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Abstract. Microarchitecture based side-channel attacks are common threats nowadays.
Intel SGX technology provides a strong isolation from an adversarial OS, however,
does not guarantee protection against side-channel attacks. In this paper, we analyze
the security of the mbedTLS binary GCD algorithm, an implementation that offers
interesting challenges when compared for example with OpenSSL, due to the usage
of very tight loops in the former. Using practical experiments we demonstrate the
mbedTLS binary GCD implementation is vulnerable to side-channel analysis using
the SGX-Step framework against mbedTLS based SGX enclaves.
We analyze the security of some use cases of this algorithm in this library, resulting in
the discovery of a new vulnerability in the ECDSA code path that allows a single-trace
attack against this implementation. This vulnerability is three-fold interesting:

1. It resides in the implementation of a countermeasure which makes it more
dangerous due to the false state of security the countermeasure currently offers.

2. It reduces mbedTLS ECDSA security to an integer factorization problem.
3. An unexpected GCD call inside the ECDSA code path compromises the coun-

termeasure.

We also cover an orthogonal use case, this time inside the mbedTLS RSA code path
during the computation of a CRT parameter when loading a private key. The attack
also exploits the binary GCD implementation threat, showing how a single vulnerable
primitive leads to multiple vulnerabilities. We demonstrate both security threats
with end-to-end attacks using 1000 trials each, showing in both cases single-trace
attacks can be achieved with success rates very close to 100%.
Keywords: side-channel analysis · vulnerable countermeasure · ECDSA · RSA · binary
GCD · modular inversion · Intel SGX · mbedTLS · CVE-2019-18222

1 Introduction
Side-channel attacks have gained a lot of traction since the pioneering work on timing
side-channels by Kocher [Koc96]. The leakage sources differ in nature: time [Koc96,
BB05, BT11], power consumption [KJJ99, Cor99, BCO04], microarchitecture states [Per05,
AGS07, Ald+19] are just some examples of them. In the microarchitecture domain, several
resources can be used as leakage sources, such as cache-timings [YF14], cache-access
patterns [OST06], branch-predictors [AGS07], etc. Each microarchitecture attack vector
exploits a resource available in microprocessors.

With the increasing demand of security on modern CPUs, Intel has developed some
protection features on its processors. One of the most prominent technologies that has
received generous attention in the scientific community is Intel SGX (Software Guard
Extensions) [Int19, CD16]. This technology aims at offering confidentiality and integrity to
software running on some Intel CPU microarchitectures, even considering a compromised
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OS, hence, the attacker has every OS-level resource at its disposal to bypass Intel SGX
security guarantees.

However, Intel SGX does not offer security for side-channel attacks, thus, leaving
protections against them to the application developer [CD16]. On this regard, counter-
measures against side-channel analysis have already been deployed in many open-source
cryptography libraries. One example of this is the mbedTLS library, with a very good set
of countermeasures implemented on its elliptic curve cryptography paths. For instance, the
scalar multiplication algorithm is based on a protected proposal in [HPB04], also Jacobian
projective coordinates randomization is performed before a scalar multiplication takes
place [Cor99]. On a high-level design the mbedTLS ECDSA implementation was, to the
best of our knowledge, the first to implement a countermeasure for protecting the modular
inversion of ECDSA secret nonces using a multiplicative masking.

Modular inversion algorithms, especially those based on the binary GCD algorithm
[Ste67], have been targeted by side-channel analysis. For instance, Acıiçmez, Gueron,
and Seifert [AGS07] presented a theoretical attack on this algorithm, proposing a model
that relates algorithm execution flow with its inputs. On the power consumption realm
Aravamuthan and Thumparthy [AT07] independently presented the same model as [AGS07]
and also proposed a countermeasure to thwart SPA attacks. More recently, Aldaya, Cabrera
Sarmiento, and Sánchez-Solano [ACSS17] presented a different model for analyzing the
relation of its execution flow with its inputs, showing that the countermeasure proposed
in [AT07] is insecure under the new model. On the other hand, Pereida García and
Brumley [PGB17] showed that the ECDSA implementation of OpenSSL was vulnerable to
a Flush+Reload attack during the modular inversion of the nonce using a variant of
the binary GCD algorithm. Independently Weiser, Spreitzer, and Bodner [WSB18] and
Cabrera Aldaya et al. [CA+19] demonstrated vulnerabilities during RSA key generation in
OpenSSL, specifically during a modular inversion operation. In these two papers, the same
vulnerability was attacked using two different microarchitecture components: page-fault
attack against an Intel SGX enclave and Flush+Reload combined with performance
degradation respectively.

However, all these previous works on attacking binary GCD based algorithms only
recover part of their execution flows. In a nutshell, binary GCD execution flow can
be summarized using two variables Zi and Xi (Section 3 expands on this). In these
implementations, the recovery of Zi was doable, while the recovery of Xi was limited.
In [ACSS17, PGB17] the authors attacked ECDSA where only a few bits of the nonce
are needed to compromise the cryptosystem, whereas in [WSB18, Ald+17, CA+19],
the attacked scenario guarantees that the Xi are known beforehand, hence no need to
recover them using side-channels. However, there are more use cases in cryptography
applications where binary GCD based algorithms are employed, and compromising them
requires recovering all input bits, implying that the recovery of Xi is mandatory using a
side-channel.

In this paper we developed a side-channel attack against a binary GCD algorithm
where we were able to recover both Zi and Xi with very high reliability. The targeted
implementation is part of the mbedTLS library where we developed two end-to-end attacks
against a TLS server secured by Intel SGX. Our experiment results are developed using
mbedTLS, however, the side-channel methodology to attack the binary GCD algorithm
can be generalized to others. In this regard, mbedTLS offers challenges that were not
present in other libraries such as OpenSSL, especially during the recovery of Zi, which is
easier in the latter [PGB17, CA+19].

One of these proposed attacks targets a new vulnerability in the countermeasure
already deployed in this library to protect the inversion of ECDSA nonces. The fact that
the vulnerability resides in the countermeasure implementation highlights its importance
because the countermeasure is offering a false state of security. For instance, very recently
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a Security Advisory was issued by the mbedTLS security team where it is assumed that
such countermeasure actually offers protection, while it does not.

The other attack scenario targets an open problem left in a recent paper, very related to
the difficulty of recovering Xi using some side-channel. This time the targeted cryptosystem
is RSA during the computation of the CRT parameter q−1 mod p.

The main contributions of this paper are the following:

1. New vulnerability in mbedTLS implementation of the countermeasure to protect the
inversion of the nonce in ECDSA.

2. Practical attack on RSA-CRT computation of q−1 mod p.

3. Full binary GCD algorithm execution flow recovery.

4. End-to-end attacks on ECDSA and RSA scenarios with bulk simulation results.

The organization of the paper is the following. Section 2 provides a background on
Intel SGX, side-channel analysis and the binary GCD algorithm. Section 3 analyzes
the security of mbedTLS binary GCD algorithm implementation and the challenges it
imposes. Section 4 describes a new vulnerability in the mbedTLS ECDSA implementation,
showing how a poorly implemented countermeasure reduces the security of ECDSA to
an integer factorization problem. Later, in Section 5 and Section 6 end-to-end attacks
are developed against an mbedTLS server targeting ECDSA and RSA cryptosystems
respectively. Section 7 discuses mitigation strategies while the conclusions are presented
at Section 8.

2 Background
2.1 Side-Channel Attacks on Intel SGX realm
Intel Software Guard Extension (SGX) technology aims at offering confidentiality and
integrity to software implementations for Intel CPUs. It provides strong isolation between
a secure world, named enclave, and the rest of the system even under the presence of very
strong adversaries with OS privileges. However, Intel SGX threat model does not include
side-channel attacks, thus offering no security guarantees for these attack vectors [Int19,
CD16].

This characteristic highlights the importance of side-channel attack protections on
software that handle secret data such as cryptography libraries. At the same time, and
arguably more important, it opens the door to new attack techniques that fully employ
OS-level resources to gathering side-channel signals and reduce their noise.

Microarchitecture side-channels are often noisy, hence the adversary must compensate
to extract relevant data. For example, CacheZoom [MIE17] and CacheQuote [Dal+18]
attacks enhance the resolution of a Prime+Probe cache attack controlling some resources
that require OS privileges. For instance, the victim process is isolated to a single CPU
thus the cache side-channel is not poisoned by other process accesses, hence reducing noise.

In this regard, Xu, Cui, and Peinado [XCP15] introduced the so-called controlled-
channel attacks. This attack vector exploits the fact that while SGX enclaves enjoy
data/code confidentiality and integrity, SGX enclaves defer resource management to the
(untrusted) OS, hence to adversaries. In that paper the authors introduced a page-fault
attack against shielded systems like Intel SGX. The novel idea is based on tracking the
sequence of memory pages accessed by an enclave to recover secret information. As enclave
memory management is performed by the OS, an adversarial OS can change a page
permission (e.g. the No-eXecute flag) that will trigger a page-fault when the targeted page
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is going to be executed [Xia+17, XCP15]. Applying this procedure to a set of pages, an
attacker can obtain a side-channel trace of the sequence of executed pages.

In a non-SGX environment, page-fault metadata contains the address that generates it,
however, for security reasons SGX clears the 12 least significant bits of this address, leaving
the page-fault tracing attack a 4 KB granularity [CD16]. From an attacker advantage point
of view, this limited granularity is compensated by the noiseless nature of the obtained
signals, a feature that makes this kind of attack a very powerful side-channel source.

However, research in recent years has tackled this granularity issue. The main idea
is to force the preemption of an enclave at a high frequency to collect microarchitectural
state information (i.e. side-channels) at each preemption window. This kind of attack is
known as an interrupt-driven attack, and is often achieved by interrupting the enclave
at fixed time intervals controlled by the APIC timer on Intel CPUs [MIE17, HCP17,
VBPS17]. While previous works achieve different temporal resolutions, the framework
SGX-Step proposed by Van Bulck, Piessens, and Strackx [VBPS17] increases it to the
maximum, allowing to interrupt an enclave such that instruction single-stepping is possible.
Therefore an adversary can capture microarchitecture side-channel signals after every
executed instruction by the enclave.

The SGX-Step framework allows to perform either page-fault or interrupt-driven attacks.
While the former is free of noise, the latter can have some noise, but as we show during
our experiments in Section 5 and Section 6 it could be handled such that its impact on
attack success rate is negligible. While SGX-Step has proved useful for carrying out some
recent attacks [VB+18, Can+19, Sch+19, Che+19, Isl+19], its application to attacking
cryptography algorithm implementations has not been extensively analyzed, in particular
the interrupt-driven attack feature. In this regard, in [WSB18] the page-fault feature
of SGX-Step has been employed to recover an RSA private key during its generation.
However, the interrupt-driven attack was not evaluated, thus raising an open question
how this feature will perform on attacking cryptography algorithm implementations and
how threatening it is. To the best of our knowledge, this paper is the first to address
this question, evaluating both page-fault and interrupt-driven attacks on cryptography
algorithm implementations using the SGX-Step framework.

2.2 Binary GCD algorithm and side-channel analysis
Different models have been proposed to relate the knowledge about the execution flow of
binary GCD based algorithms with their input bits [AGS07, ACSS17, PGB17]. Table 1
summarizes them in terms of required knowledge and the amount of bits that can be
recovered.

The All-or-nothing model, proposed in [AGS07] allows to recover all bits of both
inputs, but it requires to know the results of all conditional branches, hence its name.
This represents an issue when the side-channel leakage source contains noise on the results
of these condition operations, jeopardizing the attack success rate. At the same time, the
attacker also needs to know reliably both, algorithm start and its end, adding an extra
challenge regarding locating with certainty these moments in a long trace. On the other
hand, it does not require knowing one input at all, so, both inputs could be secret, and
they can be recovered once the previous conditions are fulfilled.

The Partial model was proposed in [ACSS17]. It adds more flexibility in terms of
amount of information an attacker needs to recover secret data. In this case, the number
of bits that can be recovered depends on the amount of condition operation results known.
When partial knowledge about algorithm execution flow is known to the attacker, this
model provides an algebraic relation between both input least significant bits. This feature
could be interpreted as this model requires knowing one algorithm input to recover some
bits of the other, especially because until now, it was only used under this scenario.
For instance, in [ACSS17] and [Tuv+18] it was used to cryptanalyze modular inversion
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operations on secret data in DSA-like signature algorithms, where the modulus (one input)
is known to the attacker. Also, in [CA+19] it was used to recover RSA private keys
during generation: d = e−1 mod (p− 1)(q − 1), where the RSA public exponent, e, is also
known to the attacker. However, its usage in a both inputs unknown setting is unclear.
In this paper we fill this gap showing how this model can be used when both inputs are
unknown. At the same time, this model can also be used to recover all bits of one input,
even without knowing when the algorithm ends its execution, a practical advantage over
the All-or-nothing model.

The Look-up model was introduced in [PGB17] and is based on the Partial model.
This model builds a dictionary that relates observed execution flow with input bits. This
dictionary is obtained by profiling the algorithm execution flow with a large number of
random input(s), and annotating which execution flow uniquely represents some input
bits. To avoid certainty errors, the number of inputs should be sufficiently large (i.e.
increases exponentially with number of bits to recover). This model was presented in an
ECDSA nonce inversion context, where two important conditions play nicely with this
model: (i) one input is known (inversion modulus), and (ii) the number of bits to recover
to compromise ECDSA is small, due to well-known lattice attacks [HS01, NS03]. However,
since the dictionary construction method requires at least 2n samples for trying to recover
n bits, its application for recovering a large amount of bits is not practical. On the other
hand, it requires one input to be fixed, it could be unknown but must not change between
calls to this algorithm as the execution flow highly depends on both inputs bits.

Table 1: Binary GCD side-channel models comparison.

Model Branches/Bits Alg. start Alg. end Known input
All-or-nothing [AGS07] All Yes Yes No
Partial [ACSS17] Variable Yes No ?
Look-up [PGB17] Small Yes No No (Fixed)

In the analyzed applications of this algorithm, the number of bits needed to compromise
targeted cryptosystems are not small, thus we discard the Look-up model. While both
All-or-nothing and Partial models can be used on these scenarios, we will use the latter
mainly for three reasons: (i) Reduced noise influence on processing the whole trace; (ii)
Avoid having to identify the trace end position; (iii) Studying the possibility of using the
Partial model when both inputs are unknown.

3 Vulnerable primitive: mbedTLS binary GCD algorithm
In this section the notation used by the Partial model regarding side-channel analysis to
binary GCD based algorithms is presented. The objective is to identify which algorithm
parts are interesting w.r.t. how they are implemented in mbedTLS.

The algorithm for computing the greatest common divisor (GCD) of two integers in the
mbedTLS library follows a variant of the classic binary GCD algorithm [Ste67]. However,
there are implementation details that make it interesting from a side-channel perspective
due to the challenges they impose.

This algorithm in mbedTLS is implemented in the mbedtls_mpi_gcd function. It
contains an initialization phase, where input variables, a and b, are assigned to u and v
respectively. After this a loop divides u and v by the greatest power of two that divides
both. However, without losing generality, we simplify to the case of gcd(a, b) = 1, as it is a
requirement in several cryptography use cases of this algorithm. This property implies that
at least one input variable is odd, a useful fact for the next phase. The most important
phase of this algorithm regarding side-channel analysis due to its input-dependent execution



6 Novel single-trace attacks on ECDSA and RSA

flow is a main loop that actually computes gcd(u = a, v = b).
Figure 1 (Left) shows a flowchart of the mbedTLS implementation of this main loop.

It is composed by four condition operations, the first one (from top to bottom), controls
the algorithm termination. Knowing its result is not mandatory under the Partial model,
as it does not require knowing when the algorithm ends (cf. Table 1).

Start

u = 0 End
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Figure 1: Binary GCD algorithm variant flowcharts. Left: mbedTLS. Right: OpenSSL.

The next two test the evenness of u and v respectively, and control two loops that
count the number of trailing bits equal to zero in these variables. As can be seen in this
figure, the loops for u and v have the same structure. Therefore we define a variable that
will represent how many times these loops are executed at each iteration i as Zx

i , where x
represents the loop variable (u or v). At every iteration start these variables are set to zero
by convention. Following the variables’ evenness handling in this algorithm and analyzed
below, it is easy to check that in all iterations, at least one of Zx

i will be zero. Therefore
max(Zu

i , Zv
i ) can be used to count how many times one of these loops is executed at an

iteration, regardless of which one was.
Regarding the Partial model, a side-channel attacker needs to know how many times a

variable is divided by two (right-shifted) at each iteration. In [ACSS17] the variable Zi is
used for this task, thus in the mbedTLS binary GCD algorithm implementation context it
can be defined using (1), where the +1 correction when i > 1 is explained below.

Zi =
{

max(Zu
i , Zv

i ) : i = 1
max(Zu

i , Zv
i ) + 1 : i > 1

(1)

The fourth conditional expression in Figure 1 (Left) has two very similar branches,
where the larger variable is updated by |u − v| then right-shifted one bit. Regarding
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side-channel analysis, the result of this conditional expression will be stored in a variable
called Xi, which takes a binary value that represents the largest variable.

Note that before this fourth conditional expression, both variables will be odd as u and
v were previously right-shifted their respective 2-multiplicity times. Therefore, regardless
of the value of Xi, the subtraction will result in an even number, and the Xi will define
which Zx

i+1 could be different from zero. That is why (1) for i > 1 has a correction that
includes the division by two after the subtraction in the right-shifts count at iteration
i. This behavior will be helpful in Section 3.1 for determining some Xi, because if an
adversary knows which variable was right-shifted at iteration i then it can infer the previous
iteration Xi.

According to the Partial model an adversary must know a set of pairs (Zi, Xi) for
i ∈ [1 . . t], that leads to a linear closed-form expression relating the n-least significant bits
of a and b, where n =

∑t
i=1 Zi + 1. This expression can be obtained by reconstructing the

algorithm execution flow starting from the beginning [ACSS17].
Employing symbolic values for the algorithm inputs a and b, it is possible to define

ui(a, b) and vi(a, b) as functions that represent the values of these variables just before the
fourth conditional expression of main loop iteration i. Therefore, as explained before, at
every iteration it is know that:

|ui(a, b)− vi(a, b)| ≡ 0 mod 2 (2)

and at the same time, as was probed in [ACSS17], (2) results in∣∣∣∣Ai

Bi
a− Ci

Di
b

∣∣∣∣ ≡ 0 mod 2 (3)

where lcm(Bi, Di) = pow(2,
∑t

i=1 Zi) for all i, thus the denominators can be removed by
multiplying (3) by lcm(Bi, Di), resulting in an expression like (4), that relates a and b
modulo 2n.∣∣∣∣ lcm(Bi, Di)

Bi
Aia−

lcm(Bi, Di)
Di

Cib

∣∣∣∣ ≡ 0 mod
(

2 · lcm(Bi, Di) = 2
∑t

i=1
Zi+1

)
(4)

Therefore, the more consecutive pairs (Zi, Xi) an adversary knows the more bits it can
recover [ACSS17]. This model is independent of how the (Zi, Xi) are obtained: the next
section analyzes how it is possible glean them in the mbedTLS implementation of this
algorithm.

3.1 Side-channel attack on the mbedTLS binary GCD implementation
Section 5 provides experiment results of an end-to-end attack against an mbedTLS binary
GCD algorithm implementation use case with an ECDSA TLS sever secured with Intel
SGX. Similarly, Section 6 analyzes another use case of this function on RSA. Both
scenarios target the same function, mbedtls_mpi_gcd, therefore this section presents a
use-case-independent side-channel attack against it.

The vulnerability is demonstrated against a TLS server running inside an SGX enclave,
therefore following the Intel SGX threat model it is considered that the OS is adversarial
[XCP15, VBPS17]. As part of this evaluation, we employed both the page-fault traceability
feature on SGX-Step and the interrupt-driven attack.

Threat model and experiment setup. The experiments were performed on Ubuntu
18.04 LTS with kernel 5.0.0-29 running on an Intel i7-7700 (Kaby Lake) processor with
SGX support. Compliant with the Intel SGX threat model we disabled TurboBoost
and dynamic frequency scaling, also we isolated one CPU core for the victim. We used
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SGX-Step v1.2.0 (commit 8386858c) paired with Intel SGX SDK v2.2 and Linux SGX
driver v2.1. The mbedTLS-compat-SGX open-source project1 was employed to add SGX
support to an updated mbedTLS version (v2.16.1) [Sil19]. It is assumed that the adversary
knows all page address(es) of every function of interest in the compiled enclave. This
can be obtained by static analysis, or in case of an encrypted enclave, the adversary can
perform reverse engineering by monitoring all pages used by the enclave and discarding
the uninteresting ones by trial and error [XCP15, VBPS17, WSB18].

Following the binary GCD execution flow analysis in the previous section, the attacker
is interested in extracting the (Zi, Xi) pairs. Therefore, it would like to know how many
times the trailing zero removal loops execute at each iteration in addition to the result of
the comparison step (bottom condition in Figure 1, Left). The procedure for analysis is
the following:

1. Identify a page sequence that marks the start of the algorithm (i.e. trigger).

2. Select a set of pages that allow to trace every function of interest.

3. Identify trace features to recover (Zi, Xi) pairs.

4. Capture a page trace, then when the trigger sequence occurs enable the interrupt-
driven attack.

The first step is about identifying a sequence that marks the start of the mbedtls_mpi-
_gcd use case of interest. Regarding a generic side-channel analysis of this function, the
selection of this sequence is meaningless as it is closely related to the actually attacked use
case. For example, the sequence for an ECDSA use case probably will involve a page that
is only used in ECDSA and the same for RSA. For this reason, we defer the details of this
step to Section 5 and Section 6 when targeting ECDSA and RSA use cases.

The second step involves analyzing the set of pages that could give information about
the execution flow of mbedtls_mpi_gcd. These could be, for example, the functions called
by mbedtls_mpi_gcd. Table 2 summarizes the most interesting functions regarding side-
channel analysis with their corresponding page offsets and the colors we used to represent
them in the Figure 2 trace.

Table 2: mbedtls_mpi_gcd pages of interest.

Function Page offset(s) Color
mbedtls_mpi_gcd 0x1F000 Green
mbedtls_mpi_lsb 0x1B000,0x1C000 Blue
mbedtls_mpi_cmp_mpi 0x1C000 Orange
mbedtls_mpi_shift_r 0x1C000 Orange

Page offsets are set at build time and depend on how the linker distribute each function
in the binary. In this case we are interested in the page of mbedtls_mpi_gcd itself as it
will help to identify when an inner operation ends.

The function mbedtls_mpi_lsb counts the number of trailing zero bits of an integer,
therefore it executes the corresponding loops at Figure 1 (Left). One important aspect
of this function is that its execution time depends on how many input trailing bits equal
to zero, hence relates to Zi, a fact that we are going to exploit later (third step in the
procedure).

The third function of interest is mbedtls_mpi_cmp_mpi, used to test u ≥ v with the
result determining the Xi. This function also contains several branches that make its

1an updated fork of bl4ck5un/mbedTLS-SGX

https://github.com/bl4ck5un/mbedtls-SGX
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running time input-dependent (third step in the procedure). mbedtls_mpi_shift_r is
located in the same page as mbedtls_mpi_cmp_mpi, thus colored the same in a trace.

One interesting characteristic is that mbedtls_mpi_lsb and mbedtls_mpi_cmp_mpi
share a page, however it does not have a big influence on the attack as it is possible to
differentiate each one using the previous executed page. mbedtls_mpi_cmp_mpi is called
by mbedtls_mpi_gcd, so it is expected to see a page access to the latter prior to that
of mbedtls_mpi_cmp_mpi. On the other hand, mbedtls_mpi_lsb starts its execution at
0x1B000 and then continues to 0x1C000, without access to an mbedtls_mpi_gcd page in
between, hence the distinction is immediate.

The interrupt-driven attack relies on arming a timer that will interrupt the enclave
forcing its preemption. During this pause, the attacker collects side-channel information
from microarchitecture resources such as page tables. One interesting side-channel source
is the ACCESSED bit in a page table entry (PTE) that indicates if a page was accessed
or not. Therefore, an adversary at each timer interrupt can clear this bit for a set of
monitored pages and in the next interrupt check which one was executed. If the timer is
configured such that it interrupts the enclave once per instruction, then using the ACCESSED
bit it is possible to count the number of executed instructions per page. This scheme was
proposed as part of the SGX-Step framework [VBPS17], however not deeply evaluated
w.r.t. attacking real-world cryptography algorithm implementations.

Therefore, an attacker can combine a page trace attack with an interrupt-driven one to
monitor SGX enclave executions with high temporal resolution. The number of executed
instructions in a high-end application like a TLS server is large, hence, an interrupt-driven
attack starting from the beginning of execution will considerably reduce server performance
and increase the chance of detection. Therefore, it is only executed on demand, once a
specific page sequence (trigger) has been executed. Thus, the attacker uses SGX-Step to
trace the pages of interest, waiting for the trigger condition to happen, then the interrupt-
driven attack is started. At this point, the page tracing is disabled to not interfere with the
timings, nevertheless, the ACCESSED bit traces will also contain the sequence of executed
pages.

Figure 2 shows partial traces of an execution of mbedtls_mpi_gcd. Each trace belongs
to a monitored page (Table 2). They are actually binary values (i.e. ACCESSED bit), however
for the sake of distinguishability we scaled them using different values on the y-axis.

NULL

LSB

CMP/SHIFT

GCD

 400  600  800  1000  1200  1400

LSB CMP/SHIFT GCD

Figure 2: mbedtls_mpi_gcd ACCESSED bit traces of monitored pages (Table 2).

This figure corresponds to the first iteration of an execution of mbedtls_mpi_gcd. The
first mbedtls_mpi_gcd peak (green) marks the start of this iteration and the last peak
the start of the second. Therefore, each iteration is composed of eight mbedtls_mpi_gcd
peaks. With these traces the attacker has side-channel leakage related to the number of
instructions executed at each page and their execution sequence. Following the execution
flow of this function, we are interested in the first two mbedtls_mpi_lsb executions (blue),
because according to Figure 1 (Left) the number of times the mbedtls_mpi_lsb page was
accessed in these time windows is related to Zu

i and Zv
i , thus a potential leak for Zi using

(1).
One significant challenge to attacking this implementation is that these loops are
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extremely tight, so, a high-temporal resolution side-channel is needed to distinguish them.
This represents a new challenge to overcome regarding other binary GCD based algorithms
already attacked in the literature [PGB17, WSB18, CA+19]. For instance, compare the
OpenSSL version depicted in Figure 1 (Right), where instead of counting the number of
trailing zeros in a loop and removing them with a multi-bit shift (mbedTLS), OpenSSL
loops include a single-bit right-shift on each iteration, increasing the time window available
to track their execution (cf. shaded areas in Figure 1).

Figure 2 gives an idea regarding this timing difference. For instance, the time window
between the last two green peaks in this figure, belongs to the execution of a single-bit
right-shift of a 1024-bit number (about 455 page accesses), while a single iteration mbedTLS
trailing zero count loop takes 10 times less (i.e. 43 page accesses).

One important interrupt-driven attack parameter is the timer interval at which the
enclave should be preempted. According to Van Bulck, Piessens, and Strackx [VBPS17] it
should guarantee that the timer interrupt arrives just during the execution of the next
enclave instruction after it resumes its execution. This parameter is platform specific
hence should be determined by trial and error using SGX-Step benchmark tools and the
targeted implementation. Our tests report that the best trade-off value for this parameter
(SGX_STEP_TIMER_INTERVAL in libsgxstep/config.h) was 25, and other configuration
parameters left as defaults [VBPS17] 2.

Using this configuration we captured a set of 1000 traces corresponding to the execution
of mbedtls_mpi_gcd with known inputs and recorded the number of times the pages of
mbedtls_mpi_lsb were accessed during the periods of interest in Figure 2 (first two blue
valleys). Using this method we determined how well the number of accesses in these valleys
are related to Zi. The results were perfect, for every value of Zi the number of observed
accesses was unique, indicating that the Zi recovery employing this method is incredibly
reliable.

After developing the Zi recovery procedure, it only remains to craft a corresponding
procedure for gathering the Xi. In this implementation Xi leakage comes from two sources,
(i) mbedtls_mpi_cmp_mpi and (ii) mbedtls_mpi_shift_r.

Leakage from mbedtls_mpi_cmp_mpi. The comparison u ≥ v is executed using the
function mbedtls_mpi_cmp_mpi. A source code analysis of this function reveals that it
has many input-dependent branches with a total of eight exit points. Therefore, the total
execution time of this function could be a good leakage source for determining Xi.

Figure 3 (Left) shows the latencies (i.e. number of observed page accesses) of mbedtls-
_mpi_lsb over iterations of a single call to mbedtls_mpi_gcd showing the Zi latencies are
very well clustered resulting in a unique latency per Zi as described before. Similarly,
Figure 3 (Right) shows the latencies of mbedtls_mpi_cmp_mpi. These two plots are the
result of processing a trace and are the source for recovering (Zi, Xi) pairs.

Latency behavior in Figure 3 (Right) can be better explained analyzing mbedtls_mpi-
_cmp_mpi source code. Figure 4 shows a snippet of this function, commenting the most
relevant parts.

First, this function determines inputs’ number of significant words followed by two
early exit points if inputs differ in this magnitude. The last loop in this function is the
most frequently executed as part of the binary GCD algorithm, since its behavior tends
to maintain equality in the number of bits of X and Y , hence the number of significant
words.

Figure 3 (Right) plot can be split in nine very similar groups, where each group is
formed by two latencies aligned to the grid. For instance, the first group in Figure 3
(Right) is composed by those samples with latencies 74 or 90, roughly between the first

2SGX_STEP_TIMER_INTERVAL=26 performs better for single-stepping using SGX-Step benchmark tools,
but 25 provides a more reliable Zi extraction for 1000 targeted binary GCD implementation executions.
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Figure 3: Functions of interest latencies over iterations to recover. Left: mbedtls_mpi_lsb
(Zi). Right: mbedtls_mpi_cmp_mpi (Xi).

1 int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)

2 {

3 size_t i, j;

4

5 /* Determine number of significant words of X and Y */

6 for( i = X->n; i > 0; i-- )

7 if( X->p[i - 1] != 0 ) break;

8

9 for( j = Y->n; j > 0; j-- )

10 if( Y->p[j - 1] != 0 ) break;

11 ...

12 /* Do inputs have different # of words? */

13 if( i > j ) return( X->s );

14 if( j > i ) return( -Y->s );

15 ...

16 /* More frequent path */

17 for( ; i > 0; i-- )

18 {

19 if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );

20 if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );

21 }

22 return( 0 );

23 }

Figure 4: Multiple-precision integer comparison in mbedTLS: mbedtls_mpi_cmp_mpi.

40 iterations. We discuss out-of-group latency samples later. Latencies that are part of a
group correspond to the execution of the last loop of mbedtls_mpi_cmp_mpi (Figure 4)
because it is the most common executed path, a behavior that is also observed in Figure 3
(Right). Therefore, the lower latency in a group happens when line 19 of Figure 4 evaluates
true and the function ends, leaking that u > v =⇒ Xi=‘u’ . Analogously, if it is false
and line 20 evaluates true, then Xi=‘v’ . One important feature of this group-based Xi

distinguisher, is that the latency difference between a group lower and upper values is
16, leaving some space for uncertainties. In this regard, mbedtls_mpi_cmp_mpi does not
behave so deterministically as mbedtls_mpi_lsb, sometimes observed as an error of ±1.
This error does not have any effect on Xi distinction inside a group, but outside it does,
as explained below.

The behavior that groups are shifted in the y-axis is due to the binary GCD algorithm
reducing the number of bits of u and v progressively, then at some point the number of
effective words on these variables will be less than the maximum, therefore, the loops at
the start of mbedtls_mpi_cmp_mpi (cf. Figure 4) will execute more iterations, hence the
shifting.
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As can be appreciated, almost every latency sample in Figure 3 (Right) belongs to a
group, however, there are a few outliers. These occur during a group transition, and these
latencies belong to the early exit points in lines 13 and 14 in Figure 4. The difference
between these line latencies is small enough to be inside the ±1 observed error. Hence,
they do not provide an error-free Xi distinguisher. Therefore, we mark these out-of-groups
latencies as unknown. For instance, in Figure 3 (Right) there are 11 of them, therefore, as
each of them represents an Xi, a binary value, the adversary can exhaustively search the
missing Xi. Even if a 211 exhaustive search is not large enough to be impractical, it can
be considerably reduced using a stronger probabilistic Xi leakage.

Leakage from mbedtls_mpi_shift_r. Just before the comparison u ≥ v both variables
are odd, then regardless of this condition result, only one of them will be even—that is
why there is a division by two just after the subtractions in Figure 1 (Left). Therefore, as
the values of u and v can be considered random at the next algorithm iteration, there is a
50% chance that one of them is even at the start of every iteration. Consequently, the one
that could be even is determined by the result of u ≥ v at the previous iteration (Xi).

Therefore, an Xi leakage could be observed in about half of the iterations by measuring
if the right-shifts at iteration i + 1, actually right-shift a variable (i.e. Zx

i 6= 0). This
represents a strong leakage, because the number of accesses to the mbedtls_mpi_shift_r
page is considerably more when the number of bits to shift is non-zero.

At each iteration after each mbedtls_mpi_lsb call (blue valley) there is a call to
mbedtls_mpi_shift_r (orange valley). In Figure 2 these orange valleys are quite small
(43 page accesses) compared to the last orange valley that belongs to the mbedtls_mpi-
_shift_r call just after a subtraction which has about 10 times more page accesses. Hence
distinguishing when mbedtls_mpi_shift_r was called with a shift count equal to zero is
very reliable due to this big difference in the number of page accesses.

In this manner the adversary has a strong leakage that reveals Xi with a probability
of 50%, which can be very useful for recovering the Xi marked as unknown during the
mbedtls_mpi_cmp_mpi approach. For instance, after applying this leakage source to
Figure 3 (Right) trace, the number of unknown Xi dropped from 11 to 7.

At this point an attacker has everything it needs to apply the Partial model and
start recovering bits. Therefore, we conclude that the mbedTLS binary GCD primitive
implementation is vulnerable to side-channel analysis, and this is the first time that this
implementation is analyzed in this regard. However, for a practical perspective it is
interesting to identify which cryptosystems employ this primitive in a security critical
operation. The next two sections analyze ECDSA and RSA protocols in this regard,
disclosing new vulnerabilities.

4 Security of an unexpected GCD call in mbedTLS ECDSA
This section presents a new vulnerability in the mbedTLS ECDSA implementation where
the vulnerable point resides in a countermeasure deployed in this library for more than five
years3. The vulnerability resides in a GCD computation; that might sound unexpected
because neither the high-level description of ECDSA nor its lower layers nor the counter-
measure include this operation at all, but the implementation always has the last word in
the field of side-channel attacks. Another interesting feature about this vulnerability is
that it resides inside a countermeasure considered to be safe, thus providing a false state
of security. For instance, in a recent disclosed vulnerability in the mbedTLS library4 it is
assumed that this countermeasure thwarts side-channel analysis, while it does not.

3Remove potential timing leak in ecdsa_sign() mbedTLS commit (March 31, 2014)
4CVE-2019-16910

https://github.com/ARMmbed/mbed-crypto/commit/dd75c3183b60a208f4770bbd3d32a981272aa1ea
https://tls.mbed.org/tech-updates/security-advisories/mbedtls-security-advisory-2019-10
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The ECDSA algorithm is the elliptic curve variant of the digital signature algorithm
standardized by NIST [Fip]. Algorithm 1 shows the pseudocode of the ECDSA signature
generation procedure. This algorithm generates a digital signature for a public message
(m) employing the secret private key (d), where h corresponds to the application of a hash
function to the message m and is also considered public.

Algorithm 1: ECDSA signature generation
Input: private key (d), elliptic curve generator (G), hash of m (h), order of G (p)
Output: a signature for message m (r, S)

1 Select k at random such that 0 < k < p
2 (x, y) = k · G
3 r = x mod p

4 S = k−1(h + rd) mod p
5 if r = 0 or S = 0 then goto 1
6 return (r, S)

Each generated signature involves selecting a random secret nonce k satisfying 0 < k < p,
performing scalar multiplication of this nonce with the elliptic curve generator point (G),
and reducing the resulting value (x) modulo p [Fip]. At line 4, the linear part of the
signature generation computes the modular inverse of k and uses it to calculate the public
value S.

Regarding side-channel analysis, the scalar multiplication has received a lot of attention
since the inception of this field [FV12, Dan+13], but recently vulnerabilities on other
operations have emerged, like for example the nonce inversion operation [ACSS17, PGB17]
and the multiplication of rd mod p [Rya19].

4.1 Vulnerability in nonce blinding countermeasure
The inversion of the nonce in ECDSA is a security critical operation as it is usually
implemented using a variant of the binary GCD algorithm for computing modular inverses
that is highly dependent on its inputs [AGS07, ACSS17, PGB17]. Therefore, efforts have
been made to harden this operation in commonly used cryptography libraries like OpenSSL
[Gri+19], whereas mbedTLS was one of the first to add protection to this operation about
five years ago.

The countermeasure deployed in mbedTLS masks the nonce before inverting it, thus,
any information leakage during its inversion (seemingly) reveals no secret information.
The well-known procedure of this countermeasure is the following:

1. t = Draw t at random s.t. 0 < t < p

2. b = k · t mod p

3. f = b−1 mod p

4. k−1 ≡ f · t mod p

However, its implementation in mbedTLS does not strictly follow this procedure.
Figure 5 (Left) shows a code snippet of this library implementation, where the “masking”
operation line is highlighted and the modular inversion takes place at the next line.
Our key insight is the mbedTLS implementation lacks a reduction operation after the
multiplication takes place, hence this multiplication is performed on Z instead of Z∗p. While
it is mathematically correct, we show it fails at protection because the product b = kt does
indeed reveal information about k.

Figure 5 (Right) shows a code snippet of the mbedTLS modular inverse function
mbedtls_mpi_inv_mod. This function contains an implementation of the Binary Extended
Euclidean Algorithm (BEEA) for computing modular inverses. The highlighted line shows
that the input is actually reduced before starting to execute the BEEA code (indicated
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1 static int ecdsa_sign_restartable( ... )

2 {

3 ...

4 /*

5 * Generate a random value to blind inv_mod in next step,

6 * avoiding a potential timing leak.

7 */

8 mbedtls_ecp_gen_privkey( grp, &t, f_rng_blind,

p_rng_blind );↪→

9

10 mbedtls_mpi_mul_mpi( s, pr, d );

11 mbedtls_mpi_add_mpi( &e, &e, s );

12 mbedtls_mpi_mul_mpi( &e, &e, &t );

13 mbedtls_mpi_mul_mpi( pk, pk, &t );

14 mbedtls_mpi_inv_mod( s, pk, &grp->N );

15 mbedtls_mpi_mul_mpi( s, s, &e ) );

16 mbedtls_mpi_mod_mpi( s, s, &grp->N );

17 ...

1 int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi

*A, const mbedtls_mpi *N )↪→

2 {

3 ...

4 mbedtls_mpi_gcd( &G, A, N );

5 ...

6 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )

7 {

8 ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;

9 goto cleanup;

10 }

11 ...

12 mbedtls_mpi_mod_mpi( &TA, A, N );

13

14 /* Binary Extended Euclidean Algorithm for computing

inverses */↪→

15 ...

Figure 5: ECDSA nonce blinding countermeasure in mbedTLS.

with a comment). Therefore, during the BEEA execution the countermeasure would be
complete and the value to be inverted successfully masked. Yet, mbedtls_mpi_inv_mod
does the unexpected.

It also computes gcd(A = b, N = p) to check if an inverse exists5. And this happens
at line 4, before reducing b = kt thus, if the execution flow of mbedtls_mpi_gcd can be
obtained by some side-channel, as demonstrated in Section 3.1, the countermeasure can be
compromised.

For instance, if the attacker knows that the product kt is odd by some side-channel
leak, it learns that k is also odd, thus obtaining a 1-bit leak. In theory, this leak could
be exploited using Bleichenbacher’s approach [TTA18], however no evidence has been
published that this attack could be achieved in practice for commonly used ECDSA curves.
Therefore, we follow a generic approach, that surprisingly reduces the security of ECDSA
to an integer factoring problem.

4.2 When ECDSA security relies on factoring integers
In this section we will first describe the entire attack independent of the side-channel used
to obtain it, assuming that an attacker already obtained the product b = kt. Then in
Section 5 we will demonstrate it against an mbedTLS-backed TLS server secured by Intel
SGX, evidencing how an attacker can exploit it in a real-world scenario.

Once an adversary knows b, it also knows that one of its divisors is actually the secret
nonce k, therefore, it could do an exhaustive search on every possible divisor of b to see
which one satisfies r = k ·G. Hence, the task is reduced to factoring b. Considering an
n-bit ECDSA instance, it means that both k and t are about n-bit numbers, thus, b = kt
is roughly a 2n-bit integer. Therefore, it is interesting to know how many candidates an
attacker will have to test in the worst case scenario.

An integer number can be decomposed into its prime factors like (5), where the set of
qi are the different prime factors that divide b and mi their corresponding multiplicity.

b =
∏
qi|b

qmi
i (5)

As the attacker must exhaustively search every possible divisor, it is interested in the
number of prime factors of b considering multiplicities. Number theory field defines the
function Ω(·) for counting this magnitude, also its distribution has been studied for large
integers. According to [Rie94], Ω(·) follows a normal distribution defined by (6).

Ω(b) ∼ N
(

1.03465 + ln ln b,
√

ln ln b
)

(6)

5We hypothesize the developers believe it could save some CPU cycles, yet it most likely does not since
in many use cases of this function, coprimality is guaranteed a priori.
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Therefore, for 256-bit ECDSA, there is a probability of 99.4% that the number of prime
factors of b (i.e. 512-bits) is less than 14. So, with high probability, the worst case number
of candidates to test is defined by (7), that following the 256-bit example, means only 213

candidates.

#candidates =
Ω(b)∑
i=1

(
Ω(b)

i

)
= 2Ω(b) (7)

Therefore, it is possible to define an attack roadmap for n-bit ECDSA:

1. SCA(mbedtls_mpi_gcd) =⇒ (Zi, Xi) :
∑

Zi ≥ 2n

2. (Zi, Xi) leakage with Partial model yields b

3. factor(b) generates 2Ω(b) candidates

4. Test candidates until solution

The first step resumes the side-channel attack part when the adversary gets sufficient
(Zi, Xi) pairs such that applying the partial model (at second step) it could recover the 2n
least significant bits of b (i.e. all bits of b). Under a perfect leakage the side-channel part is
free of errors, so this process only yields a single candidate for b. However, this procedure
can handle uncertainty in this step, for instance, maybe the attacker is not sure about the
value of some Xi, thus, as this is a binary variable, the attacker can generate all possible
combinations, that will yield a set of candidates for b. Section 3.1 shows how the (Zi, Xi)
pairs from an mbedtls_mpi_gcd execution can be recovered, whereas Section 2.2 describes
the Partial model to recover each candidate for b after bruteforcing the missing Xi. After
describing this attack, experiment results for 1000 trials are presented in Section 5.

Once a candidate for b has been obtained, it should be factored to enumerate its 2Ω(b)

divisors. The factoring phase is the most time-consuming part. Therefore, the attacker
would want to reduce the number of candidates for b in the previous step, trading it off
with the probability that correct b is in the set.

The last step involves testing which divisor of b is the secret nonce k. This can be
done by testing which divisor is the solution to the ECDLP problem r = k ·G. Therefore,
the number of scalar multiplications needed to recover the ECDSA private key would be
(#b cands) · 2Ω(b).

It is worth mentioning, this attack only needs one trace to succeed, however, the
attacker can capture a set traces and launch several attack instances in parallel until one
yields a solution. This approach could be helpful to overcome the running time of integer
factorization.

5 End-to-End Attacks on a SGX-secured mbedTLS server
The next sections present two end-to-end attacks against a TLS server backed by mbedTLS
and secured by Intel SGX. For the experiment results we used the SGX-Step framework
with threat model and setup described in Section 3.1 to attack the mbedTLS binary GCD
implementation. The two presented attacks are:

1. Exploit the ECDSA vulnerability described in Section 4.

2. Exploit an RSA vulnerability where both inputs of the binary GCD algorithm are
secret (Section 6).

Both attacks exploit the vulnerable binary GCD implementation in the mbedTLS
library in two very different scenarios. This result supports the portability of the attack
on mbedTLS binary GCD algorithm: an example of how a vulnerable primitive leads to
multiple vulnerabilities in the same library.
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5.1 Bulk experiments on ECDSA
We performed the attack against the wrongly implemented countermeasure in mbedTLS
ECDSA that executes a side-channel vulnerable binary GCD algorithm using NIST curve
secp256r1 [Fip]. We repeated the attack 1000 times to gather sufficient experiment data
to evaluate each attack phase, highlighting the following metrics:

1. Number of candidates for b during the SCA of mbedtls_mpi_gcd.

2. Statistics about the factoring phase.

To launch the attack against mbedtls_mpi_gcd during its vulnerable use case inside
mbedTLS ECDSA, we employed the memory page of ecdsa_sign_restartable to define
the trigger that identifies the targeted mbedtls_mpi_gcd start inside ECDSA. For this,
we first launched an attack without any defined trigger (only monitoring the pages of
interest without an interrupt-driven attack), this phase generates a sequence of accessed
page where employing the memory page of ecdsa_sign_restartable the identification
of a unique trigger sequence was immediate.

Then, the attack is relaunched with the defined trigger that will start the interrupt-
driven attack to capture the page ACCESSED bit traces. The obtained traces are processed
to extract the (Zi, Xi) pairs as described in Section 3.1. After this step, we bruteforce the
missing Xi and apply the Partial model for each of them, obtaining a set of b-candidates.
At each attack trial the adversary initiates a TLS session with the mbedTLS server and
negotiates a ciphersuite with ECDSA as signature algorithm. The client (adversary)
collects the signature information for testing, in the last phase of the attack, which divisor
of b is the k that solves r = k ·G.

We repeated the attack 1000 times and computed statistics about the number of
b-candidates. From the 1000 traces, two of them were not processed correctly, implying
that no (Zi, Xi) pairs where obtained, hence, the remaining 998 yield a median of four
candidates that demonstrates the efficiency of the side-channel phase.

In addition to number of candidates statistics, we computed the success rate of this
part of the attack employing the ground truth private key. For each trial, we computed the
nonce k, and then checked if one of the b-candidates is divisible by k. This test revealed
the side-channel attack phase succeeded in 996 trials of 1000, which demonstrates its very
high success rate, with two traces where some Xi were not identified correctly. The next
sections will complete the end-to-end attack from an adversary point of view, concluding
that the success rate was invariant. In support of Open Science, we released our data and
tooling for (part of) the ECDSA end-to-end attack [AB20].

5.2 Factoring
The purpose of the factoring phase is to compute the complete factorization of a given b-
candidate. Given that both k and t have no special form other than being drawn uniformly
from Z∗p, i.e. statistically close to 256-bit uniformly random strings, we chose the general
purpose “Yet Another Factoring Utility” (YAFU) for this task6. The application links
against several other libraries for some functionality, e.g. GMP-ECM7 for the Elliptic Curve
Method (ECM) and Msieve8 and GGNFS9 for different Number Field Sieve (NFS) stages,
yet contains its own implementation of other functionality, such as the Self-Initializing
Quadratic Sieve (SIQS). We chose YAFU for its flexibility, parallelization support, and
ability to iteratively apply known methods from trial division to NFS, not requiring any

6https://sourceforge.net/projects/yafu/
7http://ecm.gforge.inria.fr/
8https://sourceforge.net/p/msieve/
9https://sourceforge.net/projects/ggnfs/

https://sourceforge.net/projects/yafu/
http://ecm.gforge.inria.fr/
https://sourceforge.net/p/msieve/
https://sourceforge.net/projects/ggnfs/
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special pre-processing step. We set the SIQS to NFS crossover threshold at 100 decimal
digits. We used the latest repository version (as of this writing) of YAFU itself and all the
prerequisite software.

Worst case analysis. To upper bound the factoring time, we ran a short experiment to
factor an RSA-512 key generated from the OpenSSL command line tool. This represents
the rare worst case scenario, where both the nonce and blinding value are 256-bit primes.
Academically, Valenta et al. [Val+16] showed how to use the Amazon EC2 infrastructure
to factor such a key in under four hours at a cost of 75 USD. As an alternative, to carry
out the computation locally we used a 24-core 48-thread Intel Xeon Silver 4116 (Skylake)
server clocked at 2.10GHz with 256GB RAM running Ubuntu 16.04.6 LTS. The NFS
factorization completed in 53 hours, fully recovering the RSA-512 private key.

Computing environment. Despite the meager upper bound above, our goal is not to
demonstrate one successful attack instance, but to understand typical computation require-
ments over a large number of attack trials. To that end, we carried out the remainder of our
results on a computing cluster containing roughly 800 Intel Xeon Gold 6148 (Skylake) cores
clocked at 2.40GHz and 2300 Intel Xeon E5-2680v3 cores (Haswell) clocked at 2.50GHz.
In the experiments that follow, key enumeration always took place on a single core per
task while factoring ranged from a single core to eight parallel cores per task, depending
on the factoring complexity.

5.3 Key enumeration
The purpose of the enumeration phase is to calculate the nonce k from a given b-candidate.
To enumerate the keys, we wrote a custom application linking against OpenSSL to take
advantage of its high-speed P-256 scalar multiplication functionality for AVX architectures.
The application takes as input the complete factorization of the b-candidate, and the
(public) r-component of the ECDSA signature. It then iterates through the power set of
the factors, computes the corresponding k-candidate at each iteration, computes the scalar
multiplication k · G, and finally checks if this values equals r. If the check passes, this
yields the true nonce k for the ECDSA signature, then finally the long-term private key
rearranging the (public) S component of the ECDSA signature. There are several simple
optimizations to (somewhat) reduce the exponential cost of the power set iteration. As
soon as the k-candidate exceeds the group order, that limb can be trimmed. Also, iterating
the k-candidates starting from the group order down to zero makes sense statistically, as
the number of possible nonces decreases exponentially with the bit length.

5.4 Bulk experiment results
From the 1000 trials, we were left with a maximum 17446 candidates to potentially
factor. The median number of candidates per trial was four. We carried out an iterative
process to solve for these trials, consisting of limited effort to factorize candidates, followed
by enumeration attempting to solve each trial. Denote S0 these 17446 candidates, and
T0 = [1 . . 1000] the set of trials. Table 3 summarizes the progress of our iterative attack
process, with Si the remaining number of candidates without complete factorization, and
Ti the remaining number of unsolved trials at stage i.

On the cluster, we performed an initial ECM factoring pass (i = 1) with a per task time
limit of 4h. This yielded 11683 complete factorizations (i.e. |S1| = 17446− 11683 = 5763).
Running enumeration, this solved for 639 of the trials (i.e. |T1| = 1000 − 639 = 361).
With the remaining partial factorizations from the unsolved trials, we proceeded to more
advanced SIQS and NFS factoring techniques (i = 2), computing in 8-way parallel per
cluster task. The majority of these tasks exceeded the 100 decimal digit SIQS/NFS
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Table 3: Factoring effort over all attack trials spanning various stages.

i |Si| |Ti| Method
0 17446 1000 —
1 5763 361 ECM
2 4347 44 SIQS/NFS
3 4255 4 NFS

threshold, hence applied NFS methods. After two days of computation, including these
new factorizations and re-running enumeration brought the total to 956 solved trials. For
the remaining 92 partially factored candidates (for the 44 unsolved trials) ranging from
134 to 154 decimal digits, we made a final NFS factoring pass again in 8-way parallel
tasks over five days (i = 3). Including these 92 new full factorizations and re-running
enumeration brought the total to 996 solved trials, and in total 13191 fully factorized
candidates. Of the remaining four unsolved trials, two did not produce any candidates
from the post-processing stage, hence were unsolvable from the beginning. Checking the
ground truth, the remaining two unsolved trials did not retain the correct candidate. The
median factoring time over all fully factorized candidates, i.e. S0 \ S3, was 14 minutes.
The median enumeration time was less than a single second with the median number of
keys checked through scalar multiplication 129. The median value of [Ω(b) : b ∈ S0 \ S3]
was nine.

6 Practical attack on an RSA-CRT computation
A recent paper analyzes an interesting perspective on side-channel attacks where the leakage
comes when private keys are loaded [PG+19]. The authors discovered several vulnerable
code paths that get triggered when private keys are parsed on popular cryptography
libraries such as OpenSSL and mbedTLS. One challenge the authors left as an open
problem, especially the recovery of Xi, is attacking the computation of RSA-CRT parameter
q−1 mod p in the mbedTLS library.

This section provides experiment results on this challenge, as well as (for the first time)
demonstrating the usefulness of the Partial model when both inputs of the binary GCD
algorithm are secret, another open problem not covered before in the literature as analyzed
in Section 2.2.

The threat model and application scenario of the experiments are very similar to those
presented in Section 3. Like the ECDSA case, we consider there is an mbedTLS server
secured by Intel SGX where the attacker can launch page-fault and interrupt-driven attacks
against it using the SGX-Step framework.

Every time an RSA private key is loaded by the mbedTLS library, the Chinese
Remainder Theorem (CRT) parameter q−1 mod p is computed where p and q are the
secret prime numbers of that private key, and it is know that q < p and N = pq is a public
parameter. This modular inversion is performed employing the same function used to
invert the ECDSA nonce (i.e. mbedtls_mpi_inv_mod), therefore it has an internal call to
mbedtls_mpi_gcd.

It is worth noting that in this use case, the modular inversion algorithm that performs
this inversion (i.e. BEEA in mbedtls_mpi_inv_mod) could also be targeted using a similar
approach. However, we chose mbedtls_mpi_gcd to demonstrate how the same attack
setup employed to compromise mbedTLS ECDSA can be applied to RSA, highlighting
mbedtls_mpi_gcd attack portability using SGX-Step framework.

We developed an attack against this scenario during the loading of 1000 RSA-2048
private keys and estimate its success rate and complexities. In this case we used the memory
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page of mbedtls_rsa_deduce_crt to select a reliable trigger for the interrupt-driven attack
similar to the ECDSA case. Then for each trace we recovered the corresponding (Zi, Xi)
pairs that yield the following results.

We configured the trace processing tool to recover sufficient (Zi, Xi) pairs such that it
could be possible to recover 1024 bits of a secret prime using the Partial model. Using
ground truth values of each private key, we estimated the success rate at 99.1% for 1000
samples. This result shows that the side-channel attack phase performs very similar to the
ECDSA case without a success rate reduction when the number of bits to recover doubles.
For instance, for ECDSA we targeted to recover 512 bits and now we are targeting 1024
for RSA, achieving in both cases success rates of 99%.

Regarding an end-to-end attack, a blind attack description where the Partial model is
used when both inputs are unknown and involved complexity follows.

6.1 Partial model with two unknown inputs
During the Partial model introduction at Section 3, it was stated a set of consecutive
(Zi, Xi) pairs allows an adversary to get an expression like (4). This expression can be
simplified to (8), where Di and Ei are known integer coefficients derived from (4), Zt is
the last known Zi, and n =

∑t
1 Zi + 1 hence the number of bits that can be recovered.

Dip− Eiq ≡ 2Zt mod 2n (8)

In this scenario p and q are the binary GCD algorithm inputs and both are secret. On
the other hand, an adversary can employ that N = pq to solve (8). As N ≡ pq mod 2n,
hence solving for q leads to:

q ≡ Np−1 mod 2n (9)

where the modular inverse exists as p is odd. Therefore replacing q in (8) with (9), leads
to the quadratic modular equation (10)

Dip
2 − 2Ztp−NEi ≡ 0 mod 2n (10)

It can be proved this equation has 16 roots, therefore, each sequence of (Zi, Xi) pairs
derived from a side-channel attack in this scenario will yield 16 candidates for p. For
example, if the side-channel attack yields four unknown Xi, then the number of total
candidates will be 16 · 24 = 256. This procedure shows how it is possible to adapt the
Partial model to recover some input bits when both inputs are secret. Naturally, this
method is use case dependent, but in our view, the most important part is that this model
could also work when both inputs are unknown, therefore it should be considered in these
scenarios.

6.2 Bulk experimental results
In this scenario the median of number of candidates after processing 1000 traces and
applying the Partial model with both inputs unknown was 8192. The cause of this metric
increase compared with the ECDSA case is due to three reasons: (i) The number of
candidates increases exponentially with the number of unknown Xi; (ii) With the increase
in the number of bits to recover (1024 instead of 512), there are more chances that unknown
Xi occurs; (iii) The quadratic modular equation (10) yields 16 candidates per missing Xi

combination. However, this increase does not have any practical effect on the attack, as
8192 candidates can be tested very quickly. These experiments confirmed the success rate
of 99.1% of the attack when trying to recover the 1024 bits of a prime.
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7 Mitigation and responsible disclosure
Regarding mitigations against the presented attacks, for the ECDSA case, the straightfor-
ward one is completing the already deployed nonce inversion countermeasure. This can
be achieved by reducing the product b = kt before calling the modular inversion function.
This approach was followed by mbedTLS developers immediately after the disclosure.

On the other hand, for the RSA case a constant-time implementation of the binary
GCD function and the modular inversion algorithm should be used, for instance following
one of the proposals in [Bos14, SK18, BY19].

Another approach for the latter can be implementing the inversion q−1 mod p using
Fermat’s Little Theorem (FLT) qp−2 mod p. However, in contrast to FLT usage in ECDSA
for protecting the nonce, in this RSA use case the modulus is secret in addition to the
exponent, therefore a side-channel secure modular exponentiation algorithm should be
used. While this solution could have some performance penalty, it could be more attractive
to library developers as it is more likely that they are more aware of (and have already
deployed) side-channel secure modular exponentiation than inversion.

Following responsible disclosure procedures, we contacted the mbedTLS security team
and shared our findings with them. We stressed the importance of the ECDSA vulnerability
as the current status offers a false state of security as evidenced in a recent advisory from
the mbedTLS security team. CVE-2019-18222 tracks the ECDSA vulnerability.

8 Conclusion
The most important conclusion of this research is that countermeasure implementations
must follow their mathematical descriptions rigorously. Even when an alternative imple-
mentation is mathematically correct it can introduce or prevent the proper protection
offered by the countermeasure, as demonstrated in this paper. In the case of the targeted
ECDSA implementation, the protection of the value to be inverted by a multiplicative
masking is performed on Z instead of Z∗p. This reduces the security of mbedTLS ECDSA
implementation to an integer factorization problem.

On the other hand, every day there is more need for execution flow-independent bignum
implementations (commonly miscalled constant-time). Often, only high-level cryptography
algorithm implementations are protected with this feature, however, low-level layers are
not, leading to execution-flow dependent inputs.

In this paper, we showed how a vulnerable binary GCD implementation leads to
(at least) two vulnerabilities in the mbedTLS library, hence the importance of not only
protecting high-level implementations, but also the low-level bignum ones.

Interrupt-driven attacks against cryptography algorithms are very powerful and provide
high temporal resolution. In this research the vulnerable binary GCD primitive has very
tight loops, however, not sufficient to stop interrupt-driven attacks based on the SGX-Step
framework. Applications secured by Intel SGX should pay more care to side-channel
threats, as OS-level adversaries have very powerful side-channels at their disposal.
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