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Abstract. Zero-knowledge proofs and in particular succinct non-inter-
active zero-knowledge proofs (so called zk-SNARKs) are getting increas-
ingly used in real-world applications, with cryptocurrencies being the
prime example. Simulation extractability (SE) is a strong security notion
of zk-SNARKs which informally ensures non-malleability of proofs. This
property is acknowledged as being highly important by leading compa-
nies in this field such as Zcash and supported by various attacks against
the malleability of cryptographic primitives in the past. Another prob-
lematic issue for the practical use of zk-SNARKs is the requirement of
a fully trusted setup, as especially for large-scale decentralized applica-
tions finding a trusted party that runs the setup is practically impossible.
Quite recently, the study of approaches to relax or even remove the trust
in the setup procedure, and in particular subversion as well as updatable
zk-SNARKs (with latter being the most promising approach), has been
initiated and received considerable attention since then. Unfortunately,
so far SE-SNARKs with aforementioned properties are only constructed
in an ad-hoc manner and no generic techniques are available.
In this paper we are interested in such generic techniques and there-
fore firstly revisit the only available lifting technique due to Kosba et
al. (called C∅C∅) to generically obtain SE-SNARKs. By exploring the
design space of many recently proposed SNARK- and STARK-friendly
symmetric-key primitives we thereby achieve significant improvements in
the prover computation and proof size. Unfortunately, the C∅C∅ frame-
work as well as our improved version (called OC∅C∅) is not compatible
with updatable SNARKs. Consequently, we propose a novel generic lift-
ing transformation called Lamassu. It is built using different underlying
ideas compared to C∅C∅ (and OC∅C∅). In contrast to C∅C∅ it only re-
quires key-homomorphic signatures (which allow to shift keys) covering
well studied schemes such as Schnorr or ECDSA. This makes Lamassu
highly interesting, as by using the novel concept of so called updatable
signatures, which we introduce in this paper, we can prove that Lama-
ssu preserves the subversion and in particular updatable properties of
the underlying zk-SNARK. This makes Lamassu the first technique to
also generically obtain SE subversion and updatable SNARKs. As its
performance compares favorably to OC∅C∅, Lamassu is an attractive
alternative that in contrast to OC∅C∅ is only based on well established
cryptographic assumptions.



1 Introduction

Zero-knowledge (ZK) proofs were introduced by Goldwasser, Micali and Rack-
off [GMR85] more than 3 decades ago. They represent a cryptographic proto-
col between two parties called the prover and the verifier, with the goal that
the prover convinces the verifier of the membership of a word x in any lan-
guage in NP without revealing any information about the witness w certifying
language membership of word x. Besides this zero-knowledge property, such a
system needs to provide soundness, i.e., it must be infeasible for the prover to
provide proofs for words outside of the language. While ZK proofs in general
may require many rounds of interaction, a variant highly relevant to practical
applications are non-interactive zero-knowledge (NIZK) proofs [BFM88]. They
require only a single round, i.e., the prover outputs a proof which can then
be verified by anybody. (NI)ZK plays a central role in the theory of cryptog-
raphy and meanwhile increasingly finds its way into practice.3,4,5 Important
applications are electronic voting [SK95, DGS03, Gro10b], anonymous creden-
tials [Cha86, CL01, CL03, CL04, BCC+09, CKL+16, FHS19], and group sig-
natures [Cv91, ACJT00, BBS04, DP06, BCC+16, DS18], including widely de-
ployed schemes such as direct anonymous attestation (DAA) [BCC04, CCD+17]
used in the Trusted Platform Module (TPM) or Intel’s Enhanced Privacy ID
(EPID) [BL09], as well as many other applications that require balancing privacy
and integrity (cf. [FPS+18]). They are also a core building block of verifiable com-
putation [GGP10, GGPR13, PHGR13, BCG+18] and in the increasingly popular
domain of privacy-respecting cryptocurrencies [BCG+14, CGL+17], smart con-
tracts [KMS+16] and self-sovereign identity systems [MGGM18]. Latter arguably
represent the most popular real-world applications of zero-knowledge nowadays,
where it sees deployments in systems such as Zcash, Ethereum or sovrin.

A challenging issue, particularly important in context of blockchains, is that
users need to download and verify the state of the chain. Thus, small proof sizes
and fast verification are important criteria for the practical use of ZK proofs.
These desired features are provided by zero-knowledge Succinct Non-interactive
ARguments of Knowledge (zk-SNARKs)6, which are NIZK proofs in which
proofs as well as the computation of the verifier are succinct and ideally represent
a small constant amount of space and computation respectively. Additionally,
they satisfy a stronger notion of soundness called knowledge soundness, which
guarantees that if an adversarial prover comes up with a proof that is accepted
3 ZKProof (https://zkproof.org/) being the most notable industry and academic
initiative towards a common framework and standards in the field of zero-knowledge
has been founded in 2018.

4 Zero-knowledge proofs are on the rise in Gartners’ Hype Cycle for Privacy 2019,
cf. https://www.gartner.com/en/documents/3947373/hype-cycle-for-privacy-
2019.

5 MIT technology review named zk-SNARKS as one of the “10 Breakthrough Technolo-
gies of 2018” cf. https://www.technologyreview.com/lists/technologies/2018/.

6 We note that we might drop the zk and simply write SNARK occasionally, though
we are always talking about zk-SNARKs.
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by the verifier, then there exists an efficient extractor which given some secret in-
formation can extract the witness. A combined effort of a large number of recent
research works [Gro10a, Lip12, GGPR13, PHGR13, Lip13, DFGK14, Gro16] (to
only mention a few) has made it possible to construct very efficient zk-SNARKs
for both the Boolean and the Arithmetic Circuit-SAT and thus for NP. The
most efficient known approach for constructing zk-SNARKs for the Arithmetic
Circuit-SAT is based on Quadratic Arithmetic Programs (QAPs) [GGPR13],
where the prover builds a set of polynomial equations that are then checked
by the verifier by using a small number of pairings. The current interest in
zk-SNARKs is significant and recently first modular frameworks to efficiently
compose zk-SNARKs [CFQ19] and also first important steps towards realiz-
ing zk-SNARKs from conjectured post-quantum secure assumptions have been
made [GMNO18, BBC+18]. We note that in this work we do not consider re-
cent NIZK proofs that allow larger proof sizes, e.g., logarithmic in the witness
size, such as Bulletproofs [BBB+18] or STARKs [BBHR19] but do not require a
trusted setup. The currently most efficient zk-SNARK for Arithmetic Circuit-
SAT was proposed by Groth [Gro16], who proved it to be knowledge-sound in
the generic bilinear group model. In Groth’s zk-SNARK, a proof consists of only
3 bilinear group elements and the verifier has to check a single pairing equation.

Strong security for zk-SNARKs. For practical applications of NIZKs even
stronger security notions than soundness and knowledge soundness, called sim-
ulation soundness (SS) and simulation knowledge soundness (or simply simu-
lation extractability or SE) [Sah99, Sah01]), are required. Informally, these no-
tions require soundness and knowledge soundness respectively to hold even if
an adversary is allowed to see an arbitrary number of simulated proofs (which
she can obtain adaptively on words of her choice). Firstly, these properties
are important if NIZKs are used within larger cryptographic protocols and
in particular if they are modeled and analyzed in the universal composabil-
ity (UC) framework [Can01], as frequently used in blockchain-related protocols
(e.g., [JKS16, CDD17, KKKZ19, FMMO19] to name a few). Secondly, NIZKs
not satisfying this strong security may face severe threats when used in applica-
tions. Therefore, let us informally recall what this property does. It guarantees
that proofs are non-malleable in a way that one can neither obtain another valid
proof for the same word nor a new proof for a potentially related word from
a given proof. Now, let us assume the typical blockchain setting where proofs
are incorporated into the state of the blockchain via transactions (e.g., as in
Zcash). This means that anyone could take a proof π and obtain from it an-
other new proof π′ for the same word and could advertise it as its own proof
(as π′ 6= π). This is what is often called man-in-the-middle attacks in context of
NIZKs and SNARKs (cf. [GM17]). Even worse, it might be possible to obtain
from a proof π another proof π′ for another word x′ 6= x (in the same language).
For example, if π proves that 100$ are transferred from A to B with transaction
ID = id, π′ might transfer 1000$ from A to B with new ID = id′, which can
be a devastating attack in systems deployed in the real-world. All these prob-
lems are mitigated by the use of simulation-extractable (SE) zk-SNARKs. In
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fact, ECDSA signature malleability already enabled an attack on Bitcoin that
is suspected to have caused a loss of over $ 30 million.7 Therefore, to avoid such
attacks in zk-SNARKs based cryptocurrencies, non-malleability of the proofs is
of utmost importance.

Simulation soundness and simulation extractability can be added generically
to any NIZK. Compilers for the former are usually inspired by [Sah01, Gro06]
and basically use the idea of extending the language to an OR language where
the trapdoor for the OR part can be used to simulate proofs. Extractability
can be obtained by additionally encrypting the witness under a public key
in the common reference string (CRS) and prove correct encryption [DP92].
The most prominent compiler that exactly follows the ideas outlined before is
the C∅C∅ framework [KZM+15] (e.g., used in [AB19, Bag19] and most promi-
nently in the celebrated Hawk paper [KMS+16]). In addition to generic com-
pilers, Groth and Maller in [GM17] initiated the study of ad-hoc constructions
of SE zk-SNARKs. This work continued in [BG18] by extending Groth’s zk-
SNARK [Gro16] in a non black-box way to obtain SE. There is also other recent
work in this direction proposing other ad-hoc zk-SNARKs with these properties
(cf. [KLO19, Lip19]). Beyond the C∅C∅ framework, which, given the progress in
the field of SNARKs (such as universal CRS) and SNARK-friendly primitives,
is already quite outdated, there is no work towards lifting zk-SNARKs to SE
zk-SNARKs generically.

Trust in CRS generation. Another important aspect for practical applica-
tions of zk-SNARKs is the question of the generation of the required common
reference string (CRS) [BFM88], a structured random string available to the
prover and the verifier. While the CRS model is widely accepted, one has to be
very careful to ensure that the CRS has been created honestly, meaning that
no one knows the associated trapdoor which allows to break zero-knowledge or
soundness. In theory, it is simply assumed that some trusted party will per-
form the CRS generation, but such a party is hard to find in the real-world.
After the Snowden revelations, there has been a recent surge of interest in con-
structing cryptographic primitives and protocols secure against active subversion
and the CRS generation is exactly one of those processes where subversion can
happen. In [BFS16], Bellare, Fuchsbauer and Scafuro tackled this problem for
NIZK proofs by studying how much security one can still achieve when the
CRS generator cannot be trusted. They proved several negative and positive
results. In particular, they showed that it is impossible to achieve subversion
soundness and (even non-subversion) zero knowledge simultaneously. However,
subversion zero-knowledge can be achieved. Later, this notion has also be con-
sidered for SNARKs [ABLZ17, Fuc18] and used within practical applications
in cryptocurrencies [CGGN17, Fuc19]. For deployed systems such as Zcash and
Ethereum, instead of building them on top of subversion-resistant zk-SNARKs,
they followed an alternative route to reduce the trust put in the CRS genera-

7 https://www.coindesk.com/study-finds-mt-gox-lost-386-bitcoins-due-
transaction-malleability
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tion. Following a generic method to implement the CRS generation within a se-
cure multi-party computation (MPC) protocol [BCG+15], the CRS for Pinoccio
zk-SNARKs [PHGR13] was generated in a large “ceremony” [BGG19]. Coinci-
dentally, they end up with a subversion-resistant zk-SNARK with a polynomial
error even in the case where all parties are corrupted, and subversion soundness
as long as at least one party is honest. While this is an important achieve-
ment, MPC protocols for such tasks in practice are complicated and expensive
procedures, requiring much effort besides the technical realization. Thus, more
practical solutions are desirable.

Quite recently, to overcome this problem Groth et al. [GKM+18] proposed the
notion of a so-called updatable CRS, where everyone can update a CRS and there
is a way to check correctness of an update. Here, zero-knowledge holds in front of
a malicious CRS generator and the verifier can trust the CRS (soundness holds)
as long as one operation, either the creation of the CRS or one update, have
been performed honestly. So the verifier could perform this update operation on
its own and then send the CRS to the prover. This updatable setting thus seems
much more practical than using MPC protocols, it is more promising than the
subversion setting (as it overcomes the impossibility of subversion soundness),
and thus has recently attracted lots of researchers studying approaches to realize
updatable zk-SNARKs (cf. [MBKM19, GR19, KLO19, CHM+19]).

1.1 Our Contributions

Below we summarize the contributions of our work.

Revisiting C∅C∅. We revisit the C∅C∅ lifting technique [KZM+15] to gener-
ically obtain SE-SNARKs from SNARKs, which is prominently used within
Hawk [KMS+16]. First, we discuss the concrete instantiation in [KZM+15] and
point to efficiency problems and problems regarding provable security of this in-
stantiation. Then, we extensively investigate alternative provably secure instan-
tiations of their techniques by exploring the design space of many recently pro-
posed SNARK- and STARK-friendly symmetric primitives including the most
recent proposals Poseidon [GKK+19] as well as Vision and Rescue [AABS+19].
As these primitives are, however, all very recent and their cryptanalysis ei-
ther still needs to start or has only recently started [ACG+19, LP19, Bon19,
BBUV19], confidence in their proposed security is far from certain. Neverthe-
less, we provide concrete recommendations for the selection of primitives and
provide lower bounds for their efficiency based on the currently available pa-
rameters. Additionally, we also propose a more conservative instantiation based
on LowMC [ARS+15], which is the oldest of these proposals and has already
received independent cryptanalysis [DEM16, BDD+15, DLMW15, RST18]. In
comparison to the original C∅C∅ framework, with our revisited C∅C∅ framework
(dubbed OC∅C∅) we obtain an improvement by a factor 10.4x in the number of
rank-1 constraints with a conservative choice of symmetric primitives, whereas
the most aggressive choice yields an improvement by up to a factor 55.4x.

A new framework. As the symmetric primitives underlying the efficiency gain
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of OC∅C∅ are very recent and the confidence in them might not yet be strong
enough, we propose an alternative framework for lifting SNARKs to SE-SNARKs
that is based on completely different cryptographic primitives. In particular, it
is based on the ideas of Derler and Slamanig [DS19] using the notion of key-
homomorphic signatures and thus only requires signature schemes. Our com-
piler, which we dub Lamassu, allows instantiations based on well studied and
widely used signature schemes such as ECDSA or EC-Schnorr. Also for Lama-
ssu we provide concrete choices for the primitives and an extensive comparison
with ad-hoc constructions. We show that Lamassu yields efficient instantiations
that compared to OC∅C∅ only needs 200 rank-1 constraints more than the most
aggressive choice using the most efficient SNARK-friendly primitive Poseidon in
this setting. For all other choices of SNARK-friendly symmetric-key primitives,
Lamassu beats them in the number of constraints and outperforms OC∅C∅ by
a factor of up to 4.2x. Considering that EC-Schnorr and ECDSA signatures
are well established primitives, and that the confidence in their security is far
bigger than all the recent SNARK/STARK-friendly primitives, this additional
confidence comes at only a very small cost and makes Lamassu an attractive
alternative to C∅C∅.
Subversion and updatable CRS. C∅C∅ as well as OC∅C∅ do not support lift-
ing of subversion or updatable CRS zk-SNARKs to SE subversion or updatable
SNARKs. While for the case of subversion zero-knowledge, Baghery in indepen-
dent work [Bag19] shows that using a part of the C∅C∅ framework (without the
encryption of the witness) it is possible to preserve the subversion zero-knowledge
property, the case of zk-SNARKS with updatable CRS is more problematic. In
particular, the C∅C∅ and OC∅C∅ frameworks cannot be easily made updatable
due to the missing algebraic structure in the used primitives, i.e., (hash) com-
mitments.8 Fortunately, Lamassu does not suffer from this problem and we can
show that when basing Lamassu on the novel notion of updatable signatures –
which we introduce in this paper and which seems to be of independent interest
– instead of key-homomorphic signatures, we are able to prove that the property
of updatability is preserved if the underlying zk-SNARK possesses this prop-
erty, i.e., is updatable. Interestingly, updatable signatures can be constructed
from key-homomorphic signatures with some additional natural properties and
we show that we can construct updatable signatures from widely used signatures
such as EC-Schnorr signatures when instantiated in bilinear groups. Moreover,
we also prove that Lamassu preserves subversion of the underlying SNARK.
Consequently, when starting from an subversion/updatable zk-SNARK, Lama-
ssu yields SE subversion/updatable SNARKs. This makes Lamassu the first
framework that allows to generically lift updatable zk-SNARKs to SE updat-
able SNARKs using well established cryptographic primitives.

8 Even using the C∅C∅ framework with commitments that have enough algebraic
structure, i.e., use of exponential ElGamal or Pedersen commitments, does not seem
to yield updatability. And even if it would work, it would be less efficient than
Lamassu.
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2 Preliminaries

2.1 Pseudorandom Functions

We recall the standard notion of pseudorandom functions.

Definition 1 (PRF). Let f : S ×D → R be a family of functions and let Γ be
the set of all functions D → R. f is a pseudorandom function (PRF) (family) if
it is efficiently computable and for all PPT distinguishers D such that∣∣∣Pr

[
s←$S,Dfs(·)(1κ)

]
− Pr

[
g←$Γ,Dg(·)(1κ)

]∣∣∣ ≈λ 0.

2.2 X-SNARK

In the following we provide a formal definition of SNARKs (cf. Appendix A.1
for the basic definition of NIZK proofs).

Definition 2 (SNARK). A non-interactive system Π is a succinct non-in-
teractive argument of knowledge (SNARK) for relation generator RGen if it is
complete and knowledge sound, and moreover succinct, meaning that for all λ, all
(R, auxR) ∈ image(RGen(1λ)), all crs ← KGen(R, auxR), all (x, w) ∈ R and all
proofs π ← P(R, auxR, crs, x, w) we have |π| = poly(λ) and V(R, auxR, crs, x, π)
runs in time polynomial in λ+ |x|. Π is a zk-SNARK if it additionally satisfies
zero-knowledge and an SE (zk-)SNARK if instead of knowledge soundness it
provides strong simulation extractability.

We adopt the (SE) X-SNARK definitions from [ABLZ17, Fuc18, GKM+18]
where X ∈ {trusted, subverted, updatable}. In other words, besides considering
the standard setting with a trusted CRS generation, we also capture the sub-
version and updatable CRS setting. Trusted means generated by a trusted third
party, or even a more general MPC protocol, subverted means that the setup
generator gets the CRS from the adversary and uses it after checking that it
is well formed, and, updatable means that an adversary can adaptively gener-
ate sequences of CRSs and arbitrarily interleave its own malicious updates into
them. The only constraints on the final CRS are that it is well formed and that
at least one honest participant has contributed to it by providing an update.

A X-SNARK Π = (KGen,Ucrs,Vcrs,P,V) for RGen consists of the following
PPT algorithms (it contains Vcrs when X = subverted and contains Ucrs and
Vcrs when X = update):

KGencrs(R, auxR) : On input (R, auxR) ∈ image(RGen(1λ)), outputs CRS crs

and trapdoor tc.
Ucrs(R, crs) : On input (R, crs) outputs (crsup, ζup) where crsup is the up-

dated CRS and ζup is a proof for the correctness of the updating procedure.
Vcrs(R, auxR, crs, ζ) : On input (R, auxR, crs, ζ), returns either 0 (the CRS is

ill-formed) or 1 (the CRS is well-formed).
P(R, auxR, crs, x, w) : On input (R, auxR, crs, x, w), where (x, w) ∈ R, output a

proof π.
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V(R, auxR, crs, x, π) : On input (R, auxR, crs, x, π), returns either 0 (reject) or
1 (accept).

Sim(R, auxR, crs, tc, x) : In input (R, auxR, crs, tc, x), outputs a simulated proof
π.

Definition 3. Let Π = (KGencrs,Ucrs,Vcrs,P,V) be a non-interactive argument
for the relation R. Then the argument Π is X-secure for X ∈ {trusted, subverted,
updatable}, if it satisfies the following properties:

X-Completeness. Π is complete for RGen, if for all λ, (x, w) ∈ R, and PPT
algorithms A,

Pr

(R, auxR)← RGen(1λ), (crs, tc, ζ)← A(R, auxR),

1← Vcrs(R, auxR, crs, ζ) :

V(R, auxR, crs, x,P(R, auxR, crs, x, w)) = 1

 =λ 1.

Where ζ is a proof for the correctness of the generating (or updating) the
CRS. If X = trusted then A is KGencrs and ζ = ⊥ and A is adversary A
otherwise.

X-Strong simulation extractability. For X ∈ {trusted, subverted}, Π is strong
simulation extractable for RGen, if for every PPT A, there exists a PPT ex-
tractor ExtA, s.t. ∀ λ,

Pr



(R, auxR)← RGen(1λ),

(crs, tc)← KGencrs(R, auxR), ωA←$RND(A),

(x, π)← AO(·)(R, auxR, crs;ωA),

w← ExtA(R, auxR, crs;ωA) :

(x, π) 6∈ Q ∧ (x, w) 6∈ R ∧
V(R, auxR, crs, x, π) = 1


≈λ 0.

Here, O(x) returns π := Sim(R, auxR, crs, tc, x) and keeps track of all queries
and the result, (x, π), via Q. For X = updatable, Π is strong simulation ex-
tractable for RGen, if for every PPT A and any subverter Z, there exists a
PPT extractor ExtA, s.t. ∀ λ,

Pr



(R, auxR)← RGen(1λ),

(crs, tc)← KGencrs(R, auxR)

ωZ←$RND(Z),

(crsup, ζup, auxZ)← Z(crs,{ζi}i=ni=1 , ωZ),

if Vcrs(crs,{ζi}i=ni=1 ) = 0 then return 0,

ωA←$RND(A),

(x, π)← AO(·)(R, auxR, crsup, auxZ;ωA),

w← ExtA(R, auxR, crsup, auxZ;ωA) :

(x, π) 6∈ Q ∧ (x, w) 6∈ R ∧
V(R, auxR, crsup, x, π) = 1



≈λ 0.
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Here RND(Z) = RND(A) and ζ is a proof for the correctness of the updating
procedure. O(x) returns π := Sim(R, auxR, crs, tc, x) and keeps track of all
queried (x, π) via Q. Note that Z can also first generate crs and then an
honest updater updates it and outputs crsup.

X-Zero-knowledge. For X = trusted, Π is statistically unbounded ZK for
RGen [Gro06], if for all λ, all (R, auxR) ∈ im(RGen(1λ)), and all computa-
tionally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr
[
(crs, tc)← KGencrs(R, auxR) : AOb(·,·)(R, auxR, crs) = 1

]
.

Here, the oracle O0(x, w) returns ⊥ (reject) if (x, w) 6∈ R, and otherwise it
returns P(R, auxR, crs, x, w). Similarly, O1(x, w) returns ⊥ (reject) if (x, w) 6∈
R, and otherwise it returns Sim(R, auxR, crs, tc, x). Π is perfectly unbounded
ZK for RGen if one requires that εunb0 = εunb1 .
For X ∈ {subverted, updatable}, Π is statistically unbounded X-ZK for
RGen [ABLZ17, Fuc18, GKM+18], if for any PPT Z there exists a PPT
ExtZ, such that for all λ, (R, auxR) ∈ im(RGen(1λ)), and computationally
unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr

ωZ←$RND(Z), (crs, ζ, auxZ)← Z(R, auxR;ωZ),

tc← ExtZ(R, auxR;ωZ) :

Vcrs(R, auxR, crs, ζ) = 1 ∧ AOb(·,·)(R, auxR, crs, tc, auxZ) = 1

.
Here RND(Z) = RND(A), the oracle O0(x, w) returns ⊥ (reject) if (x, w) 6∈ R,
and otherwise it returns P(R, auxR, crs, x, w). Similarly, O1(x, w) returns ⊥
(reject) if (x, w) 6∈ R, and otherwise it returns Sim(R, auxR, crs, tc, x). Π is
perfectly unbounded X-ZK for RGen if one requires that εunb0 = εunb1 .

In all of the above properties, auxR can be seen as a common auxiliary input to
algorithm A that is generated by using a benign [BCPR14] relation generator; we
recall that we just think of auxR as being the description of a bilinear group.

We note that what is called strong simulation-sound extractability in this work
(in order to be consistent with [KZM+15]) is often simply called simulation-
sound extractability (e.g., in [DS19] which will be the basis for the Lamassu
framework). For completeness, quadratic arithmetic programs and rank 1 con-
straint systems are discussed in Appendix A.2

2.3 Signature Schemes

A signature scheme Σ = (KGen,Sign,Verify) consists of the following PPT algo-
rithms:

KGen(1κ) : On input security parameter κ it outputs a signing key sk and a
verification key pk with associated message spaceM.

Sign(sk,m) : On input a secret key sk and a message m ∈ M it outputs a
signature σ.
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Verify(pk,m, σ) : On input a public key pk, a message m ∈ M and a signature
σ it outputs a bit b ∈ {0, 1}.

We note that for a signature scheme many independently generated public keys
may be with respect to the same parameters PP, e.g., some elliptic curve group pa-
rameters. In such a case we use an additional algorithm PGen and PP← PGen(1κ)
is then given to KGen. We assume that a signature scheme satisfies the usual
(perfect) correctness notion. Below, we present the standard existential unforge-
ability under adaptively chosen message attacks (EUF-CMA security) notion.

Definition 4 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all
PPT adversaries A

Pr

[
(sk, pk)← KGen(1κ), (m?, σ?)← ASign(sk,·)(pk) :

Verify(pk,m?, σ?) = 1 ∧ m? /∈ QSign

]
≈λ 0,

where the environment keeps track of the queries to the signing oracle via QSign.

For our compiler we also require one-time signature schemes that are sEUF-CMA
secure (also called sOTS schemes).

Definition 5 (Strong One-Time Signature Scheme). A strong one-time
signature scheme ΣOT is a signature scheme Σ which satisfies the following
unforgeability notion: For all PPT adversaries A

Pr

[
(sk, pk)← KGen(1κ), (m?, σ?)← ASign(sk,·)(pk) :

Verify(pk,m?, σ?) = 1 ∧ (m?, σ?) /∈ QSign

]
≈λ 0,

where the oracle Sign(sk,m) := Σ.Sign(sk,m) can only be called once.

2.4 Key-Homomorphic Signatures

We recall relevant parts of the definitional framework of key-homomorphic sig-
natures as introduced in [DS19]. Therefore, let Σ = (KGen,Sign,Verify) be a
signature scheme and the secret and public key elements live in groups (H,+)
and (E, ·), respectively. For these two groups is is required that group operations,
inversions, membership testing as well as sampling from the uniform distribution
are efficient.

Definition 6 (Secret Key to Public Key Homomorphism). A signature
scheme Σ provides a secret key to public key homomorphism, if there exists an
efficiently computable map µ : H → E such that for all sk, sk′ ∈ H it holds that
µ(sk+ sk′) = µ(sk) ·µ(sk′), and for all (sk, pk)← KGen, it holds that pk = µ(sk).

In the discrete logarithm setting, it is usually the case sk← Zp and pk = gsk with
g being the generator of some group G of prime order p, e.g., for EdDSA/ECDSA
or EC-Schnorr signatures (cf. [DS19] for a detailed exposition).
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Definition 7 (Key-Homomorphic Signatures). A signature scheme is called
key-homomorphic, if it provides a secret key to public key homomorphism and
an additional PPT algorithm Adapt, defined as:
Adapt(pk,m, σ,∆) : Given a public key pk, a message m, a signature σ, and a

shift amount ∆ outputs a public key pk′ and a signature σ′,

such that for all ∆ ∈ H and all (pk, sk) ← KGen(1κ), all messages m ∈ M and
all σ ← Sign(sk,m) and (pk′, σ′)← Adapt(pk,m, σ,∆) it holds that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

The following notion covers whether adapted signatures look like freshly gen-
erated signatures, where we do not need the strongest notion in [DS19], which
requires this to hold even if the initial signature used in Adapt is known.
Definition 8 (Adaptability of Signatures). A key-homomorphic signature
scheme provides adaptability of signatures, if for every κ ∈ N and every message
m ∈M, it holds that

[(sk, pk),Adapt(pk,m,Sign(sk,m), ∆)],

where (sk, pk)← KGen(1κ), ∆← H, and

[(sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk +∆,m)))],

where sk← H, ∆← H, are identically distributed.
For illustration purposes we will use the Schnorr signature scheme [Sch90], which
is very popular in the blockchain and distributed ledger domain, and whose
adaption notion we discuss in Appendix A.4.

2.5 The C∅C∅ Framework

Kosba et al. [KZM+15] proposed lifting transformations for SNARKs in three
different versions basic, improved lifting, and the strengthening lifting. We only
consider the strongest version which lifts a SNARK to a strongly simulation
extractable (SE) SNARK. In particular, their construction, which we recall in
Fig. 1, transforms any NIZK Π to one that satisfies SE. Given a language L with
NP relation RL, let L′ be s.t. {(x, c, µ, pkOT, pke, ρ), (w, r1, r0, s0)} ∈ RL′ iff:

c = Ω.Enc(pke, w; r1)∧ ((x, w) ∈ RL ∨

(µ = fs0(pkOT) ∧ ρ = Commit(s0; r0))) ,
(1)

where pke is the public key of a public key encryption scheme Ω (cf. Ap-
pendix A.3) and pkOT is the verification key of a strong OTS scheme ΣOT.
Note that extraction is defined here with respect to a black-box extractor (i.e.,
decrypting to obtain the witness), which Kosba et al. [KZM+15] do to support
UC-security. If this is not required, then one can use the non black-box extrac-
tor of the underlying SNARK and simplify the language L′ by removing the
part in the gray box , which we will do subsequently (cf. [Bag19] for a formal
treatment). In this case, C∅C∅ retains subversion resistance of the underlying
SNARK.
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KGencrs(1
λ,L)

- Π.crs← Π.KGen; (pke, ske)← Ω.KGen(1λ);
- tc← (s0, r0)←$ {0, 1}λ; ρ← Commit(s0; r0);
- return (crs := (Π.crs, pke, ρ), tcext := ske)

P(crs, x, w)

- (pkOT, skOT)← ΣOT.KGen(1λ); r1, z0, z1, z2 ←$ {0, 1}λ;
- c = Ω.Enc(pke, w; r1);µ← z0;
- πΠ ← Π.P(Π.crs, (x, c, pke, pkOT, µ, ρ), (w, r1, z1, z2));
- σOT ← ΣOT.Sign(skOT, (x, c, µ, πΠ));
- return π := (c, µ, πΠ, pkOT, σOT);

V(crs, x, π)

- if ΣOT.Verify(pkOT, (x, c, µ, πΠ, σOT)) = 0
- ∨Π.V(Π.crs, x, c, µ, pke, pkOT, ρ, πΠ) = 0
- then return 0 else return 1;

Sim(crs, x, tc)

- (pkOT, skOT)← ΣOT.KGen(1λ);µ = fs0(pkOT);
- r1, z3 ←$ {0, 1}λ; c← Ω.Enc(pke, z3; r1); w← z3;
- πΠ ← Π.P(Π.crs, (x, c, pke, pkOT, µ, ρ), (w, r1, r0, s0));
- σOT ← ΣOT.Sign(skOT, (x, c, µ, πΠ));
- return π = (c, µ, πΠ, pkOT, σOT);

Ext(crs, x, π, tcext)

- return w← Ω.Dec(tcext, c);

Fig. 1. The strong version of the C∅C∅ transformation.

3 Lifting Transformations for SE (Subversion/Updatable)
SNARKs

In this section we first revisit the C∅C∅ framework and then present a different
novel transformation which we call Lamassu.

3.1 Revisiting the C∅C∅ Framework

We will now revisit the most efficient version of the C∅C∅ framework based on a
commitment and PRF evaluation (Equation (1) without the gray box). Kosba et
al. [KZM+15] proposed to instantiate the commitment and the PRF using hash
functions, and in particular SHA-256. Similarly, the commitment is instantiated
as hash commitment using the same hash function. With the development of
SNARK/STARK-friendly primitives soon after the introduction of the C∅C∅
framework, we observe that this choice is non-optimal from an efficiency point
of view. Moreover, the choice of the commitment is also problematic in a different
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sense, because the specific commitment used in C∅C∅ is secure in the random
oracle model (ROM). Since this implies that statements need to be proven with
respect to the preimage of a random oracle, instantiating the framework in a
provable secure way is not possible. Consequently, we discuss an alternative
approach to commit to the PRF key. Our approach can be instantiated in a
provably secure way and, on top of that, is also more efficient while still relying
on symmetric-key primitives only.

The problem in the symmetric setting is to find efficient binding commit-
ments. The signature scheme construction in [DOR+16] based on the Bellare-
Goldwasser paradigm [BG90] also needs to “commit” to a PRF key. There, sig-
natures consists of a simulation extractable NIZK proof of a PRF key, where
the PRF is built from symmetric-key primitives. The standard notion of PRF
security, however, does not immediately imply any binding property on the key.
Therefore, the construction relies on a computational fixed-valued-key-binding
PRF [CMR98, Fis99], i.e., a PRF f with the additional property that there ex-
ists a β such that for a PRF key s and given y = fs(β) it is hard to provide a
second PRF key s′, s 6= s′, satisfying y = fs′(β):

Definition 9 (Computational Fixed-Value-Key-Binding PRF). A PRF
family f : S × D → R is computationally key-binding if there exists a special
value β ∈ D so that it holds for all adversaries A that:

Pr
[
s←$S, s′ ← Afs(·)(fs(β), β) : fs′(β) = Fs(β)

]
≈λ 0.

Extending the public key with the PRF evaluation at β and proving its well-
formedness is then sufficient to “commit” to the PRF key.9

For C∅C∅, we can apply the same idea: we replace the commitment to the
PRF key with the evaluation of the PRF at β and adapt the language accord-
ingly. That is, for the construction depicted in Fig. 110, let the language L′ be
such that {(x, µ, pkOT, ρ, β), (w, s0)} ∈ RL′ if and only if:{

(x, w) ∈ RL ∨ (µ = fs0(pkOT) ∧ ρ = fs0(β))
}
.

We denote the C∅C∅ framework using the language L′ as Optimized C∅C∅, or
OC∅C∅ for short. For the security proofs (Theorem 2 and Theorem 3 in [Bag19]),
we note for each game change based on computational hiding of the commitment,
we now use the PRF property and replace them with the evaluation of a random
function (Lemma 4). For the step relying on the commitment scheme’s binding
property (Lemma 2), one can now argue the uniqueness of the PRF key using the
fixed-value-key-binding property of the PRF. Therefore, we obtain the following
corollary:

Corollary 1. If the underlying NIZK scheme satisfies perfect completeness, knowl-
edge soundness, subversion zero-knowledge, the PRF is secure and computation-
ally fixed-value-key-binding, and the one-time signature is sEUF-CMA secure,
9 Similarly, [DRS18] employs the same idea to commit to a PRF key.

10 Now, one will use the non black-box extractor of the underlying NIZK instead of the
black-box extractor Ext from Fig. 1.
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then OC∅C∅ is a zero-knowledge proof system satisfying perfect completeness,
subversion zero-knowledge, and strong simulation extractability.

Instantiating the OC∅C∅ Framework When instantiating the original C∅C∅ frame-
work or OC∅C∅ based on our modifications, SHA-256 as well as any other variant
of the SHA2 family or the SHA3 family are non-optimal choices from a efficiency
point of view. Indeed, representing the SHA-256 compression function as R1CS
requires 22,272 constraints [CGGN17]. The permutation used in SHA3 is even
more expensive with 38,400 constraints [AGR+16]. Recent lines of work specif-
ically designed block ciphers and hash functions that work especially well in
the context of SNARKs. These include MiMC [AGR+16], GMiMC [AGP+19],
Poseidon [GKK+19], Friday [AD18], Vision and Rescue [AABS+19], which all
were specifically designed with SNARK/STARK-based applications in mind. We
however want to note that these designs are all relatively young and were not
available at the time C∅C∅ was proposed.

Since those designs are all very recent, their cryptanalysis is still ongoing.
Friday suffers from a Gröbner-basis attack [ACG+19], the key schedule of some
variants of MiMC can be attacked using an interpolation attack [LP19] and they
also suffer from a collision attack [Bon19], which can also be applied to some
variants of GMiMC. Notably, the designs also received some interest as part of
a hash collision challenge for STARK-friendly designs,11 where collisions have
been found for low-security instances already. Therefore, we will only include
instances in our evaluation that – to the best of our knowledge – have not been
broken so far.

Even though these symmetric primitives are designed for SNARKs, they often
run into practical problems. For instance, one of the popular choices for instanti-
ating SNARKs is the pairing-friendly BLS-38112 curve. However, its group order
q does not match MiMC’s and GMiMC’s requirement coming from the choice
of x 7→ x3 as Sbox that gcd(q − 1, 3) = 1. Additionally, MiMC operates in large
prime fields, requiring one to emulate the required fields on top of Fq. The latter
issue is solved by GMiMC working over smaller fields, but the order requirement
is still an issue. Poseidon, which allows one to choose x 7→ x5 as Sbox meaning
that gcd(q − 1, 5) = 1 needs to be satisfied, fixes both problems and can be
directly implemented in Fq arithmetic. Similarly, Rescue faces similar issues as
the Sboxes used there are x 7→ xα and x 7→ x

1/α. Hence, for the specific choice
of BLS-381 this would imply α = 5. Vision, on the other hand, is specified over
a binary field and can thus also not be directly implemented in Fq arithmetic.

Additionally, the signature scheme Picnic [CDG+17] demonstrated that
LowMC [ARS+15], initially designed for secure multiparty computation and
fully homomorphic encryption scenarios, performs well enough in the context
of NIZKs. We consider LowMC in our evaluation as the conservative choice
of SNARK-friendly primitives, since it has seen some rounds of cryptanaly-

11 https://starkware.co/hash-challenge/
12 https://electriccoin.co/blog/new-snark-curve/
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sis [DEM16, DLMW15] and corresponding updates to the round formula [RST18],
and additionally gained some attention in terms of efficient implementations [DKP+19].

Evaluation In Table 1 we evaluate a variety of SNARK-friendly primitives to-
gether with the SHA2 and SHA3 families of hash functions. Our evaluation
focuses on the provable secure version using fixed-value-key-binding PRFs as
discussed above with a PRF having 256 bit keys, inputs and outputs. The num-
ber of constraints are computed according to the formulas given in the respec-
tive works. We consider MiMC-(N,R), GMiMC-(N, t,R) with the expanding
round function (ERF) construction, Poseidon-(N, t,Rf , Rp) with x 7→ x5 as
SBox, Rescue-(N, t,R) with x 7→ x5 and x 7→ x

1/5, Vision-(N, t,R), and
LowMC-(N, k,m,R), where N denotes the block size, t the number of branches,
R the number of rounds, Rf and Rp the number of full and partial rounds, k
the key size and m the number of Sboxes. Where possible, we selected instances
compatible with the field induced by BLS-381, i.e., for Poseidon and Rescue.
The table also provides various different PRF constructions. Where possible, we
use a Sponge-based approach [BDPV08] akin to SHAKE256. For LowMC, we
also consider a feed-forward PRF built as fs(x) = E(s, x) ⊕ x where E denotes
the encryption of a block. In the case of SHA256, we consider three variants
that can partly also be observed in practice – directly using the HMAC output
as PRF and the one from TLS 1.2 [DR08]. Regardless of the concrete choice,
even the rather expensive SHAKE256 PRF is a better choice than any of the
SHA256-based ones.

We stress that the numbers in Table 1 should be treated as lower bounds.
One the one hand, as the security analysis of these primitives evolves, the rather
aggressive choice of round numbers may need to be increased. Considering that
the STARK-friendly hash challenge was almost immediately solved for the low
security instances of MiMC, GMiMC and Poseidon, we expect those numbers to
grow. On the other hand, for some of the instantiations it might not be imme-
diately clear if they actually provide the fixed-value-key-binding property. For
a very conservative instantiation, one could fallback to the tree-based approach
by Fischlin [Fis99], which would be even more expensive, since then every PRF
evaluation would internally call the PRF multiple times.

Other Important Remarks Furthermore, beside more efficient instantiations than
within the original C∅C∅ framework, our approach based on fixed-value-key-
binding PRFs also circumvents another issue in concrete instantiations. Hash
commitments can only be proven secure in the ROM, which would require to
prove preimages of a random oracle. Hence, the construction is impossible to
properly instantiate with provable security guarantees. In any case, the choice
of a commitment based on symmetric primitive comes with other drawbacks as
well. Since such a commitment lacks any useful algebraic structure, it is not
obvious how to obtain SE updatable SNARKs.

Efficiency-wise, we also want to note that using Groth’s sOTS (as proposed
in this paper) or Boneh-Boyen signatures [BB04] (as proposed in other instanti-
ations of C∅C∅ [AB19, Bag19]) would be more a natural choice than RSA-PSS
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as sOTS (as proposed in the original C∅C∅ framework [KZM+15]), in particular
when considering the underlying SNARKs already rely on discrete logarithm
assumptions (in bilinear groups).

Putting everything together, instantiating the C∅C∅ or OC∅C∅ framework
with concrete symmetric primitives is non-trivial and comes with some limita-
tions. Subsequently, we will propose an alternative framework Lamassu, which
comes with the same cost as the most aggressive choice of symmetric-key prim-
itive and in contrast to C∅C∅ also provides SE updatable SNARKs.

3.2 The Lamassu Framework

Subsequently, we introduce the Lamassu framework, which builds upon the re-
cent compiler to obtain SE-NIZK proposed in [DS19]. However, we want to stress
that we cannot directly use their compiler in order to construct SE updatable
SNARKs and this requires non-trivial changes. The ingredients of their construc-
tion is to use a combination of an EUF-CMA secure adaptable key-homomorphic
signature scheme Σ (EC-Schnorr or ECDSA are prime candidate for pairing
based SNARKs) and a strongly unforgeable one-time signature (sOTS) scheme
ΣOT (Groth’s sOTS under the discrete logarithm assumption is a prime candi-
date) to add the required non-malleability guarantees to the underlying knowl-
edge sound NIZK proof system Π together with the folklore OR-trick to add
simulation soundness. The distinguishing feature of this transformation is that
in the proof computation one computes a signature to certify a public key of
OTS using freshly sampled signing key sk of Σ in plain and thus does not need
to encrypt a signature and prove that it verifies with a verification key in the
CRS (e.g., as done in [Gro06]). Consequently, in the OR part of the proof one
just needs to prove that one knows the shift csk (which is the trapdoor of the
CRS) to adapt signatures from pk to ones valid under verification key cpk in the
CRS. As it turns out, this feature lays the foundation for being able to support
updatability. Now, given any language L with NP relation RL, the language
obtained via the compiler is L′ s.t. {(x, cpk, pk), (w, csk− sk)} ∈ RL′ iff:

{c = (x, w) ∈ RL ∨ cpk = pk · µ(csk− sk)} .

More precisely, in every proof computation one uses Σ to “certify” the public key
of a newly generated key pair of ΣOT. The secret key of ΣOT is then used to sign
the parts of the proof which must be non-malleable. Adaptability of Σ makes
it possible to also use newly generated keys of Σ upon each proof computation.
In particular, the relation associated to L′ is designed so that the additional
clause introduced via the OR-trick is the “shift amount” required to shift such
signatures to signatures under a key cpk of Σ in the CRS. A proof for x ∈ L
is easy to compute when given w such that (x, w) ∈ Lπ. One does not need a
satisfying assignment for the second clause in the OR statement, and can thus
compute all signatures under newly generated keys. To simulate proofs, however,
one can set up CRS in a way that we know csk corresponding to cpk, compute
the “shift amount” and use it as a satisfying witness for the other clause in the
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OR statement. We recall the construction in Fig. 2 and for completeness recall
the Theorem given in [DS19] below. 13 We note that for non black-box extraction
as it is the case with SNARKs, the trapdoor tcext = ⊥ and one simply uses the
non black-box extractor of the underlying SNARK.

Theorem 1 ([DS19]). Let Π be a complete, witness indistinguishable non-
interactive argument of knowledge system for the language L, let Σ be an EUF-
CMA secure signature scheme that adapts signatures, and let ΣOT be a strongly
unforgeable one-time signature scheme, then the argument system Π′ is a com-
plete and strong simulation extractable argument system for language L′.

Note that the theorem clearly applies to any proof system that is zero-knowledge,
as this implies the weaker notion of witness-indistinguishability.

Applying [DS19] to NIZKs without knowledge soundness We now argue that,
although we do not require it in context of SNARKs, analogous to the folklore
compiler used in [KZM+15], we can also start form any NIZK that is only sound
instead of knowledge sound. Then, using the compiler in [DS19] we still can
obtain SE-NIZK when starting from any conventional NIZK. More precisely, the
by now folklore compiler [DP92] to obtain knowledge soundness for any sound
NIZK is to put a public key pke of any perfectly correct IND-CPA secure public
key encryption scheme into the CRS, where the extraction trapdoor tcExt is
the corresponding secret key, and extend the language such that it contains an
encryption of the witness of the original language. We will capture this in the
following corollary, where starting from a NIZK for L with NP relation RL,
we obtain a knowledge sound NIZK by extending the language to L′ such that
{(x, c), (w, ω)} ∈ RL′ iff:

{c = (x, w) ∈ RL ∧ c = Enc(pke, w;ω)} .

Corollary 2. Let NIZK for language L be complete, sound and zero-knowledge,
the public key encryption scheme be perfectly correct and IND-CPA secure, then
the NIZK for language L′ is complete, knowledge-sound and zero-knowledge.

The proof exactly follows the argumentation in [KZM+15] and is thus omitted.
We stress that if we base the compiler of [DS19] on a NIZK that is based on
standard or falsifiable assumptions that is only sound, then we require this addi-
tional encryption of the witness w. However, when we are relying on knowledge
assumption, as it is the case within SNARKs used in this paper, then we do not
need the language extension in Corollary 2 and simply use the non black-box
extractor of the underlying SNARK.

13 We note that what is called simulation sound extractable in [DS19] is called strong
simulation extractable in this paper in order to be aligned with the notation used in
the C∅C∅ framework.

18



KGencrs(1
λ)

- (crsΠ, tcΠ, tcext)← Π.KGen(1λ);
- (csk, cpk)← Σ.KGen(1κ);
- crs := (crsΠ, cpk), tc := (tcΠ, csk); return crs.

P(crs, x, w)

- (sk, pk)← Σ.KGen(1κ);
- (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crs, x, (w,⊥);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

V(crs, x, π)

- Parse π as (πΠ, pk, σ, pkOT, σOT);
- if Π.V(crsΠ, x, πΠ) = 0
∨ Σ.Verify(pk, pkOT, σ) = 0
∨ ΣOT.Verify(pkOT, πΠ||x||pk||σ, σOT) = 0 then return 0;
else return 1.

Sim(crs, x, tc)

- (sk, pk)← Σ.KGen(1κ); (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crs, x, (⊥, csk− sk);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);
- return π := (πΠ, pk, σ, pkOT, σOT).

Ext(crs, x, π, tcext)

- (w,⊥)← Π.Ext(crs, x, π, tcext); return w.

Fig. 2. The generic SE-NIZK compiler from [DS19].

4 Instantiations of Lamassu

Now we are going to investigate instantiations of the Lamassu framework in
the malicious setting where the CRS could be subverted. We show how to in-
stantiate the Lamassu framework for subversion zk-SNARKs (Sub-zk-SNARK)
(i.e., [ABLZ17, Fuc18]) and for updatable zk-SNARKs (i.e., [GKM+18]), and
obtain SE Sub-zk-SNARK and SE updatable zk-SNARK constructions. While
the former case can directly obtained from Lamassu as introduced, for the latter
case we need to introduce the novel notion of updatable signatures use the La-
massu framework with updatable signatures instead of key-homomorphic ones.

Our definition of subversion security is adapted from Abdolmaleki et al. [ABLZ17],
and our definition of update security is adapted from Groth et al. [GKM+18].
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KGencrs(1
λ)

- ωZ ←$RND(Z); (crs := (crsΠ, cpk), ζ, auxZ)← Z(1λ, ωZ)

Vcrs(crs, ζ)

- Parse crs as (crsΠ, cpk);
- if Vcrs(crsΠ, ζΠ) = 0 then return 0; else return 1.

P(crs, x, w)

- (sk, pk)← Σ.KGen(1κ);
- (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crs, x, (w,⊥),⊥);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

V(crs, x, π)

- Parse π as (πΠ, pk, σ, pkOT, σOT);
- if Π.V(crsΠ, x, πΠ) = 0 ∨ Σ.Verify(pk, pkOT, σ) = 0
∨ ΣOT.Verify(pkOT, πΠ||x||pk||σ, σOT) = 0 then return 0;

else return 1.

Sim(crs, x, tc)

- (sk, pk)← Σ.KGen(1κ); (skOT, pkOT)← ΣOT.KGen(1κ);
- πSim ← Π.Sim(crs, x, (w, tcΠ),⊥);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πSim||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

ExtZ(1λ, ωZ)

- tc← Π.Ext(1λ, ωZ); return tc.

Fig. 3. The SE Sub-zk-SNARKs from Lamassu.

4.1 Subversion SNARK Instantiation

Consider a Sub-zk-SNARK (e.g., [ABLZ17, Fuc18]) for RL which consists of
PPT algorithms (KGencrs,Vcrs,P,V,Sim) and provides knowledge soundness. Let
ΣOT = (KGenOT,SignOT,VerifyOT) be a strongly unforgeable one-time signature
scheme and Σ be an adaptable EUF-CMA secure signature scheme (like EC-
Schnorr or ECDSA). Using Lamassu in Section 3.2, given the language L with
NP relationRL, one can extend it to the new L′ language proposed in Section 3.2,
such that {(x, cpk, pk), (w, csk− sk)} ∈ RL′ iff:

{c = (x, w) ∈ RL ∨ cpk = pk · µ(csk− sk)} .

We present the construction of SE Sub-zk-SNARKs in Fig. 3. And for La-
massu we can prove the following:
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Theorem 2. Let the underlying Sub-zk-SNARK scheme satisfy perfect com-
pleteness, knowledge soundness, subversion zero-knowledge. Let Σ be an EUF-
CMA secure adaptable key-homomorphic signature scheme and ΣOT a strongly
unforgeable one-time signature scheme. Then the Sub-zk-SNARK from Fig. 3 is
(i) perfectly complete, (ii) subversion zero-knowledge, and (iii) strongly simula-
tion extractable.

Completeness is straight forward. For strong simulation extractability, note that
in Sub-zk-SNARKs we assume that the CRS generator is trusted by the verifier.
Consequently, the proof of strong simulation extractability directly follows from
Theorem 1. The idea for proving subversion zero-knowledge is to use the ex-
tractor of the underlying SNARK to extract the simulation trapdoor which can
then be used to simulate proofs. If the CRS verification succeeds, this extractors
exists following from the knowledge assumption of the underlying SNARK. For
the full proof we refer to Appendix B.1.

4.2 Updatable Signature Schemes

Before discussing how to achieve SE updatable zk-SNARKs from updatable
SNARKS using the Lamassu framework, we need to introduce the new notation
of updatable signature schemes. We stress that in contrast to subversion-resilient
signatures [AMV15], where the signing algorithm may be subverted, here, we
allow updates on the key and want to have unforgeability guarantees as long as
either the initial key generation or at least one of the updates was performed
honestly. However, signing is performed honestly. We note that like in Groth et
al. [GKM+18] for updatable CRS (using Lemma 6), we model only a single up-
date as a single adversarial update implies updatable signatures with arbitrary
many updates.

Definition 10 (Updatable signature schemes). An updatable signature scheme
Σ = (KGen,Ucrs,Vpk,Sign,Verify) consists of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ it outputs a signing key sk and a ver-
ification key pk with associated message spaceM.

Upk(pk) : Given a verification key pk it outputs an updated verification key pkup
with associated secret updating key upsk, and a proof ζ.

Vpk(pk, pkup, ζ) : Given a verification key pk, a potentially updated verification
key pkup, and the proof ζ it checks if pkup has been updated correctly.

Sign(sk,m) : Given potentially updated secret key sk (in case of skup it contains
sk and upsk) and a message m ∈M it outputs a signature σ.

Verify(pk,m, σ) : Given potentially updated public key pk, a message m ∈ M
and a signature σ it outputs a bit b ∈ {0, 1}.
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Definition 11 (Updatable correctness). A signature scheme Σ is updatable cor-
rect, if

Pr


(sk, pk, ζ)← KGen(1λ), (upsk, pkup, ζup)← Upk(pk),

Vpk(pk, pkup, ζup) = 1 ∧ Vpk(pk, pk, ζ) = 1 :

Verify(pk,m,Sign(sk,m)) = 1 ∧
Verify(pkup,m,Sign(skup,m)) = 1

 = 1,

where the probability is taken over the randomness of the signing algorithm.

Definition 12 (Updatable strong key hiding). We have that for (sk, pk)← KGen(1λ)
and (upsk, pkup, ζup)← Upk(pk) it holds that (sk, pk) ≈λ (skup, pkup) if one of the
following setting holds,

– the original pk was honestly generated and the key-update verifies: (sk, pk)←
KGen(1λ) and Vpk(pk, pkup, ζup) = 1.

– the original pk verifies and the key-update was honest: Vpk(pk, pk, ζ) = 1,
and (upsk, pkup, ζup)← Upk(pk).

Now, we present the updatable EUF-CMA security notion.

Definition 13 (Updatable EUF-CMA). A signature scheme Σ is updatable EUF-
CMA secure, if for all PPT subverter Z, there exists a PPT extractor ExtZ, s.t. for
all λ, and all PPT adversaries A

Pr

(sk, pk, ζ)← KGen(1κ), ωZ←$RND(Z), (pkup, ζup, auxZ)← Z(pk;ωZ),

upsk ← ExtZ(pk, ωZ), (m?, σ?)← ASign(skup,·)(pkup, auxZ) :

Vpk(pk, pkup, ζup) = 1 ∧ Verify(pkup,m
?, σ?) = 1 ∧ m? /∈ QSign

 ≈λ 0,

where the environment keeps track of the queries to the signing oracle via QSign.
Note that Z can also generate the initial pk and the an honest updater Upk up-
dates it and outputs pkup, skup, and the proof ζ (then we require that Vpk(pk, pk, ζ) =
1).

We now prove the following theorem yielding a generic way to construct
updatable signature schemes.

Theorem 3. Every correct and EUF-CMA secure key-homomorphic signature
scheme Σ that is adaptable according to Definition 8 and an efficient extractor
ExtZ satisfies updatable correctness, updatable strong key hiding and updatable
EUF-CMA security.

Proof. We first discuss correctness. Therefore let the Upk and Vpk algorithms
be as follows:

Upk(pk) : Choose ∆←$H, set upsk := ∆, pkup := pk ·µ(∆) and ζup := µ(∆) and
return (upsk, pkup, ζup).
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Vpk(pk, pkup, ζup) : Return 1 if either pk = pkup or pkup := pk · ζup and 0 other-
wise.

It is easy to see that skup := sk+∆ and thus updatable correctness follows from
the correctness of Σ.

Updatable strong key hiding directly follows from the key-homomorphic
property of Σ and the algorithms Upk and Vpk introduced above.

Now, we prove updatable EUF-CMA security by a reduction to the EUF-
CMA security of Σ. Let pk be the verification key from the challenger of Σ and
(pkup, ζup, auxZ) the output of A on pk. Now, we can use ExtZ to obtain upsk and
if Vpk(pk, pkup, ζup) = 1 we know that pkup := pk · ζup. Consequently, on every
signature query for some message m from A, we query the signing oracle of Σ
and when given σ in return we return (·, σ′)← Adapt(pk,m, σ, upsk) to A. When
A outputs a valid forgery (m?, σ?) under pkup, we output σ′? to the challenger of
Σ where (·, σ′?)← Adapt(pkup,m

?, σ?,−upsk) and win with the same probability
as A wins. We note that the case where the initial pk is subverted and the update
is honest can be shown analogously and is thus omitted.

Example of Updatable Signatures Now, we show that Schnorr signatures (cf.
Appendix A.4) instantiated in a bilinear group BG = (p,G1,G2,GT , e, g, ĝ),
where in contrast to conventional Schnorr signatures the public key consists
of pairs (gx, ĝx), represent an updatable signature scheme. Therefore, we first
discuss the required algorithms and will then show an efficient extractor ExtZ.
We start with the algorithms:

Upk : Set upsk := x′←$Zp, pkup := (w · gx′ , ŵ · ĝx′), ζup := (gx
′
, ĝx

′
) and return

(upsk, pkup, ζup).
Vpk : Parse pk = (w, ŵ), pkup = (w′, ŵ′) and ζup = (z, ẑ′). If w = w′ and

ŵ = ŵ′ check if e(w, ĝ) = e(g, ŵ′) and e(g, ŵ) = e(w′, ĝ). Otherwise check if
e(w ·z, ĝ) = e(g, ŵ′) and e(g, ŵ · ẑ) = e(w′, ĝ) holds. If the check holds return
1 and 0 otherwise.

Finally, let us present an efficient extractor ExtZ which exists assuming the BDH
knowledge assumption (cf. Appendix A.6) holds. Therefore, note that if Vpk
returns 1 on any input (pk, pkup, ζup) by BDH we have an extractor that from
this algorithm extracts upsk := x′ from e(z, ĝ) = e(g, ẑ).

4.3 Updatable SNARK Instantiation

Now, we are demonstrating the main advantage of Lamassu in that one can use
it to generically construct SE updatable zk-SNARKs. In the following we present
our generic construction using the definitional framework in [GKM+18]. Roughly
speaking, in the CRS updatable definition, Groth et. al relaxed the CRS model
by allowing the adversary to either fully generate the CRS itself, or at least
contribute to its computation as one of the parties performing updates. In other
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words, we can think of this as having the adversary interact with the KGencrs
algorithm. An updatable SNARK has the following additional PPT algorithms
on top of (KGencrs,P,V,Sim). After running (crs, tc, ζ)← KGencrs, where ζ is a
proof of correctness of crs.

Ucrs(1λ, crs,{ζi}i=ni=1 ). Takes as input the security parameter λ, a CRS crs, and
a list of update proofs for the CRS. It outputs an updated CRS crsup and
a proof ζup of the correctness of the update.

Vcrs(1λ, crs,{ζi}i=ni=1 ). Given the security parameter λ, a CRS crs, and a list of
proofs ζi. It outputs a bit indicating accept (b = 1), or reject (b = 0).

The standard trusted setup can be considered as an updatable setup with
ζ = ε as the update proof and where the verification algorithm accepts anything.
For a subversion resistant setup (Sub-zk-SNARKs), the proof ζ could be added
as extra elements into the CRS solely to make the CRS verifiable.

We present the full construction of SE updatable SNARKs in Fig. 4. Notice
that in the Fig. 4, the subverter Z could be either the algorithms (Π.KGen,
Σ.KGen) or the updater Ucrs.

Theorem 4. Let the underlying updatable SNARK scheme satisfy perfect com-
pleteness, updatable zero-knowledge, and updatable knowledge soundness. Let Σ
be an EUF-CMA secure adaptable and updatable signature scheme and ΣOT

is a strongly unforgeable one-time signature scheme. Then, the SE updatable
SNARKs argument system from Fig. 4, is (i) perfectly complete, (ii) updatable
zero-knowledge, and (iii) updatable strong simulation extractable.

We refer to Appendix B.2 for the full proof.

Instantiation As an example instantiation, by taking updatable Schnorr sig-
natures as presented in Section 4.2, using the Lamassu framework we can now
obtain an SE updatable SNARK by lifting the updatable SNARK in [GKM+18].
This, for instance, results in an overhead of 1G1 + 1G2 elements in the CRS and
2G1 +2G2 +2Zq elements in the proofs (cf. Table 2 for a comparison of different
instantiations and existing ad-hoc approaches).

5 Evaluation

For the evaluation of OC∅C∅ and Lamassu, we focus on SNARKs built from the
pairing-friendly elliptic curve BLS-381. In this case, we can leverage the Jubjub
curve [HBHW19] used by Zcash for fast elliptic-curve arithmetic in the circuit.
The Jubjub curve is a twisted Edwards curve defined over Fr with r being the
prime order of BLS-381. Twisted Edwards curves enjoy complete addition laws
and they natuarally fit the requirements of ECDSA or EC-Schnorr signatures.

The Sapling protocol uses the Jubjub curve to prove relations of the form
rk = ak·gα and checking that α is in the correct range for the witness α. The first
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KGencrs(1
λ)

- (crsΠ, tcΠ, ζΠ)← Π.KGen(1λ);
- (csk, cpk, ζcpk)← Σ.KGen(1κ);
- crs := (crsΠ, cpk), tc := (tcΠ, csk); return crs.

Ucrs(1λ, crs,{ζi}i=ni=1 )

- (crsΠ,up, ζΠ,up)← Π.Ucrs(1λ, crs,{ζi}i=ni=1 );

- (crscpk,up, ζcpk,up)← Σ.Ucrs(cpk,{ζcpk,i}i=ni=1 );

- if Vcrs(1λ, crs,{ζi}i=ni=1 ) = 0 ∨
Σ.Vpk(pk, cpk,{ζcpk,i}i=ni=1 )) = 0
then return 0; else return 1.

Vcrs(1λ, crs,{ζi}i=ni=1 )

- if VcrsΠ(1λ, crs,{ζΠ,i}i=ni=1 ) = 1 ∧
- Σ.Vpk(pk, cpk,{ζcpk,i}i=ni=1 )) = 1

then return 1; else return 0.

P(crsup, x, w)

- (sk, pk)← Σ.KGen(1κ);
- (skOT, pkOT)← ΣOT.KGen(1κ);
- πΠ ← Π.P(crsup, x, (w,⊥),⊥);σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

V(crsup, x, π)

- Parse π as (πΠ, pk, σ, pkOT, σOT);
- if Π.V(crsΠ, x, πΠ) = 0 ∨ Σ.Verify(pk, pkOT, σ) = 0
∨ ΣOT.Verify(pkOT, πΠ||x||pk||σ, σOT) = 0 then return 0;
else return 1.

Sim(crsup, x, tc)

- (sk, pk)← Σ.KGen(1κ); (skOT, pkOT)← ΣOT.KGen(1κ);
- πSim ← Π.Sim(crsΠ, x, (⊥, tcΠ),⊥);
- σ ← Σ.Sign(sk, pkOT);
- σOT ← ΣOT.Sign(skOT, πSim||x||pk||σ);

return π := (πΠ, pk, σ, pkOT, σOT).

ExtZ(1λ, crs, ωZ)

- tc← Π.Ext(1λ, crs, ωZ); return tc.

Fig. 4. The SE updatable SNARKs from Lamassu.

part of the relation can be expressed with 756 constraints, whereas the latter
can be expressed with 252 constraints, so a total of 1008 constraints [HBHW19,
Section A.4]. For Lamassu, we extend the relation with a proof of the state-
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ment cpk = pk ·µ(csk− sk) with the witness csk− sk. For Schnorr signatures (cf.
Appendix A.4), but also other DLOG-based signature schemes such as ECDSA,
the public key is a group element of the form gsk and similarly µ simply maps
scalars to the corresponding group element, i.e., µ(x) = gx. Hence, the circuit for
this relation also requires 1008 constraints. Compared to the OC∅C∅ framework
instantiations (cf. Table 1), Lamassu needs only 200 constraints more than the
most aggressive choice using Poseidon and beats all others in the number of con-
straints. Considering that Schnorr and ECDSA signatures are well established
primitives, and that the confidence in their security is far bigger than all the
recent SNARK/STARK-friendly primitives, this additional confidence and the
updatability feature come at a very small cost for the prover.

In terms of bandwidth overhead, we only need to compare the overhead in-
duced by cpk = pk·µ(csk−sk) together with the signature and one-time signature
in Lamassu, and µ = fs0(pks) ∧ ρ = fs0(β0) and the one-time signature in the
case of OC∅C∅. We start with Lamassu. The CRS is extended with a public key
cpk of signature scheme Σ, i.e., when using Schnorr (or ECDSA) a point on the
Jubjub curve which requires 510 bits without or 256 bits with point compression.
For each proof, new Σ and ΣOT keys are sampled. The proof then includes a Σ
public key and signature, as well as as ΣOT public key and signature. The former
amounts to 256 bits for the public key and 508 bits for the signature (2 integers
modulo the group order), and the latter – when instantiated as Groth’s sOTS
over Jubjub (or a curve of similar size) – amounts to 786 bits for the public key
(3 group elements) and 508 bits for the signature (3 integers modulo the group
order). In total, the size of the proof is increased by 2058 bits. The updatable
version is similar, but Schnorr is performed in G1 with additional public key and
update in G2.

For C∅C∅, the CRS is extended with a SHA256 commitment. The proofs are
extended with an 3072-bit RSA public key14 and a RSA signature together with
the evaluation of a PRF also instantiated with SHA256. Hence, the CRS grows
by 256 bits and each proof grows at least by 6400 bits. For our version, OC∅C∅,
the CRS is extended with ρ and β, both 256 bits each. Each proof additionally
contains µ as well as freshly generated ΣOT public key and signature. Using
Groth’s sOTS, the proof grows by 1532 bits.

In Table 2 we present a comparison of SE-SNARKs including OC∅C∅ using
Groth’s OTS, OC∅C∅[G], Lamassu using Schnorr and Groth’s OTS, Lama-
ssu[S,G], and Boneh-Boyen signatures [BB04], Lamassu[S,BB] both as non-
updatable and updatable variant. The overhead is relative to the underlying
SNARK (for the generic constructions) or the SNARK they are based on, e.g.,
relative to [Gro16]. In the table, n denotes the number of multiplication gates in
the circuit, G1 and G2 the two source groups of a bilinear group, G a group with
prime order q, N a RSA modulus, and λ the sizes of commitments and PRF eval-
uations. For concrete numbers, we followed the above choice of curves, namely
Jubjub (G) and BLS-381 as bilinear group (p,G1,G2,GT , e, g, ĝ), respectively.
For RSA, we assume a 3072 bit modulus, and commitments and PRF images are

14 We increase the size of the modulus to current recommendations for RSA.
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256 bits. For the verifier overhead, we consider the most expensive operations.
EG and EZN denote an exponentiation in G and ZN , and P a pairing evaluation.
Thereby, EG and EZN are of the same magnitude and P is a factor 10 slower.

Compared to the ad-hoc constructions, the generic frameworks C∅C∅, OC∅C∅,
and Lamassu offer a trade-off between the size of the CRS, proof sizes and
verifier overhead. Especially when comparing to Kim-Lee-Oh [KLO19], which
only extends the CRS, this trade-off becomes apparent. When comparing to
the others, the verifier overhead is smaller than the ones observed for Groth-
Maller [GM17], Bowe-Gabizon [BG18] and Lipmaa [Lip19] and is comparable to
the constructions of Atappoor-Baghery [AB19] and Baghery [Bag19], yet La-
massu offers more features.

6 Conclusion

In this paper we revisited the lifting technique of the C∅C∅ framework to obtain
SE SNARKs. By refining the construction and selecting well-suited SNARK-
friendly primitives, we obtained an improved version (OC∅C∅), which outper-
forms the original construction in both number of constraints as well as proof
size significantly.

We then presented an alternative generic framework, dubbed Lamassu, that
lifts SNARKs to SE SNARKs and also preserves subversion resistance and up-
datability of the underlying SNARK. In particular, Lamassu represents the first
known framework to generically obtain SE updatable SNARKs. Our compiler
requires only signatures with certain key-homomorphic properties and in case
of SE updatable SNARKs we require updatable signatures, a novel primitive
introduced in this paper, which can be based on widely used and well studied
signatures such as ECDSA or Schnorr. Moreover, Lamassu compares favorably
to the revisited C∅C∅ framework OC∅C∅.
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the following properties: completeness (for all common reference strings crs

generated by KGencrs and (x, w) ∈ R, we have that V(crs, x,P(crs, x, w)) = 1),
zero-knowledge (there exists a simulator Sim that outputs a simulated proof such
that an adversary cannot distinguish it from proofs computed by P(crs, x, w)),
soundness (an adversary cannot output a proof π and an instance x 6∈ LR such
that V(crs, x, π) = 1. Moreover, knowledge soundness steps further and says
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that for any prover generating a valid proof there is an extractor Ext that can
extract a valid witness.

A.2 QAPs and R1CS

Quadratic Arithmetic Programs (QAPs) have been introduced by Gennaro et
al. [GGPR13] as a language where for an input x and witness w, (x, w) ∈ R can
be verified by using a parallel quadratic check, and that has an efficient reduction
from a well-known language (either Boolean or Arithmetic) Circuit-SAT.

Definition 14 (QAP). A quadratic arithmetic program over a field F is a
tuple of the form (

F, n,{Ai(X),Bi(X),Ci(X)}i=mi=0 ;D(X)
)

where Ai(X),Bi(X),Ci(X),D(X) ∈ F[X], define a language of statements
(s1, . . . , sn) ∈ F and witnesses (sn+1, . . . , sm) ∈ Fm−n such that(

m∑
i=0

siAi(X)

)
·

(
m∑
i=0

siBi(X)

)
=

(
m∑
i=0

siCi(X)

)
+ H(X) ·D(X) (2)

where s0 = 1 and for some degree-(d − 2) quotient polynomial H(X), where d
is the degree of D(X). Let the degrees of all Ai(X),Bi(X) and Ci(X) are at
most d− 1.

We note that all the considered SNARK constructions are for QAPs defined over
a bilinear group. Thus we consider relation generators RGen of the following form:

Definition 15 (QAP relation). A QAP relation generator RGen is a PT al-
gorithm that on input λ returns a relation description R = (pars, n, (A,B,C) ∈
F(d−1)[X]m−1,D ∈ F(d)[X]) where pars is a bilinear group whose order p de-
fines F := Zp and n ≤ m. Fix x ∈ Fn and w ∈ Fm−n, we define R(x, w) = 1
if there exists H(X) ∈ F[X] so that Eq. (2) holds for x = (s1, . . . , sn) and
w = (sn+1, . . . sm).

For reducing arithmetic circuits to QAP relations, circuits can first be trans-
formed to a system of rank-1 quadratic equations (R1CS) which is latter trans-
formed into a QAP [BCG+13]. The R1CS relation over a field F consists of
instance-witness pairs ((A,B,C,v),w) with matrices A,B,C ∈ Fn×m and vec-
tors v,w such that (Az) ◦ (Bz) = Cz with z = (1,v,w) ∈ Fm where ◦ denotes
the entry-wise product. For capturing arithmetic circuit satisfaction, A,B,C
represent the gates, v the public inputs, and w the private inputs and wire
values.
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A.3 Public-key Encryption

Definition 16. A public key encryption scheme Ω = (KGen,Enc,Dec) consists
of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ it outputs the secret key sk and public
key pk with message spaceM.

Enc(pk,m) : Given a public key pk and a message m ∈M it outputs a ciphertext
c.

Dec(sk, C) : Given a secret key sk and a ciphertext c it outputs a message m ∈
M∪ {⊥}.

We say that an encryption scheme Ω is perfectly correct if for all κ ∈ N, for
all (sk, pk) ← KGen(1λ) and for all m ∈ M it holds that Dec(sk,Enc(pk,m)) =
m. Below, we recall the standard notion of indistinguishability under chosen
plaintext attacks (IND-CPA security).

Definition 17 (IND-CPA). A public key encryption scheme Ω is IND-CPA
secure, if for all PPT adversaries A it holds that

Pr

(sk, pk)← KGen(1λ), b←$ {0, 1},
(m0,m1, st)← A(pk), b∗ ← A(Enc(pk,mb), st) :

b = b∗

 ≈λ 1

2
.

A.4 Schnorr Signatures

We recall the Schnorr signature scheme [Sch90] together with the required Adapt
algorithm (cf. [DS19]) in Fig. 5. It can be shown to provide EUF-CMA security
in the random oracle model (ROM) under the DLP in G by using the now
popular rewinding technique [PS96] (cf. also [KMP16] for a recent treatment on
tightness and optimality of such reductions). In the following we present Schnorr
signatures with respect to a common setup, i.e., PP← PGen(1λ) are given to all
instances of KGen and let GGen be a group generator that on input 1λ outputs
the description of a prime order group G = (G, g, p) with order p s.t. λ = log2 p
and generator g. Recall, that in addition Schnorr requires a collision resistant
hash function H : G ×M → Zp (formally sampled uniformly at random from
a family {Hk}k∈K of hash functions) and thus we have PP := (G, H) (which we
assume to be an implicit input to all algorithms). We recall a lemma from [DS19]
showing that Schnorr signatures using the Adapt algorithm in Fig. 5 satisfies the
signature adaption notion in Definition 8.

Lemma 1 ([DS19]). Schnorr signatures are adaptable according to Definition 8.

A.5 Groth’s Strong One-Time Signatures

In Fig. 6 we recall the strong one-time signature scheme from Groth [Gro06] and
its security below:
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PGen(1λ)

- G ← GGen(1λ); H ←$ {Hk}k∈K;
- return PP := (G, H);

KGen(PP):

- Parse PP = ((G, g, p), H);
- x←$Zp;
- return (sk, pk) := (x, gx).

Sign(sk,m):

- Parse sk = x;
- r←$Zp; R := gr; c := H(R‖m); y := r + x · c mod p
- return σ := (c, y).

Verify(pk,m, σ):

- Parse pk = gx;σ = (c, y);

- if c = H((gx)−cgy,m) return 1 else return 0.

Adapt(pk,m, σ,∆):

- Parse pk = gx; σ = (c, y); ∆ ∈ Zp;
- pk′ := gx · g∆; y′ := y + c ·∆ mod p;
- return σ′ := (c, y′).

Fig. 5. Schnorr signatures.

Theorem 5 ([Gro06]). Assuming hardness of computing discrete logarithms
and collision-resistance of the hash function, the scheme (PGenots,KGenots,Signots,
Verifyots) described in Fig. 6 is a strong one-time signature scheme for signing
messages m ∈ {0, 1}∗ with perfect correctness.

A.6 BDH Knowledge Assumption

Let BGen be a PPT algorithm that, on input a security parameter λ, outputs
BG = (p,G1,G2,GT , e, g, ĝ) for generators g and ĝ of G1 and G2, respectively,
and Θ(λ)-bit prime p.

Assumption 1 (BDH-Knowledge Assumption [ABLZ17]) We say that BGen
is BDH-KE secure for R if for any λ, (R, auxR) ∈ im(R(1λ)), and PPT adver-
sary A there exists a PPT extractor ExtBDH

A , such that

Pr

r ←r RND(A),

(V, V̂ ||a)← (A||ExtBDH
A )(R, auxR;ωA) :

e(V, ĝ) = e(g, V̂ ) ∧ ga 6= V

 ≈λ 0.
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PGenots(1
λ)

- G ← GGen(1λ); H ←$ {Hk}k∈K;
- return PP := (G, H);

KGenots(PP):

- Parse PP = ((G, g, p), H);
- xs, ys, rs, ss ←$Zp;
- fs := gxs ; hs := gys ; cs := grss · hsss ;
- return (sk, pk) := ((xs, ys, rs, ss), (fs, hs, cs)).

Signots(sk,m):

- Parse sk = (xs, ys);
- r←$Zp; z := xs(rs − r) + ys · ss −H(m) · y−1

s mod p
- return σ := (r, z).

Verifyots(pk,m, σ):

- Parse pk = (fs, hs, cs);σ = (r, z);

- if cs = gH(m) · frs · hss return 1 else return 0.

Fig. 6. Groth’s strong one-time signature scheme.

Note that the BDH assumption can be considered as a simple case of the PKE
assumption of [DFGK14] (where A is given as an input the tuple {(gxi , ĝxi)}ni=0

for some n ≥ 0, and assumed that ifA outputs (V, V̂ ) then she knows (a0, a1, . . . , an),
such that V = g

∑n
i=0 aix

i

as used in the case of asymmetric pairings in [DFGK14].
Thus, BDH can be seen as an asymmetric-pairing version of the original and by
now well established KoE assumption due to Damgård [Dam92].

B Omitted Proofs

B.1 Proof of Theorem 2

Proof. (i: Completeness): This is straight forward from the construction.
(ii: Subversion zero-knowledge): The intuition of proving Sub-ZK is that,

since here the prover (and consequently the simulator) does not trust to the CRS
generator, so relying on the knowledge assumption of the underlying SNARK,
if Vcrs(crs, ζ) = 1 (or more precisely Vcrs(crsΠ, ζΠ) = 1) then there is an
extractor which can extract the trapdoor tcΠ similar to [ABLZ17] (under the
BDH assumption) and [Fuc18] (under the SKE assumption Def. 2.15). Then the
simulator Π.Sim takes tcΠ together with crsΠ and x, and simulates πSim, which
is the simulated proof in the original Sub-zk-SNARK.

Let the knowledge assumption (depending on the underlying SNARK) hold.
Let Z be a subverter that computes crs so as to break the Sub-ZK property.
That is, Z(1λ, ωZ) outputs (crs, ζ, auxZ). Let A be the adversary from Fig. 7.
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Note that RND(A) = RND(Z). Under the knowledge assumption, there exists
an extractor ExtZ, such that if Π.Vcrs(crsΠ, ζΠ) = 1 then ExtZ(1λ, ωZ) outputs
tcΠ, such that πΠ = πSim. Note that πΠ is the real proof in the Sub-zk-SNARK.

A(crs;ωZ)

(crs, auxZ)← Z(1
λ

;ωZ); return pk;

ExtZ(1λ, ωZ)

return tcΠ;

Fig. 7. The extractor and the constructed adversary A from the Sub-ZK proof.

Fix concrete values of λ, (x, w) ∈ RL, ωZ ∈ RND(Z), and run ExtZ(1λ, ωZ)
to obtain tcΠ. Thus, it suffices to show that Vcrs(crsΠ, ζΠ) = 1 and (x, w) ∈ R
implies that

O0(x, w) = P(crs, x, w) = πΠ,

O1(x, w) = Sim(crs, x, tcΠ) = πSim

have the same distribution. This holds since based on the Sub-ZK of the under-
lying SNARK (e.g., [ABLZ17, Fuc18]) if Vcrs(crsΠ, ζΠ) = 1 and (x, w) ∈ RL,
then πΠ and πSim have the same distribution. Hence, O0 and O1 have the same
distribution and thus, π is Sub-ZK (under BDH [ABLZ17] or SKE [Fuc18] as-
sumption).

(iii: Strong simulation extractability): This is straight forward from the
Theorem 1.

B.2 Proof of Theorem 4

Proof. (i: Completeness): This is straight forward from the construction of SE
updatable SNARKs in Fig. 4. If (crs, (ζi)

i=n
i=1 ), x, w) ← A(1λ) and Vcrs(1λ, crs,

(ζi)
i=n
i=1 ) = 1 ∧ (x, w) ∈ R, then V(crs, x,P(crs, x, w)) = 1.

(ii: Updatable zero-knowledge): Underlying the subvertible CRSs property
of updatable SNARKs (i.e., the trapdoor extraction for subvertible CRSs in
Lemma 4 of [GKM+18]), suppose that there exists a PPT subvertor Z that out-
puts a crs and ζ such that Vcrs(1λ, crs, ζ) = 1 (or more precisely Vcrs(1λ, crsΠ,
ζΠ) = 1) with non-negligible probability. Then, by using a proper knowledge as-
sumption (i.e., the 0-MK assumption that is equivalent to the B-KEA assumption
in [GKM+18]) there exists a PPT extractor ExtZ that, given the random tape
ωZ of Z as input, outputs tcΠ. In this case adversary A is the adversary from
Fig. 7 and RND(A) = RND(Z).

Also from the extractability property of the updating procedure (i.e., the
trapdoor extraction for updatable CRSs in Lemma 5 of [GKM+18]) if Z outputs
crsup and ζup, then under the knowledge assumption there exists a PPT extractor
ExtZ that, given the randomness of Z as input, outputs tcΠ (i.e., under the
q-MK and the q-MC assumptions of [GKM+18]). For this case adversary A is
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A(crs;ωZ)

(crs, auxZ)← Z(crs;ωZ); return pk;

ExtZ(crs;ωZ)

return tcΠ;

Fig. 8. The extractor and the constructed adversary A from the Sub-ZK proof.

the adversary from Fig. 8 and RND(A) = RND(Z). Now to prove updatable
zero-knowledge, we use the extractor ExtZ and Π.Sim algorithm that produces
proofs πSim when provided the extracted trapdoor, such that any proof πSim
has the same distribution as a real proof πΠ (i.e., for the existence of such
extractor ExtZ and Π.Sim algorithms, one can use the ones in Theorem 3 of
of [GKM+18]). Finally Π.Sim can generate locally (sk, pk)← Σ.KGen(1λ); (skOT,
pkOT) ← ΣOT.KGen(1λ) and then compute σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ)
such that π = (πSim, pk, σ, pkOT, σOT) has the same distribution as a real proof
π = (πΠ, pk, σ, pkOT, σOT). Note that πSim is the simulated proof and πΠ is the
real proof in the original updatable SNARK.

Expup−se(A, λ)

1 : ωZ ←$RND(Z); (crs = (crsΠ, cpk),{ζi}i=ni=1 , auxZ)← Z(1
λ
, ωZ);

2 : (crsup, ζup)← Ucrs(1λ, crs,{ζi}i=ni=1 );

3 : if Vcrs(crs,{ζi}i=ni=1 ) = 0 then return 0

4 : tc
up
cpk ← ExtZ(1

λ
, crs,{ζi}i=ni=1 , ωZ);

5 : ωA ←$RND(A); (x, π)← AO(crs,tc,·)
(crs, crsup, auxZ, ωA);

6 : Parse π := (πΠ, pk, σ, pkOT, σOT);

7 : w← ExtA(crs, crsup, ωA);

8 : if (x, π) 6∈ Q ∧ V(crsup, x, π) = 1 ∧ (x, w) 6∈ R return 1.

9 : else return 0.

O(crs, tc, x)

1 : (sk, pk)← Σ.KGen(1
κ

); (skOT, pkOT)← ΣOT.KGen(1
κ

);

2 : πΠ ← Π.Sim(crsup, x, (⊥,⊥); tc
up
cpk); σ ← Σ.Sign(sk, pkOT);

3 : σOT ← ΣOT.Sign(skOT, πΠ||x||pk||σ);

4 : π := (πΠ, pk, σ, pkOT, σOT);

5 : Q := Q ∪ {(x, π)}; T := T ∪ {pkOT};
6 : return π;

Fig. 9. Experiment Expup−se(A, λ) for SE updatable SNARKs from Lamassu.

(iii: Updatable strong simulation extractability): For sake of simplicity,
let the subverter Z make only a single update after an honest setup or he first
generates the CRS and after that we have only a single update by an honest
updater (this can easily be generalized by using Lemma 6 of [GKM+18], i.e.,
single adversarial updates imply full updatable SE).

We remind that based on the subvertible CRSs of the updatable SNARKs
(i.e., the trapdoor extraction for subvertible CRSs in Lemma 4 in [GKM+18]),
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it is possible to extract the adversary’s contribution to the trapdoor when the
adversary generates the CRS itself. Also from the updatable property of the
updatable SNARKs (i.e., the trapdoor extraction for updatable CRSs in Lemma
5 of [GKM+18]), it is possible to extract it when the adversary updates an honest
CRS. To collapse chains of honest updates into an honest setup it is convenient
that the trapdoor contributions of the setup and update commute in our scheme.
As the trapdoor in our scheme consists of all the randomness used by these
algorithms, we will from now on refer to chains of honest updates and (single)
honest setups interchangeably. Note that in updatable SNARKs, the proof ζ
depends only on the relation and the randomness of the update algorithm and
is independent of the CRS being updated.

Our proof is based on Theorem 1 where we replace the underlying NIZK
with an updatable SNARK and also use simulation trapdoors of the SNARK to
simulate proofs. Based on the updatability property, if A outputs crsup and ζup,
then by the respective knowledge assumption of the SNARK (i.e., the q-MK and
the q-MC assumptions in Lemma 5 of [GKM+18]) and the one of the updatable
signature scheme implies that there exists a PPT extractor ExtA, that, given
the randomness of A as input, outputs tc = (tcΠ, tccpk). We note that the SE
adversaryA in the updatable case besides seeing a pair (crs, π) may even already
did update the crs. Thus, here A has more power than the SE adversary against
Sub-zk SNARK in Section 4.1 and the one in Theorem 1. To make the proof
more precise, we use the subverter Z for updating the crs and the adversary A
against the SE property. Note that Z and A can communicate to each other and
RND(Z) = RND(A).

We recall the experiment for updatable SE in Fig. 9 and we highlight changes
by pointing to the line numbers in the experiment or the oracle.

Game0 This is the original experiment in Fig. 9.

Game1 This game is the same as Game0, but Sim uses tc
up
Π and generates the

simulated proof πΠ.

Exp: 5: tcup ← ExtZ(1λ, crs,{ζi}i=ni=1 , ωZ);
O: 2: πΠ ← Sim(crsup, x, (⊥, tcupΠ );⊥);

Winning condition: Let Q be the set of (x, π) pairs, let T be the set of verifi-
cation keys generated by O. The game outputs 1 iff: (x, π) 6∈ Q∧V(crsup, x, π) =
1 ∧ pkOT 6∈ T ∧ cpk = pk · µ(csk− sk).

Game0 → Game1 If the underlying one-time signature scheme is strongly un-
forgeable, and that the underlying updatable SNARK is knowledge sound, and
the zero-knowledge property of the updatable SNARK holds, then we have
Pr[Game0] ≤ Pr[Game1] + negl(λ).

The reason is that if (x, w) 6∈ Q and pkOT has been generated by O, then the
(x, πΠ, pk) is a valid message/signature pair. Hence by the unforgeability of the
σOT signature scheme, we know that the case (x, w) 6∈ Q and pkOT generated by
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O, happens with negligible probability, which allows us to focus on pkOT 6∈ T .
The extracted w is unique for all valid witnesses. Further, if some witness is valid
for L and that (x, w) 6∈ R, we know it must be the case that due to the zero-
knowledge property of the updatable SNARK and the property of the updating
procedure that if Vcrs output 1, then there is an extractor that extract the tc

(i.e., the trapdoor extraction for subvertible CRSs in Lemma 4 of [GKM+18]
and the one of the updatable signature scheme implies that it is possible to
extract the trapdoor when the adversary generates the CRS itself), there exists
some tc

up
Π and tc

up
cpk such that one can simulate the proof in a way that no

polynomial-time algorithm can distinguish them.

Game2 This game is the same as Game1, but the only difference is that A updates
the crs.

Exp: 1: (crsΠ, tcΠ)← Π.KGen(1λ); (csk, cpk, ζcpk)← Σ.KGen(1κ); crs := (crsΠ,
cpk), tc := (tcΠ, csk); return crs;

Exp: 2: ωZ←$RND(Z); (crsup, ζup, auxZ)← Z(1λ, crs,{ζi}i=ni=1 , ωZ)

Game1 → Game2 This is straightforward from the property of the updating
procedure that if Vcrs output 1, then there is an extractor that extract the tc

(i.e the trapdoor extraction for updatable CRS in Lemma 5 of [GKM+18] and the
knowledge assumption of the updatable signature scheme, that it is possible to
extract it when the adversary updates an honest CRS) and the zero-knowledge
property of the updatable SNARK. Thus we have Pr[Game0] ≤ Pr[Game1] +
negl(λ).

Game3 This game is the same as Game2, but ∆←$H is replaced in cpk =
µ(∆) · pk.

Exp: 1: ∆←$H;
Exp: 2: crs := (crsΠ, cpk · µ(∆)), tc := (tcΠ, csk);

Winning condition: Let Q be the set of (x, π) pairs, let T be the set of verifica-
tion keys generated by the O. The game outputs 1 iff: (x, π) 6∈ Q∧V(crsup, x, π) =
1 ∧ pkOT 6∈ T ∧ cpk · µ(∆) = pk · µ(∆) · µ(csk− sk).

Game2 → Game3 It is straightforward form the Theorem 3, adaptable and up-
datable EUF-CMA property of Σ.
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