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Abstract. Today, deep neural networks are a common choice for conducting the pro-
filed side-channel analysis. Such techniques commonly do not require pre-processing,
and yet, they can break targets protected with countermeasures. Unfortunately,
it is not trivial to find neural network hyper-parameters that would result in such
top-performing attacks. The hyper-parameter leading the training process is the
number of epochs during which the training happens. If the training is too short, the
network does not reach its full capacity, while if the training is too long, the network
overfits, and is not able to generalize to unseen examples. Finding the right moment
to stop the training process is particularly difficult for side-channel analysis as there
are no clear connections between machine learning and side-channel metrics that
govern the training and attack phases, respectively.
In this paper, we tackle the problem of determining the correct epoch to stop the
training in deep learning-based side-channel analysis. We explore how information
is propagated through the hidden layers of a neural network, which allows us to
monitor how training is evolving. We demonstrate that the amount of information, or,
more precisely, mutual information transferred to the output layer, can be measured
and used as a reference metric to determine the epoch at which the network offers
optimal generalization. To validate the proposed methodology, we provide extensive
experimental results that confirm the effectiveness of our metric for avoiding overfitting
in the profiled side-channel analysis.
Keywords: Side-channel Analysis · Neural Networks · Overfitting · Mutual Information
· Information Bottleneck

1 Introduction
Profiled side-channel attacks (SCAs) determine the worst-case security bounds of protected
cryptographic implementations. The attack model assumes an adversary with full control
of a device identical to the target one. Various techniques like template attacks [CRR02],
linear regression [SLP05], and machine learning [LMBM13, MZVT15] belong to the class
of profiled SCAs and can achieve strong performance. Recently, deep learning techniques
proved to be even more potent as 1) they do not need to use the pre-processing phase to
select the points of interest, and 2) they perform well even in the presence of noise and
countermeasures [CDP17, KPH+19].

Although the application of deep learning for profiled SCA became popular, there are
many open questions like the selection of hyper-parameters for successful side-channel
attacks. For hyper-parameters like architectural details (e.g., number of layers, neurons),
recent works provide certain directions to follow [ZBHV19]. At the same time, the ability
to select the right moment to stop the training phase is left to instinct (and sometimes
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luck) as there does not seem to be a direct connection between the machine learning
metrics and the performance of a side-channel attack [PHJ+19].

While the lack of a clear connection may not be deemed crucial, the end of the training
phase depends on metrics like accuracy, loss, or recall, and their performance on a validation
set. If the training phase finishes too late, the machine learning model overfits. As a
consequence of overfitting, the model will not generalize to unseen data, and the attack
phase will fail. 1

One way to analyze the generalization of a deep neural network is through the lens
of information theory. In [ST17], the authors propose a new methodology to interpret
the training of a multilayer perceptron (MLP) through a theory called the Information
Bottleneck (IB) [TZ15]. They demonstrate that the training of an MLP provides two
distinct phases - fitting and compression. These phases are determined by computing the
mutual information between the intermediate representations (activations from hidden
layers), and input (raw data) and output (labels). The output of a hidden layer can be
seen as a summary of statistics containing information about the input and output. The
fitting phase is usually very fast, requiring only a few epochs, while the compression phase
lasts longer. The compression phase is also the one responsible for the generalization of
the neural network, i.e., its ability to perform on unseen data. We consider the mutual
information between output layer activation’s and the data labels (as given by the leakage
model) as a metric to identify the epoch at which the neural network achieves its optimal
generalization capacity. Our results show that training a network for too many epochs has
a negative effect on generalization, and early stopping based on the mutual information
metric is a reliable technique to avoid this scenario. We test our metric against three
masked AES implementations and show that compared to the typical metrics like accuracy,
recall, or loss our metric provides superior results.

To the best of our knowledge, this is the first result providing a reliable attack
performance metric different from conducting an actual attack (key ranking). While key
ranking is a reliable validation metric to optimize the generalization of a deep neural
network for side-channel attacks [CDP17], it brings significant computational overhead
when using large validation sets. Mutual information, on the other hand, offers remarkable
performance at a fraction of the computational cost as it does not have to be computed for
all key hypotheses. To facilitate reproducible research, we make the source code publicly
available [Ano20].

1.1 Related Works
In this section, we review the known results related to the problem of optimizing the
training of a neural network and information theory for deep learning in the context of
side-channel analysis. From the first paper considering convolutional neural networks for
SCA [MPP16], deep learning gained a significant recognition in the SCA community as
the paradigm to follow for profiled SCA. Despite good results, even when considering
protected targets [CDP17, KPH+19], there are open questions. For instance, progress on
topics like interpretability and explainability of neural networks is difficult in general, and
as such, there are not many results for SCA also [vdVPB19, vdVP19, MDP19].

A second important research direction explored by the SCA community is how to tune
hyper-parameters [KPH+19, ZBHV19]. Common options for hyper-parameter exploration
are number/types of layers/neurons, activation functions, and the number of epochs.

Determining the number of training epochs is relevant for any application domain,
but is a particularly challenging problem in SCA [PHJ+19]. Common options are the use
of early stopping or a predetermined number of epochs for training [PSB+18, HGG19,

1It is also possible for a machine learning model to underfit if the training stopped too early. Still, this
is usually of less concern as the resulting machine learning model would generalize to unseen data but just
not use its full potential, i.e., the attack would not be as powerful as possible.
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KPH+19, ZBHV19]. In both cases, as the performance is observed through machine
learning metrics, it is difficult to know if the training stopped at the right moment.

To circumvent this problem, Robissout et al. [RZC+20] conducted a success rate
evaluation for every epoch of training and validation. This solution leads to a significant
time overhead for large datasets. More importantly, there is no consensus on how to
calculate the key rank for training sets that have random keys, as best practice recommends.
Finally, the work proposed in [MDP20] states that maximizing the perceived information
in a profiled side-channel attack is equivalent to minimizing the loss functions based on
negative log-likelihood or cross-entropy.

1.2 Contributions
This work provides two main contributions, as follows:

1. A new metric to select the epoch where a deep network achieves its best performance
for profiled side-channel analysis. We show that the information transferred to the
output layer about the labels can be measured and used as a reliable metric to
determine when to stop the training phase. The new metric offers four distinct
improvements compared to existing results. First, the new metric is precise and can
accurately predict the epoch at which the network achieves its best performance,
while the alternative, validation key ranking, will give a range of values for the
best epoch. Second, the computational overhead for computing the information
transferred to the output layer is much smaller compared to performing a full attack
to obtain the key ranking at the end of each epoch. Third, the new metric is suitable
to use for training sets with randomized key, as recommended by best practices,
while there is no consensus on how to calculate the key ranking for this type of
training sets, as far as the authors are aware. Forth, we extend [ST17], where the
authors show how to calculate the information path for MLP architectures to CNN
architectures.

2. The new metric consistently offers good performance. We test the new metric
on three publicly available datasets, using two leakage models, and two different
architectures. In the experimental section, we thoroughly compare its performance to
the four conventional metrics: validation loss, validation accuracy, validation recall,
and validation key rank and conclude that in all cases the use of the new metric will
lead to better generalization.

The rest of this paper is organized as follows. Section 2 provides background information
about the profiled side-channel analysis, deep learning, and information theory. The
theory of information bottleneck and information plane for deep learning is provided
in Section 3, where we describe the main contribution of this work. Section 4 provides
empirical validation of the proposed analysis based on information theory to increase the
performance of deep learning-based side-channel attacks. Finally, conclusions and possible
future research directions are given in Section 5.

2 Background
This section provides information about profiled side-channel attacks and deep learning-
based SCA. Afterward, the basic concepts of information theory are defined.

2.1 Profiled Side-channel Attacks
Side-channel analysis (SCA) can be divided into non-profiled and profiled side-channel
analysis. Standard non-profiled side-channel attacks like correlation power analysis [BCO04]
or differential power analysis [KJJ99] explore the leakage from univariate statistics. These
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attacks are usually limited by the selection of a function defining the leakage model. They
are also defined as the first-order side-channel attacks. If more than one variable needs
to be explored from the non-profiled scenario, higher-order attacks can combine several
samples, and the analysis usually requires more complex attacks.

Profiled attacks assume that the adversary has an open cryptographic device, which
can be used to learn a model by freely setting the key and the input data (plaintext or
ciphertext). These attacks also explore the multivariate nature of the leakage and usually
require features/points of interest selection for dimensionality reduction. The learned model
is tested against side-channel traces collected from an identical target device. This second
part is known as the matching or attack phase, and it returns the key hypothesis with the
maximum likelihood estimation. Standard profiled attacks are template attacks [CRR02],
linear regression [SLP05], and machine learning [LMBM13, MHM13].

The adoption of deep neural networks as a profiled attack paradigm can provide
automated points of interest selection where recent results suggest such techniques are less
sensitive to trace misalignment and countermeasures based on the first order-masking for
software AES implementations [CDP17, KPH+19, PSB+18].

A usual approach to assess the attacker’s performance is to use metrics that denote
the number of measurements required to obtain the secret key k∗. Common examples of
such metrics are guessing entropy (GE) and success rate (SR) [SMY09]. Guessing entropy
represents the average number of key candidates an adversary needs to test to determine
the correct key, denoted with k∗, after conducting a side-channel analysis attack. More
specifically, given N amount of traces in the attacking phase, an attack outputs a vector
g = [g1, g2, ..., g|K|] in decreasing order of probability. The guessing entropy is the average
position of k∗ in g over several experiments (commonly 50 or 100). The success rate is
defined as the average empirical probability that g1 equals the secret key k∗.

2.2 Deep Learning in the Context of Side-Channel Analysis
A deep neural network can be seen as a system that accepts as input a random variable X
(a side-channel trace) and provides as output a probability estimation Ŷ , based on the
class label Y estimated by a decision rule. The size of the input vector X is the same
as the number of samples/features in the side-channel trace. The size of the vector Y is
directly derived from the leakage model l selected according to the target cryptographic
function (e.g., S-box output in the first encryption or decryption AES round). In total,
there are M traces that are used in the training phase.

In the profiled SCA, the trained neural network is then tested against a set N of
side-channel traces, in which the secret key is unknown, and the key recovery methodology
assumes that the correct key is the one that maximizes the summation probabilities Sk for
each key byte candidate:

Sk =
N∑

i=1
(pi,j). (1)

The value (i.e., the probability) pi,j is an element of a matrix P with size number of traces
× number of classes. This matrix is the output class probabilities obtained by predicting
the trained model with a test or validation set. Thus, pi,j is the probability element
obtained as a function of the attack trace xi, leakage model l, and input data pki for every
possible key guess k: fk(xi, pki , l). In the context of neural networks, pi,j represents the
neuron’s activation value for trace i from the Softmax output layer. The process of training
a deep neural network is an optimization problem stemming from the minimization of the
selected loss function based on the stochastic gradient descent algorithm. For side-channel
analysis, we are interested in a machine learning model that is capable of compressing
the input relevant information from X (i.e., a side-channel trace), while discarding the
irrelevant information as noise or irrelevant samples.
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2.3 On the Generalization Ability of Neural Networks

For a deep learning-based SCA to be successful, the trained model has to generalize well,
which calls for a minimal error on the test set. Next, we define the generalization interval
in SCA for neural networks.

Definition 1. Generalization Interval in SCA. Given an ensemble (Xtrain, Ytrain) where
Xtrain represents the input training data, and Ytrain represents a set of training labels, the
generalization interval defines the epochs where a successful key recovery can be obtained
using Eq. (1).

Techniques used to reduce test errors are commonly known as regularization techniques,
among which early-stopping is one of the best know techniques [GBC16]. Early stopping
works under the assumption that the neural network achieved the best generalization
and will start overfitting and deteriorate the generalization after this point (of best
generalization), which is an undesired behavior. Consequently, determining the pre-
specified number of iterations (epochs) is a hyper-parameter selection process.

For side-channel analysis, machine learning metrics have demonstrated to be inconsistent
as reference for the validation process [PHJ+19]. As such, one can infer that implementing
early stopping based on, e.g., loss function or accuracy could lead to conflicting results.

2.4 Datasets

We consider three publicly available datasets, instances of software AES implementations
protected with the first-order Boolean masking. The first one is the widely used ASCAD
database in the side-channel community for deep learning research [PSB+18]. The traces
were measured from an implementation consisting of a software AES implementation
running on an 8-bit microcontroller. The AES is protected with the first-order masking,
where the two first key bytes (index 1 and 2) are not protected with masking (e.g.,
masks are set to zeros) and the key bytes 3 to 16 are masked. A trimmed trace set
corresponding to the processing of key byte 3 (S-box operation in the first encryption
round) is provided by the database. We consider the trace set containing 200 000 AES-128
encryption traces where the plaintext and key are randomly defined for each separate
encryption. This trace set is used as a training and validation set. A second fixed-key
trace set, consisting of 1 000 measurements is split into validation and test sets, having
500 traces each one. In this dataset, each trace contains 1 400 features. This dataset is
available at https://github.com/ANSSI-FR/ASCAD.

The second dataset is the DPA Contest v4 (DPAv4) database [TEL14]. DPAv4 database
provides trace sets collected from an AES-256 RSM (rotate shift masking) implementation.
The training set consists of 34 000 traces with a fixed key. The test and validation
sets contain 2 000 traces each. For convenience, we attack only the first key byte of an
AES-256 implementation. Each trace consists of 2 000 features. This dataset is available
at http://www.dpacontest.org/v4/.

The third dataset refers to the CHES Capture-the-flag (CTF) masked AES-128 en-
cryption trace set, released in 2018 for the Conference on Cryptographic Hardware
and Embedded Systems (CHES). In our experiments, we consider 43 000 traces for
the training set with a fixed key. The validation and test set consist of 1 000 traces
each. The keys for the training set are different from the key configured for the vali-
dation and test sets. Each trace consists of 2 200 features. This dataset is available at
https://chesctf.riscure.com/2018/news.

https://github.com/ANSSI-FR/ASCAD
http://www.dpacontest.org/v4/
https://chesctf.riscure.com/2018/news
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2.5 Information Theory
In information theory, the (marginal) entropy H(X) of a random variable X is defined as
the average information obtained by observing X, and it can be quantitatively defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x), (2)

where p(x) represents the probability of variable X taking value x. The conditional entropy
of X given Y is defined as follows:

H(X|Y ) = −
∑
x∈X

p(x)
∑
y∈Y

p(x|y) log2 p(x|y). (3)

This can be considered as the entropy of X when knowing Y . Finally, the mutual
information defines the dependence between variables X and Y , and it can be defined
using entropy and conditional entropy values as follows:

I(X;Y ) = H(X)−H(X|Y ). (4)

An important property of mutual information in this context is the Data Processing
Inequality (DPI), which states that for any three variables X,Y, Z, which form a Markov
chain, X → Y → Z, the mutual information between the variables can only decrease and
I(X;Y ) ≥ I(X;Z).

3 Information Theory of Deep Neural Networks
Shwartz-Ziv and Tishby [ST17] showed that information theory could be used to visualize
the training phase of a deep network to compare the performance of different network
architectures. Intuitively, when training a network, each layer is getting its information
from the layer before and transforming it by using matrix multiplication of nonlinear
functions. Their insight was to treat each layer (the hidden activation functions) in the
deep network as a random variable fully described by the information captured about the
input data and the labels. Modeling each layer in the deep network as a random variable
gives an alternative view of a deep network as a Markov chain. Each variable represents
the nonlinear activation function, which successively transforms the input data into the
label space. Using the mutual information between the layers, the input data, and the
labels, we can visualize the transformation of the input data into the label space.

Definition 2. Information Path. Given en ensemble (X,Y, Ti) where X represents the
input data, Y represents a set of labels and Ti is a hidden layer in an n-layered network,
described as X,Y → T1 → ...→ Tn, the information path is defined as the set of points
{[I(X;Ti), I(Ti;Y )]|i ∈ {1, n}}.

The information path is a record of the information each hidden layer preserves about
the input data X and the output variables Y . It is typically computed for each epoch
during the training phase. The information is plotted in a two-dimensional coordinate
system referred to as the information plane. The coordinates of the information plane
quantify the bits of information layer Ti has about the input data X as I(X;Ti), and the
bits of information layer Ti has about the labels Y as I(Ti;Y ). We can view the variable
Ti as a compressed representation of the input X, and I(X;Ti) calculated based on the
value p(x)p(ti|x), which measures how compact the representation of X is. The maximum
value for I(X;Ti) is H(X), which is the Shannon entropy that corresponds to the case
where Ti copies X and there is no compression. The minimal value for I(Ti;X) is 0 and
corresponds to the case where T has one value.



Guilherme Perin, Ileana Buhan and Stjepan Picek 7

Figure 1: MLP with five hidden layers (T2:6). The letter “D” denotes the dense (fully-
connected) layer while the labels T1 and T7 corresponds input and output layers, respectively,
with the Tanh activation function. The output layer T7 has has Softmax activation function.
The numbers under the layers indicate the amount of neurons.

Lemma 1. Information Path Uniqueness. For each ensemble (X,Y, Ti), where X repre-
sents the input data, Y represents a set of labels, and Ti is a layer in an n-layered network
described as X,Y → T1 → ... → Tn there exists a unique information path that satisfies
the following two inequalities:

H(X) ≥ I(X;T1) ≥ ... ≥ I(X;Tn) ≥ I(X; Ŷ ), (5)

where Ŷ are the labels predicted by the network, and

I(X;Y ) ≥ I(T1;Y ) ≥ . . . ≥ I(Tn;Y ) ≥ I(Ŷ ;Y ). (6)

Proof. The proof for this lemma follows immediately by applying the DPI principle.

3.1 The Information Bottleneck Principle
Shwartz-Ziv and Tishby observed that stochastic gradient descent (SGD) optimization
defines two distinct phases during training [ST17]. The first one is the fitting phase, where
both I(X;Ti) and I(Ti;Y ) increase fast as the training progresses. During the fitting
phase, the deep network layers increase the amount of information about the input data
and the labels. The second phase is the compression phase, where the network starts to
compress or forget information about the input data and slowly increases its generalization
capacity by retaining more information about the labels.

The behavior of the network during the compression phase has been linked to the form
of the activation functions [CHO19]. This happens due to a random diffusion-like behavior
of the SGD algorithm if double-sided saturating2 nonlinear activation function such as
Tanh is employed. More precisely, Shwartz-Ziv and Tishby provided results for Tanh and
show how information about the labels increases in the compression phase [ST17]. On
the other hand, Saxe et al. demonstrated that the non-saturating activation functions
like ReLU provide a different behavior in the compression phase as there is no causal
connection between generalization and compression [SBD+18].

Figure 2 gives an overview of the information path of the deep network architecture
described in Figure 1 at epochs: 1, 20, 100, and 200 during the training process. Each
figure contains the coordinates of the information [I(X;Ti), I(Ti;Y )] where i represents
the i-th layer. The information is captured from the five hidden layers (T2:6) plus an input
layer (T1) and an output layer (T7).

For the above example, we see that information changes only for the last two hid-
den layers T5 and T6, and the output layer T7. The plot contains mutual information

2A saturating activation function squeezes the input data, i.e., the output is bounded to a certain range.
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Figure 2: The information flow captured at epoch 1, 20, 100, and 200 for the network
architecture depicted in Figure 1 when using the DPAv4 dataset (training set).

Figure 3: Information plane from the DPAv4 dataset (training set).

results for twenty training experiments (i.e., twenty dots for each layer). These results
demonstrate that at the beginning of the training phase, the mutual information quantities
[I(X;Ti), I(Ti;Y )] are at a minimum level for hidden layers T5 and T6, and for the output
layer T7. As the training progress (epochs 20 and 100), the mutual information values
increase until the [I(X;Ti), I(Ti;Y )] reaches its maximum for all layers, including the
output layer. If we continue the training process, the compression phase starts to happen
as I(X;Ti) starts to decrease and I(Ti;Y ) stays at a maximum level. In Figure 2, this
information path is clearly observed for hidden layers T5 and T6, and the output layer T7.

In Figure 3, we show the evolution of the information path for all training epochs for
the DPAv4 dataset, for the same architecture given in Figure 1. The training evolution
provides two distinct phases (fitting and compression), as discussed in [ST17]. In the first
phase, the layers (mostly visible for hidden layers T4:6 and output layer T7) are fitting the
training data. The information of an inner state Ti or layer increases for the input X and
output Y 3. In the second phase, the information about the output stays high, but the
information about the input starts to decrease. From the figure, it is clear that the second
phase starts before epoch 100.

3Note, information plane figures show different layers, but it is not possible to recognize a specific layer
by just “observing” the graph, i.e., there is no pre-specified behavior for a specific layer. We store and plot
data for each layer separately.
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Figure 4: Information plane from the DPAv4 dataset (validation set).

3.2 The Information Path for Side-channel Analysis Data
To asses whether a machine learning model generalizes well, commonly, we check its
performance on previously unseen data, i.e., validation set as defined in Definition 1.
Similarly, to investigate the generalization from the information path, we must asses its
behavior on the validation set. More precisely, we aim to find the generalization interval
as defined in Definition 3.

Definition 3. SCA Generalization Interval via Information Path.
Given an ensemble (Xtrain, Ytrain, Ti) where Xtrain represents the input training data,
Ytrain represents a set of training labels, and Ti is a hidden layer in an n-layered network,
the generalization interval for SCA defines the interval of training epochs where the
quantities [I(X;Ti), I(Ti;Y )] reach the maximal values and we can obtain successful key
recovery with Eq. (1) by predicting on the dataset Xtest with the trained neural network.

The results in Figure 4 show that it is possible to observe a different “movement” of
the points [I(X;Ti), I(Ti;Y )] in the information path when using the validation set. The
fitting phase is clearly seen, as I(X;Ti) and I(Ti;Y ) increase with the processing of first
epochs (for the validation set, this movement is observable for hidden layer T6 and output
layer T7).

The compression phase is different from the information plane observed in Figure 3.
For the validation set, the points [I(X;Ti), I(Ti;Y )] reach the maximum value for each
hidden layer, and, later, both quantities decrease with the processing of more epochs. This
indicates the overfitting scenario for the given trained machine learning model. More
specifically, this happens because the generalization in difficult side-channel analysis
problems (i.e., masked or protected AES) is minimal when given in terms of deep learning
metrics (accuracy, loss, recall). At the same time, we aim to capture the machine learning
model at an epoch when the best possible generalization occurs. From our observations,
the epoch at which the generalization is optimal is given by the moment when I(Tn;Y )
reaches a maximum value.

3.3 Improving the Generalization in Deep Learning-based SCA
Recall, for a deep learning-based side-channel analysis to be successful, the trained model
must generalize well to previously unseen data (validation/test set). Given a deep neural
network defined by a set of hyper-parameters θ, the internal representations Ti, i ∈ 1, n,
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(where T1 and Tn are the input and output layers, respectively) should inform about the
labels Y and input X [AG18].

As observed from Figures 3 and 4, we stop the training when we reach the maximum
value for I(Tn;Y ). As such, we assume:

1. During the training, the intermediate representation Ti will be compressed to estimate
Y correctly.

2. The intermediate representation Ti should be robust such that small addition of
noise should not affect this compressed internal representation.

3. Only the information transferred to the output network layer is important for
measuring the generalization [CHO19].

Our investigation suggests that the maximum value for I(Tn;Y ) for the output layer
happens when the fitting phase is finished, and the compression started. This means
that the training does not need to go through the full compression phase to achieve
the best generalization. This is also aligned with findings from Shwartz-Ziv and Tishby
as they observe that the beginning of the compression phase coincides with the best
generalization [ST17], and Saxe et al. who show empirical results demonstrating that the
compression phase does not necessarily improve generalization [SBD+18].

Note that the calculation of I(Tn;Y ) gives minimal overheads during the training
process since we need to make the computation for a small fraction of the validation set.
We estimate that the time overhead to compute I(Tn;Y ) at the end of each epoch equals
less than 2%.

4 Experimental Validation
In this section, we empirically show that the mutual information between the output
layer Tn and the desired output Y , I(Tn;Y ) provides a consistent metric to determine an
optimal number of epochs for the training phase. In our experiments, we consider both
the Hamming weight leakage model and the identity value leakage model.

4.1 Estimating Mutual Information
The first step of calculating mutual information, Eq. (4), is density estimation [KSG04],
which aims to construct an approximation of the density function (denoted with p in
Eqs. (2) and (3)) using observed data. There are two main approaches to density estimation.
The first approach is parametric, where we assume the observed data to be drawn from
a known family of distributions (e.g., normal distribution), while the second approach,
non-parametric, makes no assumption with respect to the distribution of the observed
data. For our setting, we consider the non-parametric approach to be more suitable as we
have little information about the distribution of the underlying data.

Common approaches for non-parametric estimation are simple discretization methods
such as equal interval binning, (or histogram estimator), which divides the observed data
into equal-sized bins, or equal frequency intervals, which divides the observed data into
bins with an equal number of samples [DKS95]. The price for the generic approach is a
user-supplied parameter such as the bin width in case of equal-sized bins or the number
of samples in each bin for the frequency-based binning. A variation of the discretization
techniques described above is the kernel density estimator, where a kernel function replaces
the “box” of the bin estimators. The user-supplied parameter is the kernel bandwidth,
and its choice will have a significant impact on its performance.

Finding the optimal value for the user-supplied parameter is nontrivial but important
as its value could have a direct effect on the estimator error. The quality of an estimator is
evaluated by its bias and variance, and generic formulae for all estimators mentioned above
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are known [Sil98]. However, the formulae require as input the value of the distribution
from which the data is observed, which in our case is not known.

Adaptive estimators use a recursive algorithm to determine the optimal bin width [CHO19].
Such methods use entropy as a measure of disorder in the observed data and determine
the bin width that minimizes the entropy function over all possible thresholds. Although
they offer good performance, we found this last method lacking for our purpose as it is
very time-consuming. Our investigation showed that it would be faster to calculate the
key rank for every epoch than to use the entropy-based binning.

As there is no optimal solution for the non-parametric estimation and low computational
overhead is an important requirement in our case, we decided to use the histogram estimator.
We thoroughly tested its reliability by running two types of experiments. In the first, we
simply considered all possible values for the bin widths. In the second, we considered the
different known rules for determining the bin widths. For both experiments, we consider
all three datasets, described in 2.4 and provide detailed results in Appendix A.

We conclude from the first experiment that although the bin width of the histogram
estimator has an impact on the achieved performance, the new metric is stable, and we
observe the same behavior for several values of this parameter. More precisely, we observe
that any value between 25 and 170 will give similar results. Therefore, we selected the
value of 100 for the number of bins as it is in the middle of the interval. This observation
holds for both the Hamming weight and the identity leakage models.

In the second experiment, we use plug-in estimates to determine the value for the bin-
width. These estimates work by making assumptions on the distribution of the observed
data and are known as empirical rules for determining the bin width. The results are
depicted in Appendix A, where we can observe the bin width obtained with different rules
result in very similar attack performance. Both our experiments confirm that the mutual
information metric is not highly sensitive to the histogram bin size, which makes it a robust
procedure for practical applications where one needs to consider different datasets, leakage
models, and neural network architectures. Based on this observation, our strategy is to
choose the bin value as the average value with good performance for all tested scenarios.

4.2 On the Length of the Generalization Interval
As already stated, we aim to reach the generalization interval and then, stop the training.
By doing so, we ensure that the trained machine learning model will generalize to unseen
data. Still, the question remains how difficult it is to stop at generalization interval.
Intuitively, the shorter the interval, the easier it would be to miss it. Ideally, we aim to
have a neural network that reaches the generalization interval relatively fast and stays
in that interval for a longer period. Naturally, before discussing how to obtain long
generalization interval, we must ensure it happens and that we simply do not go to
overfitting from underfitting phase.

Regularization techniques can help prevent a deep neural network from overfitting
during the training process. To check the impact of the regularization on the neural
network and its generalization interval, we use the information plane as it provides a
visual indication for the relationship between I(X;Tn) and I(Tn;Y ). The maximum
value of I(Tn;Y ) during training indicates an epoch at which the neural network should
be inside the generalization interval for the training process, as defined in Definition 3.
When the network does not implement any regularization technique in its hyper-parameter
configuration, the trained model has a higher chance of overfitting the training data.

In Figure 5, we depict results for a convolutional neural network with and without
regularization (dropout). This experiment is conducted on a proprietary unprotected
software AES implementation (STM32 microcontroller). For that, we considered 6 000
traces for the training set and 1 000 traces for the validation set, both having fixed keys. The
traces contain 400 features. Observing Figure 5b, for the case without regularization, we see
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(a) Accuracy with and without regularization
(dropout).

(b) I(Tn, Y ) with and without regularization
(dropout).

Figure 5: Convolutional neural network configurations (learning rate = 0.001, Adam
optimizer, batch size = 400, randomly uniform initialized weights).

(a) CNN (b) CNN with dropout

Figure 6: Convolutional neural network configurations (learning rate = 0.001, Adam
optimizer, batch size = 400, randomly uniform initialized weights).

that the mutual information I(Tn;Y ) reaches a maximum value (where the distributions Tn

and Y are obtained from the validation set) and after that, I(Tn;Y ) for validation decreases
continuously while I(Tn;Y ) for the training stays at a maximum value. Additionally, note
how I(Tn;Y ) indicates that the generalization phase lasts shorter than one would infer
from accuracy, as illustrated in Figure 5a.

Figures 5a and 5b also show the accuracy and I(Tn;Y ), respectively, for training
and validation labels sets obtained from a regularized convolutional neural network with
dropout. After processing 200 epochs, the training accuracy has not reached 100%, the
desired outcome for a regularized neural network. At the same time, the validation
accuracy reaches approximately 56%, which is a significantly higher value compared to
51% without regularization, as shown in Figure 5a. The mutual information I(Tn;Y ) for
the validation set (see Figure 5b) reaches its maximum value and stays longer at this
level. This indicates that the same generalization level is kept until at least epoch 100.
Consequently, as the value of I(Tn;Y ) stays high for more training epochs, the neural
network provides better generalization for those epochs. Again, accuracy is not able to
indicate the same phenomenon, as its value remains stable (albeit of different magnitude
for validation set) for both regularized and non-regularized networks.

The neural network configurations (with and without dropout) are illustrated in Figure 6.
The “R” and “S” labels refer to ReLU and Softmax, respectively. The number under the
layer block indicates the number of neurons in dense layers (“D”) and the dropout rate for
dropout layers.
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4.3 Results for the Publicly Available Datasets
In this section, we compare the performance of five metrics (validation loss, validation
accuracy, validation recall, key rank for the validation set, and I(Tn;Y )) to select the
epoch t at which the machine learning model achieves the best performance. Besides
these five metrics, we depict the results when we do not use early stopping regime, but
rather, allow the full number of training epochs. Those results are denoted as “GE all
epochs” and “SR all epochs” for guessing entropy and success rate, respectively. Note,
when giving results for guessing entropy and success rate, we conduct one training phase
and 100 testing phases per metric to reach the average performance values. The best
success rate value equals 100%, and the best guessing entropy value is 1. On the other
hand, when giving results with distributions (e.g., Figure 8), we repeat experiments 100
times, i.e., there are 100 training phases to be able to build distributions.

For the three tested datasets (ASCAD, DPAv4, and CHES CTF), the results are
obtained by attacking one key byte in the first AES encryption round. The selected
leakage model is the Hamming weight of an S-box output. We conduct a tuning phase
for hyper-parameters, where we experiment with varying CNN and MLP architectures.
We emphasize that we do not claim these architectures to be optimal, as finding optimal
architectures was not the goal of this work. The final neural network configurations use
the Adam optimizer for the backpropagation algorithm, and the learning rate is always set
to 0.001. Initial weights are initialized at random using random uniform method. The
selected loss function is the categorical cross-entropy provided by Keras library. All the
experiments were performed on a computer equipped with a GPU Nvidia RTX 2060. The
details about selected convolutional neural networks hyper-parameters are listed in Table 1.
For MLP, we use architecture with five dense layers containing 600 neurons each. We
verified that the selected MLP provides good results for the ASCAD database, and the
selected CNNs provide strong results for all three considered datasets.

For ASCAD, we additionally give results for the identity leakage model. For DPAv4,
we give only the Hamming weight results as the identity leakage model enables an easy
attack where there are no significant differences among neural network architectures or
validation metrics. For CHES CTF, we again give only the Hamming weight leakage model
as the currently available dataset contains only 43 000 traces, which is not enough to break
the target in the identity leakage model.

Table 1: Hyper-parameters for convolutional neural networks.

Dataset DPAv4 ASCAD CHES CTF 2018

Learning Rate 0.001 0.001 0.001

Optimizer Adam Adam Adam

Mini-batch 400 2 000 400

Convolution layers 1 1 1

Filters, Kernel Size, Stride 16, 10, 10 16, 10, 10 16, 4, 4

Dense (fully-connected) layers 4 3 2

Neurons (for dense or fully-connected layers) 400 200 100

Activation Function (all layers) ReLU ReLU ReLU

4.3.1 AES-128 Encryption - ASCAD (Random Keys)

The empirical validation on the ASCAD database (key byte 3) considers 200 000 traces
for training, 500 traces for validation, and 500 traces for the test. Both validation and
test sets have a fixed key. The selected CNN architecture is trained for 50 epochs. After



14 A mutual information approach to prevent overfitting in profiled SCA

identifying the best epoch for each of the five metrics, the corresponding machine learning
models are applied to the test set.

Figure 7 shows the guessing entropy and success rate for the test set obtained for each
validation metric for the Hamming weight leakage model. From Figure 7b, the best success
rate is achieved when the machine learning model is selected from the epoch when the
metric is the maximum value of I(Tn;Y ). More precisely, around the processing of 460
traces, the success rate reaches 100% if the model is selected from the epoch determined by
the maximum I(Tn;Y ) value. The lines “GE all epochs” and “SR all epochs” correspond
to the results when evaluating GE and SR after the processing of 50 epochs. We can see
that those lines also depict the worst attack performance as in those cases, due to too
many training epochs, the machine learning models overfit and do not generalize for the
test set. Figure 7a shows no significant differences among most of the metrics (except
the scenario where we do not use early stopping), and for both SCA metrics, we see that
mutual information works well and gives consistently strong attack performance.

(a) Guessing entropy. (b) Success Rate.

Figure 7: Results on ASCAD for the Hamming weight leakage model, CNN architecture.

Figure 8 shows the results for 100 experiments with the same CNN architecture.
Figure 8a gives the I(Tn;Y ) evolution for the processed epochs. On average, the highest
I(Tn;Y ) values are achieved between epochs 20 and 30 (the highest for epoch 24), as
indicated by the plot distribution in Figure 8b. Figure 8c shows the test and validation
guessing entropy results for the number of epochs (training phase) and I(Tn;Y ) metric.
We see there is an interval (epochs between 8 and 26) in which the key rank is low
and, consequently, generalization is satisfactory. This indicates that guessing entropy
reaches good values even before I(Tn;Y ) becomes maximal. Still, allowing more epochs
does increase I(Tn;Y ), while keeping GE minimal. Figure 8d shows the distribution of
the best epochs based on the validation key rank metric. This histogram contains the
results of 100 experiments (unchanged hyper-parameters) and indicates that the best
validation key rank may happen at different epochs. More precisely, we see the highest
value already around epoch 12, which explains why validation key rank is also among the
worst performing metrics for both SR and GE. While this could sound counter-intuitive,
there is a simple explanation for such behavior. As we use a validation set often (whenever
evaluating whether to stop training), the validation set indirectly influences the trained
model. Consequently, it is possible to observe some differences when applying trained
models to the test set, which was never evaluated before. As we can observe, I(Tn;Y )
metric seems to be less sensitive to this issue, and as such, it represents a more suitable
choice for early stopping metric.

Next, we repeat the experiments for the ASCAD dataset in the Hamming weight model,
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(a) Evolution of I(Tn; Y ). (b) Guessing entropy w.r.t. number of training
epochs for validation and test sets.

(c) Distribution of "early stopping" epoch having
maximum I(Tn; Y ) as a metric.

(d) Distribution of "early stopping" epoch having
validation key rank as metric.

Figure 8: Results on ASCAD for the Hamming weight leakage model, CNN architecture.

but now, we use MLP architecture. From Figures 9a and 9b, we can see I(Tn;Y ) as being
the most successful metric, followed closely by loss. Again, we see if we do not use early
stopping, neural network overfits, which results in poor attack performance. Figure 10a
indicates that I(Tn;Y ) reaches the best performance for epochs 25 to 35. This is confirmed
in Figure 10b where we observe the highest frequency for epoch 31. Considering the
validation and test set behavior when using I(Tn;Y ) to indicate stopping, a number of
epochs give good behavior (from 10 to 35). This is in line with the behavior for CNN,
as GE can indicate a successful attack even before I(Tn;Y ) reaches the maximal value.
Finally, Figure 10b gives insight into the performance of the validation key rank, where
we see a number of epochs to have high frequency, but the highest value happens around
epoch 5, which is too early as confirmed when evaluating the attack performance (Figure 9
where the validation key rank performs much worse than I(Tn;Y )).

(a) Guessing entropy. (b) Success Rate.

Figure 9: Results on ASCAD for the Hamming weight leakage model, MLP architecture.
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(a) Evolution of I(Tn; Y ). (b) Guessing entropy w.r.t. number of training
epochs for validation and test sets.

(c) Distribution of "early stopping" epoch having
maximum I(Tn; Y ) as a metric.

(d) Distribution of "early stopping" epoch having
validation key rank as metric.

Figure 10: Results on ASCAD for the Hamming weight leakage model, MLP architecture.

Next, we consider the identity leakage model for the ASCAD dataset. First, in Figure 11,
we depict the results for guessing entropy and success rate. The differences among attack
performances are very small, but for both guessing entropy and success rate, the mutual
information metric gives good results. Here, no early stopping mechanism does not affect
attack performance. This behavior is expected, as now there are more classes, so neural
networks need more epochs to fit the data into the model (and naturally, to overfit).

(a) Guessing entropy (b) Success Rate

Figure 11: Results on ASCAD for the identity leakage model, CNN architecture.

Figure 12a displays the I(Tn;Y ) evolution over 50 epochs. The mutual information
increases with the number of epochs and reaches a steady level around epoch 47. This
is confirmed in Figure 12b, where we can indeed observe that the epochs 47 to 49 give
the best results. When considering guessing entropy, both validation and test set values
indicate strong performance when having more than 15 epochs. Using the validation key
rank as the early stopping metric shows a number of epochs as suitable to stop the training
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process (Figure 12d). Still, the two highest peaks are observed around epochs 32 and 48.
As the validation key rank and I(Tn;Y ) point to similar epochs to stop the training, the
results in Figure 11 are as expected – no significant difference in the attack performance.

(a) Evolution of I(Tn; Y ). (b) Guessing Entropy w.r.t. number of training
epochs for validation and test sets.

(c) Distribution of "early stopping" epoch having
maximum I(Tn; Y ) as a metric.

(d) Distribution of "early stopping" epoch having
validation key rank as metric.

Figure 12: Results on ASCAD for the identity leakage model, CNN architecture.

4.3.2 AES-256 Encryption - DPAv4

For the DPAv4 dataset, we consider 34 000 traces in the training set and 2 000 traces in
the validation set. An additional 2 000 traces are used as a test set. These results were
obtained from the 100 training runs on CNN configured with unchanged hyper-parameters.
Figure 13 shows the guessing entropy and success rate obtained from the selected metrics
(accuracy, recall, loss, key rank, and maximum I(Tn;Y )) from the validation set. Again,
selecting the model at an epoch with the maximum I(Tn, Y ) for the validation set provides
the best results for both success rates and guessing entropy. Similar to the ASCAD dataset
in the Hamming weight leakage model, for a small number of attack traces, I(Tn;Y ) gives
better results than the validation key rank. Again, this happens due to the influence of
the validation set to the trained model. Interestingly, here we can observe that allowing
training for all 50 epochs leads to overfitting, but the same behavior happens if we would
stop training on the basis of loss, recall, and accuracy.

As we can see from Figures 14a and 14b, the network achieves its maximum I(Tn;Y )
value between epochs 10 and 16. Figure 14c confirms that we require around 10 epochs to
reach guessing entropy of 1. Additionally, the behavior stays relatively stable up to epoch
38 (where there is no deterioration up to epoch 15, and afterward, there are slight changes
in GE). Finally, in Figure 14d, the validation key rank agrees with I(Tn;Y ) by reaching
the maximal frequency values for epochs 11 to 15 (cf. Figure 14b).

4.3.3 AES-128 Encryption - CHES CTF 2018

For the CHES CTF dataset, we consider 43 000 traces in the training set and 1 000 traces in
the validation set. Additional 1 000 traces are used as a test set. These results were obtained
from the 100 training runs on CNN configured with the unchanged hyper-parameters.
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(a) Guessing entropy (b) Success Rate

Figure 13: Results on DPAv4 for the Hamming weight leakage model, CNN architecture.

(a) Evolution of I(Tn; Y ). (b) Guessing Entropy w.r.t. number of training
epochs for validation and test sets.

(c) Distribution of "early stopping" epoch having
maximum I(Tn; Y ) as a metric.

(d) Distribution of "early stopping" epoch having
validation key rank as metric.

Figure 14: Results on DPAv4 for the Hamming weight leakage model, CNN architecture.

Figure 15 shows the guessing entropy and success rate for the five considered metrics.
We can observe that using the training model at the epoch with the maximum I(Tn;Y )
provides the best success rate and guessing entropy (followed closely by the validation key
rank). At the same time, retrieving the model at epochs indicated by the best validation
accuracy, loss, or recall leads to significantly worse success rate and guessing entropy
results. Similarly, if there is no early stopping, the attack performance is also poor.

Figure 16a provides the mutual information value I(Tn;Y ) for training phase and every
epoch. The maximum I(Tn;Y ) is reached between epochs 10 and 18. Figure 16b gives
similar indication with epoch 14 having the highest frequency. Those results are confirmed
in Figure 16c, where epochs 10 to 15 have the lowest guessing entropy. What is more, after
epoch 18, the neural network starts to degrade its generalization capacity as it starts to
overfit on the training set. On the other hand, the generalization capacity before epoch 7
also provides, on average, poor generalization since the network is inside the fitting phase,
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(a) Guessing entropy (b) Success Rate

Figure 15: Results on CHES CTF 2018 for the Hamming weight leakage model, CNN
architecture.

where satisfactory generalization is not achieved yet (i.e., the network underfits). Finally,
in Figure 16d, the validation key rank gives similar results (thus, we have similar SCA
metrics results in Figure 15). Still, again the validation key rank indicates to stop the
training a little bit earlier than I(Tn;Y ).

(a) Evolution of I(Tn; Y ). (b) Guessing Entropy w.r.t. number of training
epochs for validation and test sets.

(c) Distribution of "early stopping" epoch having
maximum I(Tn; Y ) as a metric.

(d) Distribution of "early stopping" epoch having
validation key rank as metric.

Figure 16: Results on CHES CTF 2018 for the Hamming weight leakage model, CNN
architecture.

When attacking a protected target, like the public databases consisting of the first-order
masked AES implementations, model generalization is very limited, and validation or test
metrics are close to random guessing. For side-channel analysis, a sufficient generalization
is given by a low guessing entropy or high success rate. As we can observe from the results
given in Section 4, the trained model at each epoch provides different key rank results, and
the over-training easily leads to deterioration of the model’s generalization. This problem
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can be addressed by using an appropriate metric to save the trained model at the epoch
that provides the best success rate or guessing entropy. Our experimental analysis shows
that having the maximum value of I(Tn;Y ) as a metric to select the model at the best
epoch provides better success rate and guessing entropy results when compared to machine
learning metrics like loss, recall, or accuracy. Additionally, we observe that I(Tn;Y ) works
especially well in settings where other metrics could have problems, as is the Hamming
weight leakage model that suffers from data imbalance. The I(Tn;Y ) metric works even
better than the validation key rank, where we notice that the key rank validation indicates
somewhat earlier to stop the training. Based on the obtained results, we give several
observations for deep learning-based SCA:

1. It is necessary to implement early stopping regularization.
2. Early stopping based on mutual information consistently gives the best results.
3. Validation key rank seems to be somewhat more conservative in its estimate than

the mutual information.
4. Guessing entropy reaches good values even before I(Tn;Y ) becomes maximal. Still,

waiting for I(Tn;Y ) to become maximal has the effect of reaching the most stable
attack behavior.

5. Mutual information metric is a computationally simple technique and is not sensitive
to the histogram estimation procedure.

5 Conclusions and Future Work
The selection of correct performance metrics can lead to a better interpretation of deep
neural networks. In particular, the usage of deep learning for profiled side-channel attacks
on the masked AES implementations is very sensitive to the number of processed epochs
(i.e., how long is the training). In this paper, we demonstrate that using the mutual
information between output layer activations (i.e., the output Softmax probabilities) and
the true labels I(Tn;Y ) of a validation set leads to better generalization for separate
test sets. We compared I(Tn;Y ) metric against conventional machine learning metrics
(accuracy, recall, and loss), and we verified that mutual information is a much more reliable
metric to detect an epoch at which the trained neural network is inside a generalization
interval. As such, we can conclude that mutual information should be considered as a
metric of choice when conducting a deep learning-based side-channel analysis.

In future work, we aim to investigate the usage of mutual information metric as a
reference for the selection of other hyper-parameters. Additionally, we would like to
investigate the behavior of this metric in cases when the traces contain misalignment,
and consequently, the generalization is even more difficult. Such analysis is also essential
to improve the portability capabilities of trained deep neural networks for side-channel
attacks.
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A Bin Size Estimators
To estimate the probability density, a critical step is to determine the bin width, which is
the user-supplied parameter for the histogram estimator. The results of our experiments
are shown in Figures 17, 18, and 19. As shown in the figures on the right, any bin width
larger than 15 leads to a final key rank lower than 4 (key rank equal to 1 indicates the
successful key recovery). The key rank is computed for a separate test set and is obtained
by selecting the machine learning model at the epoch that gives the highest I(Tn;Y ) for
each tested bin width. The plots on the left side of Figures 17, 18, and 19 show the value
of I(Tn;Y ) w.r.t. the number of epochs for all tested bin sizes. As we can see, if the bin
size is too small, the mutual information I(Tn;Y ) barely changes.

Figure 20 shows results for eight different plug-in estimators, vs. the choice of fixing
the number of bins to 100. The plug-in estimators we tested are Freedman Diaconis (’fd’),
’sturges’, ’auto’ (which is the maximum of ’fd’ and ’sturges’ estimators), ’rice’, ’scott’,
square-root estimator (’sqrt’), and ’doane’. The results show the guessing entropy resulting
from early stopping by having I(Tn;Y ) as metric by testing different bin size estimators.
As we can see, they all lead to successful key recovery with similar guessing entropy
convergence for all tested datasets and leakage models.

http://www.DPAcontest.org/v4/
https://eprint.iacr.org/2019/570
https://eprint.iacr.org/2019/1477
https://eprint.iacr.org/2019/1477
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Figure 17: (to be viewed in colors) The influence of the number of bins in the calculation
of I(Tn;Y ) for the ASCAD dataset. Average I(Tn;Y ) w.r.t. the number of epochs for
different bin sizes (left). The final key ranking having the maximum value of I(Tn;Y ) as a
reference metric for different bin sizes (1 to 256) (right).

Figure 18: (to be viewed in colors) The influence of the number of bins in the calculation
of I(Tn;Y ) for the DPAv4 dataset. Average I(Tn;Y ) w.r.t. the number of epochs for
different bin sizes (left). The final key ranking having the maximum value of I(Tn;Y ) as a
reference metric for different bin sizes (1 to 256) (right).

Figure 19: (to be viewed in colors) The influence of the number of bins in the calculation
of I(Ti, Y ) for the CHES CTF 2018 dataset. Average I(Ti, Y ) w.r.t. the number of epochs
for different bin sizes (left). The final key ranking having the maximum value of I(Ti, Y )
as a reference metric for different bin sizes (1 to 256) (right).
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(a) Guessing entropy results for the ASCAD
dataset on the Hamming weight leakage model.

(b) Guessing entropy results for the ASCAD
dataset on the identity leakage model.

(c) Guessing entropy results for the CHES CTF
dataset on the Hamming weight leakage model.

(d) Guessing entropy results for the DPAv4
dataset on the Hamming weight leakage model.

Figure 20: Guessing entropy results when early stopping is conducted with mutual
information as a metric for different binning size estimators.
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