
Anonymous Tokens with Private Metadata Bit

Ben Kreuter1, Tancrède Lepoint1, Michele Orrù234, and Mariana Raykova1

1 Google, {benkreuter,tancrede,marianar}@google.com
2 Département d’informatique de l’ENS, ENS, CNRS, PSL University, Paris, France, first.last@ens.fr

3 INRIA, Paris, France
4 Recurse Center, New York, USA

January 23, 2020

Abstract. We present a cryptographic construction for anonymous tokens with private metadata bit,
a primitive that enables an issuer to provide a user with anonymous trust tokens that can embed a
single private metadata bit, which is accessible only to the party who holds the secret authority key
and is private with respect to anyone else. Our construction provides unforgeability, unlinkability and
privacy for the metadata bit properties.

1 Introduction

We present a new cryptographic construction for the primitive anonymous tokens with private metadata bit.
An anonymous token functionality enables an authority to issue a trust token to a user when it knows the
identity of the user. This token can be used at a later time by the user to prove that she is trusted, however,
the token also has an anonymity property which guarantees that the token does not reveal any additional
information about the identity of the user. Nobody except the issuer who has the secret key should be able
to issue tokens. The Privacy Pass construction [DGS+18] provides an anonymous token scheme that provides
unforgeability and unlinkability.

We extend the notion of anonymous token with the concept of a private metadata bit, which allows the
issuer to convey an additional bit of information with the token, for example, whether this user is whitelisted
or blacklisted. This additional bit should remain hidden from the user and should be readable only by the
party who has the secret key. While this private metadata bit allows the issuer to distinguish tokens with
different private metadata bit values, we require an anonymity property which guarantees that tokens with
the same metadata bit remain indistinguishable. The scheme should also remain unforgeable.

The Privacy Pass construction employs an oblivious verifiable PRF evaluation where the PRF used is
F (k, t) = kH(t) (using elliptic-curve additive notation). This construction provides verifiability for the token
issuance, which assures the user that the issued token has been generated using a previously committed
secret key for the issuer. The verifiability is realized using a Schnorr proof for equality of discrete logarithms
(DLEQ). The main idea for the extension with a private metadata bit is to use two committed keys, each
of which is used for one of the values for the metadata bit, and to give an OR proof for equality of discrete
logarithms (DLEQOR) with respect to the two committed keys.

The above idea does not work directly since the token issuance in Privacy Pass is a deterministic algorithm
and this enables an attack where the user can learn whether two tokens have been issued with the same
private metadata bit value. To circumvent this issue, we generalize the anonymous token construction to a
randomized version using the following function for token computation F (K := (x, y), t) = xH(t) + yH′(s)
where t is the user input to be signed and s is a random value chosen by the issuer.5 In order to preserve
verifiability we replace the Schnorr style DLEQ proof with an Okamoto-Schnorr generalized version of it.
Now we can apply the idea of using two keys to enable a private metadata bit.

5 Note that at token redemption, the user will not send s but send a randomized value S = rH′(s); hence the issuer
cannot de-anonymize the user using s.

One last wrinkle in the security proof is whether the adversary for the unforgeability and the privacy of the
metadata bit properties should have access to a verification oracle for tokens of its choice. This is not explicitly
supported in the current Privacy Pass security proof [DGS+18]. We provide a new proof for unforgeability
of Privacy Pass in the presence of a verification oracle based on a different hardness assumption, the Chosen
Target Gap Diffie-Hellman assumption, which is a formalization of the Chosen Target Diffie-Hellman in a
Gap DH group, which has been defined and used before [BLS01]. In the context of anonymous tokens with
private metadata bit we distinguish a verification oracle which just returns one bit about the validity of the
token and a verification functionality which returns the value of the private metadata bit (which could be 0, 1
or invalid, and in some applications, e.g. blacklisting, we can merge the states of value 0 and invalid bit). We
present a third anonymous token construction that provides unforgeability and privacy for the metadata bit
even when the adversary has verification oracle access for the validity of the token, but we crucially require
that the adversary does not get an oracle access to the verification and reading of the private metadata bit.

Section 2 contains the security assumptions and primitives used throughout the paper, and Section 3
defines the anonymous token primitive and its security defitinions. Next, Section 4 overviews the construction
of Privacy Pass in our framework. We present our randomized extension of the Privacy Pass scheme in
Section 5, and how we can enable a private metadata bit in the context of this extension in Section 6.
Finally, we combine the previous two constructions in Section 7 to obtain an anonymous token with private
metadata bit that supports validity verification oracles in the security games for unforgeability and privacy
of the metadata bit.

2 Preliminaries

Notation. When sampling the value x uniformly at random from the set S, we write x←$S. When
sampling the value x from the probabilistic algorithm M, we write x← M. We use := to denote assignment.
For an integer n ∈ N, we denote with [n] the interval {0, . . . , n− 1}. We denote vectors in bold. For a vector
a, we denote with ai the i-th element of a.

The output resulting form the interaction of two (interactive) algorithms A,B ∈ PPT is denoted as
Ja, bK ← 〈A,B〉. If only the first party receives a value at the end of the interaction, we write a ← 〈A,B〉
instead of Ja,⊥K ← 〈A,B〉. For a probabilistic algorithm M running on input x, we denote with [M(x)] the
range of outputs, i.e., all possible outputs of M on x occurring with non-zero probability.

We assume the existence of a group generator algorithm GrGen(1λ) that, given as input the security
parameter in unary form outputs the description Γ = (G, p,G,H) of a group G of prime order p; G and H
are two nothing-up-my-sleeve (NUMS) generators of G. For simplicity, we will assume that the prime p is of
length λ.

2.1 Security assumptions

We describe here the assumptions we will use throughout the paper.

Discrete Logarithm. The discrete logarithm assumption for a group generator GrGen states that given
a tuple of elements (G,H) where G←$G and H ←$G, any PPT adversary has negligible advantage in
returning h ∈ Zp such that H = hG. That is,

AdvdlogGrGen,A(λ) := Pr
[
DLOGGrGen,A(λ) = 1

]
≤ negl(λ) ,

where DLOGGrGen,A(λ) is defined in Fig. 1.
Decisional Diffie-Hellman. The decisional Diffie-Hellman (DDH) assumption for a group generator GrGen

states that given a tuple of elements (P,A := aP,B := bP) where P ←$G, and a, b←$Zp, any adversary
A ∈ PPT has negligible advantage in distinguishing C ←$G from the Diffie-Hellman C = abP . That is,

AdvddhGrGen,A(λ) :=
∣∣Pr
[
DDH0

GrGen,A(λ) = 1
]
− Pr

[
DDH1

GrGen,A(λ) = 1
]∣∣ ≤ negl(λ) ,

where DDHβ
GrGen,A(λ) is defined in Fig. 1.

2

Game DLOGGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

X ←$G
x← A(Γ,X)

return (xG = X)

Game DDHβ
GrGen,A(λ)

Γ, := (G, p,G)← GrGen(1λ)

P ←$G
a←$Zp; A := aP

b←$Zp; B := bP

C0 := abP ; C1 ←$G
b′ ← A(Γ, P,A,B,Cβ)

return b′

Game CDHGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

P ←$G
a←$Zp; A := aP

b←$Zp; B := bP

C ← A(Γ, P,A,B)

return (C = abP)

Fig. 1. The games for discrete logarithm, decisional Diffie-Hellman, and computational Diffie-Hellman.

Game CTDHGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp
X := xG

q := 0; T := []

{ti, Zi}`−1
i=0 ← ATarget,Help(Γ,X)

return (ti, Yi) ∈ T all different and xYi = Zi ∀i ∈ [`] and q < `

Oracle Target(ti)

if ∃(ti, Yi) to T

return Yi

else

Yi ←$G
append (ti, Yi) to T

return Yi

Oracle Help(Y)

q := q + 1

return xY

Fig. 2. The Chosen-Target Diffie-Hellman security game.

Computational Diffie-Hellman. The computational Diffie-Hellman (CDH) assumption for a group gen-
erator GrGen states that given a tuple of elements (P,A := aP,B := bP) where P ←$G, and a, b←$Zp,
any adversary A ∈ PPT has negligible probability in outputting C = abP . That is,

AdvcdhGrGen,A(λ) := Pr
[
CDHGrGen,A(λ) = 1

]
≤ negl(λ) .

where CDHGrGen,A(λ) is defined in Fig. 1.
Chosen-target Diffie-Hellman. The chosen-target Diffie-Hellman (CTDH) assumption [Bol03, HL06] for

the group generator GrGen states that all A ∈ PPT have negligible advantage in solving CDH on ` + 1
target group elements, even if the adversary is given access to a CDH helper oracle for ` instances. More
formally:

AdvctdhGrGen,A(λ) := Pr
[
CTDHGrGen,A(λ) = 1

]
≤ negl(λ) ,

where CTDHGrGen,A(λ) is defined in Fig. 2. Note that for q = 0 and |T | = 1, the game is equivalent to
CDH.

The Chosen-target Diffie-Hellman (CTDH) assumption [Bol03], where an adversary is able to observe
some honest “handshakes”, has proven itself very useful for a range of applications: Password-Authenticated
Key Exchanges [JKX18], signatures [LQ04], and private-set intersection [JL10]. One can also find it called
in the literature as One-More Diffie-Hellman (1MDH) assumption [BP02, BNPS03], both in the “chosen-
target” flavor (where the adversary can chose the `+1 subset of challenges to solve) and the “known-target”
flavor (where the adversary must solve a fixed set of `+1 challenges). In the known-target version of one-more
Diffie-Hellman, an adversary receives as input a group description Γ , a group element X = xG ∈ G, and
challenges (Y0, . . . , Y`) ∈ G`+1 sampled uniformly at random. The adversary wins the game 1MDHGrGen,A(λ)
if it outputs Zi = xYi for all i ∈ [` + 1], even when given access to at CDH oracle for at most ` arbitrary
elements. Known-target one-more Diffie-Hellman is equivalent to chosen-target Diffie-Hellman [KM08].

3

Game KSNDΠ,R,A,Ext(λ)

Γ := S(1λ); (σ, τ)← Π.S(Γ)

r←$ {0, 1}A.rl(λ); (φ, π) := A(σ; r)

w ← Ext(σ, r)

return (Π.V(σ, φ, π) and R(φ,w) = false)

Game ZKβ
Π,R,A(λ)

Γ ← GrGen(1λ)

(σ, τ)← Π.S(Γ)

b′ ← AProveβ (σ)

return b′

Oracle Proveβ(φ,w)

if (φ,w) 6∈ R then return ⊥
π0 ← Π.P(σ, φ,w)

π1 ← Π.Sim(σ, τ, φ)

return πβ

Fig. 3. Games for knowledge soundness (KSND), and zero knowledge (ZK).

2.2 Non-interactive arguments of knowledge

A non-interactive zero-knowledge (NIZK) argument of knowledge Π for a relation R consists of the following
three algorithms:

– (σ, τ)← Π.S(Γ), the common reference string (CRS) generation algorithm that outputs a CRS σ together
with some trapdoor information τ .

– π ← Π.P(σ, φ, w), a prover which takes as input some (φ,w) ∈ R and a CRS σ, and outputs a proof π.

– bool← Π.V(σ, φ, π) a verifier that, given as input a statement φ together with a proof π outputs true or
false, indicating acceptance of the proof.

To ease notation for prover and verifier, we will assume that the group description Γ can be inferred from
the CRS σ. Π must satisfy three basic properties: completeness, knowledge soundness, and zero-knowledge
A NIZK is complete if every correctly generated proof verifies. More formally, Π is (perfectly) complete if for
any Γ ∈ [GrGen(1λ)], σ ∈ [Π.S(Γ)] and (φ,w) ∈ R:

Pr[Π.V(σ, φ,Π.P(σ, φ, w))] = 1.

Knowledge soundness [BG93] means that for any prover able to produce a valid proof there exists an
efficient algorithm, which has access to the prover’s random coins, capable of extracting a witness for the
given statement. More precisely, Π is knowledge-sound for R if for any PPT adversary A there exists a PPT
extractor Ext such that:

AdvksndΠ,R,A,Ext(λ) := Pr
[
KSNDΠ,R,A,Ext(λ)

]
= negl(λ)

and KSNDΠ,R,A,Ext(λ) is defined in Fig. 3 and A.rl(λ) is the randomness length for the machine A. An
argument of knowledge is a knowledge-sound proof system.

A proof system Π for R is zero-knowledge if no information about the witness is leaked by the proof.
Pragmatically, this is shown by specifying an additional PPT algorithm Π.Sim, that takes as input the
trapdoor information τ and a statement φ, and outputs a valid proof π indistinguishable from those generated
via Π.P. Formally, Π is zero-knowledge if for any PPT adversary A:

AdvzkΠ,R,A,Ext(λ) :=
∣∣Pr
[
ZK0

Π,R,A(λ)
]
− Pr

[
ZK1

Π,R,A(λ)
]∣∣ = negl(λ) .

where ZKβ
Π,R,A(λ) is defined in Fig. 3.

Note that, in our constructions, we will use Sigma proof protocol made non-interactive using the Fiat-
Shamir transform in the random oracle model. More specifically we will be using proof systems for discrete
logarithms equality (DLEQ) defined by the following language

LDLEQ,Γ :=

(X,T, S,W) ∈ G4 : K(x, y) ∈ Z2
p ,

X
W

 = x

G
T

+ y

H
S

 ,

4

and OR of discrete logarithms equalities (DLEQOR) defined by the following language

LDLEQOR,Γ :=

(X := (X0, X1), T, S,W) ∈ G5 : K(b, x, y) ∈ [2]× Z2
p .

Xb

W

 = x

G
T

+ y

H
S

 .

We provide these ZK protocol in Appexdix B.

3 Anonymous Tokens

In this section we describe building block primitives that we will use in our constructions, the functionality
of the anonymous tokens primitive as well as the security properties that we will aim to achieve.

3.1 Anonymous token functionality

We describe two flavors of the anonymous token functionality: the basic anonymous token functionality
enables a user to obtain a token from an issuer that authenticates a particular value t that the user has. The
issuer has a public commitment of the key it uses to authenticate the value and the user can verify that the
resulting token was correctly issued and will verify correctly with the corresponding private key. The validity
of each token can be verified using the secret issuance key.

The second variant is an anonymous token with a private metadata bit. In this functionality the issuer
has an additional input bit during the token issuance and it is used to tag the token. The user can verify
the validity of the token with respect the committed parameters but she cannot learn what the private bit
is (we formalize this security property later).

The following definition captures both functionalities where the shaded text refers only to the anonymous
token with private metadata bit.

Definition 1 (Anonymous Token). An anonymous token with private metadata bit scheme AT consists
of the following algorithms:

– (Comsk, sk) ← AT.KeyGen(1λ) – a key generation algorithm that generates a private key sk and a com-
mitment to the private key Comsk (note this is not a public verification key)

– token ← 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk, b)〉 – a signing protocol that involves the interactive algo-
rithms AT.Usr (run by the user), and AT.Sig (run by the issuing server). At the end of the interaction,
the user receives either token :=⊥ or token := (t, σ) where σ is a signature corresponding to her input
value t ∈ {0, 1}λ, and the server which has as input its private key and a bit b does not obtain any
output. We refer to the pair (t, σ) as an anonymous token.

– bool ← AT.VerValid(sk, (t, σ)) – a verification algorithm that takes as input a token (t, σ) and a private
key. It returns a boolean indicating the validity of the token.

– ind← AT.ReadBit(sk, (t, σ)) – an algorithm that takes as input a token (t, σ) and a private key. It returns
an indicator value ind ∈ {⊥, 0, 1} which either returns the value of the private metadata bit or the invalid
bit.

An anonymous token protocol AT is correct, if any honestly-generated token verifies for validity and the
correct private metadata bit is retrieved , i.e. for all (Comsk, sk) ∈ [AT.KeyGen(1λ)], all t ∈ {0, 1}∗, and
b ∈ {0, 1} :

Pr[AT.VerValid(sk, 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk, b)〉) = 1] = 1,

Pr[AT.ReadBit(sk, 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk, b)〉) = b] = 1,

Pr[AT.ReadBit(sk, 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk, b)〉) = b′ | b′ 6= b] < negl(λ).

We proceed to define the security properties relevant for the anonymous tokens.

5

3.2 Unforgeability

The first security property that we want from an anonymous token is unforgeability, which guarantees that
no party that does not have the secret key can generate valid anonymous tokens. In particular an adversary
who obtains ` valid tokens cannot generate `+1 valid tokens. And in the case when there is private metadata
bit value, the adversary can query a token oracle ` times for each bit value, but should not be able to generate
`+ 1 valid tokens that have the same private metadata bit value.

Definition 2 (One-More Unforgeability). An anonymous token scheme AT is one-more unforgeable, if
for all A ∈ PPT, all `, n, n’:

Advomuf
AT,A,`,n,n′(λ) := Pr

[
OMUFAT,A,`,n,n′(λ) = 1

]
≤ negl(λ) ,

where OMUFAT,A,`,n,n′(λ) is defined as follows

Game OMUFAT,A,`,n,n′(λ)

(Comsk, sk)← AT.KeyGen(1λ)

O(·, ·) := 〈·,AT.Sig(Comsk, sk, ·)〉

(ti, σi)
`+1
i=1 ← AO(·, ·), AT.VerValid(sk,·), AT.ReadBit(sk, ·)(Comsk)

return ti all different and AT.VerValid(sk, (ti, σi)) = 1 ∀i ∈ [`+ 1]

and there exists a bit b′ such that AT.ReadBit(sk, (ti, σi)) = b′.

where A can invoke the signing protocol 〈·,AT.Sig(Comsk, sk, ·)〉 ` times for each private metadata bit value,
the validity verification oracle AT.VerValid(sk, ·) n times, and the bit reading oracle AT.ReadBit(sk, ·) n′ times.

3.3 Unlinkability

The next security property is concerned with the user anonymity and guarantees that an issuer cannot link
a token to a particular execution of the signing protocol. More if the user and the server have executed the
signing protocol m times and later the issuer is given a valid token, we limit the probability that it can guess
for which execution this token was coming.

Definition 3 (Unlinkability). An anonymous token scheme AT is κ-unlinkable, if for all adversaries
A ∈ PPT and for all m ∈ Z,m > 0:

AdvunlinkAT,A,m(λ) := Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ κ

m
+ negl(λ) ,

where UNLINKAT,A,m(λ) is defined as follows:

Game UNLINKAT,A,m(λ)

(st,Comsk)← A(1λ)

∀` ∈ [m], t` ←$ {0, 1}λ

∀` ∈ [m], (st, (t`, σ`))← 〈AT.Usr(Comsk, t`),A(st, `)〉
j ←$ [1,m]

j′ ← A(st, (tj , σj))

return (j′ = j) and ∀` ∈ [m], (t`, σ`) 6=⊥

where st denotes the state of the adversary.

6

3.4 Private metadata bit

The last security property that we define concerns only anonymous tokens with private metadata bit. It
guarantees that a user cannot learn any information about the private metadata bit associated with the token
she receives. Intuitively, our definition guarantees that an adversary who can obtain tokens for messages of its
choice with metadata bit of its choice, an arbitrary number of tokens for messages with the fixed challenge bit,
and can access a validity verification oracle for the tokens, cannot guess the challenge bit with a probability
non-negligibly better than 1/2.

Definition 4 (Private Metadata Bit). An anonymous token scheme AT provides private metadata bit
if for all adversary A ∈ PPT the advantage:

Advpmb
AT,A(λ) :=

∣∣Pr
[
PMB0

AT,A(λ)
]
− Pr

[
PMB1

AT,A(λ)
]∣∣ < negl(λ) ,

where PMBβAT,A(λ) is defined as follows:

Game PMBβAT,A(λ)

(Comsk, sk)← AT.KeyGen(1λ)

O(·, ·) := 〈·,AT.Sig(Comsk, sk, ·)〉

β′ ← AO(·,·),O(·,β),AT.VerValid(sk,·)(Comsk)

return β′

and the adversary A has access to the following oracles: a signing oracle 〈·,AT.Sig(Comsk, sk, ·)〉 where A can
provide both the message and the bit to be used for the token, a signing oracle 〈·,AT.Sig(Comsk, sk, β)〉 with
the fixed challenge bit β ∈ {0, 1} where the adversary can provide only the message, and a validity verification
oracle AT.VerValid(sk, ·) where A provide a token for verification.

4 Privacy Pass

We start by recalling, using our notation, the anonymous token protocol proposed in [DGS+18] (under the
name Privacy Pass) and built on top of the VOPRF as described in [JKK14] (under the name 2Hash). Note
that this anonymous token protocol is deterministic, i.e., there will exist a unique value σ ∈ G corresponding
to a string {0, 1}λ such that (t, σ) is a valid token. This property will make difficult to directly extend
the construction to support private metadata bit. In the following sections, we will generalize Privacy Pass
that enables randomized tokens (Section 5) and will eventually extend the construction to support private
metadata bit (Sections 6 and 7).

The Privacy Pass construction uses a Schnorr-style DLEQ proof for the verifiability in the issuance
phase [DGS+18]. Its proof of unforgeability (without validity oracle) was originally based on the One-More-
Decryption security of El Gamal. We will show in Theorem 9 that it can be proved under the chosen-target
Diffie–Hellman assumption, and prove in Appendix A that the assumptions are equivalent.

Construction 1 Let Γ := (G, G) ← GrGen(1λ) be an algorithm that generates a group G of order p and
outputs a random generator G. Let (DLEQ.P,DLEQ.V) be a proof system for the DLEQ relationship defining
the language

L :=

(X,T,W) ∈ G3 : Kx ∈ Zp ,

X
W

 = x

G
T

 .

We construct an anonymous token scheme AT defined by the following algorithms:

– (Comsk, sk)← AT.KeyGen(1λ):
• Run Γ := (G, G) ← GrGen(1λ) to obtain group parameters. Γ will be an implicit input to all other

algorithms.

7

Usr(Comsk, t ∈ {0, 1}λ) Sig(Comsk, sk := x)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T

T ′

W ′ := xT ′

π ← DLEQ.P(Γ, (Comsk, T
′,W ′), x)

W ′, π

check DLEQ.V(Γ, (Comsk, T
′,W ′), π)

σ := rW ′

return (t, σ)

Fig. 4. Privacy Pass Issuance Protocol.

• Sample a random invertible value x←$Zp, and set sk := x, Comsk := xG.

– (t, σ) ← 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk)〉 – the anonymous token issuance protocol is defined in
Figure 4.

– bool← AT.VerValid(sk, (t, σ)): if σ = xHt(t), return 1. Otherwise, return 0.

Correctness. The protocol never aborts: this follows by perfect correctness of the underlying proof system
DLEQ. Therefore, the client always returns a tuple (t, σ) ∈ {0, 1}λ ×G2 such that

σ = rW ′ = r(xT ′) = xT = xHt(t).

Security. We willl prove unforgeability and unlinkeability of Privacy Pass in Theorems 9 and 11.

5 Okamoto-Schnorr Privacy Pass

In this section we describe a novel anonymous token protocol that builds on top of Privacy Pass [DGS+18]
(Section 4). Our anonymous token protocol can be viewed as a generalization of Privacy Pass that enables
randomized tokens, which will be an important property when we extend the construction to support private
metadata bit (Sections 6 and 7). While the Privacy Pass construction uses a Schnorr-style DLEQ proof for
the verifiability in the issuance phase, we use the corresponding Okamoto-Schnorr-style [Oka93] variant of the
DLEQ proof protocol. A different approach towards randomization of the deterministic evaluation algorithm
could be leveraging pairings in the spirit of the construction for partially oblivious PRFs [ECS+15] while
maintaining capabilities for token verification and unlinkability from the issuer. We do not pursue this
approach here for efficiency reasons.

Construction 2 Let Γ := (G, G,H)← GrGen(1λ) be an algorithm that generates a group G of order p and
outputs two distinct random generators G and H. Let Hs : G × {0, 1}∗ → G be a random oracle mapping
a group element and a string into group elements. Let (DLEQ.P,DLEQ.V) be a proof system for the DLEQ
relationship defining the language

LDLEQ,Γ :=

(X,T, S,W) ∈ G4 : K(x, y) ∈ Z2
p ,

X
W

 = x

G
T

+ y

H
S

 .

8

Usr(Comsk, t ∈ {0, 1}λ) Sig(Comsk, sk := (x, y))

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T

T ′

s← {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xT ′ + yS′

π ← DLEQ.P(Γ, (Comsk, T
′, S′,W ′), (x, y))

s,W ′, π

S′ := Hs(T
′, s)

check DLEQ.V(Γ, (Comsk, T
′, S′,W ′), π)

S := rS′

W := rW ′

σ := (S,W)

return (t, σ)

Fig. 5. Okamoto–Schnorr Privacy Pass Issuance Protocol.

We construct an anonymous token scheme AT defined by the following algorithms:

– (Comsk, sk)← AT.KeyGen(1λ):

• Run Γ := (G, G,H)← GrGen(1λ) to obtain group parameters. Γ will be an implicit input to all other
algorithms.

• Sample a pair of random invertible values (x, y)←$Z2
p, and set sk := (x, y), Comsk := xG+ yH.

– (t, σ) ← 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk)〉 – the anonymous token issuance protocol is defined in
Figure 5.

– bool← AT.VerValid(sk, (t, σ)):

• Parse σ = (S,W).
• If W = xHt(t) + yS, return 1. Otherwise, return 0.

Remark 5. A observation of the above protocol is that if we set y = 0, then we obtain the Privacy Pass
protocol defined in Section 4.

Correctness. The protocol never aborts: this follows by perfect correctness of the underlying proof system
DLEQ. Therefore, the client always returns a tuple (t, (S,W)) ∈ {0, 1}λ ×G2 such that

W = rW ′ = r(xT ′ + yS′) = xT + xS = xHt(t) + yS.

5.1 Unforgeability

We show that our construction is one-more unforgeable. In particular, this will show that a client cannot use
knowledge of already signed tokens, received during the issuance phase, to produce more valid tokens.

9

Oracle Sign(Comsk, sk, T ′) in Hyb1(λ), Hyb2(λ).

s←$ {0, 1}λ

S′ := H(T ′, s)

W ′ := xT ′ + yS′

π ← DLEQ.P(Γ,Comsk, T
′, S′,W ′, x, y)

π ← DLEQ.Sim(Γ,Comsk, T
′, S′,W ′)

return (s,W ′, π)

Fig. 6. Summary of hybrid changes for unforgeability. Changes with respect to the previous hybrid are highlighted
in light gray .

One-More unforgeability without validity oracle. We start by first proving that our construction
provides one-more unforgeability when the adversary does not have access to the AT.VerValid oracle.

Lemma 6. Let Γ := (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQ.P,DLEQ.V) be a
DLEQ zero-knowledge proof system. Construction 2 is one-more unforgeable assuming the hardness of the
chosen-target Diffie–Hellman (CTDH) problem when the adversary does not have access to the AT.VerValid
oracle.

Proof. We denote by Sign(Comsk, sk, T ′) the signing oracle that performs the issuer part of the signing
protocol (Fig. 6) and prove this lemma using a hybrid argument. First, we replace the proving algorithm by
the zero-knowledge simulator DLEQ.Sim, and then show a direct reduction to the chosen-target Diffie–Helman
problem.

Hyb1 This is the game OMUFAT,A,`,n(λ): the adversary is provided with the commitment Comsk. The adversary
has access to the signing oracle and the various random oracles Hs (used for the response of the server),
Ht (used for blinding the message by the user), and Hc (used for computing the DLEQ proof). At the
end of its execution, it outputs `+ 1 tokens.

Hyb2 This hybrid replaces the way zero-knowledge proofs are generated when answering signing oracles: instead
of using the proving algorithm DLEQ.P, we use the zero-knowledge simulator DLEQ.Sim for all signing
queries.
If there exists an adversary A ∈ PPT whose advantage is different between the two games, then it is
possible to construct an adversary for the underlying zero-knowledge of DLEQ. Consider the adversary
B ∈ PPT for the game ZKβ

DLEQ(λ). B generates correctly the commitment Comsk, and generate the proofs
π’s in the signing queries via the Proveb oracle for the statement (Comsk, T

′, S′,W ′) ∈ LDLEQ,Γ . At
the end of the execution, A returns β. If A wins the game, then B outputs 1, otherwise it outputs 0. We
have

AdvzkDLEQ,B(λ) ≥
∣∣∣AdvHyb1

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣ .

We will prove that if there is an adversary A that has non-negligible advantage AdvHyb2

AT,A(λ), then we can
construct an adversary B that has non-negligible advantage in the chosen-target Diffie–Hellman game
CTDHGrGen,B(λ).

Assuming the existence of A, we construct B as follows. B receives the group description and A ∈ G as
input, samples y ← Zp invertible, and computes Comsk := A+ yH. Then, it runs A(Comsk). Note that Comsk

is distributed as in HybHyb2
. We need now to specify how B answers oracle queries. The adversary B overrides

the queries to the random oracles Ht and Sign in the following way:

– to any query to the oracle Ht(t), the adversary B invokes the oracle Target(t) and returns whatever it
returns;

10

– to any query of the form Sign(T ′), the adversary B select s←$ {0, 1}λ and defines S′ := Hs(T
′, s). Then

it invokes the oracle Z := Help(T ′), defines W ′ = Z+ yS′, and simulates the proof π. Finally, it returns
(s,W ′, π).

All other random oracle queries are left unchanged. First, note that the distributions of Ht and Sign are
identical to the ones of HybHyb2

. At the end of the execution, A returns `+1 tuples (ti, (Si,Wi)) ∈ {0, 1}λ×G2,

and B finally returns {ti,Wi − ySi}`i=0.
We claim that the adversary B wins the game CTDHGrGen,B(λ) every time that A wins. By the winning

condition of game HybHyb2
, A won if and only if all ti are different and Wi = xTarget(ti) + ySi where x

is the unique element of Zp such that A = xG. Furthermore, by the winning condition, A only called the
signing oracle Sign at most qS ≤ ` times; therefore Help was called at most ` times.

Finally, this shows that

Advomuf
AT,A,`,n(λ) := AdvHyb1

AT,A(λ) ≤ AdvctdhGrGen,A,`(λ) + AdvzkDLEQ,A(λ).

and this concludes the proof. ut

Handling a validity oracle. The previous proof only handles the case where an adversary does not have
access to a validity oracle (more precisely, to the AT.VerValid oracle). However, in practice, when a user is
redeeming anonymous tokens, it is expected that the behavior will change depending on whether this token
was valid or not. In other words, when deploying anonymous tokens, an adversary is likely to be able to
learn, by submitting (t, (S,W)) as token, whether (X − yH,Ht(t),W − yS) is a valid Diffie–Hellman tuple,
for t, S,W of its choice. Note that this holds both for our construction and for Privacy Pass: giving access
to the AT.VerValid oracle enables the adversary to learn if (X,Ht(t),W) is a DDH tuple for inputs t,W of
its choice.

This specific behavior is not unique to our anonymous tokens definition. In particular, a similar issue
arised many times in the literature, including (without being exhaustive):

– when proving the CCA security of the (hashed) El Gamal encryption scheme [ABR01, CKS09];
– when proving the unforgeability of Chaum’s undeniable signature scheme [CA89, Cha90, OP01];
– blind signatures [BLS01];
– the VOPRF [JKK14] on which Privacy Pass is based,
– and so on.

Instead, all these schemes are proved under a gap problem [OP01], a computational problem that gives oracle
access to the underlying decision problem.6 In particular, [OP01] defines the Gap DH problem, which given
a triple (P, aP, bP), ask to find the element abP with the help of a Decision Diffie–Hellman oracle (which
answers whether (X,Y, Z) is a valid DH triple).

Interestingly, the chosen-target DH problem was originally introduced by Boldyreva [Bol03] in Gap DH
groups [BLS01], that is groups where CDH is assumed to be hard but DDH is assumed to be easy. In
other words, the original definition of CTDH was proposed in groups where the adversary has access to a
DDH oracle that reveals if a tuple is a valid DDH tuple, while our definition of CTDH in Section 2.1 did
not required the group G to be a Gap DH group. We therefore formalize the notion of chosen-target gap
Diffie-Hellman (CTGDH) problem, the gap problem equivalent to the CTDH problem.

Definition 7 (Chosen-target gap Diffie-Hellman.). The chosen-target gap Diffie-Hellman assumption
for the group generator GrGen states that all A ∈ PPT have negligible advantage in solving CDH on ` + 1
target group elements, even if the adversary is given access to a DDH oracle, and to a CDH oracle for `
instances. More formally:

AdvctgdhGrGen,A(λ) := Pr
[
CTGDHGrGen,A(λ) = 1

]
≤ negl(λ) ,

where CTGDHGrGen,A(λ) is defined in Fig. 7.
6 We follow the name usage of [OP01, BLS01, JKK14], but the Gap DH problem is also known under the name of

strong Diffie-Hellman problem [ABR01, CKS09].

11

Game CTGDHGrGen,A(λ)

Γ := (G, p,G)← GrGen(1λ)

x←$Zp; X := xG

q := 0; T = []

{ti, Zi}`−1
i=0 ← ATarget,Help,Ddh(Γ,X)

return (ti, Yi) ∈ T all different and xYi = Zi ∀i ∈ [`]

and q < `

Oracle Target(ti)

if ∃(ti, Yi) to T

return Yi

else

Yi ←$G∗

append (ti, Yi) to T

return Yi

Oracle Help(Y)

q := q + 1

return xY

Oracle Ddh(t,W)

return W
?
= xTarget(t)

Fig. 7. The Chosen-Target Gap Diffie-Hellman assumption.

One-More unforgeability with validity oracle. We now prove that our construction provides one-more
unforgeability under the chosen-target gap Diffie–Hellman assumption.

Theorem 8. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQ.P,DLEQ.V) be a
DLEQ zero-knowledge proof system. Construction 2 is one-more unforgeable assuming the hardness of the
chosen-target gap Diffie–Hellman problem.

Proof. The only difference with the proof of Lemma 6 is that we need to specify how the queries to
AT.VerValid(sk, ·, ·) are answered to. For any query to AT.VerValid(sk, ti, σi), the challenger (who knows the
secret y) will (1) parse σi = (Si,Wi), (2) let Xi = Wi − ySi, and (3) return whatever Ddh(ti, Xi) returns.
Thus, we can handle any number of verification queries. This shows that

Advomuf
AT,A,`,n(λ) ≤ AdvctgdhGrGen,A,`(λ) + AdvzkDLEQ,A(λ).

and concludes the proof. ut

Application to Privacy Pass. As mentioned above, the one-more unforgeability security notion from
Privacy Pass [DGS+18] did not provide the adversary with a validity oracle. One-more unforgeability without
validity oracle is proven under the one-more decryption of El Gamal problem, which we prove to be equivalent
to the chosen-target Diffie–Hellman problem in Appendix A. We therefore prove the following theorem:

Theorem 9. Let (G, G) ← GrGen(1λ) be a parameter generation function, (DLEQ.P,DLEQ.V) be a DLEQ
zero-knowledge proof system. Construction 1 is one-more unforgeable assuming the hardness of the chosen-
target gap Diffie–Hellman problem.

Proof. The proof follows directly from the proofs of Lemma 6 and Theorem 8. We detail here the differences:

– In the hybrid, the proof system is with respect to the language L instead of LDLEQ,Γ .
– In the reduction to chosen-target gap Diffie-Hellman, B sets Comsk := A, and answers the signing queries

with whatever Help answers and the simulated proof. At the end of the game, it outputs whatever A
outputs.

This shows that
Advomuf

AT,A,`,n(λ) ≤ AdvctgdhGrGen,A,`(λ) + AdvzkDLEQ,A(λ).

and concludes the proof. ut

5.2 Unlinkability

In this section, we will prove that Construction 2 is 1-unlinkeable (cf. Definition 3), which means that
the probability that an adversary can guess which of m issued tokens is redeemed is upper-bounded by
1/m+ negl(λ).

12

Theorem 10. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQ.P,DLEQ.V) be a DLEQ
zero-knowledge proof system. Construction 2 provides 1-unlinkability according to Definition 3, assuming the
hardness of DDH.

Hyb1(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

t` ←$ {0, 1}λ, r` ←$Z∗p,
T` := Ht(t`), T

′
` := r−1

` T`;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if DLEQ.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

i←$ [m]

S′ := S′i

S := riS
′

W := riW
′
i

(t, σ) := (ti, (S,W))

i′ ← A(st, σ)

return (i′ == i)

Hyb2(λ) Hyb3(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

t` ←$ {0, 1}λ, r` ←$Z∗p,
T` := Ht(t`), T

′
` := r−1

` T`;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if DLEQ.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

for ` ∈ [m]

(b`, x`, y`)← DLEQ.Ext(Γ,X, T ′` , S
′
`,W

′
` , π`)

if not R((b`, x`, y`), (Γ,X, T
′
` , S
′
`,W

′
`)) : abort

i←$ [m];

S′ := S′i

S := riS
′

W := riW
′
i ; W = xiTi + yiS

(t, σ) := (ti, (S,W))

i′ ← A(st, σ)

return (i′ == i)

Hyb4(λ) Hyb5(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

T ′` ←$G∗

r` ←$Z∗p
t` ←$ {0, 1}λ

H(t`) := T` := r`T
′
` ;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if ∃k ∈ [m],DLEQ.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

for ` ∈ [m]

(b`, x`, y`)← DLEQ.Ext(Γ,X, T ′` , S
′
`,W

′
` , π`)

if not R((b`, x`, y`), (Γ,X, T
′
` , S
′
`,W

′
`)) : abort

i←$ [m];

S′ := S′i

S := riS
′; S ←$G

W = xiTi + yiS

(t, σ) := (ti, (S,W))

i′ ← A(st, σ)

return (i′ == i)

Hyb6(λ) Hyb7(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

T ′` ←$G∗;
r` ←$Z∗p
t` ←$ {0, 1}λ

H(t`) := T` := r`T
′
` ;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if DLEQ.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

for ` ∈ [m]

(b`, x`, y`)← DLEQ.Ext(Γ,X, T ′` , S
′
`,W

′
` , π`)

if not R((b`, x`, y`), (Γ,X, T
′
` , S
′
`,W

′
`)) : abort

i←$ [m];

j ←$ [m]

if not(x, y) := (xi, yi) := (xj , yj): abort

S′ := S′i

S ←$G

W = xTi + yS; W = xTj + yS

(t, σ) := (tj , (S,W))

i′ ← A(st, σ)

return (i′ == i)

Fig. 8. Summary of hybrid changes for unlinkability.

13

Proof. First, let us introduce some notation. Since the signing protocol is one round, for ` ∈ [1,m], we will
unroll the step

(st, token`)← 〈AT.Usr(Comsk, t`),A(st, `)〉

as

r`←$Z∗p
T` := Ht(t`)

T ′` := r−1` T`

(st, (s`,W
′
` , π`))← A(st, `, T ′`)

S′` := Hs(T
′
` , s`)

check DLEQ.V(Γ, (Comsk, T
′
` , S
′
`,W

′
`), π`)

S` := r`S
′
`

W` := r`W
′
`

σ` := (S`,W`)

token` := (t`, σ`)

(1)

The first step of our proof is to show that the adversary’s view in the unlinkability game when it is provided
challenge token i is indistinguishable from an execution where it is presented with any other challenge token
j. We present the sequence of hybrids in Figure 8 which allows us to transitions between these two executions
with negligible distinguishing probability.

Hyb1 The first hybrid is the execution of the unlinkability game where the adversary is given as a challenge
the i-th token, and we have explicitly unrolled the interaction between the issuer and the challenger.

Hyb2 We now use the soundness extractor for the DLEQ proof to extract the witnesses for all issued tokens
and we abort if the the extracted witnesses are not correct. This hybrid is indistinguishable from the
previous by the knowledge soundness of the proof system. Hence we have

AdvksndDLEQ,B(λ) ≥
∣∣∣AdvHyb1

AT,A(λ)− AdvHyb6

AT,A(λ)
∣∣∣ .

Hyb3 At this point, instead of computing W by unblinding the element W ′ provided by the adversary, we
compute it ourselves using the extracted witnesses as W := xTi+yS. If, by contradiction, there exists the
outcome of the experiments in Hyb3 and Hyb3 is different, it must be the case that W = xTi+yS 6= rW ′.
That is, W ′ 6= xT ′i + yS′. However, this would mean that (x, y) is not a valid witness for the statement
(X,T ′i , S

′,W ′), which contradicts the relationship check introduced in Hyb6.
Hyb4 In the next hybrid, we change how we compute the values T ′` . Instead of computing them from T`, we

sample them at random and program accordingly the RO at the values t`. The distribution of this hybrid
is identical to the previous one.

Hyb5 The experiment proceeds exactly as in the previous game, except now S is sampled uniformly at random
from G. The rest of the game proceeds as in the previous hybrid.
If it exists A ∈ PPT for which the outcome of the two hybrids is different, then it is possible to construct
an adversary B ∈ PPT for DDHβ

GrGen,B(λ) by exploiting the random self-reducibility property of DDH.

The adversary B takes as input the group description together with a tuple (P,A := aP,B := bP,C) ∈ G4

where a, b←$Zp and has to distinguish C := abP (the case β = 0) from a uniformly distributed element
over G (the case β = 1). B runs the game as per Hyb3, except instead of sampling T ′` uniformly at random
from G, B sets them as T ′` = γ`P where γ` is random for all ` ∈ [m]. Instead of computing T` = r`T

′
` , B sets

T` = γ`α`A+γ`α
′
`P = (α`a+α′`)γ`P = (α`a+α′`)T

′
` , i.e. implicitly setting r` := α`a+α′`. For every query

Hs(T
′
` , s), B samples β`,s, β

′
`,s at random and programs Hs(T

′
` , s) = γ`β`,sB+γ`β

′
`,sP = (β`,sb+β′`,s)γ`P .

Finally, B sets S := α`β`,s`γ`C+α`β
′
`,s`

γ`A+α′`β`,s`γ`B+α′`β
′
`,s`

γ`P . If C is random, then S is random

14

the distributions coincides with Hybrid Hyb6. If C = abP , then

S = α`β`,s`γ`C + α`β
′
`,s`

γ`A+ α′`β`,s`γ`B + α′`β
′
`,s`

γ`P

= α`β`,s`γ`(abP) + α`β
′
`,s`

γ`(aP) + α′`β`,s`γ`(bP) + α′`β
′
`,s`

γ`P

= α`β`,s`ab(γ`P) + α`aβ
′
`,s`

(γ`P) + α′`bβ`,s`(γ`P) + α′`β
′
`,s`

(γ`P)

= (α`a+ α′`)(β`,s`b+ β′`,s`)(γ`P) ,

which results in the distribution of Hybrid Hyb5. It follows therefore that the advantage in distinguishing
the two hybrids is, for all A ∈ PPT:

AdvddhGrGen,B(λ) ≥
∣∣∣AdvHyb6

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣

Hyb6 In this hybrid, we sample two indices i, j ∈ [m], and if the witnesses are different the game aborts. We
note that, if the game aborts at this step, by soundness of the DLEQ proof system we would have that
Comsk = xiG + yiH = xjG + yjH and thus (yj − yi)/(xi − xj) is the discrete log of H base G. (if
the two witnesses are different, it must be that xi 6= xj , and thus the inverse of (xi − xj) exists.) It
is therefore possible to construct an adversary B ∈ PPT for DLOGGrGen,B(λ): the adversary B obtains

a group description Γ := (p,G, G̃) and a challenge H̃. It sets G := G̃ and H := H̃ and runs exactly
as per Hyb6. If the two proofs verify, it extracts the two witnesses (xi, yi), and (xj , yj) and returns
(yj − yi)/(xi − xj). The adversary wins every time that Hyb6 aborts.

Hyb7 At this point, we swap the computation of W and use Tj instead of Ti. We remark that, in fact, ri and
rj are only used in order to compute Ti and Tj . Therefore, the inputs to the adversary T ′i , T

′
j perfectly

hide Ti and Tj . Therefore, the tokens ti and tj can be swapped when programming the random oracle,
and this hybrid is perfectly indistinguishable from Hyb5.

We obtain that

AdvHyb8

AT,A(λ) ≤ AdvHyb1

AT,A(λ) + AdvksndDLEQ,A(λ) + AdvdlogGrGen,A(λ) + AdvddhGrGen,A(λ) = AdvHyb1

AT,A(λ) + negl(λ) .

Now it is sufficient to bound the probability of success adversary in Hyb8. Since the index that the
adversary needs to guess there is independent of the challenge it receives we conclude that

Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ 1

m
+ negl(λ) .

which completes the proof. ut

Application to Privacy Pass. In [DGS+18], the Privacy Pass protocol is proved to be unconditionally
unlinkable (up to the soundness error of the proof system). This can be recovered from the proof above by
removing in the proof all the elements about the elements s, S′, y,H and S. In particular, all hybrids become
indistinguishable assuming the soundness of the proof system, which yields the following theorem.

Theorem 11. Let (G, G)← GrGen(1λ) be a parameter generation function, (DLEQ.P,DLEQ.V) be a DLEQ
zero-knowledge proof system. Construction 1 provides 1-unlinkability according to Definition 3.

6 Anonymous Token With Private Metadata Bit

In this section, we present an extension of the anonymous token construction from Section 5 that supports
a private metadata bit, as specified in Definition 1. The high level idea is that we will use different secret
keys for tokens that have different private metadata bit values and will commit to both secret keys. In order
to hide which bit is associated with the token, we will use DLEQOR proofs instead of DLEQ proofs, which
will convince the user that one of the two commitments has been used.

15

Remark 12. Our construction will not provide a (meaningful) AT.VerValid functionality, but only a AT.ReadBit
functionality. The reason for this is that this scheme cannot provide privacy for the metadata bit if the user
can access to a validity oracle, which is given to the adversary in the security Definition 4. We will use this
construction as a building block for a scheme in Section 7 that will provide a validity verification.

Usr(Comsk = (X0, X1), t) Sig(Comsk = (X0, X1),x,y, b)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T

T ′

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

statement := (X0, X1, T
′, S′,W ′)

π ← DLEQOR.P(Γ, statement, (xb, yb))

s,W ′, π

S′ := Hs(T
′, s)

statement := (X0, X1, T
′, S′,W ′)

check DLEQOR.V(Γ, statement, π)

S := r · S′

W := r ·W ′

return t, σ := (S,W)

Fig. 9. Token Issuance for Tokens with Private Metadata Bit.

Construction 3 Let Γ := (G, G,H)← GrGen(1λ) be an algorithm that generates a group G of order p and
outputs two distinct random generators G and H. Let Hs : G × {0, 1}∗ → G be a random oracle mapping
a group element and a string into group elements. Let (DLEQOR.P,DLEQOR.V) be a proof system for the
DLEQOR relationship defining the language

LDLEQOR,Γ :=

(X0, X1, T, S,W) ∈ G5 : K(b, x, y) ∈ {0, 1} × Z2
p .

Xb

W

 = x

G
T

+ y

H
S

 .

We construct an anonymous token scheme AT defined by the following algorithms:

– (Comsk, sk)← AT.KeyGen(1λ):
• Run Γ := (G, G,H)← GrGen(1λ) to obtain group parameters. Γ will be an implicit input to all other

algorithms.
• Sample a pair of random values (x := (x0, x1),y := (y0, y1))←$Z2

p, and set sk := (x,y), and Comsk :=
X = (x0G+ y0H,x1G+ y1H).

– (t, σ) ← 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk)〉 – the anonymous token issuance protocol is defined in
Figure 9.

16

– bool← AT.VerValid(sk, (t, σ)): return 1.

– ind← AT.ReadBit(sk, (t, σ)):

• Parse σ = (S,W).
• If W = x0Ht(t) + y0S return 0, else if W = x1Ht(t) + y1S return 1, else return ⊥.

Correctness. The protocol never aborts: this follows by perfect correctness of the underlying proof system
DLEQOR. Therefore, the client always returns a tuple (t, (S,W)) ∈ {0, 1}λ × G2 such that there exists
b ∈ {0, 1} such that

W = rW ′ = r(xbT
′ + ybS

′) = xbT + xbS = xbHt(t) + ybS.

If there exists i, i′ ∈ [n] such that i 6= i′ and W = xiHt(t) + yiS = xi′Ht(t) + yi′S it means that:

Ht(t) =
xi − xi′
yi′ − yi

S.

However, the left hand side of the equation is distributed uniformly at random from G and independently
from the terms on the right-hand side. The terms of the right hand-side are distributed uniformly at random
as well. Therefore, the probability that more than one term satisfies the verification equation is the probability
that two elements sampled uniformly at random over G are equal. This probability is 1/p. It follows that

Pr[AT.ReadBit(sk, 〈AT.Usr(pk),AT.Sig(sk, b)〉) = b] = 1,

Pr[AT.ReadBit(sk, 〈AT.Usr(pk),AT.Sig(sk, b)〉) = b′ | b′ 6= b] = 1− 1

p
< negl(λ) .

6.1 Unforgeability

Oracle Sign(T ′, b′) in Hyb1(λ), Hyb2(λ).

s←$ {0, 1}λ

S′ := H(T ′, s)

W ′ := xT ′ + yS′

π ← DLEQOR.P(Γ,Comsk, T
′, S′,W ′, xb′ , yb′)

π ← DLEQOR.Sim(Γ, (Comsk, T
′, S′,W ′))

return (s,W ′, π)

Fig. 10. Summary of hybrid changes for unforgeability. Changes with respect to the previous hybrid are highlighted
in light gray .

Theorem 13. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQOR.P,DLEQOR.V) be
a DLEQOR zero-knowledge proof system. Construction 3 is one-more unforgeable assuming the hardness of
the chosen-target gap Diffie–Hellman problem.

Proof. We denote by Sign(Comsk, sk, T ′) the signing oracle that performs the issuer part of the signing
protocol (Fig. 10) and prove this lemma using a hybrid argument. First, we replace the proving algorithm
of our construction AT (Construction 3) by the zero-knowledge simulator DLEQOR.Sim, and then show that
an adversary A that can win the security game for one-more unforgeability with non-negligible probability,
can be used to construct an adversary B who can win the security game for one-more unforgeability for AT′

(Construction 2).

17

Hyb1 This is the game OMUFAT,A,`,n,n′(λ): the adversary is provided with the commitment Comsk. The ad-
versary has access to the signing oracle and the various random oracles Hs (used for the response of the
server), Ht (user for bliding the message by the user), and Hc (used for computing the DLEQ proof). At
the end of its execution, it outputs `+ 1 tokens for the same bit b′.

Hyb2 This hybrid replaces the way zero-knowledge proofs are generated when answering signing oracles: instead
of using the proving algorithm DLEQOR.P, we use the zero-knowledge simulator DLEQOR.Sim for all
signing queries.
If there exists an adversary A ∈ PPT whose advantage is different between the two games, then it is
possible to construct an adversary for the underlying zero-knowledge of DLEQOR. Consider the adversary
B ∈ PPT for the game ZKβ

DLEQOR(λ) that generates correctly the commitment Comsk. B generates
the proofs π’s in the signing queries via the Proveβ oracle for the statement (Comsk, T

′, S′,W ′) ∈
LDLEQOR,Γ . At the end of the execution, A returns β. If A wins the game, then B outputs 1, otherwise
it outputs 0. We have

AdvzkDLEQOR,B(λ) ≥
∣∣∣AdvHyb1

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣

Now, assume there exists an adversary A that can win the security game for one-more unforgeability
with non-negligible probability p. We construct an adversary B who can win the security game for one-more
unforgeability for AT′ (Construction 2) with probability p/2 as follows.

B first draws a bit b ∈ {0, 1} which will correspond to its guess on which bit A will succeeds for the
one-more unforgeability game. Upon reception of Xb = xbG + ybH for an unknown tuple (xb, yb) in the
CTGDH game, it samples x1−b, y1−b in Zp, sets X1−b := x1−bG+ y1−bH, and defines Comsk := (X0, X1). B
then sends Comsk to A.

We need now to specify how B answers A’s queries.

– For any query to AT.Ht, AT.Hs, AT.Hc, it forwards whatever the oracles AT′.Ht, AT′.Hs, AT′.Hc answer.
– For any query to AT.VerValid, it answers 1.
– For any query AT.Sig(sk, T ′, b′), it proceeds as follows.

• If b′ = 1−b, it correctly follows the issuance protocol described in Fig. 9, i.e., it samples s←$ {0, 1}λ,
define S′ := Hs(T

′, s), compute W ′ = x1−bT
′ + y1−bS

′, but simulates the DLEQOR proof π for the
statement (Comsk, T

′, S′,W ′) ∈ LDLEQOR,Γ . It then answers (s,W ′, π) to A.
• If b′ = b, it invokes AT′.Sig(sk, T ′) and parse the output as (s,W ′, π′). It discards π′ and simulates

the DLEQOR proof π for the statement (Comsk, T
′, S′,W ′) ∈ LDLEQOR,Γ . It then answers (s,W ′, π)

to A.

– For any query AT.ReadBit(sk, t, (S,W)), it proceeds as follows.

• If W = x1−bHt(t) + y1−bS, it outputs 1− b.
• Otherwise, it invoves AT′.VerValid(sk, t, (S,W)). If the oracle answers 1 (valid), it answers b; otherwise

it answers ⊥.

Note that the answers to AT.Sig and AT.ReadBit follow the same distribution as in Hyb2 because B uses the
AT′ oracles to sign and verify tokens for the bit it does not know the witness for; additionally, when reading
the bit, if the AT′.VerValid oracle answers 1, it means that (t, (S,W)) is a valid token for the bit b, hence B
should answer b.

Finally, B forwards A’s answer to the CTGDH challenger: if B guessed correctly the bit on which A
produced the forgery, the answer will make it win the CTGDH game. ut

6.2 Unlinkability

In this section, we will prove that Construction 3 is 2-unlinkeable instead of 1-unlinkeable (cf. Definition 3),
which means that the probability that an adversary can guess which of m issued tokens is redeemed is
upper-bounded by 2/m + negl(λ). Indeed, they key idea is that the adversary can embed different private
metadata bits during the issuances, halving its search space at most.

18

Theorem 14. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQOR.P,DLEQOR.V) be
a DLEQOR zero-knowledge proof system. Construction 3 provides 2-unlinkability according to Definition 3
assuming the hardness of DDH.

Proof. The first step of our proof is to show that the adversary’s view in the unlinkability game when it
is provided challenge token i is indistinguishable from an execution where it is presented with a challenge
token j which has been issued with the same value for the private metadata bit. We present the sequence of
hybrids in Figure 11 which allows us to transitions between these two executions with negligible distinguishing
probability.

Hyb1 The first hybrid is the execution of the unlinkability game where the adversary is given as a challenge
the i-th token, and we have explicitly unrolled the interaction between the issuer and the challenger.

Hyb2 In the second hybrid we use the extractor for the DLEQOR proofs to extract the witnesses for all issued
tokens and we abort if the the extracted witnesses are not correct. This hybrid is indistinguishable from
the previous by the knowledge soundness of the proof system. Hence we have

AdvksndDLEQOR,B(λ) ≥
∣∣∣AdvHyb2

AT,A(λ)− AdvHyb1

AT,A(λ)
∣∣∣ .

Hyb3 In the third hybrid, we change the way we sample the challenge index by first sampling one of the two sets
of tokens that have the same bit in the witnesses, and then sample the index in that set. The distribution
of i is identical as before, therefore the two hybrids are indistinguishable.

Hyb4 In this hybrid, we computeW directly using the extracted witness. Since R((b′, xi, yi), (Comsk, T
′
i , S
′
i,W

′
i))

is true, Then
W ′i = xiT

′
i + yiS

′
i ,

and hence
W = riW

′
i = xiriT

′
i + yiriS

′
i = xiTi + yiS .

The two hybrids are therefore indistinguishable.
Hyb5 In the next hybrid, we change how we compute the values T ′` . Instead of computing them from T`, we

sample them at random and program accordingly the RO at the values t`. The distribution of this hybrid
is identical to the previous one.

Hyb6 In this hybrid, we change the way we compute the value S used for the computation of the challenge
token. We reduce the indistinguishability from the previous hybrid to the hardness of the DDH problem.
Assuming that there is an adversary A that distinguishes these two hybrids, we construct an adversary
B that distinguishes the DDH challenge (P,A := aP,B := bP,C) ∈ G4 where a, b←$Zp.
Instead of sampling T ′` uniformly at random from G, B sets them as T ′` = γ`P where γ` is random for all
` ∈ [m]. Instead of computing T` = r`T

′
` , B sets T` = γ`α`A+γ`α

′
`P = (α`a+α′`)γ`P = (α`a+α′`)T

′
` , i.e.

implicitly setting r` := α`a+α′`. For every query Hs(T
′
` , s), B samples β`,s, β

′
`,s at random and programs

Hs(T
′
` , s) = γ`β`,sB + γ`β

′
`,sP = (β`,sb + β′`,s)γ`P . Finally, B sets S := α`β`,s`γ`C + α`β

′
`,s`

γ`A +
α′`β`,s`γ`B+α′`β

′
`,s`

γ`P . If C is random, then S is random the distributions coincides with Hybrid Hyb6.
If C = abP , then

S = α`β`,s`γ`C + α`β
′
`,s`

γ`A+ α′`β`,s`γ`B + α′`β
′
`,s`

γ`P

= α`β`,s`γ`(abP) + α`β
′
`,s`

γ`(aP) + α′`β`,s`γ`(bP) + α′`β
′
`,s`

γ`P

= α`β`,s`ab(γ`P) + α`aβ
′
`,s`

(γ`P) + α′`bβ`,s`(γ`P) + α′`β
′
`,s`

(γ`P)

= (α`a+ α′`)(β`,s`b+ β′`,s`)(γ`P) ,

which results in the distribution of Hybrid Hyb5. It follows therefore that the advantage in distinguishing
the two hybrids is, for all A ∈ PPT:

AdvddhGrGen,B(λ) ≥
∣∣∣AdvHyb6

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣

19

Hyb1(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

t` ←$ {0, 1}λ, r` ←$Z∗p,
T` := Ht(t`), T

′
` := r−1

` T`;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if ∃k ∈ [m],DLEQOR.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

i←$ [m]

S′ := S′i

S := riS
′

W := riW
′
i

(t, σ) := (ti, (S,W))

i′ ← A(st, σ)

return (i′ == i)

Hyb2(λ) Hyb3(λ) , Hyb4(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

t` ←$ {0, 1}λ, r` ←$Z∗p,
T` := Ht(t`), T

′
` := r−1

` T`;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if ∃k ∈ [m],DLEQOR.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

for ` ∈ [m]

(b`, x`, y`)← DLEQOR.Ext(Γ,X, T ′` , S
′
`,W

′
` , π`)

if not R((b`, x`, y`), (Γ,X, T
′
` , S
′
`,W

′
`)) : abort

for ind = 0, 1

Jind := {` ∈ [m] | b` = ind}
i←$ [m]; b′ ← Ber(|J1|/m), i←$ Jb′

S′ := S′i

S := riS
′

W := riW
′
i ; W = xiTi + yiS

(t, σ) := (ti, (S,W))

i′ ← A(st, σ)

return (i′ == i)

Hyb5(λ) Hyb6(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

T ′` ←$G∗

r` ←$Z∗p
t` ←$ {0, 1}λ

H(t`) := T` := r`T
′
` ;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if ∃k ∈ [m],DLEQOR.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

for ` ∈ [m]

(b`, x`, y`)← DLEQOR.Ext(Γ,X, T ′` , S
′
`,W

′
` , π`)

if not R((b`, x`, y`), (Γ,X, T
′
` , S
′
`,W

′
`)) : abort

for ind = 0, 1

Jind := {` ∈ [m] | b` = ind}
b′ ← Ber(|J1|/m), i←$ Jb′

S′ := S′i

S := riS
′; S ←$G

W = xiTi + yiS

(t, σ) := (ti, (S,W))

i′ ← A(st, σ)

return (i′ == i)

Hyb7(λ) Hyb8(λ)

(G, p,G,H) := Γ ← GrGen(1λ)

for ` ∈ [m]

T ′` ←$G∗;
r` ←$Z∗p
t` ←$ {0, 1}λ

H(t`) := T` := r`T
′
` ;

(st,Comsk)← A(1λ)

(st, {(s`,W ′` , π`)}`∈[m])← A(st, {T ′`}`∈[m])

∀` ∈ [m], S′` := Hs(T`, s`);

if ∃k ∈ [m],DLEQOR.V(Γ,X, T ′k, S
′
k,W

′
k, πk) = 0

σ :=⊥
else :

for ` ∈ [m]

(b`, x`, y`)← DLEQOR.Ext(Γ,X, T ′` , S
′
`,W

′
` , π`)

if not R((b`, x`, y`), (Γ,X, T
′
` , S
′
`,W

′
`)) : abort

for ind = 0, 1

Jind := {` ∈ [m] | b` = ind}
b′ ← Ber(|J1|/m), i←$ Jb′

j ←$ Jb′

if not(x, y) := (xi, yi) := (xj , yj): abort

S′ := S′i

S ←$G

W = xTi + yS; W = xTj + yS

(t, σ) := (tj , (S,W))

i′ ← A(st, σ)

return (i′ == i)

Fig. 11. Summary of hybrid changes for PMB unlinkability.

20

Hyb7 In this hybrid, we sample two indices i, j in the same set Jb′ . By definition of Jb′ and the fact that the
witnesses and the statement satisfy the relation, for Comsk = (X0, X1), it holds that

Xb′ = xiG+ yiH = xjG+ yjH .

If the witnesses are different and the game aborts, then we can solve the discrete logarithm relation
between G and H, as in ?? of the proof of Theorem 10.

Hyb8 At this point, since ri and rj are only used in order to compute Ti and Tj , the inputs to the adversary
T ′i , T

′
j perfectly hide Ti and Tj . Therefore, we can swap (ti, Ti) and (tj , Tj) in the computation of W and

the token. This hybrid is perfectly indistinguishable from the previous one.

We obtain that

AdvHyb8

AT,A(λ) ≤ AdvHyb1

AT,A(λ) + AdvksndDLEQ,A(λ) + AdvdlogGrGen,A(λ) + AdvddhGrGen,A(λ) = AdvHyb1

AT,A(λ) + negl(λ) .

Therefore, it is sufficient to bound the advantage of the adversary in Hyb8, which we do as follows:

Pr
[
UNLINKAT,A,m(λ) = 1

]
=

Pr
[
UNLINKAT,A,m(λ) = 1 | b′ = 0

]
Pr[b′ = 0] + Pr

[
UNLINKAT,A,m(λ) = 1 | b′ = 1

]
Pr[b′ = 1] .

Assume both J0 and J1 are not empty. We have that Pr
[
UNLINKAT,A,m(λ) = 1 | b′ = 0

]
= 1/|J0| +

negl(λ) since the challenge token is independent of the index i. Similarly Pr
[
UNLINKAT,A,m(λ) = 1 | b′ = 1

]
=

1/|J1|+ negl(λ). Hence,

Pr
[
UNLINKAT,A,m(λ) = 1

]
=

1

|J0|
|J0|
m

+
1

|J1|
|J1|
m

+ negl(λ) =
2

m
+ negl(λ) .

If either J0 or J1 are empty, then

Pr
[
UNLINKAT,A,m(λ) = 1

]
≤ 1

m

m

m
+ negl(λ) ≤ 2

m
+ negl(λ) .

which completes the proof. ut

6.3 Privacy of the Metadata Bit

Theorem 15. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQOR.P,DLEQOR.V) be
a DLEQOR zero-knowledge proof system. Construction 3 provides privacy for the metadata bit according to
Definition 4 assuming the hardness of DDH.

Proof. We consider the sequence of hybrids presented in Fig. 12 that transitions from an execution of
PMBβAT,A(λ) to an execution of PMB1−β

AT,A(λ) (see Definition 4). We argue that each pair of consecutive

hybrids are indistinguishable for the adversary and thus Advpmb
AT,A(λ) = negl(λ). We do not explicitly write

the verification validity oracle in the games since in this construction this functionality is dummy and can
always be simulated.

Hyb0 This is the game PMB0
AT,A(λ): here, the adversary is provided the commitment Comsk := (X0, X1). The

adversary has access to the signing oracle for a bit of its choosing, and a challenge oracle that signs new
tokens with the bit b. Additionally, it has access to the random oracles: Ht,Hs,Hc. At the end of its
execution, it outputs a bit b′.

Hyb1 In this hybrid, we unroll the procedures for the signing protocol: we generate s, S′,W ′, and π within the
security experiment itself. The two games are perfectly indistinguishable.

21

Oracle Sign(b̂, T ′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

π ← DLEQOR.P(Γ,X, T ′, S′,W ′, xb̂, yb̂)

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

return (s,W ′, π)

Oracle Signb(T
′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

π ← DLEQOR.P(Γ,X, T ′, S′,W ′, xb̂, yb̂)

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

return (s,W ′, π)

Oracle Sign(b̂, T ′) in Hyb4(λ),Hyb5(λ),Hyb6(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

return (s,W ′, π)

Oracle Signb(T
′) in Hyb4(λ), Hyb5(λ), Hyb6(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

W ′ := xbT
′ + y′S′

W ′ := x1−bT
′ + y′S′

W ′ := x1−bT
′ + y1−bS

′

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

return (s,W ′, π)

Fig. 12. Summary of the proof for private metadata bit, with highlighted changes to the signing oracles in hybrids
Hyb1 → Hyb6.

Hyb2 This hybrid replaces the way zero-knowledge proofs are generated: instead of using the proving algorithm
DLEQOR.P, we use the zero-knowledge simulator DLEQOR.Sim. We do so for all signing oracles.
If there exists an adversary A ∈ PPT whose output is different between the two games, then it is
possible to construct an adversary for the underlying zero-knowledge of DLEQOR: consider the adversary
B ∈ PPT for the game ZKβ

DLEQOR(λ) that, given as input the group description Γ , generates X0, X1

as per AT.KeyGen(1λ) and then invokes the adversary A. All random oracles queries are performed
exactly as per Hyb2, except for signing queries. In a Sign (and a Signb) query, after generating the
values s, S′, and W ′ as per Hyb1, the proof π is generated via the Proveβ oracle for the statement
((X0, X1), T ′, S′,W ′) ∈ L2,Γ . At the end of its execution, A (and so B) return a guess b′.
If the Proveβ oracle outputs proofs via DLEQOR.P, the game is identical to Hyb1, else the game is
identical to Hyb2. It follows that, for any adversary A ∈ PPT, the advantage in distinguishing the two
hybrids is at most the advantage of zero-knowledge in DLEQOR, i.e.:

AdvzkDLEQOR,A(λ) ≥
∣∣∣AdvHyb2

AT,A(λ)− AdvHyb1

AT,A(λ).
∣∣∣

Hyb3 We strengthen the game: if during any of the signing queries the oracle Hs already had received a query
of the form (T ′, s), we abort. Clearly, the output of the two hybrids is distinguishable only in the case
of a collision on the choice of s between the signing oracles, or a collision between the signing oracles
themselves. For an adversary A ∈ PPT making at most q = poly(λ) queries to any of the oracles Hs,
Sign, or Signb, the probability that the game aborts is at most q(q − 1)/2p. It follows that:

q(q − 1)

2p
≥
∣∣∣AdvHyb3

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣

22

Hyb4 We now change the way W ′ is computed: at key generation phase we sample an additional element
y′←$Zp, and for any query to the random oracle Sign we construct W ′ as xbT

′ + y′S′ instead of
xbT

′ + ybS
′. The proof π gets simulated as before.

We prove that if, by contradiction, the two games are distinguishable, then there exists an adversary B
for the game DDHβ

B,GrGen(λ). The adversary B wins every time the output of the two hybrids is different.

The adversary B receives as input a DDH tuple (P,A := aP,B := bP,C) ∈ G4 such that C = abP in
the case DDH0

B,GrGen(λ) and C ←$G in the case DDH1
B,GrGen(λ). Given a single challenge (P,A,B,C), B

can exploit the random self-reducibility property of DDH to construct q random instances of the DDH
challenge: for any i ≤ q the adversary B can select αi, βi←$Zp and construct the challenge:

(P, A, βiB + αiP, βiC + αiB)

The adversary B proceeds as per Hyb3, embedding the challenge in the public key and oracle replies. It
fixes H := P , and instead of generating Xb := xbG + ybH, it constructs it as Xb := xbG + A. Then, it
runs the adversary A. The adversary A will make queries to any of the random oracles Ht and Hs, wheret
B programs the RO the response to Hs as we discuss next. We replace queries to the signing oracles:
– for any query Signb(T

′), we sample s←$ {0, 1}λ and check for collisions w.r.t. previous queries to
Hs as per Hyb3. Then, we sample α, β←$Zp and we program the random oracle on Hs(T

′, s) = S′

to reply with (βiB + αiP), for some αi, βi←$Zp. Then, B computes W ′ := xbT
′ + βiC + αiA and

produces the proof π using the simulator. B returns (s,W ′, π)
– for any query Sign(b̂ = b, T ′), after sampling s←$ {0, 1}λ, we program the random oracle on

H(T ′, s) = S′ to reply with αiH for some αi←$Zp. B computes W ′ := xbT
′ + αiA, and simulates

the proof. It returns (s,W ′, π).
– any query to Sign(b̂ = 1− b, T ′) is handled exactly as per Hyb3.

At the end of A’s execution, B returns whatever guess A returned. We note that if the challenge C
is provided according to DDH0

A,GrGen(λ), B behaves exactly as per Hyb3; if the challenge C is provided

according to DDH1
A,GrGen(λ), B behaves exactly as per Hyb4. Additionally, if the simulator fails to simulate

this statement as it’s not in the language, then B also wins the game DDHβ
A,GrGen(λ). Therefore, every

time that A’s output is different between the two hybrids (or every time that DLEQOR.Sim fails), B will
distinguish a random tuple from a DDH tuple. It follows therefore that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb4

AT,A(λ)− AdvHyb3

AT,A(λ)
∣∣∣

Hyb5 In this game, we remark that W ′ := xbT
′ + y′S′, and that y′←$Zp is used only for computing W ′.

Therefore, the distribution of W ′ in Hyb4 is uniform (plus a constant xbT
′, i.e., uniform) as long as

S′ 6= 0G. Therefore, we change once again the way we compute W ′, swapping b with 1−b: in this hybrid,
W ′ := x1−bT

′+y′S′. For the above remarks, the two games can be distinguished only if S′ is the identity
element, which happens with probability 1/p.

Hyb6 In this hybrid, we remove y′ and we compute W ′ using the witness 1 − b. The proof for this hybrid
follows an argument similar to the one used for the transition Hyb3 → Hyb4. Using the property of
self-reducibility, the adversary would embed the challenge in X1−b := x1−bT

′ + B, and replace the
computation of W ′ in Signb with W ′ := x1−bT

′ + βiC + αiA (note: here S′ := βαi + αiP). Queries to

Sign(b̂ = 1− b, T ′) are handled in a similar way too: S′ = αiH and W ′ := x1−bT
′ + αiB. Therefore, it

follows that:
AdvddhB,GrGen(λ) ≥

∣∣∣AdvHyb6

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣

At this point we note that the oracle Signb is issuing signatures under the witness x1−b, y1−b. It is possible,
through a sequence of hybrids, to remove the condition on the collision of s introduced in Hyb3 (via the
same argument used for the transition Hyb2 → Hyb3), and swap back the zero-knowledge simulator with the
prover’s algorithm DLEQOR.P (via the same argument used for the transition Hyb1 → Hyb2). Therefore, the

advantage of an adversary A in winning the game BLβBAT,A(λ)

AdvhbAT,A(λ) ≤ q(q − 1)

2λ
+

1

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkDLEQOR(λ)

23

where q is the number of queries to the signing oracles or to the random oracle Hs and the prime p outputted
by GrGen satisfies λ = blog2 pc. ut

7 Anonymous Tokens with Private Metadata Bit and Validity
Verification

In this section, we present a design for an anonymous token that provides both private metadata bit as well
as verification validity functionality that can be queried by any party. The basic idea of this design is to
combine the token functionality from the previous two sections into one token that has two parts: a token
that has no private metadata, which can be used for validity verification, and a second part, which provide
a private metadata. It is important that these two parts could not be separated and used independently for
the purposed of reading the metadata bit.

Construction 4 Let Γ := (G, G,H)← GrGen(1λ) be an algorithm that generates a group G of order p and
outputs two distinct random generators G and H. Let Hs : G × {0, 1}∗ → G be a random oracle mapping
a group element and a string into group elements. Let (DLEQ.P,DLEQ.V) be a proof system for the DLEQ
relationship defining the language

LDLEQ,Γ :=

(X,T, S,W) ∈ G4 : K(x, y) ∈ Z2
p .

X
W

 = x

G
T

+ y

H
S

 .

Let (DLEQOR.P,DLEQOR.V) be a proof system for the DLEQOR relationship defining the language

LDLEQOR,Γ :=

(X, T, S,W) ∈ Gn+3 : K(b, x, y) ∈ {0, 1} × Z2
p .

Xb

W

 = x

G
T

+ y

H
S

 .

We construct an anonymous token scheme AT defined by the following algorithms:

– (sk,Comsk)← AT.KeyGen(1λ):

• Run Γ := (G, G,H)← GrGen(1λ) to obtain group parameters. Γ will be an implicit input to all other
algorithms.

• Sample a pair of random values (x = (x0, x1),y = (y0, y1))←$Z2
p and x̃, ỹ←$Zp, and set sk :=

(x,y, x̃, ỹ), Comsk := (X, X̃) where X = (x0G+ y0H,x1G+ y1H) and X̃ = x̃G+ ỹH .

– J(t, σ),⊥K ← 〈AT.Usr(Comsk, t),AT.Sig(Comsk, sk)〉 – the anonymous token singing protocol is defined in
Figure 13.

– bool← AT.VerValid(sk, t, σ):

• Parse σ = (S,W, W̃).

• If W̃ = x̃H(t) + ỹS, return 1. Otherwise, return 0.

– ind← AT.ReadBit(sk, t, σ):

• Parse σ = (S,W, W̃).

• If W̃ 6= x̃H(t) + ỹS, return ⊥.

• Else, if W = x0H(t) + y0S, return 0. If W = x1H(t) + y1S, return 1. Otherwise, return ⊥.

The correctness of the above scheme follows from the correctness for its two component tokens.

24

Usr(Comsk = (X0, X1, X̃)) Sig(Comsk = (X0, X1, X̃), (x,y, x̃, ỹ), b)

r←$Z∗p
T := Ht(t)

T ′ := r−1 · T

T ′

s←$ {0, 1}λ

S′ := Hs(T
′, s)

W ′ := xbT
′ + ybS

′

W̃ ′ := x̃T ′ + ỹS′

π ← DLEQOR.P(Γ,X, T ′, S′,W ′, xb, yb)

π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ)

s,W ′, W̃ ′, π, π̃

S′ := Hs(T
′, s)

check DLEQOR.V(Γ,X, T ′, S′,W ′, π)

check DLEQ.V(Γ, X̃, T ′, S′, W̃ ′, π̃)

S := r · S′

W := r ·W ′

W̃ := r · W̃ ′

return t, σ := (S,W, W̃)

Fig. 13. Issuance protocol for anonymous token with private metadata bit and validity verification.

7.1 Unforgeability

Theorem 16. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQ.P,DLEQ.V) be a
DLEQ zero-knowledge proof system, and (DLEQOR.P,DLEQOR.V) be a DLEQOR zero-knowledge proof sys-
tem. Construction 4 is one-more unforgeable assuming the hardness of the chosen-target gap Diffie–Hellman
problem.

Proof. The one-more unforgeability of this construction follows from the one-more unforgeability of Construc-
tion 3. We can construct an adversary for Construction 3 by interacting with an adversary for Construction 4
in the same way as the reduction in the proof of Theorem 13 since the user messages in both constructions
are the same, and the server’s response in Construction 3 is a subset of the server’s response in Construc-
tion 4. ut

7.2 Unlinkability

Theorem 17. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQ.P,DLEQ.V) be
a DLEQ zero-knowledge proof system, and (DLEQOR.P,DLEQOR.V) be a DLEQOR zero-knowledge proof
system. Construction 4 provides 2-unlinkability according to Definition 3 assuming the hardness of DDH.

Proof. The unlinkability of this construction follows from the unlinkability of Construction 3. We can con-
struct an adversary for Construction 3 by interacting with an adversary for Construction 4 in the same way

25

as the reduction in the proof of Theorem 14 since the user messages in both constructions are the same, and
the server’s response in Construction 3 is a subset of the server’s response in Construction 4. ut

7.3 Privacy of Metadata Bit

Theorem 18. Let (G, G,H) ← GrGen(1λ) be a parameter generation function such that H is a random
element in the group (i.e., the discrete log of H with respect to G is unknown), (DLEQOR.P,DLEQOR.V) be
a DLEQOR zero-knowledge proof system. Construction 4 provides privacy for the metadata bit according to
Definition 4 assuming the hardness of DDH.

Proof. The proof for the private metadata bit here follows closely the proof of Theorem 15. The only difference
is that we need to handle validity queries from the adversary. However, since the validity is checked only on
the part of the token, which is independent of the private metadata bit, the reduction can always have the
private parameters for that part of the token and answer the validity oracle query honestly. Figure 14 presents
the hybrids for our proof which transition from an execution of of PMBbAT,A(λ) to an execution of PMB1−b

AT,A(λ)
(see Definition 4). The validity oracle answers are computed in the same way in all hybrids. We argue that

each pair of consecutive hybrids are indistinguishable for the adversary and thus Advpmb
AT,A(λ) = negl(λ).

Hyb0 This is game PMBbAT,A(λ): here, the adversary is provided with the commitment Comsk = (X0, X1, X̃).
The adversary has access to the signing oracle for a bit of its choosing, and a challenge oracle that signs
new tokens with the bit b. Additionally, it has access to the various random oracles: Ht, Hs, and Hc. At
the end of its execution, it outputs a bit b′.

Hyb1 In this hybrid, we unroll the procedures for the signing protocol: we generate s, S′,W ′, W̃ ′, π and π̃
within the security experiment itself. The two games are perfectly indistinguishable.

Hyb2 This hybrid replaces the way zero-knowledge proofs for DLEQOR are generated: instead of using the
proving algorithm DLEQOR.P, we use the zero-knowledge simulators DLEQOR.Sim. We do so for all
signing oracles.
If there exists an adversary A ∈ PPT whose output is different between the two games, then it is
possible to construct an adversary for the underlying zero-knowledge of DLEQOR: consider the adversary
B ∈ PPT for the game ZKb

DLEQOR(λ) that, given as input the group description Γ , generates X0, X1, X̃
as per Srv.KeyGen(1λ) and then invokes the adversary A. All random oracles queries are performed
exactly as per Hyb2, except for signing queries. In a AT.Sigsk (and a AT.Sigsk,b) query, after generating
the values s, S′, and W ′ as per Hyb1, the proof π is generated via the Prove oracle for the statement
((X0, X1), T ′, S′,W ′) ∈ LDLEQOR,Γ . Note that p̃i is still generated using the prover for the DLEQ proof
system. At the end of its execution, A (and so B) return a guess b′.
If the Prove oracle outputs proofs via DLEQOR.P, the game is identical to Hyb1, else the game is
identical to Hyb2. It follows that, for any adversary A ∈ PPT, the advantage in distinguishing the two
hybrids is at most the advantage of zero-knowledge in DLEQOR, i.e.:

AdvzkDLEQOR,A(λ) ≥
∣∣∣AdvHyb2

AT,A(λ)− AdvHyb1

AT,A(λ).
∣∣∣

Hyb3 We strengthen the game: if during any of the signing queries the oracle Hs already had received a query
of the form (T ′, s), we abort. Clearly, the output of the two hybrids is distinguishable only in the case
of a collision on the choice of s between the signing oracles, or a collision between the signing oracles
themselves. For an adversary A ∈ PPT making at most q = poly(λ) queries to any of the oracles Hs or
AT.Sig, the probability that the game aborts is at most q(q − 1)/2p. It follows that:

q(q − 1)

2p
≥
∣∣∣AdvHyb3

AT,A(λ)− AdvHyb2

AT,A(λ)
∣∣∣

Hyb4 We now change the way W ′ is computed: at key generation phase we sample an additional element
y′←$Zp, and for any query to the random oracle AT.Sig we construct W ′ as xbT

′ + y′S′ instead of
xbT

′ + ybS
′. The proof π gets simulated as before.

26

We prove that if, by contradiction, the two games are distinguishable, then there exists an adversary B
for the game DDHb

B,GrGen(λ). The adversary B wins every time the output of the two hybrids is different.
The adversary B receives as input a DDH tuple (P,A := aP,B := bP,C) ∈ G4 such that C = abP in
the case DDH0

B,GrGen(λ) and C ←$G in the case DDH1
B,GrGen(λ). Given a single challenge (P,A,B,C), B

can exploit the random self-reducibility property of DDH to construct q random instances of the DDH
challenge: for any i ≤ q the adversary B can select αi, βi←$Zp and construct the challenge:

(P, A, βiB + αiP, βiC + αiB).

The adversary B proceeds as per Hyb3, embedding the challenge in the public key and oracle replies. It
fixes H := P , and instead of generating Xb := xbG + ybH, it constructs it as Xb := xbG + A. Then, it
runs the adversary A. The adversary A will make queries to any of the random oracles Ht, Hs: to these
queries we reply exactly as per security experiment; we replace queries to the signing oracles:
– for any query AT.Sigsk,b(T

′), we sample s←$ {0, 1}λ and check for collisions w.r.t. previous queries to
Hs as per Hyb3. Then, we program the random oracle on Hs(T

′, s) = S′ to reply with (βiB + αiP),
for some αi, βi←$Zp that were not used before. Then, B computes W ′ := xbT

′ + βiC + αiA and

produces the proof π using the simulator. B computes W̃ ′ := x̃T ′ + ỹ(βiB + αiP) and generates
honestly a proof π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ). B returns (s,W ′, W̃ ′, π, π̃)

– for any query AT.Sigsk(b̂ = b, T ′), after sampling s←$ {0, 1}λ, we program the random oracle on
Hs(T

′, s) = S′ to reply with αiH for some αi←$Zp. B computes W ′ := xbT
′+αiA, and simulates the

proof. B computes W̃ ′ := x̃T ′+ỹαiH and generates honestly a proof π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ).
It returns (s,W ′, W̃ ′, π, π̃).

– any query to Sign(b̂ = 1− b, T ′) is handled exactly as per Hyb3.
It is important to note that we can still answer queries to AT.VerValid(sk, ·) (i.e., verify that a token
is valid), as it does not require knowledge of yb: it only checks the W̃ component of the token. At the
end of A’s execution, B returns whatever guess A returned. We note that if the challenge C is provided
according to DDH0

A,GrGen(λ), B behaves exactly as per Hyb3; if the challenge C is provided according

to DDH1
A,GrGen(λ), B behaves exactly as per Hyb4. Additionally, if the simulator fails to simulate this

statement as it’s not in the language, then B also wins the game DDHb
A,GrGen(λ). Therefore, every time

that A’s output is different between the two hybrids (or every time that DLEQOR.Sim fails), B will
distinguish a random tuple from a DDH tuple. It follows therefore that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb4

AT,A(λ)− AdvHyb3

AT,A(λ)
∣∣∣

Hyb5 In this game, we remark that W ′ := xbT
′ + y′S′, and that y′←$Zp is used only for computing W ′.

Therefore, the distribution of W ′ in Hyb4 is uniform (plus a constant xbT
′, i.e. uniform) as long as

S′ 6= 0G. Therefore, we change once again the way we compute W ′, swapping b with 1−b: in this hybrid,
W ′ := x1−bT

′+y′S′. For the above remarks, the two games can be distinguished only if S′ is the identity
element, which happens with probability 1/p.

Hyb6 In this hybrid, we remove y′ and we compute W ′ using the witness 1 − b. The proof for this hybrid
follows an argument similar to the one used for the transition Hyb3 → Hyb4. Using the property of
self-reducibility, the adversary would embed the challenge in X1−b := x1−bT

′ + B, and replace the
computation of W ′ in AT.Sigsk,b with W ′ := x1−bT

′+βiC+αiA (note: here S′ := βαi+αiP). The values

W̃ ′ and π̃′ are computed honestly. Queries to AT.Sigsk(b̂ = 1 − b, T ′) are handled in a similar way too:
S′ = αiH and W ′ := x1−bT

′ + αiB. Therefore, it follows that:

AdvddhB,GrGen(λ) ≥
∣∣∣AdvHyb6

AT,A(λ)− AdvHyb5

AT,A(λ)
∣∣∣

At this point we note that the oracle AT.Sigsk,b is issuing signatures under the witness x1−b, y1−b. It is
possible, through a sequence of hybrids, to remove the condition on the collision of s introduced in Hyb3 (via
the same argument used for the transition Hyb2 → Hyb3), and swap back the zero-knowledge simulator with

27

the prover’s algorithm DLEQOR.P (via the same argument used for the transition Hyb1 → Hyb2). Therefore,
the advantage of an adversary A in winning the game PMBbAT,A(λ)

AdvhbBAT,A(λ) ≤ q(q − 1)

2λ
+

1

2λ
+ 2AdvddhGrGen(λ) + 2AdvzkDLEQOR(λ)

where q is the number of queries to the signing oracles or to the random oracle Hs and the prime p outputted
by GrGen satisfies λ = blog2 pc. ut

Oracle AT.Sigsk(b̂ = b, T ′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

W̃ ′ := x̃T ′ + ỹS′

π ← DLEQOR.P(Γ,X, T ′, S′,W ′, xb̂, yb̂)

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ)

return (s,W ′, W̃ ′, π, π̃)

Oracle AT.Sigsk,b(T
′) in Hyb1(λ), Hyb2(λ), Hyb3(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

W̃ ′ := x̃T ′ + ỹS′

π ← DLEQOR.P(Γ,X, T ′, S′,W ′, xb̂, yb̂)

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ)

return (s,W ′, W̃ ′, π, π̃)

Oracle AT.Sigsk(b̂ = 1− b, T ′) in Hyb4(λ),Hyb5(λ),Hyb6(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xb̂T
′ + yb̂S

′

W̃ ′ := x̃T ′ + ỹS′

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ)

return (s,W ′, W̃ ′, π, π̃)

Oracle AT.Sigsk,b(T
′) in Hyb4(λ), Hyb5(λ), Hyb6(λ)

s←$ {0, 1}λ

if ∃query Hs(T
′, s) : abort

S′ := H(T ′, s)

W ′ := xbT
′ + ybS

′

W ′ := xbT
′ + y′S′

W ′ := x1−bT
′ + y′S′

W ′ := x1−bT
′ + y1−bS

′

W̃ ′ := x̃T ′ + ỹS′

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′, xb, yb)

π ← DLEQOR.Sim(Γ,X, T ′, S′,W ′)

π̃ ← DLEQ.P(Γ, X̃, T ′, S′, W̃ ′, x̃, ỹ)

return (s,W ′, W̃ ′, π, π̃)

Oracle VerValid(t, σ := (S,W, W̃)) in all Hyb1(λ)− Hyb6(λ)

If W̃ = x̃H(t) + ỹS, bool = 1. Otherwise, bool = 0.

return bool

Fig. 14. Summary of the proof for private metadata bit, with highlighted changes to the signing oracles in hybrids
Hyb1 → Hyb6.

28

Acknowledgments

The authors thank Fabrice Benhamouda, Charlie Harrison, Michael Kleber, Steven Valdez, and Moti Yung
for helpful discussions.

References

ABR01. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions and an analysis
of DHIES. In CT-RSA, volume 2020 of Lecture Notes in Computer Science, pages 143–158. Springer, 2001.

BG93. Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 390–420. Springer, Heidelberg, August 1993.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December 2001.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–
215, June 2003.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer, Heidelberg, January 2003.

BP02. Mihir Bellare and Adriana Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In Moti Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 162–177. Springer, Heidelberg, August 2002.

CA89. David Chaum and Hans Van Antwerpen. Undeniable signatures. In CRYPTO, volume 435 of Lecture
Notes in Computer Science, pages 212–216. Springer, 1989.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 174–187.
Springer, Heidelberg, August 1994.

Cha90. David Chaum. Zero-knowledge undeniable signatures. In EUROCRYPT, volume 473 of Lecture Notes in
Computer Science, pages 458–464. Springer, 1990.

CKS09. David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and applications. J. Cryptology,
22(4):470–504, 2009.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy pass:
Bypassing internet challenges anonymously. PoPETs, 2018(3):164–180, July 2018.

ECS+15. Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart. The pythia PRF
service. In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015, pages 547–562, 2015.

Hen14. Ryan Henry. Efficient zero-knowledge proofs and applications. 2014.
HL06. Javier Herranz and Fabien Laguillaumie. Blind ring signatures secure under the chosen-target-CDH as-

sumption. In Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart Preneel,
editors, ISC 2006, volume 4176 of LNCS, pages 117–130. Springer, Heidelberg, August / September 2006.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected secret sharing
and T-PAKE in the password-only model. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 233–253. Springer, Heidelberg, December 2014.

JKX18. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE protocol secure
against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 456–486. Springer, Heidelberg, April / May 2018.

JL10. Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In Juan A. Garay and
Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages 418–435. Springer, Heidelberg, September
2010.

KM08. Neal Koblitz and Alfred Menezes. Another look at non-standard discrete log and diffie-hellman problems.
J. Mathematical Cryptology, 2(4):311–326, 2008.

LQ04. Benôıt Libert and Jean-Jacques Quisquater. The exact security of an identity based signature and its
applications. Cryptology ePrint Archive, Report 2004/102, 2004. http://eprint.iacr.org/2004/102.

Oka93. Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Heidel-
berg, August 1993.

29

http://eprint.iacr.org/2004/102

Game 1MDElg[GrGen],A(λ)

Γ ← GrGen(1λ)

(x,X)← Elg.KeyGen(Γ)

for i ∈ [`+ 1] :

Mi ←$G
ci ← Elg.Enc(X,Mi)

(M∗i)`i = AElg.Dec(`)(x,·)(X, c0, . . . , c`)

return M∗i = Mi for all i ∈ [`+ 1]

Adversary B(Γ,X) for CTDHGrGen,B(λ)

for i ∈ [`+ 1] :

Yi ← Target(i); Ri ←$G
ci := (Ci, Di) := (Yi, Yi +Ri)

// Dec(i) := Yi + Ri − Help(Yi)

(M0, . . . ,M`)← ADec(X, c0, . . . , c`)

for i ∈ [`+ 1] : Zi := Yi +Ri −Mi

return (i, Zi)
`
i=0

Fig. 15. Game for one-more decryption (left) and reduction to chosen-target Diffie-Hellman (right).

OP01. Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of problems for the security
of cryptographic schemes. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages 104–118.
Springer, Heidelberg, February 2001.

A Equivalence of CTDH and 1MD

Privacy Pass [DGS+18] is proven unforgeable under one-more decryption security of Elgamal. One-more
decryption security states that it is difficult for any PPT adversary A to decrypt `+ 1 Elgamal ciphertexts
of random messages, even when given access to an oracle for ` Elgamal encryptions.

Elgamal (denoted Elg) is a public-key cryptosystem based on a group generator algorithm GrGen. Elgamal
achieves semantic security if DDH holds, i.e., if AdvddhGrGen,A(λ) is negligible. The key generation algorithm
Elg.KeyGen(Γ) outputs a pair (sk, pk) := (x,X := xG) where x←$Zp. The encryption algorithm Elg.Enc(M)
outputs a ciphertext (C := cG,D := cX + M) where c←$Zp. The decryption algorithm Elg.Dec(x, (C,D))
takes as input the secret key and the ciphertext, and otuputs the message M = D − xC.

Theorem 19. Chosen-Target Diffie-Hellman for GrGen holds if and only if One-More Decryption Security
for Elg[GrGen] holds. In other words, CTDHGrGen,A(λ) is equivalent to 1MDElg[GrGen](λ)

Proof. We start by proving that 1MD =⇒ CTDH. Let A ∈ PPT be an adversary for 1MDElg[GrGen],A(λ).
We use it to construct an adversary B for the game CTDHGrGen,A(λ). The adversary B receives as input
a group drescription Γ and a group element X ∈ G. Additionally, it has access to two oracles: a Target
oracle and a Help oracle. It start by querying the Target oracle `+ 1 times on i ∈ [`+ 1], thus receiving
Target(i) = Yi ∈ G. It samples uniformly at random Ri←$G for all i ∈ [`+ 1] and invokes A(X, (Ci, Di)

`
i),

where (Ci, Di) := (Yi, Yi +Ri). During its execution, the adversary A may ask for ` decryption queries. We
answer to those queries returning Mi := (Yi+Ri)−Zi where Zi := Help(Yi). At the end of its execution, the
adversary B returns `+ 1 decryption (M0, . . . ,M`) ∈ G`+1. The adversary B returns (i, Zi := Yi +Ri −Mi)
for each i ∈ [`+ 1].

The distribution of each ciphertext is uniform over G2, exactly as in the game 1MDElg[GrGen],A(λ) (be-
cause each message is uniformly random in G). Decryption queries are responded exactly in the same way
(subtracting off the CDH of the randomness Yi with the public key X). Furthermore, if the adversary wins
the game 1MDElg[GrGen],A(λ), it must be the case that it returned Mi for all i ∈ [`+ 1] such that:

Mi = Elg.Dec(x, (Ci, Di)) =⇒ Zi := (Yi +Ri)−Mi = CDH(X,Yi)

The adversary B wins the game CTDHGrGen,B(λ) every time that the adversary A wins the game 1MDElg[GrGen],A(λ),
therefore for all A ∈ PPT:

AdvctdhGrGen,A(λ) ≥ Adv1md
GrGen,B(λ).

30

We now prove the reverse implication, that is, CTDH =⇒ 1MD. Let A ∈ PPT be an adversary for
CTDHGrGen,A(λ). We use it to construct an adversary B for 1MDElg[GrGen],A(λ).

The adversary B receives as input a group description Γ together with a group element X = xG ∈ G (for
some secret x ∈ Zp) and a sequence of `+ 1 ciphertexts c0, . . . , c` such that ci = (Ci, Di) for all i ∈ [`+ 1].
B starts off by selecting a random into map µ : {0, 1}λ → Zp. Then, it invokes the adversary A on (Γ,X),
overriding random oracle queries in the following way:

− for any query of the form Target(t), the adversary B returns Y =
∑`
j=0 a

µ(t)jCi;
− for any query of the form Help(C), the adversary B samples D←$G, and queries the decryption oracle

Dec((C,D)), thus obtaining M = Elg.Dec(x, (C,D)) = R−CDH(X,Y). It returns R−M = CDH(X,Y).

At the and of its execution, the adversary A returned `+1 pairs (ti, Zi). By winning condition of CTDHGrGen,A(λ),
for each i ∈ [`+ 1], Zi satisfies:

x ·

Y0
...

Y`

 = x ·

a0·µ(t0) · · · a`·µ(t0)

a0·µ(t1) · · · a`·µ(t1)

...
. . .

...

a0·µ(t`) · · · a`·µ(t`)

C0

...

C`

 =
[
Z0 · · · Z`+1

]
.

The matrix A := [ajµ(ti)]i,j is a Vandermonde matrix. The second winning condition states that ti 6= tj for
all i, j ∈ [`+ 1], i 6= j. Therefore, aµ(ti) 6= aµ(tj). Therefore, A is invertible for all i 6= j. Let A′ be the inverse
of A; then, Z ′i =

∑
j a
′
i,jZi = CDH(X,Ci). The adversary B returns Mi := Di − Zi, for all i ∈ [`+ 1].

The replies to the Help oracle are identical to the ones in CTDHGrGen,B(λ). The replies to the Target
oracle follow the uniform distribution in G too, since µ is a random injective map hidden from the view of
the adversary.

It follows that the adversary B wins the game 1MDHElg[GrGen],B(λ) every time that the adversary A wins
the game CDHGrGen,A(λ), therefore for all A ∈ PPT:

AdvctdhGrGen,A(λ) ≤ Adv1md
GrGen,B(λ).

ut

B Okamoto-Schnorr DLEQOR Proofs

In the section we provide the constructions for the DLEQ and DLEQOR proofs that we use for our token
constructions. Given a group description Γ := (G, p,G,H) ← GrGen(1λ) and n = poly(λ), we provide a
zero-knowledge argument of knowledge for the following language:

L2,Γ :=

(X, T, S,W) ∈ Gn+3 : K(b, x, y) ∈ [n]× Z2
p .

Xb

W

 = x

G
T

+ y

H
S

Note that when y = 0 and n = 1 the language is the same of Privacy Pass [DGS+18]. Note that for n = 1
the above language is Okamoto-Schnorr [Oka93] for the DLEQ relation.

We present our construction in Figure 16. The setup algorithm generates the group description Γ ←
GrGen(1λ), and instantiates a random oracle Hc that maps any sequence of elements (Γ,G1, . . . , Gn) ∈ Γ×Gn
to a scalar c ∈ Zp. The prover and verifier algorithms are the OR-composition of Okamoto-Schnorr [Oka93].
We present the non-interactive version of the protocol, after applying the Fiat-Shamir reduction, for practical
convenience.

The proving algorithm (Fig. 16, left) proceeds simulating the transcripts for all i ∈ [n], i 6= b, and
choosing the challenges uniformly at random, constrained that their sum is the challenge provided by Hc.

31

DLEQOR.P(Γ,X, T, S,W), (xb, yb))

(G, p,G,H) := Γ

k0, k1 ←$Z2
p

Kb := k0 · (G;T) + k1 · (H;S)

for i ∈ [n], i 6= b

ci, ui, vi ←$Zp
Ki := ui · (G;T) + vi · (H;S)− ci · (Xi;W)

c := Hc(Γ,X, T, S,W,K0, . . . ,Kn)

cb := c−
∑
i 6=b ci

ub := k0 + cbxb

vb := k1 + cbyb

return (c,u,v)

DLEQOR.V(Γ,X, S, T,W, (c,u,v))

∀i ∈ [n] : Ki := ui(G;T) + vi · (H;S)− ci(Xi;W)

c :=
∑
i ci

return c = Hc(Γ,X, T, S,W,K0, . . . ,Kn)

Fig. 16. Okamoto-Schnorr proof for DLEQOR.

DLEQOR.P(Γ,X,T,S,W, x, y)

e0, . . . , em := H(Γ,X,T,S,W)

T :=
∑m
j ejTj

S :=
∑m
j ejSj

W :=
∑m
m ejWj

return DLEQOR.P(Γ,X, T , S,W, x, y)

DLEQOR.V(Γ,X,T,S,W, π)

e0, . . . , em := H(Γ,X,T,S,W, π)

T :=
∑m
j ejTj

S :=
∑m
j ejSj

W :=
∑m
m ejWj

return DLEQOR.V(Γ,X, T , S,W, π)

Fig. 17. Batched Okamoto-Schnorr proof for DLEQOR.

The verification algorithm (Fig. 16, right) checks the validity of all transcripts, and that the sum of the
challeges

∑
i ci = c is the hash of the commitments Hc(Γ,X, T, S,W,K0, . . . ,Kn). When n = 1, we will use

the notation DLEQ(Γ,X, T, S,W) to explicit the protocol is using only one public key.
The protocol has special soundness by standard or-composition of sigma protocols [CDS94]: from two

transcripts (c,u,v) and (c′,u′,v′) verifying simultaneously, some b ∈ [n] such that cb 6= c′b it is possible to
extract a witness (xb, yb) by computing xb := (ub − u′b)/(cb − c′b) and yb := (vb − v′b)/(cb − c′b).

The (non-interactive Fiat-Shamir reduction of the) protocol is also zero-knowledge: the simulator simply
produces valid transcripts for all i ∈ [n] by selecting ci, ui, vi←$Zp, and computing Ki := ui(G;T) +
vi(H;S) − ci(Xi,W). Then, it computes c :=

∑n
i ci and programs the random oracle to reply with c when

queried on (Γ,X, T, S,W,K0, . . . ,Kn). The simulator aborts if such a query was already made, which since
Ki are all distributed randomly happens with probability at most q(λ)/pn, where q(λ) is an upper-bound
on the number of queries of the adversary to Hc.

Batching. The proof can be batched via the same technique of Henry [Hen14]: it is possible to prove
knowledge of a witness (b, x, y) for m different statements (X, Tj , Sj ,Wj)

m
j=0 with a single proof.

Theorem 20. Assuming the discrete logarithm is hard for GrGen, the DLEQOR proof system depicted in
Fig. 17 is a zero-knowledge argument of knowledge.

Proof (Knowledge soundness). Knowledge soundness for the batched protocol follows from the knowledge
soundness of the underlying DLEQ proof system, except for a small statistical error. By soundness of the

32

underlying proof system we have that, except with a negligible extraction error,

DLEQ(Γ,X, T , S,W, π) = true implies K(b, x, y) .
(
(X, T , S,W), (b, x, y)

)
∈ R(LΓ,n),

where R(Ln,Γ) denotes the relation associated to the language Ln,Γ . In other words, there exists an PPT
extractor that outputs b, x, y such that Xb = xG + yH and W = xT + yS. The values T , S, and W are a
random linear combination of the elements (Ti, Si,Wi)

m
i . We prove by induction on m that the probability

that there exists any i ∈ [m] such that the (batched) protocol verifies and Wi 6= xTi + ySi is at most
2(m+1)/p = negl(λ). Logically, it will follow that, except with negligible probability, (b, x, y) ∈ [n]×Zp×Zp
is a valid witness for the statement (X, Ti, Si,Wi) ∈ Ln,Γ , for each i ∈ [m].

If m = 1, then W = xT + yS can be written as e0W0 = e0(xT0 + yS0). Therefore, W0 = xT0 + yS0

iff e0 6= 0, which happens with probability 1/p < 3/p. Let us denote with Pr[Em] the probability that the
(batched) verification equation is satisfied, but the witness is invalid for at least one of the m statements.
Note that for the case Pr[Em+1] there are two possibilities: either Wm = xTm + ySm, in which case we are
left with the equation of the inductive step:

m−1∑
j

ejWj =

xm−1∑
j

ejTj + y

m−1∑
j

ejSj

 ,

Alternatively, if Wm 6= xTm + ySm, then either the coefficient em is zero or also the other statement must
be invalid. It follows that:

Pr[Em+1] ≤ Pr[Em] +
1

p
(1− Pr[Em]) +

p− 1

p
Pr[Em] .

(In fact, if em = 0 we fall in the inductive case; and the probability that the verification equation is invalid is
at least 1−Pr[Em].) It follows that Pr[Em+1] ≤ 2 Pr[Em]−2/pPr[Em]+1/p ≤ 2 Pr[Em]+1/p ≤ 2(m+1)/p.
Thus:

AdvksndDLEQORbatched
(m,λ) ≤ AdvksndDLEQORsimple

(λ) +
2(m+ 1)

p

33

	Anonymous Tokens with Private Metadata Bit

