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Abstract. Multivariate encryption schemes are public key encryption
schemes using multivariate polynomials over finite fields. In 2020, Jiahui
Chen et al. proposed a new multivariate encryption scheme. In order to
construct the public key consisting of quadratic polynomials, they used
the minus and plus modifiers to prevent known attacks, such as linear
equations attack, minRank attack and algebraic attack. However, in this
paper we show that even if such modifiers are used, an attack using
linear algebra is valid for their scheme. In fact, our attack can break the
claimed 80 and 128-bit parameters in the complexity of around 27 and
31 bits, respectively.
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1 Introduction

Multivariate public key cryptography (MPKC) [7] is the public key cryptography
using multivariate polynomials over finite fields and is considered one of the
main candidates for Post-Quantum Cryptography (PQC) [1]. It has been studied
for around 3 decades since the MI scheme [18], which is the first multivariate
encryption scheme, was proposed in 1988. An important ingredient of MPKC
is the so-called central map F . Namely, F = (f1, . . . , fm) is a map from Fn to
Fm consisting of m multivariate quadratic polynomials f1, . . . , fm in n variables
over a finite field F and has a property that the equation F (x) = y (y ∈ Fm)
can be solved easily. In order to hide the structure of F , randomly choose two
affine maps S and T and the public key is given by P = T ◦ F ◦ S. The security
of MPKC is based on the so called MQ-Problem which asks for a solution to
the system of quadratic equations. From a fact that MQ-Problem is proven to
be an NP-hard problem even for quadratic polynomials over F2 [13], MPKC is
considered having the potential to resist quantum computer attacks.

In the area of digital signatures, there exists a large number of practical mul-
tivariate signature schemes [9, 16, 21]. On the other hand, it is considered to be
difficult to construct a secure multivariate encryption scheme. The MI encryp-
tion scheme [18] was broken by Patarin in 1995 [19] using the linear equations
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attack. After that, Patarin proposed a multivariate encryption scheme extend-
ing MI scheme, called HFE scheme [20]. However, by a series of subsequent
researches [3, 5, 8, 10, 12, 14, 17], it was found that HFE scheme has a serious
trade-off between efficiency and security. Currently, while ABC [23], EFC [22],
HFERP [15] and EFLASH [6] are considered as secure multivariate encryption
schemes, there exist tasks about their security analysis and key size.

In 2020, Jiahui Chen et al. proposed a new multivariate encryption scheme [4].
Each central map F = (f1, . . . , fm) used in [4] satisfies that the difference fi−fj
between two quadratic polynomials fi and fj is a degree-one polynomial. Also,
they applied the minus and plus modifiers to the central map and constructed
the public key P .

In this paper, we propose an attack against Chen et al.’s encryption scheme
using the property that fi − fj is of degree one. To be precise, we show that
the vector space spanned by the public key P has degree-one polynomials. By
applying such degree-one polynomials to the public key P , we can break Chen et
al.’s encryption scheme. We also show that our attack can break the claimed 80
and 128-bit parameters in the complexity of around 27 and 31 bits, respectively.

Our paper is organized as follows: we briefly recall the general construction of
multivariate encryption schemes and Chen et al.’s encryption scheme in Section
2. In Section 3, we propose our attack and give experimental results. Finally we
conclude our paper in Section 4.

2 Preliminaries

In this section, we describe the general construction of multivariate encryption
schemes and Chen et al.’s encryption scheme [4].

2.1 Multivariate public key cryptography

Let F be a finite field with q elements and n,m be positive integers.
The public key of a multivariate public key cryptosystem consists of m mul-

tivariate quadratic polynomials P = (p1, . . . , pm) in n variables x1, . . . , xn over
the finite field F. Each polynomial pk(x1, . . . , xn) is in the form of

pk(x1, . . . , xn) =

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

bixi + c, (1 ≤ k ≤ m) (1)

where aij , bi, c ∈ F. The security of multivariate public key schemes is based
on the so called MQ-Problem which asks for a solution of a given system of
multivariate quadratic polynomials over the finite field F. In fact, MQ-Problem
is proven to be an NP-hard problem even for quadratic polynomials over F2 [13].

We introduce the general construction of multivariate encryption schemes.
First, the most important ingredient is a so called central map F : Fn → Fm,
which is an easily invertible quadratic map. Namely, we can easily compute a
solution of F (x) = y for any element y ∈ Fm. Second, in order to hide the
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structure of the central map F , we randomly choose two invertible affine (or
linear) maps T : Fm → Fm and S : Fn → Fn. Then the public key is given by

P = T ◦ F ◦ S : Fn → Fm

and the private key is given by {T, F, S}. The following is the encryption/decryption
process:

Encryption: For a plaintext (or its hash value) α ∈ Fn, the ciphertext is given
by β = P (α) ∈ Fm.

Decryption: For a given ciphertext β ∈ Fm, one computes recursively γ =
T−1(β), δ = F−1(γ) and α′ = S−1(δ). Then α′ is the plaintext of the ciphertext
β. Here δ is a solution to F (x) = γ.

2.2 Chen et al.’s Encryption Scheme

Here we describe the construction of Chen et al.’s encryption scheme [4]. For a
matrix C = (ci,j)i,j ∈ F(n+1)×n, we define the polynomials fC,1, . . . , fC,n+1 in n
variables x1, . . . , xn as follows:

fC,1(x1, . . . , xn) := (x1 − c1,1)
2 + (x2 − c1,2)

2 + · · ·+ (xn − c1,n)
2,

...

fC,n+1(x1, . . . , xn) := (x1 − cn+1,1)
2 + (x2 − cn+1,2)

2 + · · ·+ (xn − cn+1,n)
2.

We recall in the below that the polynomial map FC = (fC,1, . . . , fC,n+1) : Fn →
Fn+1 is easily invertible. For an element (d1, . . . , dn+1) ∈ Fn+1, we would like to
solve the system of equations

fC,1(x1, . . . , xn) = d1, . . . , fC,n+1(x1, . . . , xn) = dn+1. (2)

For any 1 ≤ i ≤ n, we have

di+1−di = fC,i+1−fC,i = 2(ci,1−ci+1,1)x1+· · ·+2(ci,n−ci+1,n)xn+

n∑
j=1

(c2i+1,j−c2i,j).

From this, we have the linear equations
d2 − d1
d3 − d2

...
dn+1 − dn

 = C ′ ·


x1

x2

...
xn

+


∑n

j=1(c
2
2,j − c21,j)∑n

j=1(c
2
3,j − c22,j)
...∑n

j=1(c
2
n+1,j − c2n,j)

 , (3)

where C ′ := (2ci,j − 2ci+1,j)i,j ∈ Fn×n. Thus if C ′ is invertible, then we can
obtain the solution to (2) by solving the system of linear equations (3).
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Now we explain the key-generation of Chen et al.’s encryption scheme [4].
Let a, s be two positive integers and set m := n + 1 − a + s. First, randomly
choose a matrix C = (ci,j)i,j ∈ F(n+1)×n such that C ′ is invertible. Define the
polynomials FC = (fC,1, . . . , fC,n+1) as above. Next, randomly choose quadratic
polynomials g1, . . . , gs in n variables x1, . . . , xn over F. Then the central map is
given by

F = (fC,1, . . . , fC,n+1−a, g1, . . . , gs) : Fn → Fm.

Next, randomly choose invertible affine maps S : Fn → Fn and T : Fm → Fm.
Then the public key is the polynomial map P := T ◦ F ◦ S and the secret key
consists of FC = (fC,1, . . . , fC,n+1), S and T .

Encryption: For a plaintext (or its hash value) α ∈ Fn, the ciphertext is given
by β = P (α) ∈ Fm by substituting into the public key P .

Decryption: For a given ciphertext β ∈ Fm, first compute γ = (γ1, . . . , γm) :=
T−1(β). Second, for an element γ′ = (γ′

1, . . . , γ
′
a) ∈ Fa, solve the system of

quadratic equations

fC,1(x1, . . . , xn) = γ1, . . . , fC,n+1−a(x1, . . . , xn) = γn+1−a,

fC,n+1−a+1(x1, . . . , xn) = γ′
1, . . . , fC,n+1(x1, . . . , xn) = γ′

a,

as explained above. Let δ = (δ1, . . . , δn) be the solution. If we have

g1(δ) = γn+1−a+1, . . . , gs(δ) = γm,

then α′ = S−1(δ) is the message of β. If not, re-choose another γ′ = (γ′
1, . . . , γ

′
a) ∈

Fa.

The following table shows the two 80 and 128-bit security parameters (A)
and (B) selected in [4].

Table 1. Selected parameters of Chen et al.’s scheme in [4] at 80 and 128-bits security
levels. Here, q is the cardinality of the finite field F.

Security level (q, n, a, s,m) Public key (KB) Secret key (KB)

(A) 80-bits (3, 59, 10, 25, 75) 134 53.9

(B) 128-bits (3, 83, 12, 27, 99) 345 108

3 Our Proposed Attack

In this section, we describe our proposed attack and apply it to the selected
parameters in [4].
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3.1 A property of the public key

Here we observe a property of the public key P .

Denote the polynomial fC,i+1 − fC,i by li for each 1 ≤ i ≤ n − a. This
li is a polynomial of degree-one from the definition of fC,i. Moreover, the set
{l1, . . . , ln−a} is linearly independent since C ′ is invertible. Denote by SpanFF
the subspace in F[x1, . . . , xn] generated by the polynomials

{fC,1, . . . , fC,n+1−a, g1, . . . , gs}

in F over the finite field F. It is clear that SpanFF contains the set {l1, . . . , ln−a}.
Therefore, SpanFF has a linearly independent set of n−a degree-one polynomi-
als.

Let SpanFP be the subspace in F[x1, . . . , xn] generated by the polynomials
P = {p1, . . . , pm} over F. Since P = T ◦F ◦S and S, T are invertible affine maps,
it is easily shown that SpanFP has a similar property. Namely, SpanFP has a
linearly independent set of n−a degree-one polynomials. Therefore, an attacker
can generate a linearly independent set of n − a degree-one polynomials from
the public key P .

3.2 Our attack

Let d = (d1, . . . , dm) ∈ Fm be a ciphertext. We would like to solve the system of
m quadratic equations

p1(x1, . . . , xn) = d1, . . . , pm(x1, . . . , xn) = dm (4)

in n variables without the secret key.

Step 1: We solve the system of linear equations in variables a1, . . . , am

m∑
i=1

ai ·Quad(pi) = 0,

where Quad(pi) means the quadratic part of pi.

Step 2: From what we discussed in 3.1, we can see that the kernel of this system

is of dimension n− a. Choose a basis a(1), . . . ,a(n−a) ∈ Fm of the kernel. Then
we can obtain n− a linearly independent degree-one polynomials

r1(x1, . . . , xn) := a
(1)
1 p1 + · · ·+ a(1)m pm,

...

rn−a(x1, . . . , xn) := a
(n−a)
1 p1 + · · ·+ a(n−a)

m pm.
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Step 3: From (4), we have the linear equations

r1(x1, . . . , xn) = a
(1)
1 d1 + · · ·+ a(1)m dm,

...

rn−a(x1, . . . , xn) = a
(n−a)
1 d1 + · · ·+ a(n−a)

m dm.

By substituting the linear equations into (4), we have a system of m− (n−a) =
s+1 quadratic equations in a-variables. Using the brute force, we can solve the
quadratic system and its solution is equal to the solution of (4), namely, the
plaintext of the ciphertext d.

The complexity of Step 1 is that of solving the linear system with sizem. Thus
it is O(m3). We can ignore the complexity of Step 2. In Step 3, its complexity
is dominated by solving a system of (s + 1) quadratic equations in a-variables,
which is done by the brute force. Thus it is O(qa · (s + 1)a2), where q is the
cardinality of F. Note that we can also use a Gröbner basis algorithm such as
F4 [11] to solve the quadratic system in Step 3. We will use F4 algorithm in our
experiments and its complexity is lower than that of the brute force.

As a result, the complexity of our attack is O(m3)+O(qa ·(s+1)a2) at most.

Remark 1. Our analysis implies that the direct attack can break Chen et al.’s
scheme in the almost same complexity as that of our attack.

3.3 Apply our attack to the parameters (A) and (B) in Table 1

The claimed 80-bits parameter (A) is (q, n, a, s,m) = (3, 59, 10, 25, 75). Thus the
complexity of our attack against (A) is 753 + 310 · 26 · 102 = 227.19. Moreover,
the complexity of our attack against the claimed 128-bits parameter (B) is 993+
312 · 28 · 122 = 230.99.

The following table is our experimental results. Table 2 presents the average
timing of 10 experiments for each parameter. The experiments were performed
using Magma V2.24-4 [3] on CPU 1.6GHz Intel Core i5. Here we used F4 algo-
rithm [11] to solve the quadratic system in Step 3.

Table 2. Experimental results for our attack in Section 3.2 at two claimed 80 and
128-bit parameters (A) and (B) of Chen et al.’s scheme in [4]

Security level (q, n, a, s,m) Our attack (s)

(A) 80-bits (3, 59, 10, 25, 75) 0.05

(B) 128-bits (3, 83, 12, 27, 99) 0.18
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4 Conclusion

In this paper, we studied the security against Chen et al.’s encryption scheme [4].
We showed that the vector space spanned by the quadratic polynomials in the
public key P has degree-one polynomials. By applying such degree-one polyno-
mials to the public key P , we can break Chen et al.’s encryption scheme [4]. Our
attack can break the claimed 80 and 128-bit security parameters in [4] in the
complexity of around 27 and 31 bits, respectively.
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