
Simple Schnorr Signature with Pedersen Commitment as Key

Gary Yu

Revised, Feb. 21, 2020

Abstract. In a transaction-output-based blockchain system, where each transaction spends
UTXOs (the previously unspent transaction outputs), a user must provide a signature, or more
precisely a 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 for Bitcoin, to spend an UTXO, which proves the ownership of the
spending output. When Pedersen commitment (𝑔)ℎ+) or ElGamal commitment (𝑔)ℎ+, ℎ))
introduced into blockchain as transaction output, for supporting confidential transaction feature,
where the input and output amounts in a transaction are hidden, the prior signature schemes
such as Schnorr signature scheme and its variants does not directly work here if using the
commitment as the public key, since nobody including the committer knows the private key of
a 𝑔)ℎ+ when 𝑎 is not zero, meaning no one knows the 𝑐 such that 𝑔. = 𝑔)ℎ+ . This is a
signature scheme which is able to use the 𝐶 = 𝑔)ℎ+ as the signature public key for any value
of 𝑎. The signer, proceeding from a random Pedersen commitment 𝑅 = 𝑔23ℎ24, generates a
random bit sequence 𝑒, by multiplication of a stored private key 𝑥 with the bit sequence 𝑒 and
by addition of the random number 𝑘8 to get the 𝑢, by multiplication of the committed value 𝑎
with the bit sequence 𝑒 and by addition of the random number 𝑘: to get the 𝑣, finally constructs
𝜎 = (𝑅, 𝑢, 𝑣) as the signature, with the corresponding public key 𝐶 . In turn, the verifier
calculates a Pedersen commitment 𝑆 = 𝑔?ℎ@, and accepts the signature if 𝑆 = 𝑅𝐶A. For an
electronic signature, a hash value 𝑒 is calculated from a random Pedersen commitment 𝑅, the
Pedersen commitment 𝐶, and from the message 𝑚 to be signed. This signature scheme will be
very helpful in the design of a non-interactive transaction in Mimblewimble.

Keywords: Schnorr signatures, Bitcoin, Mimblewimble, Pedersen commitment, Grin, Gotts

1 Introduction

A signature is a zero-knowledge (abbreviated as ZK in the rest of this paper) proof of
knowledge where the prover/s convince the verifier that they know a/some secret information,
without revealing the secret info itself. Presently known algorithms for electronic signatures,
particularly the Schnorr signature algorithm [Sch90], or the MuSig signature scheme [DCC19],
is proven secure in the plain public-key model, meaning requires nothing more than that each
signer has a certified public key, that is generated individually by each user. The very basic
requirement of these signature schemes is that the signer must have the corresponding private
key of that public key for a signing.

A commitment scheme is an essential primitive in cryptography, since it allows the
committer to put a value in a box, so that nobody has any idea about the actual value (hiding
property), but the committer cannot open the commitment in two different ways (binding
property). It is also possible to prove relations between committed values, without revealing
any additional information about them, expected the fact that they satisfy these relations (zero-
knowledge proofs).

For supporting the confidential transaction in some blockchains, such as Monero
(getmonero.org), Grin (grin.mw), Beam (beam.mw), Gotts (gotts.tech), and so on, Pedersen
commitment scheme [Ped91] is used, where the input and output amounts in a transaction are
hidden in commitment. The definition of Pedersen commitment: given the two generators G
and H, such that no one knows the discrete log for second generator H with respect to first
generator G, meaning no one knows a 𝑦 such that 𝑦 ∗ 𝐺 = 𝐻, with a random private key 𝑥 of

the committer, an exemplary commitment scheme to hide the input or output amount 𝑎 may be
defined as:
 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 = 𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻
Pedersen commitment scheme is perfectly hiding and computationally binding [MD17,
MRK03]. To prove the security of this computationally binding property, given two
commitments 𝐶 = 𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻 and 𝐶J = 𝑥J ∗ 𝐺 + 𝑎J ∗ 𝐻, such that 𝐶 = 𝐶J and 𝑎 ≠ 𝑎J, one
can calculate 𝐻 =)LM)

+M+L
∗ 𝐺, meaning one has computed the discrete logarithm of 𝐻. About the

perfectly hiding (also named as unconditional hiding) property, since 𝑥 is a random element of
ℤO, then 𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻 is a random element of 𝔾, independent of the choice of 𝑎.

Alternatively, Switch commitment scheme [RM17] is or can be also used for these
blockchains, for example in Grin. Switch commitment scheme constitute a cryptographic
middle ground between computationally binding and statistically binding commitments. Given
the third generator J, such that no one knows the discrete log for generator J with respect to
first generator G or second generator H, meaning no one knows an 𝑦 such that 𝑦 ∗ 𝐺 = 𝐽 or
𝑦 ∗ 𝐻 = 𝐽, a Switch commitment scheme may be defined as:
 𝐶𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 = 𝑥J ∗ 𝐺 + 𝑎 ∗ 𝐻
Where,
 𝑥J = 𝑥 + 𝐻𝑎𝑠ℎ(𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻, 𝑥 ∗ 𝐽)	𝑚𝑜𝑑	𝑝

Another option is ElGamal commitment scheme, developed by Tahir Elgamal, which is
perfectly binding and computational hiding. An exemplary ElGamal commitment may be
defined as (𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻, 𝑥 ∗ 𝐻) where the left part is a Pedersen commitment.

All these commitment schemes have a common character: the commitment is or include an
ellipse curve point, meaning a public key, but no one knows the corresponding private key.
Therefore, the commitment cannot be directly used for signature as a key in any presently
known algorithms for electronic signatures.

Unlike the UTXO in Bitcoin [Bit08] and other similar cryptocurrencies, which user can
provide a direct signature, or more precisely a 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 that enables the transaction script to
evaluate to true, with specified public key, either with ECDSA presently or with Schnorr
signature in the future, to prove the output ownership to spend, the Pedersen commitment
output is a public key which nobody (including the committer self) knows its private key, or
real public key is hidden in the commitment, so the prior signature schemes cannot work here
if directly using the commitment as the public key.

Related Works. Jedusor in Mimblewimble [MW16] found a practical solution to sign with
Pedersen commitment as public key in a special condition, he/she realized that a Pedersen
commitment to 0 can be viewed as an ECDSA public key, and that for a valid confidential
transaction the difference between outputs, inputs and transaction fees must be 0. A sender
creating a confidential transaction can therefore sign the transaction with the difference of the
outputs and inputs as the public key. An exemplary Mimblewimble transaction scheme [Gri17]
with 1 input and 2 outputs may be defined as:

(𝑥T ∗ 𝐺 + 𝑎T ∗ 𝐻) + (𝑒𝑥𝑐𝑒𝑠𝑠J + 𝑜𝑓𝑓𝑠𝑒𝑡 ∗ 𝐺)
= (𝑥. ∗ 𝐺 + 𝑎. ∗ 𝐻) + (𝑥V ∗ 𝐺 + 𝑎V ∗ 𝐻) + 𝑓𝑒𝑒 ∗ 𝐻

Where,
- (𝑥T ∗ 𝐺 + 𝑎T ∗ 𝐻) is the input commitment owned by sender
- (𝑥V ∗ 𝐺 + 𝑎V ∗ 𝐻) is the output commitment for receiver
- (𝑥. ∗ 𝐺 + 𝑎. ∗ 𝐻) is the change commitment for sender
- 𝑥T, 𝑥., 𝑥V are the private keys; 𝑎T, 𝑎., 𝑎V are the amounts; 𝑓𝑒𝑒 is the transaction fee
- 𝑜𝑓𝑓𝑠𝑒𝑡 is a random number selected by the sender

The 𝑒𝑥𝑐𝑒𝑠𝑠J is called as “public excess” which is the signature public key and consists of:

𝑒𝑥𝑐𝑒𝑠𝑠J = (𝑥. − 𝑥T − 𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝐺 + 𝑥V ∗ 𝐺
Where,

- (𝑥. − 𝑥T − 𝑜𝑓𝑓𝑠𝑒𝑡) ∗ 𝐺 is a public key which only sender knows the private key.
- 𝑥V ∗ 𝐺 is a public key which only receiver knows the private key.

To sign this transaction with 𝑒𝑥𝑐𝑒𝑠𝑠J as the public key, the Simpler Variants of MuSig
interactive signature scheme is used, meaning both the sender and the receiver exchanges the
public key and public nonce info, then executes a MuSig partial signature in both side, then
either the sender or the receiver finally aggregate these two partial signatures to get a final joint
Schnorr signature, which can be verified exactly as a standard Schnorr signature with respect
to a single public key:	𝑒𝑥𝑐𝑒𝑠𝑠J.

Above signature theme for Pedersen commitment input and output in Mimblewimble
require a cooperation between sender and receiver, meaning an interactive signing is
mandatory for making a transaction, which is slow, complex and hard to use for end users,
comparing to those signature schemes which only need one signer.

There were multiple mentions [Lip03, Li12, Pon19] of an extension of Schnorr protocol,
which has a similar security property to Schnorr protocol, for a ZK proof of knowledge of a
Pedersen commitment opening, meaning to prove one knows both the 𝑥 and the 𝑎 of the
commitment 𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻.

2 The New Signature Scheme

2.1 Description

It is an object of this paper to provide methods for blockchains using Pedersen commitment
and for generating signatures that, given essentially the same security guarantees, with any
committed value instead of only 0, enable shorter run time due to more simple procedure, in
comparison to known cryptographic methods.

The new signature scheme, as illustrated in Figure 1, based on Schnorr signature scheme
and denoted as ComSig in all following, is parameterized by group parameters (𝔾, 𝑝, 𝑔, ℎ)
where 𝑝 is a 𝑘-bit integer, 𝔾 is a cyclic group of order 𝑝, and 𝑔 is a generator of 𝔾, and let ℎ
be an element of group 𝔾 such that nobody knows 𝑙𝑜𝑔Yℎ, and by a hash function Hash.

Fig.1. The ComSig signature scheme. The signer produces a signature (𝑅, 𝑢, 𝑣) on message 𝑚,
the verifier gets it to validate.

Key generation. Signer generates a random private key 𝑥	 ∈ 	ℤO and computes the
corresponding public key 𝑋 = 𝑔).

Pedersen commitment. Signer creates a Pedersen commitment to commit the value 𝑎 into,
computes 𝐶 = 𝑔)ℎ+.

Signing. Let 𝑚 be the message to sign. The signer generates two irrelevant random numbers
(𝑘8, 𝑘:) 	∈ 	ℤO, computes a random Pedersen commitment 𝑅 = 𝑔23ℎ24, and computes
 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚),
 𝑢 = 𝑘8 + 𝑒𝑥	𝑚𝑜𝑑	𝑝,
 𝑣 = 𝑘: + 𝑒𝑎	𝑚𝑜𝑑	𝑝,
The signature is 𝜎 = (𝑅, 𝑢, 𝑣).

Verification. Given a Pedersen commitment 𝐶, a message 𝑚, and a signature 𝜎 = (𝑅, 𝑢, 𝑣),
the verifier computes 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚), computes Pedersen commitment 𝑆 = 𝑔?ℎ@ , and
accepts the signature if 𝑆 = 𝑅𝐶A.

Correctness. Correctness is straightforward to verify, thanks to the computationally binding
property of Pedersen commitment scheme, meaning the committer cannot open the
commitment in two different ways unless one can break the ECDLP, i.e. finding the 𝑦 such
that 𝑔\ = ℎ.
Because
 𝑅𝐶A = (𝑔23ℎ24)(𝑔)ℎ+)A = (𝑔23𝑋A)(ℎ24(ℎ+)A)
 𝑙𝑒𝑡	𝐴 = ℎ+
Therefore
 𝑔?ℎ@ = 𝑅𝐶A ⟺ 		𝑔? = 𝑔23𝑋A	𝑎𝑛𝑑	ℎ@ = ℎ24𝐴A
Looking at 	𝑔? = 𝑔23𝑋A, it’s exactly the verification for a partial signature (𝑅8, 𝑢) where 𝑅8 =
𝑔23. And same for ℎ@ = ℎ24𝐴A, which is exactly the verification for a partial signature (𝑅:, 𝑣)
where 𝑅: = ℎ24, when taking ℎ as the another generator of 𝔾.

Since the verification of 𝑔?ℎ@ = 𝑅𝐶A is equivalent to the parallel verification of 𝑔? =
𝑔23𝑋A	𝑎𝑛𝑑	ℎ@ = ℎ24AA at the same time, this ComSig signature is equivalent to two MuSig
partial signatures. Therefore, this ComSig signature scheme has the same security as MuSig
signature scheme.

Because only the Pedersen commitment 𝐶 is open as public data in blockchain, both the

committer’s public key 𝑋 and 𝐴 are hidden, here the verifier cannot execute the MuSig partial
signature verifications.

Note that the ComSig signature verification is similar to standard Schnorr signatures (with
the Pedersen commitment included in the hash call) with respect to the Pedersen commitment
as the public key which nobody knows its private key.

In case of a blockchain transaction is spending multiple UTXOs, the ComSig signature
scheme is still feasible since all the inputs commitment can be aggregated by 𝐶 = ∏ 𝐶Ta

Tb8
where 𝐶T is one input commitment and 𝑛 is the total number of inputs, and using the aggregated
𝑥 and 𝑎 so to keep this aggregated 𝐶 as the form 𝑔)ℎ+:

𝑥 = ∑ 𝑥Ta
Tb8 	𝑚𝑜𝑑	𝑝 ;

𝑎 = ∑ 𝑎Ta
Tb8 	𝑚𝑜𝑑	𝑝 .

where 𝑥T and 𝑎T are from each input commitment 𝐶T = 𝑔)dℎ+d.

2.2 Attacks against De-randomization

De-randomization Signing. The signer must ensure that the same random value is not reused
when signing. Otherwise, anyone can recover this signer’s private key.

Assume Alice, holding a key pair (𝑥, 𝑔)), wants to produce a signature. Alice produces two
random numbers (𝑘8, 𝑘:) 	∈ 	ℤO but unfortunately 𝑘: = 𝑘8, Alice produces

𝑢 = 𝑘8 + 𝑒𝑥	𝑚𝑜𝑑	𝑝,
𝑣 = 𝑘: + 𝑒𝑎	𝑚𝑜𝑑	𝑝,

and get the signature 𝜎 = (𝑅, 𝑢, 𝑣). Then, anyone who gets this signature can now derive
𝑥 = 𝑎 + ?M@

A
	𝑚𝑜𝑑	𝑝.

To avoid this problem, the signer must ensure that the random value changes unpredictably,
or more precisely the generated random values must be irrelevant. Unfortunately, introducing
non-repeating randomness requires a secure random number generator at signing time. It can
be solved by defining (𝑘8, 𝑘:) as two splitting parts of one single random number 𝑘, therefore
it only requires a secure random number generator for one 𝑘 and that’s kept between signing
attempts.

3 Multi-Signatures Scheme

3.1 Description

In case a Pedersen commitment is a combination from two Pedersen commitments, and each
is committed by different committer, the multi-signatures scheme is needed. Let’s use two
committers as the example here, for the case of more committers, the method is similar.

Key generation. Alice generates her random private key 𝑥8 	∈ 	ℤO and computes the
corresponding public key 𝑋8 = 𝑔)3. And Bob also generates his random private key 𝑥: 	∈ 	ℤO
and computes the corresponding public key 𝑋: = 𝑔)4.

Pedersen commitment. Alice creates a Pedersen commitment to commit the value 𝑎8 into,
computes 𝐶8 = 𝑔)3ℎ+3. Bob also creates a Pedersen commitment to commit the value 𝑎: into,
computes 𝐶: = 𝑔)4ℎ+4. And they combine their commitment to get a 𝐶 = 𝐶8𝐶: and use 𝐶 as
the transaction output.

Signing. Alice generates two irrelevant random numbers (𝑘8, 𝑘:) 	∈ 	ℤO, computes a random
Pedersen commitment 𝑅8 = 𝑔23ℎ24. Bob generates two irrelevant random numbers (𝑞8, 𝑞:) 	∈
	ℤO, computes a random Pedersen commitment 𝑅: = 𝑔f3ℎf4. Alice and Bob exchange their
knowledge of 𝑅8, 𝑅: and 𝑋8, 𝑋:, calculate 𝑅 = 𝑅8𝑅: and 𝑋 = 𝑋8𝑋:.
Let 𝑚 be the message to sign.
Alice computes 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚),
 𝑢8 = 𝑘8 + 𝑒𝑥8	𝑚𝑜𝑑	𝑝,
 𝑣8 = 𝑘: + 𝑒𝑎8	𝑚𝑜𝑑	𝑝.
Bob computes 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚),
 𝑢: = 𝑞8 + 𝑒𝑥:	𝑚𝑜𝑑	𝑝,
 𝑣: = 𝑞: + 𝑒𝑎:	𝑚𝑜𝑑	𝑝.
Alice and Bob exchange their (𝑢8, 𝑣8) and (𝑢:, 𝑣:), and calculate the aggregated signature as
𝜎 = (𝑅, 𝑢, 𝑣), where 𝑢 = 𝑢8 + 𝑢: and 𝑣 = 𝑣8 + 𝑣:.

Verification. Given a Pedersen commitment 𝐶, a message 𝑚, and a signature 𝜎 = (𝑅, 𝑢, 𝑣),
the verifier computes 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚), computes Pedersen commitment 𝑆 = 𝑔?ℎ@ , and
accepts the signature if 𝑆 = 𝑅𝐶A.

The final aggregated signature of Alice and Bob is exactly same as a single ComSig
signature, just looks like someone knows a private key 𝑥 such that 𝑥 = 𝑥8 + 𝑥: , and also
knows a 𝑟8 = 𝑘8 + 𝑞8 and a 𝑟: = 𝑘: + 𝑞: such that 𝑅 = 𝑔V3ℎV4. Therefore, as seen above, the
signature verification is exactly same as a single ComSig signature verification.

Correctness.
Because
 𝑅𝐶A = (𝑅8𝑅:)(𝐶8𝐶:)A

									= (𝑔23ℎ24𝑔f3ℎf4)(𝑔)3ℎ+3𝑔)4ℎ+4)A
									= 𝑔23gf3(𝑔)3𝑔)4)Aℎ24gf4(ℎ+3g+4)A
										= 𝑔23gf3𝑋Aℎ24gf4(ℎ+3g+4)A.	
𝑙𝑒𝑡	𝐴 = ℎ+3g+4
𝑙𝑒𝑡	𝑟8 = 𝑘8 + 𝑞8	𝑎𝑛𝑑	𝑟: = 𝑘: + 𝑞:			

Therefore
 𝑔?ℎ@ = 𝑅𝐶A ⟺ 		𝑔? = 𝑔V3𝑋A	𝑎𝑛𝑑	ℎ@ = ℎV4𝐴A

Looking at 	𝑔? = 𝑔V3𝑋A	, it’s exactly the verification for a MuSig aggregated signature (𝑅J, 𝑢)
where 𝑅J = 𝑔V3 and 𝑢 = 𝑢8 + 𝑢:. And same for ℎ@ = ℎV4𝐴A, which is exactly the verification
for an aggregated signature (𝑅", 𝑣) where 𝑅" = ℎV4 and 𝑣 = 𝑣8 + 𝑣: , when taking ℎ as the
another generator of 𝔾.

Since the verification of 𝑔?ℎ@ = 𝑅𝐶A is equivalent to the parallel verification of 	𝑔? =
𝑔V3𝑋A	𝑎𝑛𝑑	ℎ@ = ℎV4AA at the same time, the ComSig multi-signatures is equivalent to two
MuSig multi-signatures. Therefore, the ComSig multi-signatures scheme has the same security
as MuSig multi-signatures scheme. Also, those attacks against simpler variants and de-
randomization in MuSig scheme also applies here.

3.2 Rogue-Key Attack

The attacker can easily give a rogue-key attack on above multi-signature scheme, if he/she use
𝐶: = 𝐶:J𝐶8M8 so that 𝐶 = 𝐶8𝐶: = 𝐶8(𝐶:J𝐶8M8) = 𝐶:J , then the attacker is able to construct a
signature just by self if he/she owns the private keys of 𝐶:J .

Similar as MuSig multi-signatures scheme, the fix solution to this rogue-key attack may use a
weighted aggregated commitment instead of the simple combination, as described below.

- For multiple Pedersen commitment 𝐶T = 𝑔)dℎ+d where 𝑖 ∈ [0. . 𝑛] , 𝑛 is the total
number.

- Each committer shares his/her 𝐶T so as to calculate the 𝐶 = ∑ (𝑓T ∗ 𝐶T)a
Tb8 , where 𝑓T =

𝐻𝑎𝑠ℎ([𝐶8, 𝐶:, … , 𝐶a], 𝐶T).
- Each committer generates and shares one random Pedersen commitment 𝑅T = 𝑔23dℎ24d ,

calculates the combination 𝑅 = ∑ 𝑅Ta
Tb8 , and calculates 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚), where 𝑚

is the signing message.
- Each signer calculates a partial signature (𝑅, 𝑢T, 𝑣T) where 𝑢T = 𝑘8T + 𝑒𝑓T𝑥T	𝑚𝑜𝑑	𝑝 ,

and 𝑣T = 𝑘:T + 𝑒𝑓T𝑎T	𝑚𝑜𝑑	𝑝.
- Combine all partial signatures to get the final signature (𝑅, 𝑢, 𝑣) where 𝑢 = ∑ 𝑢Ta

Tb8
and 𝑣 = ∑ 𝑣Ta

Tb8 .

For signature verification on (𝑅, 𝑢, 𝑣) , calculate the 𝐶 = ∑ (𝑓T ∗ 𝐶T)a
Tb8 where 𝑓T =

𝐻𝑎𝑠ℎ([𝐶8, 𝐶:, … , 𝐶a], 𝐶T), calculate 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚), compute Pedersen commitment 𝑆 =
𝑔?ℎ@, and accept the signature if 𝑆 = 𝑅𝐶A.

3.3 Optimization for Multiple Inputs Single Signer

In case the signing is by one single signer, for example one is spending multiple UTXO which
are owned by him/her self, above multi-signature signing procedure can be simplified, making
use of a single random R instead of multiple, as described below.

- For multiple Pedersen commitment 𝐶T = 𝑔)dℎ+d where 𝑖 ∈ [0. . 𝑛] , 𝑛 is the total
number.

- Calculate 𝐶 = ∑ (𝑓T ∗ 𝐶T)a
Tb8 , where 𝑓T = 𝐻𝑎𝑠ℎ([𝐶8, 𝐶:, … , 𝐶a], 𝐶T).

- Calculate 𝑥 = ∑ (𝑓T ∗ 𝑥T)a
Tb8 and 𝑎 = ∑ (𝑓T ∗ 𝑎T)a

Tb8 .
- Generates a random Pedersen commitment 𝑅 = 𝑔23ℎ24, calculates 𝑒 = 𝐻𝑎𝑠ℎ(𝑅, 𝐶,𝑚),

where 𝑚 is the signing message.
- Calculates signature (𝑅, 𝑢, 𝑣) where 𝑢 = 𝑘8 + 𝑒𝑥	𝑚𝑜𝑑	𝑝, and 𝑣 = 𝑘: + 𝑒𝑎	𝑚𝑜𝑑	𝑝.

4 Applications

This ComSig signature scheme makes it possible to design a blockchain transaction scheme
without an interactive procedure, if the blockchain is using the Pedersen commitment as output,
makes the transaction much faster and easier for end user, since now a single signer can
complete the signature to prove the ownership of a Pedersen commitment output.

Another interesting application of this ComSig signature scheme could be an optional
solution to solve the Bitcoin address reuse issue, which refers to the use of the same address
for multiple transactions and therefore harms the privacy or even likely in violation of
reasonable consumer protection laws. The prior solution is to use deterministic wallets which
make it easy and safe to have many wallet addresses, but obviously it’s not quite convenient
for user to refresh his/her address to the sender and can’t avoid the sender to pay into same
address. With Pay-to-PubkeyHash transaction type in Bitcoin as an example, the original script
is like this:

𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃stu	𝑂𝑃vwxv8yz < 𝑝𝑢𝑏𝐾𝑒𝑦𝐻𝑎𝑠ℎ > 	𝑂𝑃}~tw��}����	𝑂𝑃�v}��x��
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑝𝑢𝑏𝐾𝑒𝑦 >

With this ComSig signature scheme, it can be revised as:
𝑠𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦: 𝑂𝑃stu	𝑂𝑃vwxv8yz < 𝑐𝑜𝑚𝑚𝑖𝑡𝐻𝑎𝑠ℎ > 	𝑂𝑃}~tw��}����	𝑂𝑃�v}��x��
𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔:< 𝑠𝑖𝑔 >	< 𝑐𝑜𝑚𝑚𝑖𝑡 >

then, the Bitcoin address can be freely reused, since the Pedersen commitment hide the actual
Bitcoin address, and only need to let the committed value 𝑎 be a secret for a payment, that
secret can be sent to the transaction receiver by a method outside the blockchain. The pros of
above said solution is the recipient privacy, and the cons are mainly at the ComSig signature
has a bigger size than ECDSA or Schnorr signature, which has a form as (𝑅, 𝑢, 𝑣) instead of
(𝑅, 𝑠) and therefore the 𝑠𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔 will increase the transaction payload size with 32 bytes.

Since the increased 32-bytes payload is not trivial in current Bitcoin transaction, this
ComSig signature scheme is not optimal for Bitcoin, but indeed for the similar transaction-
output-based blockchain system, which is using Pedersen commitment in the transaction output,
for example the Gotts.

Before discussion a possible application in Gotts, I would like to give a short review on an
existing proposal about the non-interactive transaction for Mimblewimble, which was

proposed by ‘GandalfThePink’ (one user of the Grin community) [Gan19]. According to
his/her proposal, a Mimblewimble non-interactive transaction, with for example one single
input and one single output, may be designed as

𝐶+ + 𝑒𝑥𝑐𝑒𝑠𝑠 = 𝐶� + 𝑓𝑒𝑒 ∗ 𝐻
Where

- 𝐶+ = 𝐶+J + 𝑠+ ∗ 𝐺	where 𝐶+J = 𝑣+ ∗ 𝐻 + 𝑘+ ∗ 𝐺 − 𝑠+ ∗ 𝐺, and 𝑘+, 𝑠+ are Alice’s
private keys,

- 𝐶� = 𝐶�J + 𝑠� ∗ 𝐺 where 𝐶�J = 𝑣� ∗ 𝐻 − 𝑠� ∗ 𝐺, and 𝑆� as Bob’s private key with
corresponding public key 𝑃� = 𝑠� ∗ 𝐺, notes that missing ‘𝑘� ∗ 𝐺’ part in 𝐶�J ,

- 𝑣+ = 𝑣� + 𝑓𝑒𝑒, where 𝑓𝑒𝑒 is the transaction fee, and 𝑣+, 𝑣� are the transaction
input/output amounts,

- 𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑠� ∗ 𝐺 − 𝑘+ ∗ 𝐺, which is used as the public excess for signature.
Alice, as the sender who has an UTXO (𝐶+J , 𝑃+), may create this transaction with Bob’s public
key 𝑃�, to produce an output (𝐶�J , 𝑃�) to the chain. And Alice must attach a partial signature
with private key 𝑘+, with respect to the combined public key, meaning the public excess, 𝑠� ∗
𝐺 − 𝑘+ ∗ 𝐺. This is not a valid signature until Bob adds his signature with 𝑠� and aggregates
them, but anyone can verify this partial signature with a public key 𝑃J = 𝑃� − 𝑒𝑥𝑐𝑒𝑠𝑠.

As Gandalf pointed in his document, there are two flaws in above non-interactive
transaction solution. The first one is, Bob’s public key 𝑃� might contain some term
proportional of 𝐻 component, meaning	𝑃� = 𝑂 + 𝑠� ∗ 𝐺 where the overflow part 𝑂 = 𝑣 ∗ 𝐻
with 𝑣 > 0, or creating new money out of the air. The second flaw is the double spent, that
Alice is able to repeatedly spend the input (𝐶+J , 𝑃+). Gandalf solved the first flaw by introducing
the concept of a ‘hanging’ transaction and letting the general chain validation skip the ‘hanging’
outputs. And for second flaw, he proposed to consider an input as spent and record this on the
chain as soon as only signatures to the public keys of the outputs are missing.

For Gandalf’s solution, I doubt the major problem will be that there is no way for Alice to
produce the range proof of output (𝐶�J , 𝑃�) without the knowledge of Bob’s private key 𝑠�,
even if ignoring the aspects of the complexity of the mixing ‘hanging’ transaction with normal
Mimblewimble transaction. Comparing to Grin Mimblewimble interactive transaction solution
with Schnorr signature scheme, this non-interactive transaction solution increases a public key,
48 bytes with a typical BLS signature scheme, to the transaction data, together with the
increased size of BLS signature which typically needs 96 bytes. Therefore, each output will
increase 48 bytes plus each transaction increases 32 bytes.

In Grin privacy transaction, this increased size is trivial since a typical transaction with
single input and double outputs in Grin need about 1.6k bytes. But in Gotts, which removed
the heaviest range proof part, that’s not a trivial size increment, since a typical transaction in
Gotts may be only 250 bytes.

Using the ComSig signature scheme, there should be a very simple non-interactive
transaction solution for Gotts, since there’s no requirement to have the range proof because
Gotts supports the public value instead of the hidden value. In Gotts, a non-interactive
transaction may be defined as:

(𝑥T ∗ 𝐺 + 𝑤T ∗ 𝐻) + 𝑒𝑥𝑐𝑒𝑠𝑠J = (𝑥. ∗ 𝐺 + 𝑤. ∗ 𝐻) + (𝑃V + 𝑤V ∗ 𝐻),
𝑎T = 𝑎. + 𝑎V + 𝑓𝑒𝑒, where 𝑎T, 𝑎., 𝑎V are the amounts; 𝑓𝑒𝑒 is the transaction fee,

Where,
- (𝑥T ∗ 𝐺 + 𝑤T ∗ 𝐻) is the input commitment owned by sender,
- (𝑃V + 𝑤V ∗ 𝐻) is the output commitment for receiver, where 𝑃V = 𝑥V ∗ 𝐺 is

receiver’s public key with 𝑥V as the private key,
- (𝑥. ∗ 𝐺 + 𝑤. ∗ 𝐻) is the change commitment for sender,
- 𝑥T, 𝑥. are the sender’s private keys,

- 𝑤T = 𝑤. + 𝑤V, where 𝑤T, 𝑤., 𝑤V are the random numbers.
The 𝑒𝑥𝑐𝑒𝑠𝑠J is called as “public excess” which is no more the signature public key, and it
consists of:

𝑒𝑥𝑐𝑒𝑠𝑠J = (𝑥. − 𝑥T) ∗ 𝐺 + 𝑃V
Where,

- (𝑥. − 𝑥T) ∗ 𝐺 is a public key which only sender knows the private key,
- 𝑃V is a public key which only receiver knows the private key.

To sign this transaction, with the input commitment (𝑥T ∗ 𝐺 + 𝑤T ∗ 𝐻) as the public key, to
prove the ownership of it, the ComSig signature scheme is used. This completely removes the
interactive communication requirement in Gotts, with the only cost of a bigger signature data,
96 bytes instead of 64 bytes. As an additional data, the 𝑤V must be encoded as 𝑤VJ and attached
to the transaction.

To discuss the security of this non-interactive transaction solution, let’s imagine the
receiver’s public key 𝑃V might contain some term proportional of 𝐻 component, meaning	𝑃V =
𝑥V ∗ 𝐺 + 𝑣 ∗ 𝐻 where 𝑣 > 0. In Gotts, this will never be related to money creation, since the
amount is transparent and separated from the commitment balance equation (𝑥T ∗ 𝐺 + 𝑤T ∗
𝐻) + 𝑒𝑥𝑐𝑒𝑠𝑠J = (𝑥. ∗ 𝐺 + 𝑤. ∗ 𝐻) + (𝑃V + 𝑤V ∗ 𝐻) . Or in other words, this 𝑃V is even
purposely allowed to contain 𝐻 component to protect the receiver’s address privacy.

To encode the 𝑤V, a naive solution may be 𝑤VJ = 𝑤V	𝑋𝑂𝑅	𝐻𝑎𝑠ℎ(𝑃V) if the receiver has a
secured communication channel to tell the sender about this 𝑃V, whereas a more practical and
secure encoding method will be discussed in the Gotts stealth address document.

Reference

Sch90 Claus P. Schnorr. Schnorr Signature. (1990) U.S. Pat. No. 4,995,082.
DCC19 Gregory Maxwell, Andrew Poelstra, Yannick Seurin, Pieter Wuille. Simple Schnorr

multi-signatures with applications to Bitcoin. Des. Codes Cryptogr. (2019) 87:
2139. https://doi.org/10.1007/s10623-019-00608-x.

Ped91 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In Crypt, volume 91, pages 129-140. Springer, 1991.

MD17 Roberto Metere, Changyu Dong. Automated Cryptographic Analysis of the
Pedersen Commitment Scheme. MMM-ACNS 2017. Lecture Notes in Computer
Science, vol 10446.

MRK03 S. Micali, M. Rabin, J. Kilian. Zero-knowledge sets. 44th Annual IEEE Symposium
on Foundations of Computer Science, 2003. Proceedings.

RM17 Tim Ruffing, Giulio Malavolta. (2017) Switch Commitments: A Safety Switch
for Confidential Transactions. In: Brenner M. et al. (eds) Financial Cryptography
and Data Security. FC 2017. Lecture Notes in Computer Science, vol 10323.

Bit08 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
http://bitcoin.org/bitcoin.pdf

MW16 Tom Elvis Jedusor. Mimblewimble. 2016.
https://github.com/mimblewimble/docs/wiki/MimbleWimble-Origin

Gri17 Ignotus Peverell. Introduction to Mimblewimble and Grin. 2017.
https://github.com/mimblewimble/grin/blob/master/doc/intro.md

Lip03 Helger Lipmaa. Cryptography and data security lecture 7: ZK and commitments.
2003. http://www.tcs.hut.fi/Studies/T-79.159/2004/slides/L8.pdf

Li12 Ninghui Li. Cryptography lecture topic 23: Zero-Knowledge Proofs and
Commitment Schemes. 2012.
https://www.cs.purdue.edu/homes/ninghui/courses/555_Spring12/handouts/555_Spr
ing12_topic23.pdf

Pon19 User ‘poncho’. Extension of the Schnorr protocol. 2019.
https://crypto.stackexchange.com/a/67263/54007

Gan19 User ‘GandalfThePink’. BLS signatures in Mimblewimble. 2019.
https://github.com/mimblewimble/grin/files/2905763/MWpp.pdf

