
Further Clarification on Mantin’s Digraph Repetition Bias
in RC4

Pranab Chakraborty · Subhamoy Maitra

Abstract In this note we provide a theoretical argument towards an unsolved
question related to Mantin’s Digraph Repetition Bias (2005) that is observed in
the key-stream of RC4. The open question, that depends on the observation that
arrival of four consecutive same bytes in RC4 key-stream is slightly negatively
biased, was posed by Bricout et al [Des. Codes Cryptogr. (2018) 86:743-770] in
2016.
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1 Introduction

RC4 is possibly the most popular stream cipher and it attracted huge attention
in the domain of cryptanalysis (see for example [4–6] and the references therein).
Recently there are evidences of almost practical attacks on this cipher and thus the
cipher is not recommended to be deployed in new systems. However, this cipher still
handles considerable traffic in different networks and thus of interest to cryptologic
community. At the same time, the cipher is a very interesting combinatorial object
to study. Even after serious efforts for around four decades, we are still amazed
with novel results continuously coming in this domain of research.

The best long term bias observed in RC4 keystream was provided by Mantin
long back [3]. It says that the probability of obtaining a substring of the form
ABT AB (A,B 8-bit characters and T is a short string of such characters) in RC4
stream is greater than what should be obtained in a true random situation. This
bias is famously referred to as the “Digraph Repetition Bias” in RC4. A detailed
study in this regard has been presented recently in [1], which is referred as the
fine-grained analysis. Through this analysis it has been theoretically argued in [1,
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Theorem 1] that the bias should be little more in the case when A = B. However,
all the cases under this situation could not be clarified in [1] and in particular,
when A = B and T is null, then the bias could not be observed at all through
experiments. The authors of [1] thus commented,

“However, when A = B, we do not see the positive bias behaviour predicted
by [1, Theorem 1], but instead a small, negative bias. We do not currently
have an explanation for this behaviour.”

In this note, we answer this question with detailed theoretical analysis of RC4
evolution during the pseudo-random key-stream generation process.

Before proceeding further, let us first quickly describe the RC4 algorithm. In
RC4, we have an N = 256 length array of 8-bit integers 0 to N − 1, that works as
a permutation. There is also an l length array of bytes K (the secret key), where l

may vary from 5 to 32, depending on the key length. There are also two bytes i, j,
where i is the deterministic index that increases by 1 in each step and j is updated
in a manner so that it behaves pseudo-randomly. The Key Scheduling Algorithm
(KSA) of RC4 is as follows:

– j = 0; for i = 0 to N − 1: S[i] = i;
– for i = 0 to N − 1:

j = j + S[i] + K[i mod l]; swap(S[i], S[j]);

Next, the pseudo-random bytes z are generated during the Pseudo Random Gen-
erator Algorithm (PRGA) as follows:

– i = j = 0;
– for i = 0 to N − 1:

i = i + 1; j = j + S[i]; swap(S[i], S[j]); z = S[S[i] + S[j]];

All the additions here are modulo N .
The work of [3] presented the first distinguisher for RC4 when any amount of

initial keystream bytes are thrown away. This distinguisher is based on the digraph
distribution of RC4. The term digraph means a pair of consecutive keystream
words. In [3, Section 3], it has been shown that getting strings of the pattern
ABT AB (where A,B are bytes and T is a string of bytes of small length G ≤ 16),
is more probable in RC4 keystream than in random stream. The exact theoretical
result [3, Theorem 1] is as follows.

Theorem 1 During RC4 PRGA, for small integer values of G ≥ 0

Pr((zr+G+2 = A) ∧ (zr+G+3 = B)|(zr = A, zr+1 = B)) =
1

N2
(1 +

e
−8−8G

N

N
).

This result is true for most of the cases under some logical assumptions on inde-
pendence. However, it should be noted that being a deterministic stream cipher on
a classical paradigm, the states of RC4 actually dependent on each other, whatever
less the influence may be. Thus, there are cases, where the bias is not exactly the
same as in Theorem 1. In this direction detailed analysis has been presented in [1]
and it has been observed that when A = B, the bias is more prominent.

Theorem 2 During RC4 PRGA, for small integer values of G ≥ 0

Pr((zr+G+2 = A) ∧ (zr+G+3 = A)|(zr = A, zr+1 = A)) =
1

N2
(1 +

e
−4−6G

N

N
).
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Interestingly, this bias could not be observed for G = 0 in experiments as explained
following [1, Figure 2].

In RC4 related research, the biases are generally identified in two ways.

– One can run some experiments to observe the biases and then try to prove
them.

– One can theoretically inspect the algorithm to obtain the bias, prove it theo-
retically and then supplement it with experiments.

As we have commented earlier, the proofs are completed based on certain assump-
tions. Thus, in specific cases, due to incorrect assumptions, the reported biases
may not exist. These are identified later through more disciplined studies. This is
exactly what has been pointed out in [1] and left as an open question. In fact, in
this case we actually do not concentrate on showing the bias. Rather we try to
argue with detailed theoretical analysis that the bias is indeed negligible.

2 Explanation of the small negative bias in the AAAA sequence

In this section we first explain in details the arguments presented by Mantin in
Lemma 2 and Theorem 1 in [3] and then describe additional refinements of the
result by Bricout et. al. in [1]. While experimenting on the refinements of the
proposed results, Bricout et. al. identified a deviation in the observed behavior
(from the expected behavior predicted by Theorem 1 in [1]) for a specific form of
digraph repetition sequence that has the form AAAA. To the best of our knowledge,
this deviation remained unexplained so far. In this section, We present a theoretical
explanation to this behavior.

2.1 Revisiting Mantin’s result [3]

It appears that due to a possible typographical error, the statement of [3, Theorem
1] is not exactly correct, and it differs slightly from the proof. As given correctly
in the proof, during RC4 PRGA, for small integer values of G ≥ 0

Pr((zr+G+2 = A) ∧ (zr+G+3 = B)|(zr = A, zr+1 = B)) =
1

N2
(1 +

e
−8−8G

N

N
).

However, the theorem statement says,

Pr((zr+G+2 = A) ∧ (zr+G+3 = B)|(zr = A, zr+1 = B)) =
1

N2
(1 +

e
−4−8G

N

N
),

where −4 is misprinted instead of −8 in the exponent. This misprint is carried
in [1, Result 2] too, where [3, Theorem 1] is referred.

Let us now describe the approach that Mantin had used to prove the stated
result and in the process we point out additional clarifications for specific cases
that demand refinements of the result. The key observation made by Mantin is
the fact that if, with respect to an arbitrary round r of RC4 PRGA, Sr[ir + 1] = 1
and Sr−1[ir] = x is any byte-value other than 1, then at the end of round r + 1,
the permutation byte pair (x, 1) would move to the location indexed by (jr, jr +1)
and if the byte pair remains undisturbed till round (r + G + 2) (where G ≥ 0
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is an integer signifying the gap between the source and destinations pairs), then
under an additional condition that jr+G+2 = ir, the key-stream byte pair (zr, zr+2)
would repeat as the byte pair (zr+G+2, zr+G+3).

Note that unless specifically mentioned, Sr[y] is the y-th element of the S array,
after the swap is done in the r-th round. To be more specific, for a given G, the
conditions for the event to occur are as follows:

1. jr = ir+G+2,
2. Sr[ir + 1] = 1,
3. jr+G+2 = ir,
4. the locations indexed by ir, ir+1, ir+G+2 and ir+G+3 are undisturbed in the

intermediate G rounds,
5. the location of the key-stream byte zr indexed by Sr[ir] + Sr[ir+G+2] remains

unchanged in G + 2 rounds (r + 1, . . . , r + G + 2) and the location of the key-
stream byte zr+1 indexed by Sr+1[ir+1] + Sr+1[ir+G+3] remains unchanged in
G + 2 rounds (r + 2, . . . , r + G + 3).

Incidentally, Mantin stated the conditions of the theorem by referring to the
gap with the variable g = jr − ir and later introduced the variable G = (g − 2)
and called it the real gap. If g = 0, ir = jr and the permutation byte pair (x, 1)
stays in the same locations at the end of round r + 1. Similarly, g = 1 is forbidden
in real RC4 as Finney cycles [2] can’t occur. Therefore, we only consider the case
g ≥ 2 or in other words G ≥ 0.

The probability associated with the conditions (1–3) is clearly 1
N3 . Using [3,

Lemma 1], we find that the probability for condition 4 is around e(−4G)/N for
small values of G. Similarly, the probability corresponding to the condition 5 is

(1− G+2
N )

2 · e
−2(G+2)

N ≈ e
−4(G+2)

N . Hence, the combined probability of the desired

event according to conditions 1-5 is e
−8−8G

N · 1
N3 .

On the other hand, for the complimentary scenario with probability (1− 1
N3 ),

in which one or more of the conditions (1–3) do not hold, we consider the event
probability as the fair chance of 1

N2 . So the combined probability for the compli-
mentary scenario is (1− 1

N3 ) · 1
N2 .

By using the above probability values one can obtain the desired result,

Pr((zr+G+2 = A) ∧ (zr+G+3 = B)|(zr = A, zr+1 = B)) =
1

N2
(1 +

e
−8−8G

N

N
).

2.2 Revisiting Bricout et. al. result [1]

Mantin (in [3]) mentioned that for the sake of simplicity he made certain heuristic
assumptions. However, those were not elaborated in [3]. Bricout et. al. [1], while
performing a fine grained analysis of the proof, showed that there are certain
special cases in which one should not expect any digraph repetition bias. For
example, Mantin’s result would not be applicable for the following cases:

1. A = 1
2. B = 1
3. A = (N − 3) and G = 0
4. B = (N − 3) and G = 0
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The reason that these cases do not demonstrate digraph repetition bias as per
Mantin’s result is due to the fact that in each of these cases the condition 5 as
required by Mantin’s [3, Theorem 1] as stated in Theorem 1 above, gets violated.
In addition to the above cases, Bricout et al. [1] also showed that for a generic
pattern of the form AAT AA, there should be a stronger digraph repetition bias
than the bias given by Mantin’s result. We here outline the proof of Theorem 2.

The crucial observation for this result is that when A = B, the requirement
of condition 5 as per the proof given above for [3, Theorem 1] reduces to the
condition of non-disturbance of one target permutation byte position instead of
two byte positions. Hence the probability increases by a multiplicative factor of

e
2G+4

N . This brings us to the modified result:

Pr((zr+G+2 = A) ∧ (zr+G+3 = A)|(zr = A, zr+1 = A)) =
1

N2
(1 +

e
−4−6G

N

N
).

One should note that the above result is not applicable for certain specific values
of A and B [1]. All these deviations, as identified by Bricout et. al. [1], have been
experimentally verified in their paper, except one specific class of patterns. For
the pattern of the form AAAA, the experimental result showed slight negative
bias instead of the strong positive bias as expected in Theorem 2. It has been
mentioned in [1] that no explanation could be found out for such a deviation. We
solve this issue in the next section (Theorem 3) by proving the slight negative
bias. We also prove that there is a dependence of the extent of this bias on certain
special values of index ir around which this digraph repetition is observed.

2.3 Our result

We first prove two results (Lemma 1 and Lemma 2) that will be referred to prove
our final result, i.e., Theorem 3.

Lemma 1 During RC4 PRGA,

1. Pr(zr = zr+1|Sr[ir + 1] = 0, ir 6= 1) = 2
N2 and

2. Pr(zr = zr+1|Sr[ir + 1] = 0, ir = 1) = 3
N2 .

Proof Let us assume Sr[ir] = p and Sr[jr] = q, where p and q are two arbitrary byte
values. In case jr coincides with ir, it is evident that p equals q. As Sr[ir + 1] = 0,
p can’t be 0. Clearly, Sr[p + q] = zr.

We now investigate what happens in round r+1. Since Sr[ir+1] = 0, jr+1 = jr.
This implies Sr+1[jr+1] = q immediately before the swap step. After the swap
operation, Sr+1[ir+1] = q and Sr+1[jr+1] = 0. Therefore, Sr+1[q + 0] = Sr+1[q] =
zr+1. If zr = zr+1, then Sr[p + q] = Sr+1[q]. We now identify the situations that
lead to these conditions.

As p 6= 0, (p + q) 6= q. That means (p + q) and q must point to two different
array byte positions of S. Thus, the only way Sr[p + q] can be equal to Sr+1[q] is
when zr(= Sr[p + q]) gets swapped in round r + 1 and moves to a new position
pointed to by q. This may happen in the following situations:

1. (p + q) is same as ir+1 and q is same as jr+1,
2. (p + q) is same as jr+1 and q is same as ir+1,
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3. If ir = 1, we assume jr = 1 as well as Sr[ir] = Sr[jr] = 1.

By considering the first two situations, we obtain Pr(zr = zr+1|Sr[ir + 1] = 0, ir 6=
1) = 2

N2 and by considering all the three situations we get Pr(zr = zr+1|Sr[ir+1] =
0, ir = 1) = 3

N2 . ut

Lemma 2 During RC4 PRGA,

1. Pr(zr = zr+1|Sr[ir + 1] = (N − 1), ir 6∈ {(N − 2), (N − 1)}) = 2
N −

1
N2 and

2. Pr(zr = zr+1|Sr[ir + 1] = (N − 1), ir ∈ {(N − 2), (N − 1)}) = 2
N −

1
N3 .

Proof We first investigate a configuration that is applicable for all values of ir and
then focus on two special cases one corresponding to ir = (N − 1) and the other
corresponding to ir = (N − 2).

– Scenario 1: Let us consider a configuration in which jr = ir + 1. In this case
if Sr[ir] = p where p is any arbitrary byte value (other than (N − 1)), we get
zr = Sr[p + (N − 1)]. In the next round (i.e., (r + 1)-th round), ir+1 and jr+1

interchange their positions as compared to those of the r-th round. Hence,
after the swap operation, Sr+1[ir+1] = p and Sr+1[jr+1] = (N − 1). Therefore,
zr+1 = Sr+1[(N−1)+p] = zr. Here, we ignore the two cases where the position
of zr happens to coincide with either ir or ir+1 as their effect in probability
calculation is negligible. Thus, we consider that the probability associated with
this configuration is 1

N .
– Scenario 2: We now consider a special configuration that is applicable only for

ir = (N − 2). In this case, we take jr = ir + 2 and if Sr[ir] = p where p is any
arbitrary byte value (other than (N − 1)) then we assume Sr[jr] = (N − 2)− p.
This implies zr = Sr[p + (N − 2)− p] = Sr[N − 2] = p. In the (r + 1)-th round
jr+1 becomes same as ir+1 which leads to the fact that zr+1 = Sr+1[(N − 1) +
(N − 1)] = Sr+1[N − 2] = p = zr. Since we have assumed three conditions in
this configuration, where the first conditions has probability of 1

N , the second
condition has the probability 1

2 and the third condition has probability 2
N ,

considering independence, the probability associated would be 1
N2 .

– Scenario 3: We now consider a special configuration that is applicable only
for ir = (N − 1). In this case, we take jr = ir and if Sr[ir − 1] = p where p

is any arbitrary byte value (other than (N − 1)) such that p + (N − 1) is an
even number (say 2k for a positive integer k), we assume Sr[ir] = Sr[jr] = k or
Sr[ir] = Sr[jr] = N

2 + k . This implies zr = Sr[2k]. In the (r + 1)-th round jr+1

becomes same as ir−1 which leads to the fact that zr+1 = Sr+1[p+(N −1)] =
Sr+1[2k]. Assuming that the byte value indexed by 2k has not changed place
in round (r + 1), zr+1 = zr as desired. Since we have assumed two conditions
in this configuration where the first condition has a probability of 1

2N and the
second condition has a probability of 2

N , the combined probability associated
would be 1

N2 .

Scenario 1 leads to the result
Pr(zr = zr+1|Sr[ir + 1] = (N − 1), ir 6∈ {(N − 2), (N − 1)})
= 1

N + (1− 1
N ) · 1

N = 2
N −

1
N2 .

Scenarios 1, 2 and 3, when combined, lead to the result
Pr(zr = zr+1|Sr[ir + 1] = (N − 1), ir ∈ {(N − 2), (N − 1)})
= 1

N + 1
N2 + (1− 1

N −
1
N2 ) · 1

N = 2
N −

1
N3 . ut
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Now let us present our main theorem. In this regard, we refer to a comment
from [1]:

“Aside from the special case of A = B and G = 0, we did not observe any
additional significant deviations from the behaviour predicted by Result
2 [1] and our refinements of that result. However, a larger-scale computation
might well reveal further fine structure. For example, as suggested by a
reviewer, it is possible that there is a dependence of biases on i. Since i is
known to the attacker, if such biases were present and of significant size,
then this would result in exploitable behaviour.”

In fact that is what we study in this paper. The result our Theorem 3 actually
points out the values of i for which significant biases do not exist and thus not
exploitable.

Theorem 3 During RC4 PRGA, assuming that the RC4 state is in a random permu-

tation in the r-th round,

1. Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1, ir+1 6∈ {0, 1, (N − 2), (N − 3)})

≈ 1
N2 − (1−e−

8
N )

N3 + 4
N4 ,

2. Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1, ir+1 ∈ {(N − 2), (N − 3)})

≈ 1
N2 − (1−e−

8
N )

N3 + 5
N4 ,

3. Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1, ir+1 ∈ {0, 1})

≈ 1
N2 − (1−e−

8
N )

N3 + 6
N4 .

Proof We prove this lemma by analyzing the following four cases.

[Case 1:] This corresponds to the configuration that was originally used by Mantin
in [1] to prove the ABT AB bias. The conditions are as follows -

(i) Sr[ir + 1] = 1,
(ii) jr = ir + 2 and
(iii) jr+2 = ir.

These conditions lead to the desired outcome of zr = zr+2 and zr+1 = zr+3.
Since, zr = zr+1 (given condition), we get the pattern AAAA. The probability
of obtaining the configuration is 1

N3 and using Mantin’s result [1, Lemma 2] the

probability of occurrence of the desired event (given that configuration) is e−
8
N .

Hence, the combined probability associated with this configurations is e−
8
N · 1

N3 .

[Case 2:] In the first sub-case we assume the configuration

(i) Sr+1[ir+1 + 1] = 0.

The probability associated with this configuration is 1
N . Based on Lemma 1, we

know that Pr(zr+2 = zr+1|Sr+1[ir+1 + 1] = 0, ir+1 6= 1) = 2
N2 and Pr(zr+2 =

zr+1|Sr+1[ir+1 + 1] = 0, ir+1 = 1) = 3
N2 . Subsequently, we consider Pr(zr+3 =

zr+2) = 1
N under the fair chance assumption. Hence, if ir+1 6= 1, the probability

of getting the desired outcome of AAAA is 2
N4 and if ir+1 = 1, the probability of

getting the desired outcome of AAAA is 3
N4 .

In the next sub-case we consider the configuration



8 Pranab Chakraborty, Subhamoy Maitra

(i) Sr+2[ir+2 + 1] = 0

The probability associated with this configuration is 1
N . Based on Lemma 1, we

know that Pr(zr+3 = zr+2|Sr+2[ir+2 + 1] = 0, ir+2 6= 2) = 2
N2 and Pr(zr+3 =

zr+2|Sr+2[ir+2 + 1] = 0, ir+2 = 2) = 3
N2 . We also consider a fair chance of 1

N for
zr+1 = zr+2. Hence, if ir+2 6= 2, the probability of obtaining the desired outcome
of AAAA is 2

N4 and if ir+2 = 2, the probability of getting the desired outcome of
AAAA is 3

N4 .

[Case 3:] In the first sub-case we consider the configuration

(i) Sr+1[ir+1 + 1] = (N − 1)
(ii) jr+1 = ir+1 + 1

The probability associated with this configuration is 1
N2 . This configuration en-

sures that zr+2 = zr+1. So we need to investigate what happens in round r + 3.
Based on this configuration, we can say that in round r, jr must have equal to

ir + 3. Let Sr[ir] = p and Sr[jr] = q where p and q are two arbitrary byte-values.
In that case zr = Sr[p + q]. The given configuration also implies that in round
(r + 2), jr+2 = ir+1 where Sr+2[jr+2] = (N − 1). Therefore, in round (r + 3), it
would not be possible to have Sr+3[ir+3] + Sr+3[jr+3] = (p + q), instead it would
become (q + s) for some arbitrary byte value s 6= p in position Sr+3[jr+3] before
the swap operation or Sr+3[ir+3] after the swap operation. So zr+3 = Sr+3[q + s].
The only way for zr+3 to be equal to zr is if the permutation array byte indexed
by (p + q) moves to the new position indexed by (q + s) in round r + 3. Using the
argument similar to that used in Lemma 1 we get the probability of this event
(given the configuration of the sub-case) as 2

N2 . Hence, the probability of getting
the desired outcome of AAAA in this sub-case is 2

N4 .
By using the argument presented in Lemma 2, one can argue that for ir+1 ∈

{(N − 2), (N − 1)}, there can be an additional configuration (with the associated
probability of 1

N3 ) in which the probability of getting the desired outcome of AAAA

will be 2
N5 . We consider any term of the order of 1

N5 as negligible in this theorem.
In the next sub-case we assume the configuration

(i) Sr+2[ir+2 + 1] = (N − 1),
(ii) jr+2 = ir+2 + 1.

The probability associated with this configuration is 1
N2 . The configuration readily

implies that zr+2 = zr+3. By considering a fair chance of 1
N for the event of

zr+1 = zr+2, we get the probability of getting the desired outcome of AAAA in
this sub-case as 1

N3 .
By using the argument used in Lemma 2, for ir+1 ∈ {(N − 3), (N − 2)}, there

can be an additional configuration (with the associated probability of 1
N3 ) in which

the probability of getting the desired outcome of AAAA will be 1
N4 .

[Case 4:] In this case we consider the rest of the configurations (i.e., complimentary
to the combination of Cases 1, 2 and 3). The probability associated with this case
would be (1 − 2

N −
2
N2 − 1

N3 ) for ir+1 6∈ {(N − 3), (N − 2)} and it would be
(1− 2

N −
2
N2 − 2

N3 ) for ir+1 ∈ {(N − 3), (N − 2)}. For each of these situations we
consider that the desired configuration of zr+1 = zr+2 and zr+2 = zr+3 has the
fair chance of 1

N2 .
By combining all the cases we get the result for the desired outcome as
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1. Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1, ir+1 6∈ {0, 1, (N − 2), (N − 3)})

≈ 1
N2 − (1−e−

8
N )

N3 + 4
N4 ,

2. Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1, ir+1 ∈ {(N − 2), (N − 3)})

≈ 1
N2 − (1−e−

8
N )

N3 + 5
N4 ,

3. Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1, ir+1 ∈ {0, 1})

≈ 1
N2 − (1−e−

8
N )

N3 + 6
N4 .

ut

For N = 256, all these three probabilities are less than 1
N2 , where 1

N2 corresponds
to the uniform random case.

3 Conclusion

In this note, we solve an open question that is related to Mantin’s bias [3] in
RC4 key-stream. This bias is till date the most significant long term one to distin-
guish RC4 key-stream from uniform random distribution. However, this is mostly
a generic result with a few logical assumptions. Unfortunately, in a very few cases,
the assumptions are not correct and such issues have been studied in great detail
in [1]. The theoretical analysis could be formalized in [1], except one experimental
observation, that could not be supported by theoretical argument. This is related
to Pr((zr, zr+1) = (zr+2, zr+3)|zr = zr+1), that is for the sub-string of the form
AAAA. While the analysis of [1] could only point out to a positive bias, the ex-
periments show that it is actually slightly negative in such a case. In this note, we
prove this result with proper theoretical justification.
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