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Abstract. Dual system encryption is an important method used in
pairing-based cryptography for constructing fully secure IBE, ABE and
FE schemes. A long time open question is that, whether there is an ana-
logue of dual system method in lattice, which can be used to prove the
full security of lattice-based ABE or FE schemes. We solve this problem
in this paper.
We do this by constructing a fully secure CP-ABE scheme supporting C-
NF as its access policy from lattice with a “dual system”. We introduce
a new primitive called approximate inner product encryption (aIPE),
which is the approximate version of the well known inner product en-
cryption, and prove the security of our scheme under the selective security
of aIPE and the LWE assumption. The security proof of the scheme is
also similar to dual system in bilinear groups.
We point out that the functionality of aIPE is included in FE for ar-
bitrary circuits, which can be constructed from LWE assumption along
with circular security, hence the full security of our scheme can be totally
based on the hardness of LWE.

Keywords: Attribute-based encryption, Dual system encryption, LWE,
Lattice-based cryptography

1 Introduction

Attribute-based Encryption (ABE for short) was first brought by Sahai and Wa-
ters in 2005 [32]. In an ABE scheme, the decryption is correct if and only if the
provided attribute set satisfies a certain access policy. By using different types
of access policies, ABE can handle flexible access control matters, without using
complex key distribution techniques. There are mainly two types of ABE, one
is called key-policy ABE (KP-ABE) [21], other is called ciphertext-policy ABE
(CP-ABE) [7]. In KP-ABE, the access policy is embedded in the decryption key,
while the ciphertext is related to a set of attributes; in CP-ABE, the access pol-
icy is embedded in the ciphertext, and attributes are related to the decryption
key, held by the users. In [10], ABE is considered as a special case of a more gen-
eralized primitive called functional encryption (FE), which given an encrypted
data Enc(x), calculate the output f(x) for the encrypted data of a function in
a certain function class f ∈ F .
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Most of the early ABE schemes [21, 7, 28, 16, 36, 31] are from a weak security
model, which is called selective security. In a selective security model, the adver-
sary must first given the challenge policy (for CP-ABE) or challenge attribute
set (for KP-ABE) before it was allowed to get the public key and query for se-
cret keys. It is easy to see that the selective security model greatly restricts the
ability of the adversary, and cannot handle many types of real world attacks.

Many researchers focus on removing the restriction to get full security for
ABE schemes. Many different approaches have been proposed, but the most
successful one among them is the dual-system encryption method, given by Wa-
ters in 2009 [35]. Although the original method is for IBE and HIBE, which are
only simplified versions of ABE, it was soon used to construct fully secure ABE
schemes for various access policies, as in [24, 25, 6, 37, 22, 15, 23].

The schemes above are constructed in bilinear groups, which suffer from
quantum attacks. Recently, many researchers have been working on construct-
ing ABE schemes using lattice assumptions, such as learning with error (LWE)
problem [3, 2, 11]. Lattice-based ABE schemes are not only quantum secure, but
also more powerful than schemes in bilinear groups, as they support much richer
classes of access policies, even for arbitrary circuits [19, 9, 13].

However, the existing lattice-based ABE schemes are only selectively secure,
except for a recent work by Tsabary [33] that can only support a quite weak
class of access policies. Since the original dual-system method is highly related
to the properties of pairing in bilinear groups, it was not known whether there
exists an analogue for dual-system in lattice, which could be used to prove the
full security of lattice-based ABE schemes. This question has been raised in
many earlier works, and has been considered as a long time open problem in
lattice-based cryptography. In this paper, we solve this problem by extending
dual system method into lattice, also giving a CP-ABE scheme supporting CNF
policies and proving its full security in the standard model.

1.1 Dual System in Bilinear Groups

We first recall dual system encryption in bilinear groups. In addition to normal
secret keys and normal ciphertexts which are used in the real scheme, semi-
functional keys and ciphertexts are defined, which are only used in the security
proof. Normal secret keys can be used to decrypt normal and semi-functional
ciphertexts, while semi-functional keys can only decrypt normal ciphertexts. In
the security proof, first the challenge ciphertext, then the queried secret keys
are switched into semi-functional. After all ciphertexts and keys become semi-
functional, it can perfectly hide the message.

Although we shall not go deep into details, it is helpful that we first simply
introduce what a semi-functional ciphertext and a semi-functional secret key
in bilinear groups look like. For a typical fully secure ABE scheme such as the
scheme in [25], a normal secret key consists of several key elements K,K1, ...,Kl,
and a normal ciphertext consists of several ciphertext elements C,C1, ..., Cl. A
semi-functional ciphertext is generated by altering at least one of these ciphertext
elements, such as C, into C · V , V is from another group G2 different from the
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group which C is in. Similarly, a semi-functional secret key is generated by
altering at least one of the key elements, such as K into K ·W , W is from G2.
Let e be the pairing operation used in the decryption algorithm, we have that
e(CV,K) = e(C,KW ) = e(C,K), but e(CV,KW ) = e(C,K)e(V,W ), where the
value of e(C,K) is hidden by e(V,W ).

We can see that, for a semi-functional ciphertext, the additional element V
multiplied on the normal ciphertext element C can be eliminated by pairing with
a normal secret key. So we take a similar approach in lattice-based cryptography:
that is, first introducing an additional element into the normal ciphertext to
make it semi-functional, and find a way to eliminate it using the decryption
algorithm with a certain secret key.

1.2 Our Technique

At the beginning, we point out that instead of using “normal secret keys” and
“semi-functional secret keys” as in bilinear groups, we use the term “hyper-
functional secret keys” and “normal secret keys”. This is because that in bilinear
groups, a normally constructed secret key can be used to wipe out the addition-
al term V through pairing, however, in lattice-based schemes, we need special
construction for the secret key in order to wipe out the additional term, and it
cannot be normal.

In the security proof, our hyper-functional keys act like normal keys in bilin-
ear groups, and our normal keys act like semi-functional keys in bilinear groups.
We need an additional step in our security proof, that is, switching the normal
keys into hyper-functional keys.

First attempt. We start from the dual-Regev scheme [17], which is widely
used to construct lattice-based ABE schemes. Different from bilinear groups, the
pairing operation becomes multiplication, and multiplication becomes addition.
So we set the semi-functional ciphertext as sTA+eT +vT for some v, and let the
hyper-functional secret key x satisfies both Ax = u, and vTx = 0. However, this
simply cannot work, as given enough hyper-functional secret keys, the adversary
can simply reconstruct the lattice L⊥(v), hence get the ability to check whether
a key is normal or hyper-functional.

Second attempt. This time, we set vTx ≈ 0 in a hyper-functional key x. By in-
troducing a small error, the indistinguishability between normal keys and hyper-
functional keys can be reduced to the hardness of LWE problem. But again, we
find it hard to hide v in the ciphertext, since (sTA+eT )x and (sTA+eT +vT )x
are from different distribution. After a few failed attempt from constructing dual-
Regev like schemes, we noticed that we need a new primitive which functionality
could satisfy our requirement.

The final solution: aIPE. Such primitive that finally comes to us is approx-
imate inner-product encryption (aIPE). Instead of classical IPE schemes [24, 3,
5], where given a ciphertext encrypting m with a secret key generated from x,
calculate the exact inner prodcut 〈x,m〉, aIPE calculates the inner product with
a small error: aIPE.Dec(skx, ctm) = 〈x,m〉+ e. Hence, we could set the secret
key as skx, and the semi-functional ciphertext as ctsTA+vT . We require that,
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ctm and ctm+v are indistinguishable if for each queried secret key skx, there
is |〈x,v〉| ≤ β, β is a small value. Then we can show the indistinguishability
between normal and semi-functional ciphertexts.

The existence of aIPE. Now we only need to show the existence of aIPE.
Although there are many constructions for (exact) inner product encryption from
various assumptions including LWE, extending them into the approximate case
turns out to be not an easy task. However, we can see that the functionality of
aIPE is obviously weaker than functional encryption (FE) for arbitrary circuits,
and the existence of FE for arbitrary circuits has been shown by Goldwasser et al
[18] under the hardness of LWE. The security definition of FE is in a very weak
model (called selective non-adaptive secure), hence we only have a very weak
aIPE security. However, we will show that such security definition is enough for
constructing our fully secure ABE scheme.

1.3 Related Works

There are currently a few researches working on lattice-based fully secure identity-
based encryption (IBE)[1, 14, 12, 38], which can be considered as ABE which ac-
cess policy is point function. These security proofs rely on various primitives,
such as admissible hash or pseudorandom functions. It is not known how these
techniques can be used for other access policies. In [19], the authors claimed that
using a result from [8], the selective security of a KP-ABE scheme can be extend-
ed to full security assuming the subexponential hardness of LWE. Despite the
non-standardness of the hardness assumption, it seems that this method cannot
be extended into CP-ABE schemes. In [13, 20], the authors focused on semi-
adaptive security of ABE schemes. Although stronger than selective security, it
is still weaker than full security.

In [33], the author gave the first fully secure ABE scheme (other than IBE)
from standard LWE assumption using a new primitive called conforming cPRF,
which is a huge step forward. However, the access policy is only t-CNF for a con-
stant t, which means that each clause exactly contains t literals. This is much
weaker than our access policy, which is (unrestricted) CNF. The author claimed
that the access policy is only related to the expressibility of the conforming
cPRF, however, constructing conforming cPRF supporting various access poli-
cies seems to be extremely difficult. The scheme is also quite complex. Despite
the complexity in the conforming cPRF itself, the function needs to be evaluated
through key-homomorphic encryption [9], which makes the scheme almost im-
possible for implementation. Although our scheme is also impractical at current
time, we note that the complexity of our scheme lies mostly in the construction
of aIPE. So the efficiency of our scheme can be easily improved if we found a
more simple construction for aIPE.

In [34], a fully secure decentralized ABE is constructed from inner product
encryption based on LWE assumption [5]. The idea of using aIPE in our scheme
is partly borrowed from their work. The main drawback of their work is that the
key queries allowed by the adversary is highly restricted, which makes its secu-
rity unreliable, while our scheme allows polynomial number of queries (although
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the number must be predetermined). We also point out that, using similar tech-
niques, it seems that our scheme can also be made decentralized. However, we
will not discuss that in this paper.

2 Preliminaries

Notations. x← χ for a distribution χ means that x is sampled from χ or x follows
the distribution χ. x← X for a set X means that x is uniformly randomly chosen
from X. For any odd modulus q, Zq and the operation mod q takes value from
[− q−1

2 , q−1
2 ]. We say that ε is negligible in λ, if ε < 1/Ω(λc) for any constant

c > 0. bxe means the nearest integer to x. For an integer k, [k] means the set
{1, ..., k}.

2.1 Conjunctive Normal Form

Definition 2.1. Let L be a set of literals (a literal is either α or ¬α for some
variable α), and T1, ..., Tk ⊆ L be a set of clauses.

A conjunctive normal form (CNF) is a boolean function f =
∧k
i=1(

∨
Ti),

which inputs a set of literals L ⊆ L (for each variable α, α and ¬α not both in

L), and outputs the value f(L) =
∧k
i=1(

∨
Ti(L)). Here

∨
Ti(L) = 1 if and only

if Ti ∩ L 6= ∅.
Let l = |L|, and we label the literals in L by 1 to l.

Note that we do not consider the relationship between α and ¬α, and sim-
ply let them be two different elements. Such representation does not lower the
expressibility of CNF policy. In fact, our definition is stronger than boolean for-
mulas: for an attribute (literal) set L, we allow that neither α nor ¬α is in L,
which means that we “do not care” the value of α, as in [16].

2.2 Ciphertext-Policy Attribute-based Encryption

Definition 2.2. A CP-ABE scheme for CNF formula f consists of four algo-
rithms (Setup,Enc,KeyGen,Dec):

– Setup(1λ) → (mpk,msk): The setup algorithm gets as input the security pa-
rameter λ, and outputs the public parameter mpk, and the master key msk.

– Enc(mpk, f,m) → ctf : The encryption algorithm gets as input mpk, a CNF
formula f , and a message m ∈M. It outputs a ciphertext ctf . Note that the
policy is known if we know the ciphertext.

– KeyGen(msk, L)→ skL: The key generation algorithm gets as input msk and
a set of literals L. It outputs a secret key skL.

– Dec(skL, ctf )→ m: The decryption algorithm gets as input a secret key and
a ciphertext, and outputs either ⊥ or a message m ∈M.

The CP-ABE scheme is correct if and only if the decryption algorithm returns
the correct message when f(L) = 1 and returns ⊥ when f(L) = 0, except for a
negligible probability.
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Definition 2.3. The full security of a CP-ABE scheme is defined through the
following game:

Setup. The challenger runs Setup and gives the adversary mpk.
Phase 1. The adversary submits a set of literals L for a KeyGen query, and

gets skL from the challenger. These queries can be repeated adaptively.
Challenge. The adversary submits two messages m0 and m1 of equal length,

and a CNF formula f such that f(L) = 0 for all previously queried L. The chal-
lenger chooses a random bit b ∈ {0, 1}, and encrypts mb under f . The encrypted
ciphertext ctf is returned to the adversary.

Phase 2. The adversary repeats Phase 1 to get more secret keys. Each
queried L must have f(L) = 0.

Guess. The adversary outputs a guess b′ for b.
The advantage of the adversary in the full-CP-ABE game is defined by |Pr[b′ =

b]− 1/2|. We say that the CP-ABE scheme is fully secure, if for any adversary,
the advantage of the full-CP-ABE game is negligible.

In the discussion below, we also require that the number of key queries (both
in Phase 1 and Phase 2) must be bounded by a pre-determined polynomial
Q. This is because that we currently only have a bounded non-adaptive aIPE
scheme (which will be explained in the next section). If we have an unbounded
adaptive aIPE scheme, this restriction can be removed.

2.3 Discrete Gaussian, Lattice Trapdoor and Learning with Errors

Definition 2.4. [29]
For any vector x ∈ Zm, let ρs(x) = exp(−π‖x‖2/s2). For A ∈ Zn×mq and

u ∈ Znq , let Λ⊥u (A) = {x : Ax = u} (which is a lattice coset).
The discrete Gaussian distribution DΛ⊥u (A),s is defined as:

DΛ⊥u (A),s(x) =
ρs(x)∑

v∈Λ⊥u (A) ρs(v)
.

We also write ρs(Λ
⊥
u (A)) =

∑
v∈Λ⊥u (A) ρs(v).

The following lemma in [17, 26] shows that there exists a trapdoor and a
preimage sampling algorithm for discrete Gaussian distribution.

Lemma 2.1. [17, 26]
There is an efficient randomized algorithm TrapSamp(1n, 1m, q) that, given

n ≥ 1, q ≥ 2, m = Ω(n log q), outputs A ∈ Zn×mq and a “trapdoor” T such that
the distribution of A is close to uniform with negligible distance.

Moreover, there is an efficient randomized algorithm SamplePre that for any
u ∈ Znq , s = Ω(

√
n log q), SamplePre(A,T,u, s) outputs a vector r ∈ Zm, which

distribution is statistically close to DΛ⊥u (A),s with negligible distance.

We sometimes omit the parameter s if there is no confusion.
The following lemma is required for our security proof:
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Lemma 2.2. Let (A,T)← TrapSamp(1n, 1m, q), (A′,T′)← TrapSamp(1n
′
, 1m, q),

n′ > n, and we write A′ =
(
Ā
Ã

)
, Ā ∈ Zn×mq , and Ã ∈ Z(n′−n)×m

q . Then there
exists s > 0 such that the following two distribution are statistically indistin-
guishable:

– A,x← SamplePre(A,T,u, s);
– Ā, x̄← SamplePre(A′,T′,

(
u
b

)
, s), where b← Zn′−nq .

Proof. See Appendix A. ut

Now we give our hardness assumption: the (decisional) learning with errors
(LWE) problem, first introduced in [30]. It has the nice property called worst-case
to average-case reduction: solving LWE on the average is as hard as (quantumly)
solving GapSVP and SIVP problems in the worst case.

Definition 2.5 (LWE problem). [30] For a vector s ∈ Znq called the secret, the
LWE distribution As,χ over Znq × Zq is sampled by choosing a ← Znq uniformly

at random, choosing e← χ, and outputting (a, b = sTa + e mod q).
The decisional learning with errors (LWE) problem LWEn,q,χ,m is that given

m independent samples (ai, bi) ∈ Znq × Zq where the samples are distributed
according to either As,χ for a uniformly random s or the uniform distribution,
distinguish which is the case with non-negligible advantage.

For parameters, it is often required that m = poly(n), q = O(2n
ε

) for some
ε > 0, and χ is the discrete Gaussian. We say that the distribution χ is β-
bounded, if |χ| ≤ β with overwhelming probability. We can choose appropriate
parameters for χ to be β-bounded given β = poly(n) such that LWEn,q,χ,m is
hard.

We give a lemma which will be used in our proof:

Lemma 2.3. For s← Znq , let {(ai, bi)}i∈[m] be sampled from As,χ. Let M ⊆ [m],
and {(a′i, b′i)}i∈[m] be defined as: for i ∈M , (a′i, b

′
i)← As,χ, otherwise (a′i, b

′
i) is

uniformly random. Then {(ai, bi)}i∈[m] and {(a′i, b′i)}i∈[m] are indistinguishable
assuming the hardness of LWEn,q,χ,m.

Proof. Let {(a∗i , b∗i )}i∈[m] be a set of m uniformly random samples, then it is
indistinguishable with {(ai, bi)}i∈[m] from the hardness of LWEn,q,χ,m. For those
i ∈M , we replace (a∗i , b

∗
i ) by LWE samples from As,χ to get {(a′i, b′i)}i∈[m], and

the two are also indistinguishable from the hardness of LWEn,q,χ,m. ut

3 Approximate Inner-product Encryption

Definition 3.1. An approximate IPE scheme consists of the following algo-
rithms:

– Setup(1λ): output a pair (PK,MSK).
– KeyGen(MSK,x): for x ∈ Zmq , output a secret key skx.
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– Enc(PK,m; r): for m ∈ Zmq , and a random seed r ← R, output a ciphertext
ctm;r.

– Dec(ctm;r, skx): Output an approximate inner product for m,x.

An aIPE scheme is γ-correct if for any ctm;r, skx, Dec(ctm;r, skx)−〈m,x〉 mod q ≤
γ. We say that aIPE has simulatable error, if there exists a function h such that
Dec(ctm;r, skx) − 〈m,x〉 mod q = h(r,x, 〈m,x〉). Furthermore, we say that the
error follows distribution χ̄, if h(r,x, 〈m,x〉)← χ̄ for a uniformly random cho-
sen seed r and any possible m,x.

For the simplicity of our further discussion, we explicitly write down the
random seed used in Enc, so that Enc becomes a deterministic algorithm. Setup
and KeyGen are still probabilistic algorithms. Sometimes we can omit r, write
the encryption algorithm as Enc(PK,m) and the ciphertext as ctm. The error-
simulatable property is required by the simulation-based security below.

As we mentioned above, our aIPE scheme is a direct instance of functional
encryption for arbitrary circuits [18]. So we also adopt the security definition
from [18] (using a slightly different description).

Definition 3.2. An aIPE scheme (which has simulatable error) is Q-selective
non-adaptive simulation-based secure, if there exists a simulator algorithm S
such that for any adversary, the advantage of winning the following game is
negligible:

Init. The adversary chooses a challenge message m and gives it to the chal-
lenger.

Setup. The challenger runs the Setup algorithm and gives the adversary
PK.

Key Query. The adversary submits a vector x for a KeyGen query. The
challenger answers with a secret key skx for x. These queries can be repeated
adaptively for at most Q times.

Challenge. The challenger chooses a random bit b ∈ {0, 1}, and a random
seed r ← R. If b = 0, it returns ctm = Enc(PK,m; r) to the adversary. If b = 1,
it returns ctm = S(PK, {skxi ,xi, 〈xi,m〉+ei}i∈[Q]), where ei = h(r,xi, 〈xi,m〉),
xi is the queried vector in the i-th key query.

Guess. The adversary outputs a guess b′ for b, and the winning advantage
is defined as |Pr[b′ = b]− 1/2|.

In the definition above, we require that the number of key queries must be
bounded by a pre-determined Q.

The term “non-adaptive” has multiple meanings in cryptography. In the defi-
nition above, “non-adaptive” means that the adversary cannot ask for key queries
after seeing the challenge ciphertext, which is defined in [4] for functional en-
cryption. They also prove that adaptive FE scheme for arbitrary circuits simply
does not exist, and since we rely on the existence of FE to construct our aIPE
scheme, we have to use the non-adaptive definition. We give the following lemma,
and put the aIPE construction in the appendix.
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Lemma 3.1 Let γ = Ω(2λ
ε

) for some ε > 0. Then there exists a γ-correct aIPE
scheme for some γ with simulatable error which distribution is indistinguishable
from uniform in [−γ, γ], with Q-selective non-adaptive simulation-based security
for any polynomial Q, if there exists a functional encryption for arbitrary circuits
with Q-selective non-adaptive simulation-based security.

Proof. See Appendix B. ut

Since FE scheme for arbitrary circuits with bounded key queries has already
been constructed in [18] under LWE assumption and circular security (used in
fully-homomorphic encryption schemes), we have the following result:

Corollary 3.2 Let γ = Ω(2λ
ε

) for some ε > 0. Then there exists a γ-correct
aIPE scheme for some γ with simulatable error which distribution is indistin-
guishable from uniform in [−γ, γ], with Q-selective non-adaptive simulation-
based security for any polynomial Q, under the hardness of LWE problem along
with circular security.

Above we define the simulation-based security. However, what we exactly
need in our ABE construction is the indistinguishable-based security. As it was
shown in [4], simulation-based security is stronger than indistinguishable-based.
We give the definition, and the security result we require:

Definition 3.3. An aIPE scheme (which has simulatable error) is Q-selective
non-adaptive β-indistinguishable-based secure, if for any adversary, the advan-
tage of winning the following game is negligible:

Init. The adversary chooses two challenge messages m0,m1 and gives it to
the challenger.

Setup. The challenger runs the Setup algorithm and gives the adversary
PK.

Key Query. The adversary submits a vector x for a KeyGen query. The
challenger answers with a secret key skx for x. These queries can be repeated
adaptively for at most Q times.

Challenge. The challenger first checks whether for all queried x, there is
|〈x,m0 −m1〉| ≤ β. If this does not hold, then the challenger aborts. Otherwise,
it chooses a random bit b ∈ {0, 1}, a random seed r ← R, and returns ctm =
Enc(PK,mb; r) to the adversary.

Guess. The adversary outputs a guess b′ for b, and the winning advantage
is defined as |Pr[b′ = b]− 1/2|.

Lemma 3.3 Let β/γ = O(2−λ
ε

) for some ε > 0. Then any γ-correct, Q-selective
non-adaptive simulation-based secure aIPE for polynomial Q, which error follows
uniform distribution in [−γ, γ], is Q-selective non-adaptive β-indistinguishable-
based secure.

Proof. We prove this by a hybrid of games. Let S be the simulator in the
simulation-based security definition.



10 Geng Wang, Ming Wan, Zhen Liu and Dawu Gu

– Game 0 is the original indistinguishable game.
– In Game 1, if b = 0, the challenger answers the challenge ciphertext by the

simulator: S(PK, {skxi ,xi, 〈xi,m0〉+ ei}i∈[Q]).
– In Game 2, the challenger answers the challenge ciphertext by the simulator:
S(PK, {skxi ,xi, 〈xi,mb〉+ ei}i∈[Q]).

Game 0 and Game 1, Game 1 and Game 2 are indistinguishable by the
simulation-based security. We now show that the advantage for any adversary
to win Game 2 is negligible.

By our assumption, we have that 〈xi,m0〉+ei ← [〈xi,m0〉−γ, 〈xi,m0〉+γ],
and 〈xi,m1〉+ ei ← [〈xi,m0〉 − 〈xi,m0 −m1〉 − γ, 〈xi,m0〉 − 〈xi,m0 −m1〉+
γ]. Then, we can see that the statistical distance between 〈xi,m0〉 + ei and

〈xi,m1〉+ei is 2〈xi,m0−m1〉
2γ+1 ≤ 2β

2γ+1 < β/γ. Let Q be the number of total KeyGen

queries, so the statistical distance between S(PK, {skxi ,xi, 〈xi,m0〉 + ei}i∈[Q])
and S(PK, {skxi ,xi, 〈xi,m1〉+ei}i∈[Q]) is at most Qβ/γ. Since Q is polynomial
in λ, Qβ/γ is negligible. So the advantage for any adversary to win Game 2 is
negligible. ut

4 Fully Secure CP-ABE Scheme for CNF policies

Now we give our main theorem:

Theorem 4.1. There exists a fully secure CP-ABE scheme for CNF policies,
assuming the existence of a selectively non-adaptively simulation-based secure
aIPE scheme and the hardness of LWE problem.

We combine Theorem 4.1 and Corollary 3.2, and immediately get the follow-
ing result:

Corollary 4.2 There exists a fully secure CP-ABE scheme for CNF policies,
assuming the the hardness of LWE problem along with circular security.

4.1 Construction

Let aIPE be a γ-secure aIPE scheme defined in Section 3, we choose a β-bounded
error distribution χ, where β/γ = O(2−λ

ε

) for some ε > 0. The CP-ABE scheme
is constructed as follows:

– Setup: Let l be the number of literals. Run TrapSamp l+1 times to generate:
(A1,T1), ..., (Al,Tl), (A,T) ← TrapSamp(1n, 1m, q), and let u ∈ Znq . Run
aIPE.Setup l+1 times to generate (PK1,MSK1), ..., (PKl,MSKl), (PK,MSK).
Output mpk = (A1, ...,Al,A,u, PK1, ..., PKl, PK), and msk = (T1, ...,Tl,
T,MSK1, ...,MSKl,MSK).

– KeyGen(msk,L): Let a← Znq . Sample x← SamplePre(A,T,a + u), and let
K ← aIPE.KeyGen(MSK,x). For each i ∈ L, sample xi ← SamplePre(Ai,Ti,a),
and let Ki ← aIPE.KeyGen(MSKi,xi). Return the secret key K, {Ki}i∈L.
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– Enc(mpk, f, µ), µ ∈ {0, 1}: Let T1, ..., Tk be clauses in f . Generate uniform
s1, ..., sk ← Znq . For each j ∈ Ti, let Ci,j = aIPE.Enc(PKj , s

T
i Aj). Let

C = aIPE.Enc(PK, (
∑k
i=1 si)

TA), and C ′ = (
∑k
i=1 si)

Tu + µbq/2c + ē,
ē← χ. Return the ciphertext ({Ci,j}i∈[k],j∈Ti , C, C

′).
– Dec(ctf , skL): First check if L satisfies the policy f . If f(L) = 0, return ⊥. If
f(L) = 1, then for each i ∈ [k], there is at least one literal li ∈ L∩Ti, let di =

aIPE.Dec(Ki, Ci,li). Let d = aIPE.Dec(K,C). Calculate (
∑k
i=1 di)−d+C ′,

if the value is close to 0, return 0; if the value is close to q/2, return 1.

Theorem 4.3. Let q > 4(l+1)γ+4β, and aIPE is γ-correct. Then the CP-ABE
scheme above is correct.

Proof. First, by the correctness of aIPE, for j ∈ L ∩ Ti, di = sTi Ajxj + ei =

sTi a + ej , |ej | ≤ γ. Also, d = (
∑k
i=1 si)

TAx + e = (
∑k
i=1 si)

T (a + u) + e, |e| ≤ γ.

So (
∑k
i=1 di)− d+C ′ = µbq/2c+

∑k
i=1 ei− e+ ē, which is (l+ 1)γ+ β-close

to 0 or bq/2c. Since (l + 1)γ + β < q/4, we can get the correct message. ut

4.2 Hyper-functional Keys and Semi-functional Ciphertexts

Now we are ready to prove Theorem 4.1. But before we start the security proof,
we first define hyper-functional secret keys and semi-functional ciphertexts.

Hyper-functional key. For a hyper-functional key, we not only change the
key generation algorithm, but also the setup algorithm. In Setup, instead of

generating A along with its trapdoor, we generate A′ ∈ Z(n+1)×m
q along with

its trapdoor T′. We write the first n rows of A′ as A, and the last row as ãT ,
which means that A′ =

(
A
ãT

)
. A is included in the public key as normal. We also

generate t← Znq .
For KeyGen queries, we first sample e′, e← χ. Let x← SamplePre(A′,T′,(

a+u
tT (a+u)+e′+ē+e

)
). Then we have (ãT − tTA)x = e′ + ē + e ≈ 0. Let K ←

aIPE.KeyGen(MSK,x) and other key elements generated the same as normal.
We say that the secret key is hyper-functional related to ãT − tTA.

Note that we also call a secret key “normal”, if x← SamplePre(A′,T′,
(
a+u
b

)
)

for b← Zq.
For the indistinguishability between hyper-functional and normal keys, we

have the following lemma:

Lemma 4.4 Let (A0,T0)← TrapGen(1n, 1m, q). For i ∈ [Q] and ai ← Znq , xi0 =

SamplePre(A0,T0,a
i). Let (A′,T′)← TrapGen(1n+1, 1m, q), xi1 = SamplePre(A′,

T′,
(

ai

a′i+ei

)
), where A′ =

(
A1

ã

)
, ei ← χ, a′

i ∈ Zq. Then (A0, {xi0}i∈[Q]) is compu-

tationally indistinguishable from (A1, {xi1}i∈[Q]) assuming the hardness of LWE.

Proof. We prove the lemma by showing the following distributions are pairwise
indistinguishable (either statistical or computational).

– (1) Let (A′′,T′′) ← TrapGen(12n+1, 1m, q), A′′
T

= (AT
2 |ĀT |ā). Let xi2 =

SamplePre(A′′,T′′, (ai
T |b̄iT |b̄i)

T
), where b̄i ← Znq and b̄i ← Zq. By Lemma

2.2, we have (A0, {xi0}i∈[Q]) is statistically indistinguishable from (A2, {xi2}i∈[Q]).
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– (2) We first choose b̃i ← Znq and write b̄i = b̃i + a′
i
. This does not change

the distribution.

– (3) We first choose s ← Znq , let b̄′
i

= sT b̄i + ei + a′
i
, and let x′2

i
=

SamplePre(A′′,T′′, (ai
T |b̄iT |b̄′i)

T
). By the hardness of LWE problem, any

adversary cannot distinguish between b̄i, b̃i and b̄i, sT b̄i + ei, hence cannot
distinguish between xi2 and x′2

i
.

– (4) Let ã = ā− ĀT s, and we have ãTx′2
i

= a′
i
+ ei.

– (5) This time we write A′′
T

= (AT
2 |ĀT |ã), and set x′′2

i
= SamplePre(A′′,

T′′, (ai
T |b̄iT |a′i + ei)

T
). Then x′2

i
and x′′2

i
are from the same distribution.

– (6) By Lemma 2.2, (A2, {x′′2
i}i∈[Q]) is statistically indistinguishable from

(A1, {xi1}i∈[Q]).

ut

Semi-functional ciphertext.

A ciphertext is semi-functional, if the ciphertext element C is aIPE.Enc(PK,

(
∑k
i=1 si − t)TA + ã) instead of aIPE.Enc(PK, (

∑k
i=1 si)

TA).

It follows directly from the indistinguishable security of aIPE that a semi-
functional ciphertext element is indistinguishable from a normal one if all secret
keys are hyper-functional.

Along with hyper-functional keys and semi-functional ciphertexts, we also
define temporary hyper-functional keys and i-temporary semi-functional cipher-
texts, which will be used in our security proof. We note that in our definition,
“hyper-functional” and “temporary hyper-functional” form two independent di-
mensions: a temporary hyper-functional key can be either normal or hyper-
functional.

Temporary hyper-functional key. Let l be the number of literals. Like the
definition of hyper-functional keys, we not only change the key generation algo-
rithm, but also the setup algorithm. In Setup, instead of generating Aj , j ∈ [l]

along with its trapdoor, we generate A′j ∈ Z(n+1)×m
q along with its trapdoor T′j .

We write the first n rows of A′j as Aj , and the last row as ãj
T , which means

that A′j =
(Aj

ãjT

)
. Aj is included in the public key as normal.

For KeyGen queries, let L be the queried literal set. For j ∈ L, let xj ←
SamplePre(A′j ,T

′
j ,
(

a
tT a+e′+ej

)
), where ej ← χ, and if the key is normal, we

sample e′ ← χ, if the key is hyper-functional, we use the same e′ as in the
generation of x. Then we have (ãj

T − tTAj)xj = e′ + ej ≈ 0. Let Kj ←
aIPE.KeyGen(MSKj ,xj). We say that the secret key is temporary hyper-functional
related to {ãTj − tTAj}j∈L.

We can also use Lemma 4.4 to prove the indistinguishability between tem-
porary hyper-functional keys and non-temporary normal/hyper-functional keys.

i-Temporary semi-functional ciphertext. A ciphertext is i-temporary semi-
functional, if for each j ∈ Ti, the ciphertext element Ci,j is aIPE.Enc(PKj , (si−
t)TAj + ãj) instead of aIPE.Enc(PKj , s

T
i Aj).
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It follows directly from the indistinguishable security of aIPE that a tempo-
rary semi-functional ciphertext element is indistinguishable from a semi-functional
one if all secret keys but those skL, L ∩ Ti = ∅ are temporary hyper-functional.

4.3 Security Proof

We first give the outline of our proof. Our security proof is similar to [25], which
is constructed using dual system encryption from bilinear groups.

– Switch all queried secret keys into hyper-functional keys.
– Switch the challenge ciphertext into semi-functional ciphertext.
– For the p-th query in Phase 1 which challenge literal set is L:
• Switch all secret keys into temporary hyper-functional secret keys.
• Find an i such that L∩Ti = ∅, and switch the ciphertext into i-temporary

semi-functional ciphertext.
• Switch the p-th secret key into a normal one using LWE assumption.
• Switch the ciphertext into a non-temporary semi-functional ciphertext.
• Switch all secret keys into non-temporary normal or hyper-functional

secret keys.
– For queries in Phase 2, and i ∈ [k], k is the maximal number of clauses:
• Switch all secret keys into temporary hyper-functional secret keys.
• Switch the ciphertext into i-temporary semi-functional ciphertext.
• Switch all Phase 2 secret keys such that L ∩ Ti = ∅ into a normal one

using LWE assumption.
• Switch the ciphertext into a non-temporary semi-functional ciphertext.
• Switch all secret keys into non-temporary normal or hyper-functional

secret keys.
– Now C is uniformly random, independent with any queried secret keys. We

further switch C ′ into a uniformly random element, and thus have our result.

Now we define the game sequence.
Game 0 is the original game.
Game 1 is same as Game 0 except that each queried secret key is a hyper-

functional key. Game 0 and Game 1 are indistinguishable by Lemma 4.4.
Game 2 is same as Game 1 except that the challenge ciphertext is semi-

functional. We note that the security definition of aIPE is “non-adaptive”, which
means that we cannot query secret keys after seeing the challenge aIPE cipher-
text. So in order to use Lemma 3.3, we first define Game 1a and Game 2a as
follows:

– The Setup phase and Phase 1 are the same as Game 1 or Game 2.
– In the Challenge phase, let Q1 be the number of Phase 1 queries, so Q2 = Q−
Q1 is the maximal number of Phase 2 queries. Before the challenge ciphertext
is given, for each r ∈ [Q2], we generate ar ← Znq , e′

r
, er ← χ, and xr ←

SamplePre(A′,T′,
(

ar+u
tT (ar+u)+e′r+ē+er

)
. Let Kr = aIPE.KeyGen(MSK,xr).

– In Game 1a, the challenger returns a normal ciphertext, and in Game 2a, it
returns a semi-functional one.
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– In the r-th Phase 2 query, we let e′ = e′
r
, e = er, a = ar, and the key

element K = Kr. Other key elements are generated as before.

It is easy to see that Game 1 and Game 1a; Game 2 and Game 2a are
the same from the adversary’s point of view. We now show that Game 1a and
Game 2a are indistinguishable.

For the challenger, instead of generating all Ks and C itself, it now runs an
indistinguishable game for aIPE, gets K by the KeyGen query of aIPE, and gets
C as the challenge ciphertext of aIPE. We can see that all KeyGen queries are
made before generating the challenge ciphertext of aIPE, so the aIPE game can
proceed correctly. Because |(ãT −tTA)x| ≤ 3β and β/γ = O(2−λ

ε

), we have the
indistinguishable result by Lemma 3.3.

Game 2(p), p ∈ [Q1 + 1], Q1 is the number of phase 1 queries: Game 2(p)
is same as Game 2, except that the first p − 1 Phase 1 keys are normal. Then
Game 2(1) is Game 2, and in Game 2(Q1 + 1), all Phase 1 keys are normal.
We prove the following result:

Lemma 4.5 Game 2(p) and Game 2(p + 1) are indistinguishable assuming
the security of aIPE and the hardness of LWE.

Proof. We prove this by the following game sequence:
Game 2-1(p): Game 2-1(p) is same as Game 2(p), except that we change

all keys into temporary hyper-functional keys. Game 2-1(p) is indistinguishable
from Game 2(p) according to Lemma 4.4.

Let L be the challenge literal set in the p-th query of Phase 1. So there must
be clause Ti such that L ∩ Ti = ∅. This i will be used in the following games.

Game 2-2(p, j): Game 2-2(p, j) is same as Game 2-1(p), except that for
any Ci,j′ such that j′ ≤ j and j′ ∈ Ti, Ci,j′ is generated as aIPE.Enc(PKj′ , (si−
t)TAj′ + ãTj′). So Game 2-2(p, 0) is Game 2-1(p), and in Game 2-2(p, l), the
ciphertext is i-temporary semi-functional. We now show that Game 2-2(p, j−1)
is indistinguishable from Game 2-2(p, j).

Similar to the discussion above, we must generate the required secret key
element at the challenge phase, in order to use Lemma 3.3. Let Q2 = Q−Q1 be
the maximal number of Phase 2 queries. We define Game 2-2a(p, j) and Game
2-2b(p, j) as follows:

Game 2-2a(p, j): The game is same as Game 2-2(p, j), except that:

– In the Challenge phase, before the challenge ciphertext is given, we first check
whether j + 1 ∈ Ti. If j + 1 6∈ Ti, the game proceeds as Game 2-2(p, j). If
j+1 ∈ Ti, for each r ∈ [Q2], we generate ar ← Znq , e′

r
, erj+1 ← χ, and xrj+1 ←

SamplePre(A′j+1,T
′
j+1,

(
ar

tT ar+e′r+erj+1

)
). LetKr

j+1 = aIPE.KeyGen(MSKj+1,x
r
j+1).

– In the r-th Phase 2 query, if j + 1 ∈ Ti, we let e′ = e′
r
, ej+1 = erj+1, a = ar,

and the key element Kj+1 = Kr
j+1. Then, generate other key elements as in

Game 2-2(p, j).

Game 2-2b(p, j): The game is same as Game 2-2(p, j), except that:
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– In the Challenge phase, before the challenge ciphertext is given, we first
check whether j ∈ Ti. If j 6∈ Ti, the game proceeds as Game 2-2(p, j). If
j ∈ Ti, for each r ∈ [Q2], we generate ar ← Znq , e′

r
, erj ← χ, and xrj ←

SamplePre(A′j ,T
′
j ,
(

ar

tT ar+e′r+erj

)
). Let Kr

j = aIPE.KeyGen(MSKj ,x
r
j).

– In the r-th Phase 2 query, if j ∈ Ti, we let e′ = e′
r
, ej = erj , a = ar, and

the key element Kj = Kr
j . Then, generate other key elements as in Game

2-2(p, j).

It is easy to see that Game 2-2(p, j), Game 2-2a(p, j) and Game 2-2b(p, j)
are the same from the adversary’s point of view. We now show that Game
2-2a(p, j − 1) and Game 2-2b(p, j) are indistinguishable.

For the challenger, instead of generating all Kjs and Ci,j itself, it now runs a
indistinguishable game for aIPE, get Kj by the KeyGen query of aIPE, and get
Ci,j as the challenge ciphertext of aIPE. Since |(ãjT −tTAj)xj | ≤ 2β and β/γ =
O(2−λ

ε

) by assumption, we only need to show that the aIPE game can proceed
correctly. If j ∈ Ti, all KeyGen queries are made before the challenge ciphertext,
which is legal in the aIPE game. If j 6∈ Ti, the aIPE challenge ciphertext is
never required, so all KeyGen queries can be made correctly. Thus we have the
indistinguishable result by Lemma 3.3.

Now we have that Game 2-1(p) is indistinguishable from Game 2-2(p, l).
Game 2-3(p): The game is same as Game 2-2(p, l), except that:

– In the challenge phase, we generate s̄ ← Znq , {si′}i′ 6=i ← Znq , and generate

Ci,j for any j ∈ Ti as aIPE.Enc(PKj , (s̄−
∑
i′ 6=i si′)

TAj + ãj).

– We also generate C = aIPE.Enc(PK, s̄TA + ãT ), and C ′ = (s̄ + t)Tu +
µbq/2c+ ē.

Note that in Game 2-3(p), we implicitly set si = s̄ + t −
∑
i′ 6=i si′ , so that

for the adversary, Game 2-3(p) is the same as Game 2-2(p, l). Now we see that
t only occurs in C ′ and in KeyGen queries. All these occurrences of t take the
form of LWE samples: tTa + e′, and tTu + ē.

Game 2-4(p): The game is same as Game 2-3(p), except that in the p-th
query:

– We choose random b̃← Zq, and let x← SamplePre(A′,T′,
(

a
b̃+tTu+ē+e

)
).

– For i ∈ [l], xi ← SamplePre(A′i,T
′
i,
(

a
b̃+ei

)
).

Game 2-3(p) and Game 2-4(p) are indistinguishable using Lemma 2.3, by
the hardness of LWE problem. We also define Game 2-4a(p), which removes s̄
from Game 2-4(p), and si is uniformly sampled in the challenge phase. Game
2-4a(p) is the same as Game 2-4(p) from the adversary’s point of view.

Game 2-5(p, j): Game 2-5(p, j) is same as Game 2-4a(p), except that for
any Ci,j′ such that j′ ≤ j and j′ ∈ Ti, Ci,j′ is generated as aIPE.Enc(PKj′ , s

T
i Aj′).

So Game 2-5(p, 0) is Game 2-4a(p), and in Game 2-5(p, l), the ciphertext is
(non-temporary) semi-functional.

The indistinguishability between Game 2-5(p, j − 1) and Game 2-5(p, j) is
nearly the same as Game 2-2(p, j − 1) and Game 2-2(p, j), except that this
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time, for the p-th query with literal set L, |(ãjT − tTAj)xj | may not be small.
However, since L ∩ Ti = ∅, for each j ∈ Ti where it is required to generate the
ciphertext element Ci,j , the corresponding key element xj does not exist. So the
ciphertext can be generated correctly in the reduction. Now we have that Game
2-4a(p) is indistinguishable from Game 2-5(p, l).

Game 2-6(p): Game 2-6(p) is same as Game 2-5(p, l) except that in the
p-th KeyGen query, instead of generating random b̃, we sample b← Zq, and set

b̃ = b−tTu− ē−e. Game 2-6(p) is same as Game 2-5(p, l) from the adversary’s
point of view. We can see that Game 2-6(p) is indistinguishable from Game
2(p+ 1) from Lemma 4.4. ut

Game 3(i), i ∈ [k + 1], k is the number of clauses in the challenge access
policy: The Phase 1 keys are normal, and for each Phase 2 key which challenge
literal set is L, the key is normal iff there exists i′ < i such that L ∩ Ti′ = ∅.
Game 3(1) is the same as Game 2(Q1 + 1). Since L must not satisfy the access
policy, it is easy to see that in Game 3(k + 1), all keys are normal.

Lemma 4.6 Game 3(i) and Game 3(i+1) are indistinguishable assuming the
security of aIPE and the hardness of LWE.

Proof. The proof is essentially the same as Lemma 4.5. We omit the details here.
ut

Game 4: Game 4 is same as Game 3(k + 1), except that all secret keys
are temporary hyper-functional keys. Game 4 is indistinguishable from Game
3(k + 1) by Lemma 4.4.

Game 5: Game 5 is same as Game 4, except that the challenge ciphertext
is 1-temporary semi-functional. Using similar discussion from Game 2-2(p, j) in
Lemma 4.5, we have that Game 4 and Game 5 are indistinguishable by Lemma
3.3.

Game 6: The game is same as Game 5, except that:

– In the challenge phase, we generate s̄← Znq , {si′}i′ 6=1 ← Znq , and write C1,j

for any j ∈ T1 as aIPE.Enc(PKj , (s̄−
∑
i′ 6=1 si′)

TAj + ãj).

– We also write C = aIPE.Enc(PK, s̄TA+ãT ), and C ′ = (s̄+t)Tu+µbq/2c+ē.

Game 6 is same as Game 5 from the adversary’s point of view. Note that this
time, tTu only occurs in C ′.

Game 7: The game is same as Game 6, except that in the challenge phase,
C ′ is generated by s̄Tu + v+µbq/2c, v ← Zq. Game 7 is indistinguishable from
Game 6 by Lemma 2.3 from LWE assumption.

Game 8: The game is same as Game 7, except that in the challenge phase,
we let v′ ← Zq, and v = v′− s̄Tu−µbq/2c, so C ′ = v′. Game 7 and Game 8 are
the same from the adversary’s point of view. Then in Game 8, the ciphertext
contains no information on µ, so the advantage for any adversary is 1/2. Thus
we finish our proof.
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5 Conclusion and Future Works

In this paper, we give a lattice version of the widely used dual-system method
from pairing-based cryptography, and use it to prove the full security of a CP-
ABE scheme supporting CNF access policies from lattice assumptions. The ex-
pressibility of our access policies is stronger than the existing result, which can
only support t-CNF policies for a constant t. We also point out that this is the
first time of using dual-system method to prove the full security of a lattice-based
ABE scheme, which solves a long time open question.

Our scheme is only the first and simple fully secure ABE construction using
dual system encryption in lattice, while the potential of our method seems to be
more than what we have shown in this paper. If our method has the same ability
as what has been proven for dual system encryption in bilinear groups, we hope
that we can use it to construct more fully secure ABE schemes, including ABE
with stronger expressibility (maybe for arbitrary circuits), constant decryption
cost, large universe, or even functional encryption schemes.

We note that dual-system based schemes in bilinear groups have comparable
efficiency to earlier schemes, but our scheme is currently impractical, mainly
because we have not found an efficient construction for aIPE scheme. Also, since
the aIPE scheme in this paper is bounded and non-adaptive, the number of key
queries for ABE must be bounded, which makes its security slightly lower than
the standard definition. Although we have high confidentiality for the existence
of a simple aIPE scheme, the construction seems to be harder than we first
imagine. We shall continue to work on the construction of aIPE in order to
make lattice-based ABE from dual system truly practical.

References

1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In Advances in Cryptology -
CRYPTO 2010, pages 98–115, 2010.

2. Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and
Hoeteck Wee. Functional encryption for threshold functions (or fuzzy ibe) from
lattices. International Workshop on Public Key Cryptography.

3. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional
encryption for inner product predicates from learning with errors. International
Conference on the Theory and Application of Cryptology and Information Security,
2011:21–40, 2011.

4. Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In Advances in Cryp-
tology - CRYPTO 2013, pages 500–518, 2013.

5. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional en-
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A Proof of Lemma 2.2

We first give the following lemma which is proven in [27, 17].
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Lemma A.1. [17]
For any ε ∈ (0, 1), there exists η > 0, such that for s ≥ η, ρs(Λ

⊥
u (A)) ∈

[ 1−ε
1+ε , 1] · ρs(Λ⊥0 (A)).

By Lemma 2.1, we have that the distribution of x is statistically close to
DΛ⊥u (A),s. So we only need to show that the distribution of x′ is statistically
close to DΛ⊥u (A′),s.

It is easy to see that {Λ⊥(uT |bT )T (A′)}
b∈Zn′−nq

forms a partition of the lattice

co-set Λ⊥u (Ā). So by the definition of discrete Gaussian, we have that, for any
c ∈ Λ⊥u (Ā), let b = Ãc, we have Pr(x = c) = q−(n′−n)ρs(c)/ρs(Λ

⊥
(uT |bT )T (A′)).

For a negligible ε, we choose s satisfies Lemma A.1. Then we have that for any
b′, ρs(Λ

⊥
(uT |bT )T (A′))/ρs(Λ

⊥
(uT |b′T )T

(A′)) ∈ [ 1−ε
1+ε ,

1+ε
1−ε ].

By definition, we have:

DΛ⊥u (A′),s(c) =
ρs(c)

ρs(Λ⊥u (Ā))
=

ρs(c)∑
b′∈Zn′−nq

ρs(Λ⊥(uT |b′T )T
(A′))

.

So:

1− ε
1 + ε

· ρs(c)

qn′−nρs(Λ⊥(uT |bT )T
(A′))

≤ DΛ⊥u (A′),s(c) ≤ 1 + ε

1− ε
· ρs(c)

qn′−nρs(Λ⊥(uT |bT )T
(A′))

.

Now we have that the statistical distance between the two distributions is no
more than 2ε, thus we have our result.

B Proof of Lemma 3.1

First, we introduce the concept of functional encryption and its security defini-
tion before we proceed.

Definition B.1. A functional encryption for a function class F : X → Y
scheme consists of the following algorithms:

– FE.Setup(1λ): output a pair (PK,MSK).
– FE.KeyGen(MSK, f): for f ∈ F , output a secret key skf .
– FE.Enc(PK, x): for x ∈ X , output a ciphertext ctx.
– FE.Dec(ctx, skf ): Output f(x).

A functional encryption scheme is correct if the probability for FE.Dec(ctx, skf ) 6=
f(x) is negligible.

Definition B.2. A functional encryption scheme is Q-selective non-adaptive
simulation-based secure, if there exists a simulator algorithm S such that for
any adversary, the advantage of winning the following game is negligible:

Init. The adversary chooses a challenge message x ∈ X and gives it to the
challenger.



Dual System in Lattice 21

Setup. The challenger runs the Setup algorithm and gives the adversary
PK.

Key Query. The adversary submits a function f ∈ F for a KeyGen query.
The challenger answers with a secret key skf for f . These queries can be repeated
adaptively for at most Q times.

Challenge. The challenger chooses a random bit b ∈ {0, 1}. If b = 0,
it returns ctx = Enc(PK, x) to the adversary. If b = 1, it returns ctx =
S(PK, {skf , f, f(x)}i∈[Q]).

Guess. The adversary outputs a guess b′ for b, and the winning advantage
is defined as |Pr[b′ = b]− 1/2|.

Since we already have FE for arbitrary circuits in [18] (Lemma 3.5), we only
need to define the function class we need in order to implement aIPE. We choose
the modular q and p << q, set γ = d( qp − 1)/2e. Let h̄ be a psueudorandom

function maps R× Zmq to [−γ, γ]. The function class F is defined as:

fx(m; r) = bq
p
· b(〈m,x〉+ h̄(r,x)) · p

q
e − h̄(r,x)e.

Let FEF be the functional encryption scheme supporting F . We only need
to show that FEF satisfies the definition of aIPE. For the simplicity of our dis-
cussion, we choose q = pk, p is an odd prime, so that q/p is an integer. (Choosing
other q and p only adds a negligible distance onto the error distribution, as long
as p/q = O(2−λ

ε

) for some ε > 0).
We have that b(〈m,x〉+ h̄(r,x)) · pq e− (〈m,x〉+ h̄(r,x)) · pq ∈ [−1/2, 1/2). So

fx(m; r)− ( qp · ((〈m,x〉+ h̄(r,x)) · pq )− h̄(r,x)) = fx(m; r)−〈m,x〉 ∈ [− q
2p ,

q
2p ).

Since the error fx(m; r)− 〈m,x〉 is an integer, the value is in [−( qp − 1)/2, ( qp −
1)/2] = [−γ, γ]. It is easy to see that the error can be determined by h̄(r,x) and
〈m,x〉, hence is simulatable.

Also, by the pseudorandomness of h̄, we see that h̄(r,x), r ← R is indistin-
guishable from uniform in [−γ, γ]. It is also straight to show that for different
h̄(r,x), b(〈m,x〉 + h̄(r,x)) · pq e − (〈m,x〉 + h̄(r,x)) · pq takes different values,

hence the error fx(m; r) − 〈m,x〉 takes different values. If the output of h̄ is
uniform, the error takes 2γ+ 1 different values each with probability 1/(2γ+ 1),
and is uniformly random. Since h̄ is indistinguishable from uniform, the error
distribution is also indistinguishable form uniform. Thus we finish the proof.


