
Auditable Asymmetric Password Authenticated Public Key Establishment

Antonio Faonio1, Maria Isabel Gonzalez Vasco2, Claudio Soriente3, and Hien Thi Thu Truong3

1 IMDEA Software Institute,
2 Universidad Rey Juan Carlos,

3 NEC Laboratories Europe GmbH

Abstract. Non-repudiation of messages generated by users is a desirable feature in a number of applications rang-
ing from online banking to IoT scenarios. However, it requires certified public keys and usually results in poor
usability as a user must carry around his certificate (e.g., in a smart-card) or must install it in all of his devices.
A user-friendly alternative, adopted by several companies and national administrations, is to have a “cloud-based”
PKI. In a nutshell, each user has a PKI certificate stored at a server in the cloud; users authenticate to the server—via
passwords or one-time codes—and ask it to sign messages on their behalf. As such, there is no way for the server
to prove to a third party that a signature on a given message was authorized by a user. As the server holds the user’s
certified key, it might as well have signed arbitrary messages in an attempt to impersonate that user. In other words,
a user could deny having signed a message, by claiming that the signature was produced by the server without his
consent. The same holds in case the secret key is derived deterministically from the user’s password, for the server,
by knowing the password, may still frame the user.
In this paper we provide a “password-only” solution to non-repudiation of user messages by introducing Auditable
Asymmetric Password Authenticated Public Key Establishment (A2PAKE). This is a PAKE-like protocol that gen-
erates an asymmetric key-pair where the public key is output to every participant, but the secret key is private output
to just one of the parties (e.g., the user). Further, the protocol can be audited, i.e., given the public key output by
a protocol run with a user, the server can prove to a third party that the corresponding secret key is held by that
specific user. Thus, if the user signs messages with that secret key, then signatures are non-repudiable. We provide a
universally composable definition of A2PAKE and an instantiation based on a distributed oblivious pseudo-random
function. We also develop a prototype implementation of our instantiation and use it to evaluate its performance in
realistic settings.

1 Introduction

Non-repudiation in online applications is essentially based on digital signatures and PKI certificates. Given that most
servers hold a PKI certificate, non-repudiation of messages generated by a server can be easily achieved. The same is
not true for messages sent by users, since they often authenticate to servers using only low-entropy passwords.4 Yet,
non repudiation of user messages is a desirable property in a number of scenarios. For example, in an online banking
application, the banking server may ask the user to authenticate his requests to, e.g., transfer funds to other accounts;
later on, in case of dispute, the server may wish to prove to a third party (e.g., in court) that the user had indeed
requested a specific operation. Similarly, in IoT applications the processing server may wish to pinpoint the owner of
the device that produced a specific data report.

The most popular solution to the problem at hand leverages “cloud-based PKI”. The idea is that each user has a
PKI certificate stored at a server in the cloud; users authenticate to the server—via passwords or one-time codes—and
ask it to sign messages on their behalf. This design is used by a number of companies [29,19] and national administra-
tions [32]. This design, however, does not allow a third party to tell which signatures were genuinely produced by the
user and which were the result of an impersonation attempt by the server. Since the server holds the user’s certificate
and could sign any message on his behalf, that user could deny having signed a message, e.g., by claiming that the
signature was produced by the server without his consent.

This issue arises even if the signing key is derived from the user’s password (e.g., by using the PBKDF2 key-
derivation function). The server— by knowing the password— may derive the same key and sign messages on behalf

4 Non-repudiation of users messages would be trivial to achieve if users had PKI client certificates. However, PKI client certificates
hinder the user experience—as users can only connect to the server from devices where the certificate is installed.

of the victim user. Similarly, if the server holds a (salted) one-way function of the password, a simple brute-force
attack allows it to derive the correct key.

We note that password-authenticated key exchange (PAKE) [5,6] allows two parties to authenticate and jointly
establish a strong cryptographic key by relying solely on a common password. However, all PAKE protocols to date
deal with symmetric keys and are thus ill-suited for our goals—since knowledge of the symmetric key allows any of
the two parties to authenticate messages on behalf of the other.

Solving the problem of non-repudiation for users that only use passwords requires a PAKE-like protocol that
allows to generate an asymmetric key-pair where the public key is public output, but the secret key is private output
to one of the parties. Further, to achieve non-repudiation, the protocol should be auditable. That is, the party getting
only the public key, should be able to prove that the corresponding secret key must have been generated by its peer.
In particular, given a transcript T of a client-server protocol where the client C gets a key-pair sk, pk and the server
S only learns the public key pk, we would like the server to be able to prove to a third party that only C can possibly
know the secret key sk matching the public key pk output by T .

Note that auditing a transcript—i.e., ascribing a public key to an identity—requires establishing and verifying user
“identities”. We are agnostic to how such identities are created and managed. For example, identities could be bound
to an ID by asking the user to submit a copy of his ID during registration [29,19]. If the registering user holds an eIDs,
it can be used to sign the registration transcript by using a smart-card reader attached to a PC [32]. Later on, during
auditing, a public key can be ascribed to the holder of the ID (or eID) used during registration. Another option would
be for users to register with an email address: during registration, the user must prove ownership of an email address
(e.g., by receiving a one-time code in his inbox) and the new account must be bound to that email address. During
auditing, a public key can be attributed to the holder of the email address used during registration. In a similar fashion,
identities can be verified by means of mobile phone numbers and one-time codes sent via SMS messages.

Note also that a third party can be convinced that a particular public key was created by a user only if the server
cannot frame users by creating key-pairs on their behalf. If key-pairs are generated from passwords, we must ensure
that only users know their full passwords; yet we must (i) allow the server to authenticate users, and (ii) prevent
the server from mounting offline brute-force attacks. A number of password-based authentication schemes (including
some variants of PAKE [25,24,26]) split the password among several servers with the goal of mitigating password
leaks due to a server breach. We use the same approach and introduce multiple servers to authenticate users, so that,
unless all servers are malicious, they cannot frame a user (e.g., by running an offline brute-force attack to recover his
password). In the simple two-server scenario, a “main” server obtains the public key as output of the protocol, and may
later on turn to a third party for auditing purposes—i.e., to prove that the public key belongs to a specific user—while
a “secondary” server support its peer in authenticating users and cooperates to produce auditing evidence. As long as
one of the servers is honest, third parties can pinpoint a public key output by the protocol to the user that engaged in
that execution.

In this paper we formally define and instantiate a cryptographic protocol with the above properties for the two
server scenario, that we call A2PAKE. We give an ideal functionality of A2PAKE that captures the security require-
ments of non-repudiation of the keys generated by a user and non-frameability from malicious servers. Further, we
provide a protocol that realizes the functionality of A2PAKE and prove it secure in the universal composability frame-
work of Canetti [10]. The main ingredient of our protocol is a distributed oblivious pseudo-random function [22].
Finally, we introduce a prototype implementation written in Python and present the results of an evaluation carried out
to assess throughput, latency, and communication overhead.

2 Related work

There is a vast literature on password-based cryptography. The basic idea is to design protocols with strong crypto-
graphic guarantees by relying solely on low-entropy passwords.

The popular PKCS#5 [31] standard shows how to use passwords to derive symmetric keys to be used for (sym-
metric) encryption or message authentication. Password-Authenticated Key Exchange (PAKE) [5,6] enables two par-
ties, holding the same password, to authenticate mutually and to establish a symmetric key. In the client-server set-
tings, compromise of the password database at the server may be mitigated by splitting passwords among multiple

2

servers [25,24,26]. Threshold PAKE [1,30,33] borrows from threshold-based cryptography and distributes the authen-
tication functionality across n servers in a way such that the client authenticates successfully only if it cooperates with
at least t < n servers. Passwords are not leaked as long as the adversary compromises t− 1 or less servers.

Password-Authenticated Public-Key Encryption (PAPKE) [7] enhances public-key encryption with passwords. In
particular, generation of a key-pair is bound to a password and so is encryption. Hence, decryption of a ciphertext
reveals the original message only if the password used at encryption time matches the one used when the public key
was generated. Thus, PAPKE preserves confidentiality despite a man-in-the-middle that replaces the public key of the
receiver (as long as the adversary does not guess the receiver’s password when generating its public key).

Password-based signatures were proposed in [15] where the signature key is split between the user and a server
and the user’s share is essentially his password—so that the user can create signatures with the help of the server. We
note that in [15] the server does not authenticate users and that it could recover the full signing key of any user by
brute-forcing the password. User authentication and resistance to brute-force attacks for password-based signatures
were introduced in [8], that requires users to carry a personal device such as a smart card.

Password-hardening services [28,14,34,27] enable password-based authentication while mitigating the conse-
quences of password database leak. The idea behind password-hardening services is to pair the authentication server
with a “cryptographic service” that blindly computes (keyed) hashes of the passwords. The password database at the
authentication service stores such hashes so that a leak of the database does not reveal passwords, unless the key of
the cryptographic service is compromised.

PASTA by Agrawal et al. [2] and PESTO by Baum et al. [4] propose password-based threshold token-based
authentication where the role of an identity provider in a protocol such as OAuth 5 is distributed across several parties
and the user obtains an authentication token only by authenticating to a threshold number of servers; both protocols
are based on threshold oblivious pseudo-random functions [22].

To the best of our knowledge, the closest cryptographic primitive to A2PAKE is Password-Protected Secret Shar-
ing [3,9,20,21,22]. PPSS allows users to securely store shares of a secret—e.g., a cryptographic key— on a set of
servers while reconstruction is only feasible by using the right password or by corrupting more than a given threshold
of servers. In principle, PPSS could be used to realize a functionality similar to the one offered by A2PAKE. How-
ever, there are a few important differences between A2PAKE and PPSS. First, PPSS does not solve the problem of
user authentication. Further, A2PAKE provides forward security—leakage of a password does not compromise past
sessions—and outputs uniformly distributed keys despite a malicious client or server. Also, compromise of the PPSS
servers immediately reveals the user password; if all A2PAKE servers are compromised, a brute-force attack is still
required to learn the password—therefore high-entropy passwords still offer security. Finally, we embed auditability
in the A2PAKE functionality whereas it is not clear how to make PPSS auditable by a third-party.

3 Preliminaries

3.1 Digital Signatures

A signature scheme over groups generated by G is a triple of efficient algorithms (KGen,Sign,Vf). Algorithm KGen
outputs a public key pk and a secret key sk. Algorithm Sign takes as input a secret key and a message m in the
message space, and outputs a signature σ. Algorithm Vf takes as input a public key pk, a messagem and a signature σ,
and returns either 1 or 0 (i.e., “accept” or “reject”, respectively). The scheme (KGen,Sign,Vf) is correct if for every
correctly generated key-pair pk, sk, and for every messagem in the message space, we have Vf(pk,m,Sign(sk,m)) =
1.

We consider the standard notion of existential unforgeability under chosen-messages attacks [16].

3.2 Non-Interactive Zero-Knowledge Proof of Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a tuple NIZK = (Init,P,V) of PPT
algorithms such that: Init on input the security parameter outputs a (uniformly random) common reference string

5 https://oauth.net/

3

https://oauth.net/

crs ∈ {0, 1}λ; P(crs, x, w), given (x,w) ∈ R, outputs a proof π; V(crs, x, π), given instance x and proof π outputs 0
(reject) or 1 (accept).

In this paper we consider the notion of NIZK with labels, that are NIZKs where P and V additionally take as input
a label L ∈ L (e.g., a binary string). A NIZK (with labels) is correct if for every crs ← $ Init(1λ), any label L ∈ L,
and any (x,w) ∈ R, we have V(crs, L, x,P(crs, L, x, w)) = 1.

We consider a property called simulation-extractable soundness. Roughly speaking, the definition of simulation
extractable soundness assumes the existence of a Init algorithm that, additionally to the common reference string,
outputs a simulation trapdoor tps that allows to simulate proofs, and a extraction trapdoor tpe that allows to extract
the witness from valid (no-simulated) proofs. The security guarantee is that, even in presence of a oracle that simulates
proofs, an adversary cannot produce a valid proof that cannot be extracted. The limitation is that an adversary needs
to produce a proof on a label-statement tuple that was not previously asked to the oracle. Further we require the NIZK
to be adaptive composable zero-knowledge—by now the standard zero-knowledge notion for NIZK, first considered
by Groth [17].

Functionality FA2PAKE:

The functionality is parameterised by a security parameter λ and an asymmetric public key generation algorithm KGen. The
functionality receives from the environment the set C of corrupted parties. Let H be the set of honest parties. Let Dpk (resp.
Dpw) be the database of the completed session (resp. of the registered passwords). Both Dpk and Dpw are initialized to empty.
The functionality has n client C1, . . . , Cn, two servers S1 and S2 and an auditor A:

Registration: On (register, sid, pw) fromCj . If the request is valid (namely, there is no record of the form (sid, Cj , ∗) ∈
Dpw) create a fresh record (sid, Cj , pw) in Dpw.
Send (registered, sid, Cj) to S1, S2 and S.

Init: On (init, sid, qid, j) from a party P ∈ {Cj , S1, S2}. Send (init, sid, qid, j,P) to S. Record that P initialized the
session. If C1, S1 and S2 initialized the session, then record that the session (sid, qid, j) is active for S1 and Cj .

Test Password: On (test, sid, j, pw′) from S. Check whether an entry (sid, Cj , pw) ∈ Dpw exists. If pw = pw′ then reply
S with correct and set corrupt(sid, j)← 1. Notify both S1 and S2.

New Key: On message (newkey, sid, qid, j,P) from S.
– Assert (sid, j, pw) ∈ Dpw and P ∈ {Cj , S1} and that session (sid, qid, j) is active for P;
– Mark session (sid, qid, j) for P as finalized;
– If corrupt(sid, j) then:
• if (sid, qid, j,P, sk, pk) exists in the database retrieve the tuple,
• else sample (sk, pk)← $ KGen(1λ) and register (sid, qid, j,P, sk, pk).

Else:
• If (sid, qid, j, ∗, sk, pk) exists register (sid, qid, j,P, sk, pk),
• else sample (sk, pk)← $ KGen(1λ) and register (sid, qid, j,P, sk, pk).

– If S1 ∈ H and P = S1 register (sid, qid, Cj , pk) in Dpk;
– If P = Cj then send a private delayed output (output, sid, qid, j, sk) to Cj and the public key to S;
– If P = S1 then send a public delayed output (output, sid, qid, j, pk) to S1;
– If corrupt(sid, j) then send sk to S.

Invalid: On message (invalid, sid, qid, j,P) from S and P ∈ {C1, . . . , Cn, S1}. If P ∈ {S1, Cj} send
(output, sid, qid, j,⊥) to P and mark the session finalized for P .

Audit: On message (audit, sid, qid, Cj , pk) from party S1. Set b← ⊥. Next,
– If corrupt(sid, j) wait for a bit b′ from the adversary S and set b← b′.
– NON-FRAMEABILITY. If Cj ∈ H ∧ ¬corrupt(sid, j) ∧ (sid, qid, Cj , pk) 6∈ Dpk then set b← 0.
– NON-REPUDIABILITY. If S1 ∈ H ∧ Cj ∈ C ∧ (sid, qid, Cj , pk) ∈ Dpk then set b← 1.

Send the public delayed output b to A.

Fig. 1: Ideal Functionality FA2PAKE

4

4 A2PAKE

We review some basic notions of the Universal Composability model (Canetti [10]). In a nutshell, a protocol Π
UC-realizes an ideal functionality F with setup assumption G if there exists a PPT simulator S such that no PPT
environment Z can distinguish an execution of the protocol Π which can interact with the setup assumption G from
a joint execution of the simulator S with the ideal functionality F . The environment Z provides the inputs to all
the parties of the protocols, decides which parties to corrupt (we consider static corruption, where the environment
decides the corrupted parties before the protocol starts), and schedules the order of the messages in the networks.
When specifying an ideal functionality, we use the “delayed outputs” terminology of Canetti [10]. Namely, when
a functionality F sends a public (resp. private) delayed output M to party Pi we mean that M is first sent to the
simulator (resp. the simulator is notified) and then forwarded to Pi only after acknowledgement by the simulator.

4.1 The Ideal Functionality

We are ready to describe the ideal functionalityFA2PAKE, depicted in Figure 1. In the following we will use “client” and
“user” interchangeably. We start by recalling the settings and high-level goals of our primitive. We assume a number
of clients {C1, . . . , Cn}, and two non-colluding servers S1, S2. As it will become clear later, we could easily extend
the ideal functionality to more than two servers, obtaining security as long as one of the servers is honest; however, we
decided to describe our primitive with just two servers for the sake of simplicity.

The server S1 is designated as the “main” server. It is the one that learns the client’s public key—so it can verify
messages signed by the client—and that turns to an auditor in case of dispute. The other server is designated as
“support” server and helps the main one to authenticate users and, most importantly, to produce auditing evidence.

At registration time, each client can submit its password to the ideal functionality, which registers it. Notice that,
even if both servers are corrupted, the password is not leaked. Indeed, the only way for an attacker to leak the password
is by using the “test password” interface. The ideal functionality notifies both servers whenever the adversary tests a
new password, therefore: (i) if at least one of the server is honest, then only “online” brute-force attacks on the
password are possible; (ii) if both servers are corrupted, then the attacker can carry on “off-line” brute-force attack on
the password. The latter property requires the simulator of our protocol, playing the role of the ideal-model adversary,
to be able to detect off-line password tests made by the real-world adversary. However, when both the servers are
corrupted, the adversary can carry on the tests locally, namely without sending any message. Thus, this seems to require
a non-black-box assumption which would allow the simulator to extract a password test from adversary. Looking
ahead, we will follow a proof strategy from [23] by making use of the random oracle model to obtain such extractability
property.

We design the ideal functionality to output a fresh key-pair at every run, so to achieve forward-secrecy—namely,
the leakage of a password does not compromise the secret keys output by earlier executions. Moreover, as long as
either the client Cj or the servers S1 are honest and the password was not leaked, i.e., corrupt(sid, j) 6= 1, the
ideal functionality guarantees correctness, namely, the public key received by the server corresponds to the secret key
received by the client. Also notice that the ideal functionality registers the key-pair in the database of key-pairs only
when the server S1 is honest. Indeed, when the server S1 is corrupted, it can always deny to have executed the protocol.

Finally, the ideal functionality assures non-frameability and non-repudiablity. For the former, an auditor cannot
be convinced that a public key belongs to an honest client if that client did not actually produced the key-pair jointly
with the servers. This holds as long as the password of the client is not corrupted. We stress that both servers could
be malicious but still cannot frame the client, if, for example, the password of the client has high-entropy. For non-
repudiability, an honest server with a transcript of an execution with a (possibly malicious) client, can always convince
the auditor that the secret key matching the public key in the transcript belongs to that client.

5 UC-secure protocol

5.1 Setup Assumptions

We leverage functionalities FAUTH,FKRK,FRO and FCRS, which model authenticated channels, key-registration, random
oracle, and common reference string, respectively. The authenticated channel is used only once by each client at

5

Functionality FTOPRF:

The functionality is parametrized by a positive integer t and runs with a client C servers S1, S2, auditor A and an adversary
A. It maintains a table T (·, ·) initialized with null entries and a vector tx(·) initialized to 0.

Initialization:
- On (Init, sid) from Si, i ∈ {1, 2} send (Init, sid, Si) to the adversary A and mark Si active.
- On (Init, sid,A, k) from A check that k is unused and k 6= 0 and record (sid,A, k) and return (Init, sid,A, k)

to the adversary A.
- On (InitComplete, sid, Si) for i ∈ {1, 2} from the adversary A, if Si is active send (InitComplete, sid) to
Si and mark Si as initialized.

Evaluation:
– On (eval, sid, ssid, x) from P ∈ {C,A}, if tuple (ssid,P, ∗) already exists, ignore. Else, record (ssid,P, x) and

send (eval, sid, ssid,P) to A.
– On (SndrComplete, sid, ssid, i) for i ∈ {1, 2} fromA ignore if Si is not initialized. Else set tx(i) ++ and send

(SndrComplete, sid, ssid) to Si.
– On (RcvComplete, sid, ssid,P, p∗) for P ∈ {C,A} from A, retrieve (ssid,P, x) if it exists, and ignore this

message if there is no such tuple or if any of the following conditions fails:
(i) if p∗ = 0 then tx(1) > 0 and tx(2) > 0,

(ii) if both servers are honest then p∗ = 0.
If p∗ = 0 then set tx(1) − − and tx(2) − −. If T (p∗, x) is null, pick ρ uniformly at random from {0, 1}t and set
T (p∗, x) := ρ. Send (eval, sid, ssid, T (p∗, x)) to P .

Fig. 2: Ideal Functionality FTOPRF (adapted from [22]). Label 0 is reserved for the honest execution.

registration time. The key-registration functionality allows to create a PKI between the servers and the auditor, notice
that we do not need a global PKI. Indeed, looking ahead, in the protocol we just need that the messages signed by the
second server could be verified by the auditor, in order to achieve non-repudiation. The common reference string is
necessary for the NIZK proof systems that we make use of, while we make use of FRO for the coin-tossing part of our
protocol.

Further, we leverage the ideal functionality FTOPRF which models a threshold oblivious pseudo-random function. In
Figure 2, we present a simplified version of the functionality presented by Jarecki et al. in [22] which fits our purpose.
More in details, the ideal functionality FTOPRF produces uniformly random outputs, even in case of adversarial choice
of the involved private key. The functionality maintains a table T (·, ·) storing the PRF evaluations and a counter vector
tx(·) for each server, used to ensure the involvement of the 2 servers on each completed evaluation. Our protocol
makes use of the multi-session extension of the ideal functionalityFTOPRF (that we identify with the hatted functionality
F̂TOPRF). When the functionality F̂TOPRF is called we thus include a sub-session identifier ssid. Specifically, on input
(sid, ssid,m) to F̂TOPRF, the functionality first checks there is a running copy of FTOPRF with session identifier ssid and,
if so, activates that copy with message m. Otherwise, it invokes a new copy of FTOPRF with input (ssid,m), and links
to this copy the sub-session identifier ssid. For further details, see [13]. In our concrete usage (see Figure 7) there
are two layers of executions: the client’s index (j) is used as the sub-session identifier when calling F̂TOPRF (thus in
the protocol each client uses a different instance of FTOPRF); the query identifier qid (used in the command init of
FA2PAKE), is used as the sub-sub-session identifier when calling F̂TOPRF.

We consider the ideal functionality FKRK described in Figure 3 that realizes a key-registration with knowledge, as
defined in [12]. This functionality simply chooses (fairly) a key pair consisting of a secret key (which is forwarded to
the corresponding invoking registered party) and a public key (forwarded to all parties).

Furthermore, we consider the ideal functionality FAUTH depicted in Figure 4, that realizes point-to-point authenti-
cated channels between the parties, adapted from [11].

We also use the functionality realizing the common reference string in our setting (see [13]), described in Figure 5,
as well as the FRO described in Figure 6 that realizes a random oracle, as described in [18].

6

Functionality FKRK:

Given a deterministic key generation function KGen with security parameter λ the functionalityFKRK runs with servers S1, S2,
auditor A, and adversary A. FKRK keeps a list R storing registered parties and corresponding keys, which is initially empty.
Further, it operates as follows:

Registration: On input (register, sid, r) from party P ∈ {S1, S2, A,A}, if the request is valid, i.e., (P, ·, ·) is not in the
list R compute (PK,SK) := KGen(r) and add the tuple (P, PK, SK) to R.

Retrieval:
- On input a request (retrieve, sid, P̂) from P 6= P̂ ∈ {S1, S2, A,A}, it returns the string (sid, P̂, PK) to P if

there is a record (P̂, PK, SK) ∈ R. Otherwise, it returns (sid, P̂,⊥) to P.
- On input a request (retrieve, sid,P) from P ∈ {S1, S2, A,A}, it returns the string (sid,P, PK, SK) to P if

there is a record (P, PK, SK) ∈ R. Otherwise, it returns (sid,P,⊥) to P.

Fig. 3: Functionality FKRK. Note that each instance of this functionality can only be invoked by the parties on a single
protocol session (i.e., for a fixed sid.).

Functionality FAUTH:

The functionality runs with clients C1, . . . , Cn, servers S1, S2, auditor A, and adversaryA. It receives from the environment
the set C of corrupted parties, and let H be the set of honest parties.

1. For any party B, upon receiving (send, sid, A,B,m) from party A ∈ H, it sends (sent, sid, A,B,m) to A
2. For any party B′, upon receiving (send, sid, A,B′,m′) from the adversary A it does the following:

- If A ∈ C, outputs (sent, sid, A,m′) to B′.
- Else, if A ∈ H, outputs (sent, sid, A,m) to B.

Fig. 4: Functionality FAUTH

Functionality FCRS:
The functionality is parametrized by a positive integer t and runs with clients C1, . . . , Cn, servers S1, S2, auditor A, and
adversary A.

1. Upon receiving a message (CRS, sid,P) for P ∈ {S1, S2, C1, . . . , Cn}, choose uniformly at random a value {0, 1}t
and send (CRS, sid, r) to P and to the adversary A. Next, when receiving (CRS, sid, P̂) from any P̂ 6= P ∈
{S1, S2, C1, . . . , Cn}, send (CRS, sid, r) to P̂ and A, and halt.

Fig. 5: Functionality FCRS

7

Protocol for Client Cj :

– On (register, sid, pw)

send (eval, sid, j, signup, pw) to F̂TOPRF,
send (CRS, sid, Cj , S1) to FCRS,

receive (eval, sid, j, signup, ρ), from F̂TOPRF

receive (CRS, sid, crs) from FCRS

set pk∗ = gρ

send (round1-reg, sid, j, pk∗) using FAuth to S1 and S2.

– On (init, sid, j, qid)
set sid′ := (sid‖qid‖j),
sample xC ← Zq and set yC ← gxC ,
Compute π ← P(crs, sid′, yC , xC),
send (RO, sid′‖yC‖π) and receive (RO, h) from FRO,
send (round1, sid′, yC , π)

– On (round2, sid′, xS) from S1,
set pk = gxC ·xS

compute σC ← Sign(ρ, sid′‖pk),
send (round3, sid′, yC , π, h, pk, σC) to S1

output sk = xC · xS .

Protocol for Server S2:

– At first activation sample s2 ←$ Zq and
send (register, sid, s2) to FKRK.

– On (register, sid, j)

send (init, sid, j) to F̂TOPRF,
Wait to receive:
• (InitComplete, sid, j) from F̂TOPRF,
• (SndrComplete, sid, j, signup) from F̂TOPRF and,
• (round1-reg, sid, j, pk∗) from FAuth.

compute σ2 ← Sign(sk2, sid‖j‖pk∗)
send (round2-reg, σ2) to S1.

– On (Init, sid, qid, j), set sid′ := (sid‖qid‖j),
Wait to receive
(SndrComplete, sid, j, qid) from F̂TOPRF.

Protocol for Server S1:

– On (register, sid, j) send (Init, sid, j) to F̂TOPRF,
send (CRS, sid, Cj , S1) to FCRS

receive (InitComplete, sid, j) from F̂TOPRF.
receive (CRS, sid, crs) from FCRS

Wait to receive:
• (round1-reg, sid, j, pk∗) from FAuth;
• (round2-reg, σ2) from S2;
• (SndrComplete, sid, j, signup) from F̂TOPRF.

Assert Vf(pk2, sid‖j‖pk∗, σ2) = 1 and store (sid, j, pk∗, σ2).

– On (init, sid, j, qid), set sid′ := (sid‖qid‖j).
Wait to receive:
• (SndrComplete, sid, j, qid) from F̂TOPRF;

Sample xS ←$ Zq and send (round2, sid′, xS) to Cj
– On (round3, sid′, yC , π, h, pk, σ) from Cj ,

assert the output (RO, h′) ofFRO on input (sid′‖yC‖π) fulfills h′ = h and
V(crs, sid′, yC , π) = 1,
assert pk = y

xS
C

register the tuple (sid, qid, j, pk).

– On (audit, sid, qid, j) retrieve (sid, j, pk∗, σ2), (sid, qid, j, pk, σC)
send (audit, sid, qid, j, pk∗, σ2, pk, σC) toA.

Protocol for AuditorA:

– On (audit, sid, qid, j, pk∗, σ2, pk, σC) from S1,
send (retrieve, sid, S2) to FKRK and receive (sid, S2, pk2),
compute b0 ← Vf(pk2, sid‖j‖pk

∗, σ2),
compute b1 ← Vf(pk∗, sid‖qid‖j‖pk, σC),
output b0 ∧ b1.

Fig. 7: The protocol realizing FA2PAKE for the dlog key-generation algorithm with setup assumption
FRO,FAUTH,FKRK,FCRS and F̂TOPRF.

Functionality FRO:

The functionality is parametrized by a positive integer t and runs with clients C1, . . . , Cn, servers S1, S2, auditor A, and
adversary A.

1. FRO keeps a list L of bitstring pairs, which is initially empty.
2. On input (sid, x), with x ∈ {0, 1}∗ from any party P ∈ {C1, . . . , Cn, S1, S2, A,A}, do:

- If there is (x, ĥ) ∈ L for some ĥ ∈ {0, 1}t, set h := ĥ;
- else, choose h uniformly at random from {0, 1}t and add the entry (x, h) to L.
- Send (sid, h) to the activating party P.

Fig. 6: Functionality FRO

5.2 Generic description of our protocol

A high-level description of a protocol realizingFA2PAKE from the setup assumptionsFRO,FAUTH,FKRK,FTOPRF andFCRS

follows in Figure 7.
The protocol consists of three phases: registration, in which the client registers with the two servers, authentication,

in which the client and the server S1 produce a fresh and authenticated key pair, and audit, in which the server can
prove to the auditor the relation between clients and public keys.

8

At registration of a new client, the servers initialize a new fresh instance of FTOPRF by calling F̂TOPRF with sub-
session identifier the index relative to the client. Then, the client and the two servers run the F̂TOPRF (on sub-sub-session
identifier a special string signup used for registration), where the client’s private input is the password whereas each
server uses its secret key share as private input. The client receives the evaluation of the OPRF that is parsed as a secret
key sk∗ ∈ Zq for a DLOG-based signature scheme 6. Finally, the client, using the interfaces provided by FAUTH, can
send an authenticated message to both servers with the public key pk∗ = gsk

∗
. We notice that using the FAUTH setup

assumption for the last step is necessary, to bind a client identity with public key pk∗. Also, the server S2 signs the
public key pk∗ produced, thus witnessing the successful registration of the client.

During authentication, a registered client and the two servers run again the instance of the FTOPRF associated to
the client. Once again, the secret input of the client is a password whereas each server inputs the secret key share
picked during registration. Thus, the client recovers the secret key sk∗. Concurrently, client and server run a simple
coin-tossing protocol to produce a DLOG key pair. Such protocol ensures randomly generated keys. Additionally, the
last message of the client, which defines uniquely the key-pair, is authenticated with a signature under the key pk∗.
Server S1 accepts the public key only if it were correctly generated by the client and the signature on that public key
verifies under key pk∗.

At auditing time, if server S1 wants to prove that a public key pk belongs to a client Cj , the server can simply
show to the auditor (1) the signature received by S2 at registration time on pk∗ and the client’s identity j, and (2)
the signature received by the client at authentication time on pk. In this way the auditor checks that S2 witnessed the
registration of pk∗ by client C, and that pk was certified by pk∗. More in details, the auditor checks that σ∗ is a valid
signature of sid‖qid‖j‖pk under key pk∗, and that σ2 is a valid signature of the message sid‖j‖pk∗ under key pk2—the
public key of S2. If both checks succeed, the auditor concludes that pk belongs to client C.

Theorem 1. Let KGen be the algorithm that upon input the description of a group outputs pk = gsk and sk ← $ Zq .
The protocol in Fig 7 UC-realizes the ideal functionality FA2PAKE parametrized by KGen with setup assumptions
FRO,FAUTH,FKRK,FCRS and F̂TOPRF.

Proof. We start giving a simulator:
Simulator S:
Simulate setup assumptions:

1. Simulate the setup assumption FCRS by sampling crs, τ ← $ Init(1λ).
2. Simulate the setup assumption FRO storing a lazy-sampled random function. Abort in case of collisions.
3. Simulate the setup assumption F̂TOPRF by following its logic and maintaining a table T (j, p, x). The table contains

extra columns for the coordinates of x labeled with the special symbols ?1, . . . , ?n.
4. Simulate the setup assumption FKRK, in particular, if S2 is corrupt, wait for a tuple (register, sid, s̃k2) and

record it. Else sample a random key sk2 ← $ Zq and reply with pk2 ← gsk2 to the retrieve queries of the
adversary.

Registration:

5. Upon message (register, sid, j) from FA2PAKE (the client Cj is honest). Simulate the registration phase of the
protocol for the client. In particular, simulate perfectly all the messages sent by Cj ,FTOPRF, the honest servers and
to the adversary A. The adversary A eventually sends the message

(RcvComplete, sid, j, qid, Cj , p
∗
j).

(In particular, if both servers are honest we assume that p∗j = 0.) Simulate perfectly the ideal functionality FAuth

and send to the adversary the message (round1-reg, sid, j, pk∗), where pk∗ ← gT (j,p∗j ,?j).
6. If party Cj ∈ C sends (eval, sid, j,signup, pw), simulate the protocol with the malicious client and send the

message
(register, sid, pw)

to the ideal functionality FA2PAKE. Send to Cj the message (eval, sid, j,signup, T (j, p∗, pw)).
Receive the message (round1-reg, sid, j, pk∗) from Cj .

6 The choice of the signature scheme is arbitrary and taken for the sake of simplicity. Indeed, with minor modifications to the
protocol we could use any EUF-CMA secure signature scheme.

9

7. If the adversary A instructs FAUTH to forward the message (round1-reg, sid, j, pk∗) to S2 and S2 ∈ H then
compute σ2 ← Sign(sk2, sid‖j‖pk∗) and send the message

(round2-reg, σ2)

to S1.

Test Password:

8. On (eval, sid, j, p̃w) from the adversary, send (test, sid, qid, j, p̃w) to FA2PAKE. If the answer from the ideal
functionality is correct for any p such that T (j, p, ?j) is defined, set T (j, p, p̃w) := T (j, p, ?j). (Simulate the logic
of F̂TOPRF, in particular, notify the server Sb usingFA2PAKE, when the adversaryA sends (SndComplete, sid, j, qid, Sb)
to F̂TOPRF.)

Invalid:

9. On (RcvComplete, sid, j, qid, Cj , p∗) if p∗ 6= p∗j (recall p∗j is the label used at registration time) then mark the
session (sid, qid, j) as invalid.

Corrupted Client and Honest Server 1: The following commands are executed in the scenario where the client Cj
is corrupted and the server S1 is honest. The server S2 might be honest or corrupted.

10. On (round1, sid′, ỹ) from Cj to S1, look up in the random oracle table for the value (sid, sid′‖ỹC‖π̃, h̃), check
validity of π̃, namely, check that V(crs, sid′, ỹC , π̃) = 1, and if so extract π̃ and obtain x̃C , abort if ỹC 6= gx̃C , else
store (sid′, ỹC , x̃C).

11. On (SndComplete, sid, j, qid) fromA to FTOPRF, send (newkey, sid, qid, j, Cj) to FA2PAKE and obtain sk from
the ideal functionality. Retrieve (sid′, ỹC , x̃C) and set xS ← sk/x̃C and send (round2, xS) to Cj .

12. On (round3, sid′, ỹC , π̃, σ̃C) from Cj , simulate by following the procedure described in the protocol. (If all
the checks pass then send (newkey, sid, qid, j, S1) to FA2PAKE, so that S1 can obtain its output, else send
(invalid, sid, qid, j, S1).

13. On (audit, sid, qid, Cj , pk) from the ideal functionality, simulate by following the procedure described in the
protocol.

Honest Client and Corrupted Server 1: The following commands are executed in the scenario where the client Cj
is honest and the server S1 is corrupted. The server S2 might be honest or corrupted.

14. On (init, sid, qid, j,P) fromFA2PAKE set sid′ := (sid‖qid‖j), sample random h̄ and store the value (sid, sid′‖⊥‖⊥, h̄)
in the random oracle table. Send (round1, sid′, h̄) to S1. Send (eval, sid, j, qid, Cj) to the adversary A (simu-
lating the setup assumption F̂TOPRF).

15. On (round2, x̃S) to Cj from S1, send (newkey, sid, qid, j, Cj) to FA2PAKE and obtain pk from the ideal func-
tionality. Set ȳC ← pk1/x̃S and π̄ ← Sim(τ, sid′, ȳC). Program the random oracle with the tuple (sid, (sid′‖ȳC‖π̄), h̄).
Instruct FA2PAKE to send the output to Cj .

16. On (RcvComplete, sid, j, qid, Cj , p∗) from the adversary (and (round2, x̃S) of the previous step arrived), send
(round3, sid′, ȳC , π̄, σ̄C), where σ̄C ← Sign(T (j, p∗, ?j), sid

′‖pk).
17. On (audit, sid, qid, j, p̃k

∗
, σ̃2, p̃k, σ̃C) from A to A, send (audit, sid, qid, j, p̃k) to the ideal functionality.

If corrupt(sid, j) = 1 then execute the same as described in the protocol for A (thus obtaining a bit b′) and send
to FA2PAKE the bit b′.
Else receive the bit b∗ from the ideal functionality. Abort if one of the two cases hold:

– b∗=1 and Vf(p̃k
∗
, sid′‖p̃k, σC)=0 or Vf(pk2, sid‖j‖pk

∗, σ̃2)=0.
– Cj not registered and S2 ∈ H and Vf(pk2, sid‖j‖pk

∗, σ̃2) = 1.

Honest Client and Honest Server 1: The following commands are executed in the scenario where the client Cj is
honest and the server S1 is honest. The server S2 might or might not be honest.

10

18. On (init, sid, qid, j, Cj) from FA2PAKE simulate h̄ and the setup assumption F̂TOPRF as in Step 14,
19. On (init, sid, qid, j, S1) from FA2PAKE, wait for (SndComplete, sid, j, qid, S1), and for (round1, sid′, h̃)

from A.
As in Step 10, compute the tuple (sid′, ỹC , x̃C).
If the password of the client is corrupted then send (newkey, sid, qid, j, S1) to FA2PAKE and receive both sk′ and
pk′ (in particular, sk′ 6= sk w.h.p. from step 17) , retrieve x̃C and set xS ← sk′/x̃C ; else sample xS ← $ Zq . Send
the message (round2, sid′, xS).

20. On (round2, x̃S) to Cj from A, send (newkey, sid, qid, j, Cj) to FA2PAKE and obtain pk from the ideal func-
tionality. Proceed as in Step 15. Send the output to Cj .

21. On (round3, sid′, ỹC , π̃, σ̃C), if the session (sid, qid, j) is marked as invalid then send (invalid, sid, qid, j, S1).
Else execute the same check of S1 in the protocol. Additionally, set p̃k := ỹxSC . Let pk be the output of FA2PAKE

for S1, abort if the following condition holds:
– p̃k 6= pk and corrupt(sid, j) = 0 and Vf(pk∗, sid′‖p̃k, σ̃C) = 1

If the checks pass, send (newkey, sid, qid, j, S1) and send the output to S1.
22. On (audit, sid, qid, Cj , pk) from the ideal functionality, simulate by following the procedure described in the

protocol.

Now we proceed with a series of hybrid experiments. The first hybrid H0 is the ideal world where Z interacts with
the simulator described above, which interacts with the ideal functionalityFA2PAKE. We let εi(λ) := Pr

[
Hi(1

λ) = 1
]
.

As it is clear from the context, we will simply write εi, omitting the argument.

Hybrid 1. The hybrid H1 is the same as H0 all the inputs/outputs from the environment Z are recorded by the hybrid.
The hybrid H1 is equivalent to H0, the changes are only syntactical.

Hybrid 2. The hybrid H2 is the same as H1 but:

– Step 9 is not executed anymore.
– In Step 21, send the message (invalid, sid, qid, j, S1) if the checks Vf(pk∗, sid‖qid‖j‖pk, σC) = 1 does not

hold (instead of checking that the session is invalid).

Lemma 1. |ε1 − ε2| ∈ negl(λ).

Proof. Let Bad be the event that exists an execution of step 21 in H1 where the session (sid, qid, j) is marked as
invalid but Vf(pk∗, sid‖qid‖j‖pk, σC) = 1. We have that |ε1 − ε2| ≤ Pr [Bad].

We reduce to the unforgeability of the signature scheme. Consider the following adversary against unforgeability:

Adversary B(pk∗)Sign(sk∗,·)

1. Sample random index j∗ ← $ [n], if Cj∗ ∈ C then abort.
2. Run the hybrid H2(1λ) but:

(a) At registration of the client Cj∗ , namely at step 5, simulate the message of the client by sending
(round1-reg, sid, j∗, pk∗, π) (where pk∗ is the public key received by B as input).

(b) At execution of the protocol for the client Cj∗ , specifically at step 15, if p∗ = p∗j (the session is valid)
then query the signature oracle on message sid′‖pk, else execute the same as described in the hybrid.

3. When the event Bad happens, let

(round3, s̃id‖q̃id‖j̃, ỹC , π̃, σ̃C)

be the message received. If j̃ 6= j∗ then abort, else set p̃k = ỹxSC and output the forgery M̃ :=

(s̃id‖q̃id‖j̃‖p̃k), σ̃C .
4. If the hybrid H2 terminates and the event Bad did not happen then abort.

From the description of the adversary B, we have that B does not abort with probability at least Pr [Bad] /n, in fact,
the value j∗ is independent from the execution of H2 (as all the public keys for honest clients are uniformly random).
Moreover, by the definition of the event Bad, the forgery output by B does verify.

So we need only to show that the forged message was never queried to the signature oracle. If M̃ is equal to one
of the messages signed at step15 using the signature oracle then it means that p∗ = p∗j , however, this in contradiction
with the fact that the session is invalid.

This proves that the event Bad can happen only with negligible probability.

11

Hybrid 3. The hybrid H3 is the same as H2, but now the output of A in 17 is computed executing the real protocol
for A, instead of being the output of the ideal functionality. (We still execute the code of the simulator, so it could still
abort.)

Lemma 2. ε2 = ε3.

Proof. First we notice that if the abort condition of step 17 does hold then two hybrids are equivalent. Thus we can
assume that it does not hold. In this case, if corrupt(sid, j) = 1 then the two hybrids behave exactly the same,
because the output of the ideal functionality is computed by the simulator, which will follow the specification of the
algorithm follow by A. Else, corrut(sid, j) = 0, by definition of the abort condition, in particular by the condition
that b∗ = 1 and Vf(p̃k

∗
, sid′‖p̃k, σC) = 0 or Vf(pk2, sid‖j‖pk

∗, σ̃2) = 0, the output to A of the ideal functionality
and the output of A in the real protocol must be the same.

Hybrid 4. The hybrid H4 is the same as H3 but we remove the abort condition of step 17.

Lemma 3. |ε2 − ε3| ∈ negl(λ).

Proof. By the previous hybrid step, the two hybrids are equivalent unless one of the abort conditions from step 17
occurs. In fact, we can assume that the client Cj is honest, because when the client is corrupted, by step 13, the
hybrids behave exactly the same way. Also we can assume that the flag corrupt(sid, j) = 0, in fact, by the definition
of step 17, in the case corrupt(sid, j) = 1, the hybrid H3 would not abort.

Recall that in step 17 the ideal functionality FA2PAKE sends a bit b∗. Specifically, the two hybrids differ if and only:

(1) Either Vf(pk∗, sid′‖p̃k, σC)=1,
(2) or Cj is not registered and S2∈H and Vf(pk2, sid‖j‖p̃k

∗
, σ̃2)=1.

Let Bad1 (resp. Bad2) be the event that the condition (1) (resp. condition (2)) happens. Therefore we have:

|ε2 − ε3| ≤ Pr [Bad1] + Pr [Bad2] .

Similarly to Lemma 1 above, we can show Pr [Bad1] ∈ negl(λ). Let us further argue that Pr [Bad2] is also
negligible. We reduce to the unforgeability of the signature scheme used by S2. Notice we can assume that S2 ∈ H,
as otherwise Pr [Bad2] = 0. Let B be an adversary against the unforgeability of SS defined as follows:

Adversary B(pk2)Sign(sk2,·)

1. Run the hybrid H3(1λ) but when executing the protocol for the server S2, specifically at step 7, if the
session is valid, query the signature oracle on message sid‖j′‖pk∗, i.e., proceed as described in the hybrid.

2. When the event Bad2 happens output (sid‖j‖pk∗), σ̃2.
3. If the hybrid H3 terminates and the event Bad2 did not happen then abort.

B does not abort with probability Pr [Bad2], also for any j a message of the form (∗‖j‖∗) is queried by B if and only
if Cj gets registered, thus the output of B is a valid forgery.

Hybrid 5. The hybrid H5 is the same as H4 but the output of S1 in step 21 is computed executing the real protocol
for S1 instead of being the output of the ideal functionality. (We execute the code of the simulator, so the simulator, at
this step, could still abort.)

Lemma 4. ε5 = ε4

Proof. If the abort condition of step 21 holds, then the two hybrids are the same. Thus we can assume that the condition
does not hold. In this, by the definition of the condition, we have that p̃k = ỹxSS , namely the output of the server S1, is
equal to pk, the output of the ideal functionality.

Hybrid 6. The hybrid H6 is the same as H5 but we remove the abort condition of step 21.

12

Lemma 5. |ε6 − ε5| ∈ negl(λ).

Proof (Sketch). We can reduce to the unforegeability of the signature scheme. In particular, we can define an adver-
sary B which, similar to Lemma 1, samples at random an honest client, and uses the signature oracle to simulate
its signatures, then when the distinguish event happens, it outputs its forgery. Notice that in this case the distinguish
event is that, at step 21, the hybrid H5 would abort. Thus, we have that p̃k 6= pk and corrupt(sid, j) = 0 and
Vf(pk∗, sid′‖p̃k, σ̃C) = 1. The corrupt(sid, j) = 0 assures that we can simulate correctly the hybrid, while the
other two assures that the forgery is indeed valid and for a new message. In fact, the reduction would only sign
sid′‖pk 6= sid′‖p̃k and messages sid′′‖pk′′ where sid′′ 6= sid′.

Hybrid 7. The hybrid H7 is the same as H6 but in step 5 we set pk∗ ← T (j, p∗j , pw), instead of pk∗ ← T (j, p∗j , ?j).

Lemma 6. ε7 = ε6.

Proof. Note that until A sends the message (eval, sid, j, pw) to F̂TOPRF the value T (j, p∗j , pw) is undefined. Thus, in
the simulation, following the logic of F̂TOPRF (see step 3), this entry will be set by selecting an element in Zp uniformly
at random. Further, given how the answer to adversarial queries of the form (eval, sid, j, pw) is simulated (see step 8),
indeed once A sends the message (eval, sid, j, pw) to F̂TOPRF T (j, p∗j , pw) will be set as T (j, p∗j , pw) = T (j, p∗j , ?j).
As a result, the two hybrids are perfectly indistinguishable.

Hybrid 8. The hybrid H8 is the same as H7 but, in step 8, it emulates correctly the setup assumption F̂TOPRF. In par-
ticular, it does no query theFA2PAKE: on receiving a message (eval, sid, j, p̃w) from the adversary, it simulates a query
(eval, sid, qid, j, p̃w) to F̂TOPRF, an in turn notifies the server Sb when the adversaryA sends (SndComplete, sid, j, qid, Sb)
to F̂TOPRF.)

By the changes introduced in the H7 and H8, the functionality F̂TOPRF is perfectly emulated by now.

Hybrid 9. The hybrid H9 is the same as H8 but the output of S1 in step 12 is computed following the real protocol.

Lemma 7. ε9 = ε8.

Proof. We first analyze the case when the simulator sends (invalid, sid, qid, j, S1). This case is the simplest, indeed,
the simulator performs the same checks that S1 would do in the real protocol, and if they don’t hold send the message.

Secondly, we analyzes the case when the simulator sends (newkey, sid, qid, j, S1). We notice that two hybrids
behave the same if at step 10 the simulator aborts. Also, if it does not abort, then we extracted a valid x̃C . Moreover,
in step 11 the simulator sets xS to be equal to sk/x̃C , thus the output of the ideal functionality sent to S1 is pk, while
the output, as computed by the procedure described by S1, is ỹxS0 = gx̃C ·sk/x̃C = pk.

Hybrid 10. The hybrid H10 is the same as H9 but, in step 11, we compute xS ← $ Zq .

Lemma 8. ε10 = ε9.

Proof. In hybrid H9 the value xS is set to be sk/x̃C , where x̃C is set by the adversary before seeing the value sk (we
additionally are assuming that the adversary cannot find collision in the random oracle), and sk is uniformly random.
While in H10 the value is sampled uniformly at random. The two distributions are equivalent.

Hybrid 11. The hybrid H11 is the same as H10 but it does not abort in step 10 and 17 if ỹC 6= gx̃C .
We can straight-forwardly reduce to the simulation extractable soundness of the NIZK. Thus:

|ε11 − ε10| ∈ negl(λ).

Hybrid 12. The hybrid H12 is the same as H11 but, at step 14 (and at step 18) the hybrid computes yC ← gsk/x̃S .
(Recall that by H1, the hybrid knows all the inputs and outputs of the ideal functionality.)This step is only syntactic
and preparatory for the next hybrid step.

Hybrid 13. The hybrid H13 is the same as H12 but at step 14 (and at step 18) the hybrid computes yC ← gxC for
xC ← $ Zq . Moreover, at step 20 it sets the output of Cj being xC · x̃S , as in the description of the protocol.

13

Lemma 9. ε13 = ε12.

Proof. Notice that x̃S is sent by the adversary before it can see the outputs of the ideal functionality, thus, yC set
gsk/x̃S is uniformly random.

Also notice that once we starting sampling yC in this way, the output of yC is independent of the output provided
by the ideal functionality. Moreover, in the previous hybrid steps, we set the output of the server S1 being computed
following the real protocol, thus independent of the outputs provided by the ideal functionality.

Hybrid 14. The hybrid H14 is the same as H13 but it does not program the random oracle in step 15, instead it samples
directly yC (as described in the previous hybrid) and simulate π̄ in this step.

Notice the simulator simulates the random oracle in a way that there cannot be collisions. Also the value yC , by the
previous hybrid step, it is now computed when the honest client sends the first-round message. Thus the two hybrids
are equivalent:

ε14 = ε13.

Hybrid 15. The hybrid H15 is the same as H14 but, instead of the simulator simulating the random oracle, we use
directly the ideal functionality FRO.

The two hybrids diverge only when we find a collision in the random oracle FRO. Thus:

|ε15 − ε14| ∈ negl(λ)

Hybrid 16. The hybrid H16 is the same as H15 but, in step 19, it samples xS ← $ Zq , independently of the variable
corrupt(sid, j).

Lemma 10. ε16 = ε15.

Proof. By the change introduced in H3, the output of S1 is computed exactly as in the real protocol. Moreover, when
corrupted(sid, j) = 0, we already have that in both hybrids the value xS is sampled uniformly at random. On the
other hand H15 sets xS as sk′/x̃C (where sk′ 6= sk). Notice that x̃C is set by the adversary before that the value sk′ is
sampled by the ideal functionality, thus x̃C is uniformly random.

Hybrid 17. The hybrid H17 is the same as H16 but all the simulated proofs are computed honestly and the common
reference string for the NIZK is sampled in sound mode.

This last step straight-forwardly reduces to the composable zero-knowledge property of the NIZK. Moreover,
notice that at this point all the witnesses for the NIZK of the honest clients are known. Thus:

|ε17 − ε16| ∈ negl(λ)

Finally, we notice that at this point all the steps are executed as in the real protocol, also the simulator does not
simulate anymore neither FRO nor F̂TOPRF. Moreover, the other setup assumption where already simulated perfectly by
the simulator (so they can be interchanged). Therefore, the last hybrid is equivalent to an execution of the protocol in
the (FRO,FAUTH,FKRK, F̂TOPRF,FCRS)-hybrid world.

5.3 Concrete instantiation

We now describe a concrete instantiation of FA2PAKE that, in turn, leverages the 2HashDH instantiation of FTOPRF,
presented in [22]. For concreteness, we use the same cyclic group to generate key-pairs as output by FA2PAKE and to
instantiate the underlying distributed OPRF.

Let G be a cyclic group of primer order p with generator g. Also let H , H1, and H2 be three hash functions
ranging over {0, 1}`, G, and Zq , respectively. Given an input x and a key k from Zq, function fk(x) is defined as
H2(x,H1(x)k) (where key k is shared among the servers).

14

. Registration phase .

C(sid, pw) : S1(sid) : S2(sid, sk2) :

r ∈$ Zq
a← H1(pw)

r

C, a

k1 ∈$ Zq k2 ∈$ Zq
b1 ← ak1 b2 ← ak2

b1
b2

←−−−
sk∗ ← H2(pw‖(b1b2)1/r)

pk∗ ← gsk
∗

pk∗

σ2 ← Sig(sk2, sid‖C‖pk∗)
Store 〈sid, C, k2〉σ2

Assert Vf(pk2, sid‖C‖pk
∗, σ2) = 1

Store 〈sid, C, k1, pk∗, σ2〉

. Authentication phase .

C(crs, id, pw) : S1(crs, id) : S2(id) :

xC , r ∈$ Zq
yC ← gxC

π ← P(crs, id, xC , yC)

h← H(id‖yC‖π)
a← H1(pw)

r

C, a, h

Retrieve 〈sid, C, k1, pk∗〉 Retrieve 〈C, k2, pk∗〉

b1 ← ak1 b2 ← ak2

xS ∈$ Zq

b1, xS
b2

←−−−
sk∗ ← H2(pw‖(b1b2)1/r)

sk← xS · xC , pk← gsk

σ∗ ← Sig(sk∗, id‖pk) pk, σ∗, yC , π

Output sk Assert Vf(pk∗, id‖pk, σ∗) = 1

Assert h = H(id‖yC‖π) ∧ pk = yxSC

Assert V(crs, id, yC , π) = 1

Output (id‖pk)

Fig. 8: Concrete instantiation of A2PAKE. Dashed arrows depict broadcast messages. The dotted arrow in the registra-
tion phase denotes an authenticated channel. In the authentication phase the three parties receive in input an identifier
id = (sid, C, qid).

Figure 8 describes both the registration protocol and the authentication protocol. We substitute the index j of the
client from the generic description of the protocol with an unique username. In the registration protocol the client C,
and the two servers S1, and S2, run the OPRF protocol with private input the password pw, and a freshly sampled key
share k1, and a freshly sampled key share k2, respectively. Note that k1 and k2 are chosen within the protocol for that
specific client. The private client’s output is set as its secret key sk∗ with corresponding public key pk∗. The public key
is sent by the client to both servers via an authenticated channel so that pk∗ can be bound to a client identity. We do
not specify how this channel should be implemented and gave a few example in Section 1. One option is for the client
to sign pk∗ with its digital ID so to bound the public key to an ID number. Server S2 signs the public key received by
the client and provides S1 with the signature—thereby providing a witness of a correct client registration. At the end

15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

T
h
ro

u
g

h
p

u
t

(c
lie

n
ts

/s
e
co

n
d

)

Number of Concurrent Clients

A2PAKE
baseline

(a) Throughput.

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250

La
te

n
cy

 (
se

co
n
d

)

Number of Concurrent Clients

A2PAKE
baseline

(b) Latency.

Fig. 9: Comparison of A2PAKE versus the baseline protocol over WAN.

of the registration, the user must only remember his username C and password; S2 remembers the client’s username
and the key-share k2, whereas S1 stores the tuple (C, k1, pk

∗, σ). In the authentication protocol the distributed OPRF
protocol is run (as during registration) so that the client can recover sk∗.

6 Evaluation

We implemented a prototype of the A2PAKE instantiation presented in the previous section. The prototype was writ-
ten in Python with the Charm-crypto7 library for cryptographic operations. We instantiated ECDSA over elliptic curve
prime192v1 as the digital signature scheme; thus signature generation and verification take one and two point mul-
tiplications, respectively. Further each signature amounts to two elements in Zq . We used the same curve to instantiate
the 2HashDH [22] distributed OPRF. Random oracles were instantiated with SHA256.
Theoretical overhead. We now provide a theoretical evaluation of the computation and communication overhead of
the protocols in Figure 8. For elliptic curve operations, we only report the number of point multiplications (mults).

During registration, the client computes 2 mults and 2 hashes; apart from a username, the client sends two group
elements and a signature. This signature is the one that S2 sends to S1 at the end of the registration protocol in Figure 8;
we decide to use the client as a proxy between the two servers because in a real deployment the two servers will not
likely have a long-lasting connection (and may not even know their end-points). During authentication, the client
computes 6 mults, one signature and 3 hashes; apart from a username, the client sends 3 group elements, a signature,
a proof of knowledge of discrete log (one group element and one element in Zq), and one hash.

At registration time, server S1 computes a single exponentiation and verifies the validity of a signature; it sends
one group element. During authentication, S1 computes one exponentiation and one hash. It also verifies a signature
and a proof-of-knowledge of discrete log (two mults). S1 sends one group element and one element in Zq .

During registration, server S2 computes one exponentiation and one signature; it sends one group element and a
signature (to the client that will forward it to S1). During authentication, S2 computes one exponentiation and sends
one group element.
Baseline comparison. As a baseline comparison for A2PAKE, we implement a simple client-server protocol that
allows the server to authenticate the client and both of them to generate an asymmetric key pair—where the secret key
is only learned by the client. In particular, client and server run a distributed coin-tossing protocol similar to the one
of Figure 8 (e.g., the client sends H(gxC) for random xC , the server sends random xS , the client sets sk = xC · xS
and sends gxC and pk = gsk). Further, the client derives a MAC key from the password (by using PBKDF2) and
authenticates the public key pk. The server uses the password to derive the same MAC key and accepts pk only if
the MAC sent by the client is valid. Note that such protocol does not ensure non-repudiation (since either party could
have created and MACed a key-pair), but it is a straightforward example of how to authenticate clients and create fresh
key-pairs by using passwords.

7 http://charm-crypto.io/

16

http://charm-crypto.io/

Experiments. We setup the two servers on two Amazon EC2 machines (t3a.2xlarge instances) and use four laptops
(Intel i7-6500U, 16GB RAM) to instantiate clients. With this setup at hand, we measure latency and throughput
for A2PAKE and for the basedline protocol. In particular, we send a number of concurrent client requests from the
laptops and measure the end-to-end time for a client to complete; we keep increasing the number of requests until the
aggregated throughput saturates. Figure 9a and Figure 9b provide average and standard deviations for throughput and
latency, respectively. In all of the figures, one data-point is the average resulting from measuring 30 runs.

As expected, latency of A2PAKE (from 0.25s with few clients up to 0.56s right before the main server saturates)
is slightly higher than the one of the baseline protocol (from 0.18s with few clients up to 0.50s right before the server
saturates). However, the baseline protocol saturates the server with a smaller number of clients compared to A2PAKE.
Indeed the server of the baseline protocol saturated with roughly 20 concurrent clients. It took more than 70 clients
before the main server of A2PAKE saturated.

A closer look at the timings showed that most of the overhead in the baseline protocol is due to the PBKDF2
key derivation function. Indeed, this function is designed to slow-down the computation, in order to discourage brute-
force attacks. Replacing this function with, say SHA256, would definitely improve the performance, but would pose
passwords at greater risk in case of compromise of the password database, and is discouraged according to PKCS
series. Using a two-server settings—as in A2PAKE—allows us to use faster hashes like SHA256 because compromise
of a single server does make brute-force attacks any easier.

We also measured the time it takes to run the registration protocol of Figure 8. Since this procedure is executed
once per client, we are not interested in throughput but just in latency. We use one client laptop and two servers and
measure 100 executions. Registration takes 0.14s on average (standard deviation 0.004s); most of the time is taken by
network latency, especially because the client must proxy a signature from the secondary server to the main one.

7 Conclusions

Auditable Asymmetric Password Authenticated Public Key Establishment A2PAKE is the only “password-only” pro-
tocol that allows users to authenticate to a server and generate a certified asymmetric key pair. The public key is public
output while the secret key is private output of only one party (e.g., the user). Further, A2PAKE provides auditabil-
ity, i.e., given a protocol transcript, the key-pair can be ascribed to the identity of the user that obtained the secret
key. We have provided a UC-based definition of A2PAKE and a concrete instantiation based on distributed oblivious
pseudorandom functions. We have also presented a prototype and its evaluation in realistic settings.

References

1. Michel Abdalla, Olivier Chevassut, Pierre-Alain Fouque, and David Pointcheval. A simple threshold authenticated key ex-
change from short secrets. In Asiacrypt, pages 566–584, 2005.

2. Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee. PASTA: password-based threshold authentica-
tion. In ACM SIGSAC Conference on Computer and Communications Security (CCS), pages 2042–2059, 2018.

3. Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-protected secret sharing. In ACM Conference
on Computer and Communications Security (CCS),, pages 433–444, 2011.

4. Carsten Baum, Tore K. Frederiksen, Julia Hesse, Anja Lehmann, and Avishay Yanai. Pesto: Proactively secure distributed
single sign-on, or how to trust a hacked server. Cryptology ePrint Archive, Report 2019/1470, 2019. https://eprint.
iacr.org/2019/1470.

5. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Exchange Secure Against Dictionary Attacks. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
139–155. Springer, 2000.

6. Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure password-authenticated key exchange using diffie-hellman.
In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000: International Conference on the Theory and Applica-
tion of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings, volume 1807 of Lecture Notes in Computer
Science, pages 156–171. Springer, 2000.

7. Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki, Anja Lehmann, Gregory Neven, and Jiayu Xu. Password-authenticated
public-key encryption. In Applied Cryptography and Network Security - 17th International Conference, (ACNS), pages 442–
462, 2019.

17

https://eprint.iacr.org/2019/1470
https://eprint.iacr.org/2019/1470

8. Jan Camenisch, Anja Lehmann, Gregory Neven, and Kai Samelin. Virtual smart cards: How to sign with a password and a
server. In 10th International Conference on Security and Cryptography for Networks (SCN), pages 353–371, 2016.

9. Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical yet universally composable two-server password-
authenticated secret sharing. In ACM CCS 12, 2012.

10. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, 2001.
11. Ran Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint Archive, Report 2003/239,

2003. https://eprint.iacr.org/2003/239.
12. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with global setup. In Salil P.

Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,
February 21-24, 2007, Proceedings, volume 4392 of Lecture Notes in Computer Science, pages 61–85. Springer, 2007.

13. Ran Canetti and Tal Rabin. Universal composition with joint state. Cryptology ePrint Archive, Report 2002/047, 2002.
https://eprint.iacr.org/2002/047.

14. Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart. The pythia PRF service. In 24th
USENIX Security Symposium, pages 547–562, 2015.

15. Kristian Gjøsteen and Øystein Thuen. Password-based signatures. In 8th European Workshop on Public Key Infrastructures,
Services and Applications (EuroPKI), pages 17–33, 2011.

16. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing, (2), 1988.

17. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In ASIACRYPT 2006,
2006.

18. Dennis Hofheinz and Jörn Müller-Quade. Universally composable commitments using random oracles. In Moni Naor, editor,
Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004,
Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 58–76. Springer, 2004.

19. Step Over International. Websignatureoffice, 2019. https://www.websignatureoffice.com/us/.
20. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected secret sharing and T-PAKE in

the password-only model. In Asiacrypt, pages 233–253, 2014.
21. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-efficient and composable password-protected se-

cret sharing or: How to protect your bitcoin wallet online). In IEEE European Symposium on Security and Privacy (EuroS&P),
pages 276–291, 2016.

22. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: cost-minimal password-protected secret sharing
based on threshold OPRF. In 15th International Conference on Applied Cryptography and Network Security (ACNS), pages
39–58, 2017.

23. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE protocol secure against pre-computation
attacks. In EUROCRYPT 2018, Part III, 2018.

24. Jonathan Katz, Philip D. MacKenzie, Gelareh Taban, and Virgil D. Gligor. Two-server password-only authenticated key
exchange. In Applied Cryptography and Network Security, (ACNS), pages 1–16, 2005.

25. Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient Password-Authenticated Key Exchange Using Human-Memorable
Passwords. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in
Computer Science, pages 475–494. Springer, 2001.

26. Franziskus Kiefer and Mark Manulis. Distributed smooth projective hashing and its application to two-server password au-
thenticated key exchange. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, Applied Cryptography and
Network Security - 12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, volume
8479 of Lecture Notes in Computer Science, pages 199–216. Springer, 2014.

27. Russell W. F. Lai, Christoph Egger, Manuel Reinert, Sherman S. M. Chow, Matteo Maffei, and Dominique Schröder. Simple
password-hardened encryption services. In 27th USENIX Security Symposium, pages 1405–1421, 2018.

28. Russell W. F. Lai, Christoph Egger, Dominique Schröder, and Sherman S. M. Chow. Phoenix: Rebirth of a cryptographic
password-hardening service. In 26th USENIX Security Symposium, pages 899–916, 2017.

29. Ascertia Limited. Signhub, 2019. https://www.signinghub.com/.
30. Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold password-authenticated key exchange. J. Cryp-

tology, 19(1):27–66, 2006.
31. K. Moriarty, B. Kaliski, and A. Rusch. Pkcs#5: Password-based cryptography specification version 2.1. Technical Report

RFC8010, Internet Engineering Task Force (IETF), 2017. https://tools.ietf.org/html/rfc8018.
32. Identidad Electrónica para las Administraciones Gobierno de España. Clave firma, 2019. https://clave.gob.es/

clave_Home/dnin.html.
33. Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-authenticated key exchange. J. Comput. Syst.

Sci., 72(6):978–1001, 2006.

18

https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2002/047
https://www.websignatureoffice.com/us/
https://www.signinghub.com/
https://clave.gob.es/clave_Home/dnin.html
https://clave.gob.es/clave_Home/dnin.html

34. Jonas Schneider, Nils Fleischhacker, Dominique Schröder, and Michael Backes. Efficient cryptographic password hardening
services from partially oblivious commitments. In ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 1192–1203, 2016.

19

	Auditable Asymmetric Password Authenticated Public Key Establishment

