning βv = αv and sends βv to A on

behalf of Pj .

– Ssh sends H(βv) to A and receives H(βv)
′ from A on behalf

of P2.

– Ssh receives β′v + γ′v from S on behalf of P0.

– Ssh sets flag = 1 if either H(βv)
′ 6= H(βv) or βv + γv 6=

β′v + γ′v.

If flag = 0 and Pi = P1, Ssh invokes Fsh with input v on behalf
of P1. Else it invokes Fsh with input ⊥ on behalf of P1.

Simulator Ssh

Fig. 33: Simulator Ssh for the case of corrupt P1

B. Joint Sharing Protocol

The ideal functionality realising protocol Πjsh is presented
in Fig. 34.

Fjsh interacts with the servers in P and the adversary S. Fjsh

receives the input v from servers Pi, Pj while it receives ⊥ from
the third server. If the values received from Pi, Pj mismatch, then
send ⊥ to every server, else proceed with the computation.

Computation of output: Randomly select [αv]1 , [αv]2 , γv from
Z2` and set βv = v + [αv]1 + [αv]2. The output shares are set as:

JvK0 = ([αv]1 , [αv]2 , βv + γv),

JvK1 = ([αv]1 , βv, γv),

JvK2 = ([αv]2 , βv, γv)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, JvKS) to the adversary
S, where JvKS denotes the share of v corresponding to the corrupt
server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, JvKi), where JvKi denotes the share of v corresponding
to the honest server Pi.

Functionality Fjsh

Fig. 34: Functionality for protocol Πjsh

The simulator for the case of corrupt P0 appears in
Fig. 35.

Preprocessing Phase: Sjsh emulates Fsetup and gives the keys
(k01, k02 and kP) to A. By emulating Fsetup, it learns the α-values
corresponding to input v. Sjsh samples a random γv on behalf of
P1, P2.

Online Phase:

– If (Pi, Pj) = (P1, P0), then
– Sjsh computes βv = v + [αv]1 + [αv]2 on behalf of P1.

– Sjsh receives H(β′v) from A on behalf of P2 and sets flag = 1
if H(βv)

′ 6= H(βv).

– Sjsh then sends βv + γv and H(βv + γv) to A on behalf of
P1 and P2 respectively.

– The case for (Pi, Pj) = (P2, P0) follows similarly.

– If (Pi, Pj) = (P1, P2), then Sjsh sets v = 0 by assigning βv =
[αv]1 + [αv]2. Sjsh then sends βv + γv and H(βv + γv) to A on
behalf of P1 and P2 respectively.

If flag = 0 and Pj = P0, Sjsh invokes Fjsh with input v on behalf
of P0. Else it invokes Fjsh with input ⊥ on behalf of P0.

Simulator Sjsh

Fig. 35: Simulator Sjsh for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 36.

Preprocessing Phase: Sjsh emulates Fsetup and gives the keys
(k01, k12 and kP) to A. By emulating Fsetup, it learns the α-values
corresponding to input v. Sjsh computes γv using the key k12.

Online Phase:

– If (Pi, Pj) = (P1, P0), then
– Sjsh computes βv = v + [αv]1 + [αv]2 on behalf of P0.

– Sjsh receives β′v from A on behalf of P2 and sets flag = 1 if
β′v 6= βv.

– Sjsh receives β′v+γ′v fromA on behalf of P0 and sets flag = 1
if β′v + γ′v 6= βv + γv.

– If (Pi, Pj) = (P1, P2), then Sjsh receives β′v + γ′v from A on
behalf of P0 and sets flag = 1 if β′v + γ′v 6= βv + γv.

– If (Pi, Pj) = (P2, P0), then Sjsh sets v = 0 by assigning βv =
[αv]1 + [αv]2. Sjsh then sends βv and H(βv) to A on behalf of
P2 and P0 respectively.

If flag = 0 and Pi = P1, Ssh invokes Fjsh with input v on behalf
of P1. Else it invokes Fjsh with input ⊥ on behalf of P1.

Simulator Sjsh

Fig. 36: Simulator Sjsh for the case of corrupt P1
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C. Reconstruction Protocol

The ideal functionality realising protocol Πrec is presented
in Fig. 37.

Frec interacts with the servers in P and the adversary S. Frec

receives the 〈·〉-shares of value v from server Pi for i ∈ {0, 1, 2}.
The shares are

〈v〉0 = ([αv]1 , [αv]2),

〈v〉1 = ([αv]
′
1 , β

′
v),

〈v〉2 = ([αv]
′
2 , β

′′
v )

Frec sends ⊥ to every server if either of the following condition
is met: i) [αv]1 6= [αv]

′
1, ii) [αv]2 6= [αv]

′
2, or iii) β′v 6= β′′v . Else it

proceeds with the computation.

Computation of output: Set v = βv − [αv]1 − [αv]2.

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, v) to the adversary S.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, v).

Functionality Frec

Fig. 37: Functionality for protocol Πrec

The simulator for the case of corrupt P0 appears in Fig. 38.
As mentioned in the beginning of this section, S knows all of
the intermediate values and the output of the ckt. S uses this
information to simulate the Πrec protocol.

Online Phase:

– Srec sends βv and H(βv) to A on behalf of P1 and P2

respectively.

– Srec receives H([α′v]2) and [αv]
′
1 from A on behalf of P1 and

P2 respectively. Srec sets flag = 1 if either H([α′v]1) 6= H([αv]1)
or [αv]

′
2 6= [αv]2.

If flag = 0, Srec invokes Frec with input ([αv]1 , [αv]2) on behalf
of P0. Else it invokes Frec with input ⊥ on behalf of P0.

Simulator Srec

Fig. 38: Simulator Srec for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 39.

Online Phase:

– Srec sends [αv]2 and H([αv]2) to A on behalf of P2 and P0

respectively.

– Srec receives H([α′v]1) and β′v from A on behalf of P2 and P0

respectively. Srec sets flag = 1 if either H([α′v]1) 6= H([αv]1) or
β′v 6= βv.

Simulator Srec

If flag = 0, Srec invokes Frec with input ([αv]1 , βv) on behalf of
P1. Else it invokes Frec with input ⊥ on behalf of P1.

Fig. 39: Simulator Srec for the case of corrupt P1

D. Multiplication

The ideal functionality realising protocol Πmult is presented
in Fig. 40.

Fmult interacts with the servers in P and the adversary S. Fmult

receives J·K-shares of values x and y from the servers as input. If
Fmult receives ⊥ from S, then send ⊥ to every server, else proceed
with the computation.

Computation of output: Compute x = βx − [αx]1 − [αx]2 , y =
βy− [αy]1− [αy]2 and set z = xy. Randomly select [αz]1 , [αz]2 , γz
from Z2` and set βz = z + [αz]1 + [αz]2. The output shares are set
as:

JzK0 = ([αz]1 , [αz]2 , βz + γz),

JzK1 = ([αz]1 , βz, γz),

JzK2 = ([αz]2 , βz, γz)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, JzKS) to the adversary
S, where JzKS denotes the share of z corresponding to the corrupt
server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, JzKi), where JzKi denotes the share of z corresponding to
the honest server Pi.

Functionality Fmult

Fig. 40: Functionality for protocol Πmult

The simulator for the case of corrupt P0 appears in
Fig. 41.

Preprocessing Phase:

– Smult computes [αz]1 and [αz]2 using the keys k01 and k02
respectively. Also, Smult samples a random γz on behalf of P1, P2

and prepares the 〈·〉-shares of d, e honestly.

– Smult emulates FmulZK and gives ([λf ]1 , [λf ]2) to A. Smult then
computes the values ψ, χ followed by computing Γxy = γxαy +
γyαx + ψ − χ.

Online Phase:

– Smult receives H(β?
z ) from A on behalf of P1 and P2. Smult

sets flag = 1 if either the received hash values are inconsistent
or if H(β?

z ) 6= H(βz − βxβy + ψ).

– Else, Smult sends βz + γz and H(βz + γz) to A on behalf of P1

and P2 respectively.

If flag = 0, Smult invokes Fmult with input (JxK0, JyK0) on behalf
of P0. Else it invokes Fmult with input ⊥ on behalf of P0.

Simulator Smult

Fig. 41: Simulator for the case of corrupt P0
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The simulator for the case of corrupt P1 appears in
Fig. 42.

Preprocessing Phase:

– Smult computes [αz]1 and γz using the keys k01 and k12
respectively. Smult samples a random [αz]2 on behalf of P0 and
P2 and prepares the 〈·〉-shares of d, e honestly.

– Smult emulates FmulZK and gives ([λf ]1 , f + λf) to A. Smult

then computes the values [ψ] , [χ] honestly. This is followed by
computing [Γxy] = γx [αy] + γy [αx] + [ψ]− [χ].

Online Phase:

– Smult computes and sends [βz]2 = βxβy−βx [αy]2−βy [αx]2 +
[Γxy]2+[αz]2 toA on behalf of P2, while it receives [βz]1 fromA
on behalf of P2. Smult computes βz = xy +αz and sets flag = 1
if βz 6= [βz]1 + [βz]2.

– Smult sends H(β?
z ) to A on behalf of P0. Smult receives βz +γz

from A on behalf of P0 and sets flag = 1 if the received value
is inconsistent.

If flag = 0, Smult invokes Fmult with input (JxK1, JyK1) on behalf
of P1. Else it invokes Fmult with input ⊥ on behalf of P1.

Simulator Smult

Fig. 42: Simulator for the case of corrupt P1

E. Bit Extraction Protocol

The ideal functionality realising protocol Πbitext is pre-
sented in Fig. 43.

Fbitext interacts with the servers in P and the adversary S. Fbitext

receives J·K-share of value v from the servers as input. If Fbitext

receives ⊥ from S, then send ⊥ to every server, else proceed with
the computation.

Computation of output: Compute v = βv+[αv]1+[αv]2 and set
b = msb(v) where msb denotes the most significant bit. Randomly
select [αb]1 , [αb]2 , γb from Z21 and set βb = b ⊕ [αb]1 ⊕ [αb]2.
The output shares are set as:

JbK0 = ([αb]1 , [αb]2 , βb ⊕ γb),
JbK1 = ([αb]1 , βb, γb),

JbK2 = ([αb]2 , βb, γb)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, JbKS) to the adversary
S, where JbKS denotes the share of b corresponding to the corrupt
server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, JbKi), where JbKi denotes the share of b corresponding
to the honest server Pi.

Functionality Fbitext

Fig. 43: Functionality for protocol Πbitext

The simulator for the case of corrupt P0 appears in
Fig. 44.

Preprocessing Phase:

– Sbitext computes r1 and r2 using the keys k01 and k02 on behalf
of P1 and P2 respectively.

– The steps corresponding to Πjsh protocol are simulated similar
to Sjsh (Fig. 35) for the case of corrupt P0.

– The steps corresponding to the garbling are simulated according
to the underlying garbling scheme.

Online Phase:

– The steps corresponding to Πjsh are simulated similar to Sjsh
(Fig. 35), for the case of corrupt P0.

– The steps corresponding to the garbling are simulated according
to the underlying garbling scheme.

If flag = 0, Sbitext invokes Fbitext with input ([αv]1 , [αv]2 , βv+γv)
on behalf of P0. Else it invokes Fbitext with input ⊥ on behalf of
P0.

Simulator Sbitext

Fig. 44: Simulator for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 45.

Preprocessing Phase:

– Sbitext computes r1 and r2 using the keys k01 and k02 on behalf
of P0 and P2 respectively.

– The steps corresponding to Πjsh protocol are simulated similar
to Sjsh (Fig. 35) for the case of corrupt P1.

– The steps corresponding to the garbling are simulated according
to the underlying garbling scheme.

Online Phase:

– Sbitext receives the actual keys for u1 from P1 on behalf of P2.
Sbitext sets flag = 0 if the received value mismatches with the
value computed by himself on behalf of P0.

– The steps corresponding to the garbling are simulated according
to the underlying garbling scheme.

– Sbitext sends bit v and hash of the corresponding key to P1 on
behalf of P2.

– The steps corresponding to Πjsh are simulated similar to Sjsh
(Fig. 35), for the case of corrupt P1.

If flag = 0, Sbitext invokes Fbitext with input ([αv]1 , βv, γv) on
behalf of P1. Else it invokes Fbitext with input ⊥ on behalf of P1.

Simulator Sbitext

Fig. 45: Simulator for the case of corrupt P1

F. Bit2A Protocol

The ideal functionality realising protocol Πbit2A is pre-
sented in Fig. 46.
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Fbit2A interacts with the servers in P and the adversary S. Fbit2A

receives J·KB-share of a bit b from the servers as input. If Fbit2A

receives ⊥ from S, then send ⊥ to every server, else proceed with
the computation.

Computation of output: Compute b = βb ⊕ [αb]1 ⊕ [αb]2.
Let (b)A denotes the value of bit b over an arithmetic ring
Z2` . Randomly select

[
α(b)A

]
1
,
[
α(b)A

]
2
, γ(b)A from Z2` and set

β(b)A = (b)A +
[
α(b)A

]
1

+
[
α(b)A

]
2
. The output shares are set

as:

J(b)AK0 = (
[
α(b)A

]
1
,
[
α(b)A

]
2
, β(b)A + γ(b)A),

J(b)AK1 = (
[
α(b)A

]
1
, β(b)A , γ(b)A),

J(b)AK2 = (
[
α(b)A

]
2
, β(b)A , γ(b)A)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, J(b)AKS) to the adver-
sary S, where J(b)AKS denotes the share of (b)A corresponding
to the corrupt server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else
send (Output, J(b)AKi), where J(b)AKi denotes the share of (b)A

corresponding to the honest server Pi.

Functionality Fbit2A

Fig. 46: Functionality for protocol Πbit2A

The simulator for the case of corrupt P0 appears in
Fig. 47.

Preprocessing Phase:

– The steps corresponding to Πjsh and Πmult protocols are sim-
ulated similar to Sjsh (Fig. 35) and Smult (Fig. 41) respectively,
for the case of corrupt P0.

Online Phase:

– The steps corresponding to Πjsh and Πmult protocols are sim-
ulated similar to Sjsh (Fig. 35) and Smult (Fig. 41) respectively,
for the case of corrupt P0.

If flag = 0, Sbit2A invokes Fbit2A with input JbKB0 on behalf of P0.
Else it invokes Fbit2A with input ⊥ on behalf of P0.

Simulator Sbit2A

Fig. 47: Simulator for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 48.

Preprocessing Phase:

– The steps corresponding to Πjsh and Πmult protocols are sim-
ulated similar to Sjsh (Fig. 36) and Smult (Fig. 42) respectively,
for the case of corrupt P1.

Online Phase:

– The steps corresponding to Πjsh and Πmult protocols are sim-
ulated similar to Sjsh (Fig. 36) and Smult (Fig. 42) respectively,
for the case of corrupt P1.

Simulator Sbit2A

If flag = 0, Sbit2A invokes Fbit2A with input JbKB1 on behalf of P1.
Else it invokes Fbit2A with input ⊥ on behalf of P1.

Fig. 48: Simulator for the case of corrupt P1

G. Dot Product Protocol

The ideal functionality realising protocol Πdotp is presented
in Fig. 49.

Fdotp interacts with the servers in P and the adversary S. Fdotp

receives J·K-shares of vectors ~x and ~y from the servers as input.
Here ~x and ~y are n-length vectors. If Fdotp receives ⊥ from S,
then send ⊥ to every server, else proceed with the computation.

Computation of output: Compute xi = βxi − [αxi ]1 −
[αxi ]2 , yi = βyi − [αyi ]1 − [αyi ]2 for i ∈ [n] and set z =∑n

i=1 xiyi. Randomly select [αz]1 , [αz]2 , γz from Z2` and set
βz = z + [αz]1 + [αz]2. The output shares are set as:

JzK0 = ([αz]1 , [αz]2 , βz + γz),

JzK1 = ([αz]1 , βz, γz),

JzK2 = ([αz]2 , βz, γz)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, JzKS) to the adversary
S, where JzKS denotes the share of z corresponding to the corrupt
server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers.
If an honest server Pi belongs to I , send (Output,⊥), else send
(Output, JzKi), where JzKi denotes the share of z corresponding to
the honest server Pi.

Functionality Fdotp

Fig. 49: Functionality for protocol Πsh

The simulator for the case of corrupt P0 appears in
Fig. 50.

Preprocessing Phase:

– For the preprocessing corresponding to each of the n mul-
tiplications, Sdotp simulates similar to the simulation for the
preprocessing phase of Πmult protocol given in Smult (Fig. 41),
for the case of corrupt P0.

Online Phase:

– Sdotp receives H(β?
z ) from A on behalf of P1 and P2. Sdotp

sets flag = 1 if either the received hash values are inconsistent
or if H(β?

z ) 6= H(βz −
∑n

i=1 βxiβyi + ψ).

– Else, Sdotp sends βz + γz and H(βz + γz) to A on behalf of P1

and P2 respectively.

If flag = 0, Sdotp invokes Fdotp with input (J~xK0, J~yK0) on behalf
of P0. Else it invokes Fdotp with input ⊥ on behalf of P0.

Simulator Sdotp

Fig. 50: Simulator for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 51.
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Preprocessing Phase:

– For the preprocessing corresponding to each of the n mul-
tiplications, Sdotp simulates similar to the simulation for the
preprocessing phase of Πmult protocol given in Smult (Fig. 42),
for the case of corrupt P1.

Online Phase:

– Sdotp computes and sends [βz]2 to A on behalf of P2, while
it receives [βz]1 from A on behalf of P2. Sdotp computes βz =
~x� ~y + αz and sets flag = 1 if βz 6= [βz]1 + [βz]2.

– Sdotp sends H(β?
z ) to A on behalf of P0. Sdotp receives βz +γz

from A on behalf of P0 and sets flag = 1 if the received value
is inconsistent.

If flag = 0, Sdotp invokes Fdotp with input (J~xK1, J~yK1) on behalf
of P1. Else it invokes Fdotp with input ⊥ on behalf of P1.

Simulator Sdotp

Fig. 51: Simulator for the case of corrupt P1

H. Truncation Protocol

The ideal functionality realising protocol Πtrgen is pre-
sented in Fig. 52.

Ftrgen interacts with the servers in P and the adversary S.

Computation of output: Randomly select r ∈ Z2` and set rd =
r/2d. Here rd denotes the truncated value of r. Randomly select
[αr]1 , [αr]2 , γr from Z2` and set βr = r+[αr]1 +[αr]2. The output
shares of r are set as:

JrK0 = ([αr]1 , [αr]2 , βr + γr),

JrK1 = ([αr]1 , βr, γr),

JrK2 = ([αr]2 , βr, γr)

Randomly select [αrd ]1 , [αrd ]2 , γrd from Z2` and set βrd = rd +
[αrd ]1 + [αrd ]2. The output shares of rd are set as:

JrdK0 = ([αrd ]1 , [αrd ]2 , βrd + γrd),

JrdK1 = ([αrd ]1 , βrd , γrd),

JrdK2 = ([αrd ]2 , βrd , γrd)

Output to adversary: If S sends abort, then send (Output,⊥)
to all the servers. Otherwise, send (Output, (JrKS , JrdKS)) to the
adversary S, where (JrKS , JrdKS) denotes the share of (r, rd)
corresponding to the corrupt server.

Output to selected honest servers: Receive (select, {I}) from
adversary S, where {I} denotes a subset of the honest servers. If
an honest server Pi belongs to I , send (Output,⊥), else send
(Output, (JrKi, JrdKi)), where (JrKi, JrdKi) denotes the share of
(r, rd) corresponding to the honest server Pi.

Functionality Ftrgen

Fig. 52: Functionality for protocol Πtrgen

The simulator for the case of corrupt P0 appears in
Fig. 53.

– Strgen computes the values R1 and R2 using the keys k01 and
k02 respectively.

– The steps corresponding to Πjsh are simulated similar to Sjsh
(Fig. 35), for the case of corrupt P0.

Strgen invokes Ftrgen on behalf of P0.

Simulator Strgen

Fig. 53: Simulator for the case of corrupt P0

The simulator for the case of corrupt P1 appears in
Fig. 54.

– Strgen compute the value R1 using the key k01, while it samples
random R2.

– The steps corresponding to Πjsh are simulated similar to Sjsh
(Fig. 36), for the case of corrupt P1.

– Strgen receives H(u) from A on behalf of P2 and sets flag = 1
if the received value is inconsistent.

If flag = 0, Strgen invokes Ftrgen on behalf of P1. Else it invokes
Ftrgen with input ⊥ on behalf of P1.

Simulator Strgen

Fig. 54: Simulator for the case of corrupt P1
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