
Rolling up sleeves when subversion’s in a field?

Daniel R. L. Brown

danibrown@blackberry.com

January 23, 2020

Abstract

A nothing-up-my-sleeve number is a cryptographic constant, such
as a field size in elliptic curve cryptography, with qualities to assure
users against subversion of the number by the system designer. A
number with low Kolmogorov descriptional complexity resists being
subverted to the extent that the speculated subversion would leave a
trace that cannot be hidden within the short description.

The roll programming language, a version of Godel’s 1930s defini-
tion of computability, can somewhat objectively quantify low descrip-
tional complexity, a nothing-up-my-sleeve quality, of a number. For
example, (2127 −1)2 and 2255 −19 can be described with roll programs
of 58 and 84 words.

Field size Program Words Hours
(2127 − 1)2 Table 7 58 1

2521 − 1 Table 2 68 1
891 + 5 Table 6 68 10

2283 Table 5 78 1
2336 − 3 Table 9 79 1
2255 − 19 Table 4 84 1

2256 − 2224 + 2192 + 296 − 1 Table 3 112 1
2256 − 232 − 977 Table 8 127 1

Table 1: Shortest roll programs found (in roundly estimated time spent code
golfing) for some especially efficient, previously proposed ECC field sizes

1

1 Early estimates in roll complexity

The roll programming language is defined in §2, but the listed roll programs
aim to be almost self-explanatory, to serve as a primer on the roll program-
ming language.

The purpose of the listed programs is to provide preliminary code golf
scores of proposed field sizes in elliptic curve cryptography, towards eventu-
ally quantifying their nothing-up-my-sleeve quality.

1.1 Mersenne prime 2521 − 1

2^521-1 subs 521 in 2^-1

521 subs 260 in *2+1

260 subs 130 in *2

130 subs 65 in *2

65 subs 63 in +2

63 subs 6 in 2^-1

6 subs 3 in *2

3 subs 1 in +2

2^-1 roll *2+1 up 0

*2+1 roll +2 up 1

1 subs in +2

*2 roll +2 up 0

+2 subs +1 in +1

0 subs in +1

Table 2: A 68-word roll program for 2521 − 1

Table 2 lists a roll program implementing a constant function that returns
2521 − 1 on any input. The NIST-recommended elliptic curve P-521 uses
2521 − 1 as its field size. The curve P-521, or at least its field size, is popular
in some circles, but is not actually widely used.

Robinson discovered that 2521 − 1 is prime in 1950, used the SWAC, a
vacuum tube computer at an NBS (now NIST), making the historical first
machine-aided prime number record. In dramatic terms, 2521 − 1 symbolizes
the dawn of the digital computer age in mathematics.

2

1.2 NIST prime P-256

2^224(2^32-1)+2^192+2^96-1 subs

2^224(2^32-1)+2^192 2^96-1 in +

2^224(2^32-1)+2^192 subs

192 2^32(2^32-1)+1 in 2^a*b

2^32(2^32-1)+1 subs 2^32(2^32-1) in +1

2^32(2^32-1) subs 32 2^32-1 in 2^a*b

2^96-1 subs 96 in 2^-1

2^32-1 subs 32 in 2^-1

192 subs 96 in *2

96 subs 64 32 in +

64 subs 32 in *2

32 subs 31 in +1

31 subs 5 in 2^-1

5 subs 3 in +2

3 subs 1 in +2

2^a*b roll *2 up a

2^-1 roll *2+1 up 0

*2+1 roll +2 up 1

1 subs in +2

*2 roll +2 up 0

+ roll +1 up a

a roll +1 up 0

+2 subs +1 in +1

0 subs in +1

Table 3: A 112-word roll program for P-256

Table 3 lists a roll program that computes the prime field size used for
NIST curve P-256. Many web sites now connect to web browsers using elliptic
curve Diffie–Hellman with curve P-256.

The prime from P-256 is often called a Solinas prime, being a sum of
signed version of powers of 232 aiming to make modular reduction on 32-bit
machines efficient.

3

2^255-19 subs 2^254-10 in *2+1

2^254-10 subs 2^253-5 in *2

2^253-5 subs 2^252-3 in *2+1

2^252-3 subs 2^251-2 in *2+1

2^251-2 subs 2^250-1 in *2

2^250-1 subs 250 in 2^-1

250 subs 125 in *2

125 subs 62 in *2+1

62 subs 31 in *2

31 subs 5 in 2^-1

5 subs 2 in *2+1

2 subs 0 in +2

2^-1 roll *2+1 up 0

*2+1 subs *2 in +1

*2 roll +2 up 0

+2 subs +1 in +1

0 subs in +1

Table 4: An 84-word roll program for 2255 − 19

1.3 Prime 2255 − 19

Bernstein’s public domain elliptic curve Curve25519 is incorporate into TLS
1.3 and various other systems. Its field size is the prime 2255 − 19. Table 4
lists a roll program implementing 2255 − 19.

Further code golfing may find a shorter program than the one in Table 4,
as Table 4 uses the word roll only twice, but the shorter program Table 7
uses it four times.

1.4 Composite 2283

The field size 2283 is a composite number used by the formerly NIST-recommended
curves B-283 and K-283. The curve K-283 is used in a few real-world applica-
tions, but recent advances in discrete logarithm have raised concern about its
security. The number 2283 can be computed by the roll program in Table 5.

4

2^283 subs 283 in 2^

283 subs 282 in +1

282 subs 141 in *2

141 subs 140 in +1

140 subs 70 in *2

70 subs 35 in *2

35 subs 33 in +2

33 subs 32 in +1

32 subs 5 in 2^

5 subs 3 in +2

3 subs 1 in +2

2^ roll *2 up 1

*2 roll +2 up 0

1 subs in +2

+2 subs +1 in +1

0 subs in +1

Table 5: A 78-word program to compute 2283

1.5 Prime 891 + 5

Field size 891 + 5 was proposed because of its intuitively low Kolmogorov de-
scriptional complexity (via the six character expression 8^91+5) and because
of its efficiencies (simple and efficient field arithmetic for its size: addition,
multiplication, inversion and square roots). The field size 891 + 5 has been
proposed to the Internet Research Task Force, and in a previous report.
Table 6 lists a roll program for 891 + 5 found so far.

The six-character decimal-exponential-complexity in the expression

8^91+5

may somehow underrate its Kolmogorov descriptional complexity. If decimal
notation and standard arithmetic notation may happen to favor a subverted
number (leading to weak ECC), then the subverter would present decimal-
exponential-complexity to bolster the number. The roll programming lan-
guage aims to partially alleviate this concern (which is a legitimate concern
within the narrow confines of a subverted number hypothesis). It aims for
greater objectivity by breaking down numbers to the bare basics, Godel’s
computability, Peano’s axioms, which reduce arithmetic to counting.

5

8^91+5 subs 8^91+1 in +4

8^91+1 subs 2^273 in +1

2^273 subs 273 in 2^

273 subs 17 in *16+1

17 subs 1 in *16+1

*16+1 roll +16 up 1

+16 subs +8 in +8

+8 subs +4 in +4

+4 subs +2 in +2

2^ roll *2 up 1

1 subs in +2

*2 roll +2 up 0

+2 subs +1 in +1

0 subs in +1

Table 6: A 68-word roll program for 891 + 5

The number 891 +5 was used used in designing the roll language. Precur-
sors to the roll programming language were tested for clarity by implementing
891 + 5 and ad hoc numbers. Clarity corrections were incorporated into the
roll programming language. The roll programming language might somehow
favor 891 + 5, due to its role in the design process.

Experience accumulated from programming 891 + 5 many times likely
contributed considerably to the shortness of Table 6.

1.6 Composite (2127 − 1)2

An interesting field size is (2127 − 1)2, a composite number, the square of a
famous prime 2127−1. This prime has been proposed for Galbraith–Lin–Scott
elliptic curves and variants, both for its especially efficient field arithmetic,
and for provided an extra efficiency to an elliptic curve.

The prime 2127 − 1 is special in many senses. Mersenne conjectured in
1644, with little justification, that 2127 − 1 is prime. (Several of Mersenne’s
similar guesses were wrong, so his guess for 2127 − 1 seems a fluke.) Lucas
proved in 1876 that 2127 − 1 is prime. It remained the largest known prime
until 1950, when it was beat by 2521 − 1. So, 2127 − 1 seems to be the largest
prime ever proved by hand.

Learning from Lucas that 2127 − 1 is prime, Catalan defined Catalan–

6

(2^127-1)^2 subs 2^127-1 in ^2

2^127-1 subs 4 in catalan-mersenne

catalan-mersenne roll 2^-1 up 2

2^-1 roll *2+1 up 0

^2 roll +*2+1 up 0

+*2+1 roll +1 up *2+1

*2+1 roll +2 up 1

4 subs 2 in +2

2 subs 0 in +2

1 subs in +2

+2 subs +1 in +1

0 subs in +1

Table 7: A 58-word program to compute (2127 − 1)2

Mersenne numbers and conjectured them to be prime, based on

2127 − 1 = 222
2

2
−1

−1
−1 − 1.

The next Catalan–Mersenne number has 2127 −1 binary digits, and all known
tests for primality are infeasible, with known theory (the prime number theo-
rem plus some heuristics) only predicting a negligible probability (≈ 2−126.47)
of primality. Table 7 uses the Catalan–Mersenne sequence to implement
(2127 − 1)2 with a short roll program.

The concern that elliptic curve cryptography might be weaker for com-
posite field sizes, is considered milder for (2127 −1)2 than for 2283, because the
field extension degree 2 is smaller than 283, offering less structure to attack.

1.7 Bitcoin’s secp256k1 prime field size

The number 2256 − 232 − 977 has several features: it is prime; it is less than
2256; it is close to a Solinas number but is not “Crandall” number; it serves as
field size of a prime-order elliptic curve, with complex multiplication by 3

√
1,

permitting Gallant–Lambert–Vanstone scalar multiplication. The resulting
curve is known as secp256k1 because of its ASN.1 object identifier in the
standard SEC2.

Table 8 lists a roll program to compute 2256 − 232 − 977, but it uses
somewhat rote code golf steps compared to the custom methods of the other
listed programs.

7

2^256-2^32-977 subs 2^32+977 256 in 2^b-a

2^32+977 subs 2^32 977 in +

2^32 subs 32 in 2^

977 subs 47 10 in 2^b-a

256 subs 8 in 2^

47 subs 17 6 in 2^b-a

2^b-a roll -1 up 2^

32 subs 5 in 2^

17 subs 16 in +1

16 subs 4 in 2^

10 subs 8 in +2

8 subs 6 in +2

6 subs 5 in +1

5 subs 3 in +2

4 subs 3 in +1

3 subs 1 in +2

-1 roll b up 0

2^ roll *2 up 1

1 subs in +2

*2 roll +2 up 0

+2 subs +1 in +1

+ roll +1 up a

b roll a up a

a roll +1 up 0

0 subs in +1

Table 8: A 127-word program to compute 2256 − 232 − 977

8

The curve secp256k1 is used in Bitcoin, and some other cryptocurrencies,
for transaction signatures, so presumably its discrete logarithm is secure.
Some might argue that this curve is a less likely to be subverted than NIST
curve P-256, if only because the curve coefficients are simpler (and several
other reasons), most of which reasons do not carry over to the field size.

1.8 Prime 2336 − 3

Recently, M. Scott proposed an elliptic curve with the prime field size 2336−3.
The roll program in Table 9 computes this field size.

2^336-3 subs 2^335-2 in *2+1

2^335-2 subs 2^334-1 in *2

2^334-1 subs 334 in 2^-1

334 subs 167 in *2

167 subs 83 in *2+1

83 subs 41 in *2+1

41 subs 20 in *2+1

20 subs 10 in *2

10 subs 5 in *2

5 subs 2 in *2+1

2 subs 0 in +2

2^-1 roll *2+1 up 0

*2+1 subs *2 in +1

*2 roll +2 up 0

+2 subs +1 in +1

0 subs in +1

Table 9: A 79-word program to compute 2336 − 3

2 Defining roll

This section defines the roll programming language. Table 10, together with
the system of forward (look-ahead) references summarizes the roll program-
ming language pretty well.

9

Definition Input Output
(none) () 0
(none) (a, . . .) a + 1
f subs g ... h in k (. . .) k(g(. . .), . . . , h(. . .))
f roll g up h () 0
f roll g up h (0, . . .) h(. . .)
f roll g up h (a + 1, . . .) g(f(a, . . .), a, . . .)
f when g (. . .) min{a : 0 = g(a, . . .)}

Table 10: Functions in a roll program

2.1 Words

A roll program consists of zero or more space-separated words. A word is
any space-free sequence of characters. The length of a roll program is its
number of words. (In Linux, wc -w can compute the length.)

The five words

subs in roll up when

are verbs, and define the meanings of remaining words, the nouns, in roll
program.

If a noun is followed by one of the three verbs subs, roll, or when,
then the word is name of a definition. Any other noun refers, by forward

reference, to the next occurence of that noun as a name (if there is any
such occurrence).

2.2 Roll programs as functions

Each roll program describes a mathematical function.
Many different roll programs may describe the same mathmatical func-

tion. One of the tasks of this report is to seek the shortest roll program for
a given mathematical function.

2.3 Numbers

The range of a function described by a roll program is the set of numbers

N = {0, 1, 2, . . .}.

10

The image of a function is a subset of its range. For constant functions,
image set contains just one number.

2.4 Strings

The set N∗ =
⋃

e∈N N e, using Kleene’s notation, is the set strings of num-
bers. These are finite strings of the form

(a, b, . . . , c).

The string’s entries are a, b, . . . , c ∈ N . The length of the string is its how
many entries it has. For example, the empty string () has length 0, the string
(3, 97) has length 2.

If f is the function, and (a, b, . . . , c) is an input to the function, then the
output of the function is written as f(a, b, . . . , c), per standard mathematical
notation. In particular, if the input is the empty string, then the output is
f().

A roll program describes a function function whose only inputs are strings.

2.5 Domains or partial functions

A roll program describes a function f : M → N , where M ⊆ N∗ is the
domain of the roll program. In other words, a roll program describes a
partial function f : N∗ → N .

The main aim of this report is roll programs that are both total and
constant, which implies that they have domain M = N∗. (In most cases, all
the intermediate functions described in the programs are total too, with the
full domain M = N∗.)

2.6 Default function

The default function is a function f that returns 0 on the empty string and
otherwise the successor of the first entry of the input string. In other words,

f() = 0,

f(a, . . .) = a + 1.

A common example is to use +1 to refer to the default function, and to never
use +1 as the name of a definition.

11

The domain of the default function is N∗, so the default function is a
total function N∗ → N .

2.7 Substitution

A function f can be described in a roll program with a definition of the form

f subs g ... h in k

Such a definition in a roll program defines function f using substitutions of
the form

f(a, b, . . . , c) = k(g(a, b, . . . , c), . . . , h(a, b, . . . , c)). (1)

A common example is
0 subs in +1

where +1 refers to the default function. The described function is constant,
with 0(a, b, . . . , c) = +1() = 0.

The domain of f depends on the domain of g, . . . , h, k. If the latter all
have domain N∗, then f has domain N∗. In general, an input is in the
domain of f only if it is the domain of g, . . . , h, and the resulting application
of these functions is in the domain of k.

2.8 Primitive recursion

A function f can be defined in a roll program as

f roll g up h

which defines function f using primitive recursion:

f() = 0 (2)

f(0, b, . . . , c) = h(b, . . . , c), (3)

f(a + 1, b, . . . , c) = g(f(a, b, . . . , c), a, b, . . . , c). (4)

A typical example is
a roll +1 up 0

which defines a function a such that a(a, b, . . . , c) = a, provided that +1 refers
to the default function, and 0 refers to some definition of the zero constant
function.

The domain of f depends on the domains of g and h. If the latter have
domain N∗, then so does f . Otherwise, an input is in the domain of f only
if, in every intermediate step, the input to each function is in its domain.

12

2.9 Unbounded recursion

A function f can be defined in a roll program as

f when g

which defines a function f whose defined outputs take the form

f(b, . . . , c) = min{a : g(a, b, . . . , c) = 0}. (5)

More precisely, let f(b, . . . , c) = a if

g(a, b, . . . , c) = 0

g(a′, b, . . . , c) > 0

for all a′ < a. (This condition implicitly require that g(a′, b, . . . , c) is defined
for all a′ ≤ a.)

Otherwise, f(b, . . . , c) is not defined. Roll programs that describe partial
functions N∗ → N , whose domain is not the full set N∗ of strings, must
contain the word when.

3 Running roll programs by machine

It can helpful to have a machine run a roll program.

3.1 Unoptimized

The following C++ code is unoptimized. It takes a time at least a constant
times the difference of the output and largest input.

By changing the macro USING_NTL to 0, the code becomes also valid C99
code, but then the maximum numbers that can be processed is much smaller.

The next section includes some optimizations.

// roll.c++

#define USING_NTL 1

// Parsers:

typedef char*P;

P end(P p){return *p? 0: p;}

P blank(P p){return ' '==*p|| '\n'==*p|| '\t'==*p? p+1: 0;}

P letter(P p){return '!' <= *p&&*p <= '~'? p+1: 0;}

13

P space(P p){P t; while(t=blank(p))p=t; return p;}

P word(P p){P t;

if (!(p=letter(p))) return 0;

while(t=letter(p)) p=t;

return space(p);}

P hear(P p,P q){P t;

return (t=letter(p))?

*p==*q? hear(t,letter(q)): 0:

letter(q)? 0: space(p);}

#define hear(p,q) hear(p,(P)q) // needed for C++

P subs (P p){return hear(p, "subs ");}

P in (P p){return hear(p, (P)"in ");}

P roll (P p){return hear(p, (P)"roll ");}

P up (P p){return hear(p, (P)"up ");}

P when (P p){return hear(p, (P)"when ");}

P verb (P p){P t; return (t=subs(p)) || (t=roll(p)) || (t=when(p)), t;}

P term(P p){return verb(p)? 0: word(p);}

P noun(P p){return in(p)? 0: term(p);}

P sentence (P p){P t;

return (t=in(p)) || (t=noun(p)) && (t=sentence(t)), t;}

P plan (P p){P t;

return

(t=subs(p)) && (t=sentence(t)) && (t=noun(t)) ||

(t=roll(p)) && (t=noun(t)) && (t=up(t)) && (t=noun(t)) ||

(t=when(p)) && (t=noun(t)) , t;}

P strategy (P p) {P t;

return

(t=end(p)) ||

(t=noun(p)) && (t=plan(t)) && (t=strategy(t)), t;}

P program (P p){P t; return (t=space(p)) && (t=strategy(t)), t ;}

// Analyzers

int num_subs(P p){int n=0;

while(!in(p)) n+=1,p=word(p);

return n;}

// Mover

P call (P p){P t=p;

while(t && !strategy(t)) t=word(t);

while(t && !end(t))

if(hear(t,p)) return t;

else (t=noun(t)) && (t=plan(t));

return t;}

#if USING_NTL

#include <NTL/ZZ.h>

using namespace std;

using namespace NTL;

typedef ZZ I;

#else

typedef long long I;

#endif

// internal input managers

void let(I*j,I*i){

while(*i>-1)*j++=*i++;

*j=-1;}

14

int len(I*i){int len=0;

while(*i++>-1)len++;

return len;}

// general program runners

I run_strategy(P p,I*i);

// #include "opt_subs.c++"

I run_subs(P p,I*i){

int k,n = num_subs(p);

I j[n+1];

for(k=0;k<n;k++){

j[k]=run_strategy(call(p),i);

p=word(p);}

p=in(p);

j[n]=-1;

return run_strategy(call(p),j);}

#include "opt_roll.c++"

I run_roll(P p,I*i){

if(*i<=0) return 0!=*i?(I)0: run_strategy(call(up(noun(p))),i+1);

else {I o=run_roll_opt(p,i);//=(I)-1;

if (o>=0) return o;

else {

I j[len(i)+2];let(j+1,i);j[1]=0;

j[0]=run_roll(p,j+1);

for(;j[1]<i[0];j[1]+=1)

j[0]=run_strategy(call(p),j);

return j[0];}}}

I run_when(P p,I*i){

I j[len(i)+1];let(j+1,i);

for(p=call(p),j[0]=0; 0!=run_strategy(p,j); j[0]+=1);

return j[0];}

I run_plan(P p,I*i){P t; return

(t=subs(p))? run_subs(t,i):

(t=roll(p))? run_roll(t,i):

(t=when(p))? run_when(t,i): (I)-1;}

I run_strategy(P p,I*i){return end(p)?1+*i: run_plan(noun(p),i);}

I run_program (P p,I*i){return program(p)?run_strategy(space(p),i):(I)-7;}

// input from character strings

void decimal(I*i,int c,char**s){int b;

for(b=0;b<c;b++,i++)

#if USING_NTL

conv(*i,s[b]);

#else

{char *t; for(*i=0,t=s[b];*t;t++)*i*=10,*i+=*t-'0';}

#endif

*i=-1;}

#include <stdio.h>

#define MAX_FILE (1000*1000)

I run_file(P a,I*i){

char p[MAX_FILE+1]={};

15

if (fopen(a,"r")) {

p[fread(p,1,MAX_FILE,fopen(a,"r"))]=0;

run_program(p,i);}}

I run_arg1(P p,I*i){return (noun(p) && end(noun(p)))?

run_file(p,i): run_program(p,i);}

void print(I a){

#if USING_NTL

cout << a << "\n";

#else

printf("%lld\n",a);

#endif

}

int main (int c, char**a) {

if(2<=c){

I i[c-1];

decimal(i,c-2,a+2);

print(run_arg1(a[1],i));}}

3.2 Optimizations

The naive roll interpreter of the previous section only ever modifies integers
by adding (or subtracting) one. So, running roll programs for a secure ECC
field size n with the naive interpreter would take at least n steps, which would
be too long.

For simple enough roll programs, a few simple optimization shortcuts
suffice to make the interpreter run fast enough. For example, the code

f roll +2 up g

can implemented with the shortcut,

f(a, b, . . . , c) = 2a + g(b, . . . , c).

For large a and efficient addition arithmetic, this is exponentially faster than
incrementing 2a times.

// opt_roll.c++

// parsers for optimizable roll steps

P opt_plus_1(P),opt_a(P),opt_b(P),opt_plus_2(P);

// optimized code

I run_roll_opt(P p,I*i){

return

opt_plus_1 (p)? run_strategy(call(up(noun(p))),i+1) + i[0]:

opt_a (p)? run_strategy(call(up(noun(p))),i+1):

16

opt_b (p)? i[0]-1:

opt_plus_2 (p)? run_strategy(call(up(noun(p))),i+1) + 2*i[0]:

(I)-1107;} // not optimized

// "+1" -> ""

P opt_plus_1(P p){

return hear(p,(P)"+1 ") &&

(end(call(p))) ?

noun(p): 0;}

// "+2" -> "+2 subs +1 in +1" -> ...

P opt_plus_2(P p){P t;

return hear(p,(P)"+2 ") &&

(t=opt_plus_1(subs(noun(call(p))))) &&

opt_plus_1(in(t)) ?

noun(p) : 0;}

// "0" -> "0 subs in +1" -> ...

P opt_0(P p){

return hear(p,(P)"0 ") &&

opt_plus_1(in(subs(noun(call(p))))) ?

noun(p): 0;}

// "a" -> "a roll +1 up 0" --> ...

P opt_a(P p){P t;

return hear(p,(P)"a ") &&

(t=opt_plus_1(roll(noun(call(p))))) &&

opt_0(up(t)) ?

noun(p): 0;}

// "b" --> "b roll a up a" --> ...

P opt_b(P p){P t;

return hear(p,(P)"b ") &&

(t=opt_a(roll(noun(call(p))))) &&

opt_a(up(t)) ?

noun(p): 0;}

4 To do

Many elaborations of this work may be doable.

• Shorter versions of the listed programs.

• Roll programs for other cryptographic constants, such as

– numbers far from a power of two (being inefficient field sizes for ECC), like

∗ the 314-bit prime 999 + 4 with a 63-word roll program,

∗ a 43-word roll program implementing a composite ≈ 22031.4,

– numbers derived from irrationals like
√

2, π and e,

– numbers derived from cryptographic hash functions.

17

• Bit complexity of roll programs, a normalization of word length.

• A more thoroughly optimized interpreter or compiler.

• Typical lengths (par scores) for numbers of a given bit length.

• Steamrolling: searching through all roll programs to find the shortest implementing
a constant with a given property.

• Ways to find, to verify, or to estimate, the shortest program for a given function,
especially a constant.

• Models that imply information must be embedded into subverted numbers.

• Basic language analysis for roll, such as

– illustrative tutorial and guide,

– advance programming tips and tools,

– limitation such as finite arity (roll can only describe functions depending on
the first R + 1 entries of the input string, where R is the number of words
roll in the program),

– subtleties and common pitfalls (e.g., forgetting no number is pre-defined),

– design motivation and justification,

– length bounds for restricted language subsets like

∗ primitive recursive programs (no when),

∗ non-recursive programs (no roll or when),

∗ trickle programs (each noun appears at most twice),

– Kolmogorov’s algorithmically random numbers (whose shortest program does
not use roll?),

– systematic comparison to other measures of descriptional complexity like

∗ decimal exponential complexity (e.g., 8^91+5 is six characters and stan-
dard notation as understood by bc, etc.)

∗ straight line programs (with addition and multiplication, but no loops),

∗ code size in terse languages, J or code golfing languages,

∗ length in various Turing tar-pits (e.g., automata),

– Turing completeness and relative efficiency,

– Kleene normal form, halting problem, and undecidability of length.

References

Wikipedia was the reference for Godel’s definition of computability.
People and organizations who proposed the cryptographic constants stud-

ied in this report are each named in the appropriate section.

18

	Early estimates in roll complexity
	Mersenne prime 2^521-1
	NIST prime P-256
	Prime 2^255-19
	Composite 2^283
	Prime 8^91+5
	Composite (2^127-1)^2
	Bitcoin's secp256k1 prime field size
	Prime 2^336-3

	Defining roll
	Words
	Roll programs as functions
	Numbers
	Strings
	Domains or partial functions
	Default function
	Substitution
	Primitive recursion
	Unbounded recursion

	Running roll programs by machine
	Unoptimized
	Optimizations

	To do

