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Abstract—We consider a key encapsulation mechanism (KEM)
based on ring-LWE where reconciliation is performed on an
N -dimensional lattice using Wyner-Ziv coding. More precisely,
we consider Barnes-Wall lattices and use Micciancio and Ni-
colosi’s bounded distance decoder with polynomial complexity
O(N log2(N)). We show that in the asymptotic regime for large
N , the achievable key rate is Θ(logN) bits per dimension, while
the error probability Pe vanishes exponentially in N . Unlike
previous works, our scheme does not require a dither.

I. INTRODUCTION

Over the past few years, there have been many attractive
developments in lattice-based cryptographic protocols, whose
security is based on worst-case hardness assumptions, and
which are conjectured to be secure against quantum attacks.
Thus, lattice-based primitives are a promising candidate to
replace constructions based on number theoretic assumptions
like RSA [1] or Diffie-Hellman [2] that are currently in use.

One of the most versatile primitives for the design of
provably secure cryptographic protocols is the learning with
errors (LWE) problem introduced by Regev [3]. For instance
it can serve for IND-CPA (Indistinguishability under chosen-
plaintext attack) [3] and IND-CCA (Indistinguishability under
chosen-ciphertext attack) public key encryption [4]. A struc-
tured variant of LWE, the decision ring learning with errors
(R-LWE) was proposed in [5] by Lyubashevsky et al. to allow
more compact representations. Cryptographic applications of
R-LWE include fast encryption [5] and fast homomorphic
encryption [6]. Solving R-LWE is at least as hard as solving
approximate SIVP on ideal lattices.

In [7], Peikert introduced an efficient lattice-based key en-
capsulation mechanism (KEM) that allows two parties to share
an ephemeral key that is useful for secret communications,
featuring a low bandwidth reconciliation technique that aims
to reach exact agreement on the shared key. A practical
implementation of Peikert’s protocol called NEWHOPE was
proposed in [8] as a candidate to the NIST challenge on post-
quantum cryptography. In [7] and [8], although key generation
is performed using N -dimensional lattices, the reconciliation
step uses 1-dimensional and 4-dimensional lattices respec-
tively1.

1In fact, the latest implementation of the NewHope algorithm does not use
reconciliation [9].

In this paper, we consider a more general framework for
KEM based on ring-LWE, that does not require a dither, and
where reconciliation is done directly on the N -dimensional
lattice using Wyner-Ziv coding.

More precisely, we consider Barnes-Wall lattices [10] and
use Micciancio and Nicolosi’s BDD decoder with polynomial
complexity [11] for the reconciliation step. In particular, we
prove that this decoder is linear. This result is required for
our security proof and may also be of independent interest.
In the asymptotic regime for large N , we show that this
technique can generate Θ(logN) bits of key per dimension.
This improves upon [7] and [8] where the key rates are 1 bit
and 1/4 bits per dimension respectively. Moreover, our scheme
achieves exponentially small error probability Pe ≈ O(e−Nε),
in particular Pe = 2−1675 when N = 1024. Although current
recommendations are to keep the error probability smaller than
2−128, this may be too conservative when transforming an
IND-CPA secure encryption scheme into an IND-CCA secure
one using the Fujisaki-Okamoto transform [12]. A smaller
error probability is desirable to prevent leakage of information
from decryption failure attacks [13].

Organization: This paper is organized as follows. In Section
II we provide basic definitions about cyclotomic fields, lattices,
etc. In Section III we present the Barnes-Wall lattice with
some of its properties. In Section IV, we introduce our key
generation algorithm. In Section V and VI, we provide a proof
that the error probability is small, and that our scheme is IND-
CPA secure respectively.

II. PRELIMINARIES

In this section, we introduce the mathematical tools we use
to describe and analyze our proposed scheme.

We write f(N) = ω (g(N)) if limN→∞ (f(N)/g(N)) =
∞, and f(N) = Θ (g(N)) if f(N) = O(g(N)) and g(N) =
O(f(N)). Finally a variant of O notation that “ignores”
logarithmic factors: f(N) = Õ (g(N)), equivalent to f(N)

= O
(
g(N) · logk(g(N))

)
for some integer k.

A. Lattices and Algebraic number theory

Lattice definitions: First of all, we define the space H as
follows: when m ≥ 2 and N = ϕ(m) with ϕ the Euler’s



totient function, let

H = {x ∈ CN ; xi = xm−i,∀i ∈ Z∗m} ( CN .

Note that H is a proper R-subspace of CN and is isomorphic
to RN as an inner product space.

For our purposes, a lattice is a real full-rank discrete additive
subgroup Λ ⊆ H . Any lattice is generated as the set of
all integer linear combinations of N linearly independent
basis vectors B = {b1, . . . ,bN} in H as Λ = Λ (B) ={
B · z; z ∈ ZN

}
. A fundamental cell P0 of Λ is a bounded

set, which, when shifted by the lattice points, generates a
partition P = {Pλ} of RN . For a fundamental cell P0, any
point x ∈ RN can be uniquely expressed as a sum

x = λ+ xe, where λ ∈ Λ and xe ∈ P0.

We write λ = QP(Λ)(x) and xe = x modP0 = x−QP(Λ)(x).
We will use implicitly in our proofs the fact that ∀x,y ∈ RN ,
and ∀λ ∈ Λ, (x mod Λ+y) mod Λ = (x+y) mod Λ as well
as (x + λ) mod Λ = x mod Λ.
Given a lattice Λ with basis B and a vector t such that
dist(t,B) ≤ 1

2dmin(Λ), the bounded distance decoding prob-
lem is to find the lattice vector v ∈ Λ closest to t.

Lemma 1. Let Λ′ ⊂ Λ and λ ∈ Λ; then π : Λ/Λ′ → Λ/Λ′

defined as π(v) = (v + λ) mod Λ′ is a permutation of Λ/Λ′.

Cyclotomic fields and the canonical embedding: For an
integer m ≥ 1, the mth cyclotomic number field is the
extension K = Q(ξm) with degree N = ϕ(m), where ξm is
any mth primitive root of unity. We denote the ring of integers
OK of K by R, its co-different by R∨, and define Rq = R/qR
for any integer q ≥ 1. In the same manner we can define R∨q .
Note that Rq is isomorphic to R∨q by an isomorphism θ [5,
Lemma 2.15].

Now we describe the embedding of a cyclotomic number
field, which induces a “canonical” geometry on it. Q(ξm) will
has exactly N injective ring homomorphisms σi : K 7→ C,
and we can define the canonical embedding σ : K 7→ CN as

σ(a) = (σ1(a), σ2(a), . . . , σN (a)) ∈ H ( CN .

This is a ring homomorphism from K to H , where multi-
plication and addition in the latter are both component-wise.
We define norms and other geometric quantities on K simply
by identifying field elements a ∈ K with their canonical
embeddings σ(a) ∈ H , e.g., the l2 norm is ‖a‖2 = ‖σ(a)‖2.

When dealing with cyclotomic number fields, note that if
m is a power of 2 with N = ϕ(m), then R∨ = 1

NR, and
σ(R) =

√
N · Φ · ZN for some orthogonal matrix Φ [14].

B. Error Distribution

Subgaussian vectors: A random vector XN in RN is sub-
gaussian with parameter s > 0, if for any unit vector u ∈ RN
and for any t ∈ R,

E
[
e2πt〈XN ,u〉

]
≤ eπt

2s2 .

As a consequence of Theorem 1 in [15], the following tail
inequality holds.

Theorem 1. Let XN be a subgaussian vector in RN with
parameter s > 0. Then ∀ε > 0:

P
{
‖XN‖ > s√

2π

√
N · (ε+ 1)

}
≤ e−Nε

2/2.

The following two propositions describe the sum and point-
wise product behavior of subgaussians:

Proposition 1 ([16], Corollary 2.3). Let XN1 , . . . ,X
N
k be

independent subgaussian vectors over RN with parameters si.
Then

∑
XNi is subgaussian with parameter s =

(∑
s2
i

) 1
2 .

Proposition 2 ([16], Claim 2.4). Let XN be a subgaussian
vector in RN of parameter s, and YN another random vector.
Then the point-wise multiplication vector ZN = XN � YN =
(X1Y1, . . . ,XNYN ) is subgaussian of parameter ‖Y‖2 · s.

Gaussian-like distribution: When dealing with ring-LWE
defined below, we work with a Gaussian-like error distribution
over the number field K. We first define the N -dimensional
i.i.d. Gaussian distribution Dr′ with zero mean and covariance
r′. Then we define the Gaussian distribution ψ over K⊗QR to
output an element a ∈ K⊗QR for which σ(a) ∈ H has Gaus-
sian distribution Dr′ with parameter r′. In our application, we
discretize ψ to R∨ using coordinate-wise randomized rounding
[16] and denote the resulting distribution by χ = bψeR∨ .

Proposition 3 ([16], Lemma 8.2). If ψ is a continuous
Gaussian with parameter r′ ≥ 1, and we use coordinate-
wise randomized rounding, then χ = bψeR∨ is subgaussian
with parameter r =

√
r′2 + 2π · rad(m)/m = O(r′), where

rad(m) is the product of all distinct primes dividing m.

C. Ring-LWE

A function f(N) is negligible if f(N) = o(N−c) for any
constant c ≥ 0. Two ensembles {XN}N∈N and {YN}N∈N
are computationally indistinguishable if for all efficient dis-
tinguisher algorithms D, |P{D(XN ) = 1} − P{D(YN ) = 1}|
is negligible in N .
We define the notion of key encapsulation mechanism (KEM).
Following [7], a KEM with ciphertext space C and (finite) key
space K is given by efficient algorithms Setup, Gen, Encaps
and Decaps, having the following structure:

• Setup() outputs a public parameter pp.
• Gen(pp) outputs a public encapsulation key pk and secret

decapsulation key sk.
• Encaps(pp; pk) outputs a ciphertext c ∈ C and a key
k ∈ K.

• Decaps(sk; c) outputs some k ∈ K ∪ {error term}.
A KEM satisfies IND-CPA security, if the outputs of the
following “real” and “ideal” games are computationally in-
distinguishable:

Real Game Ideal Game
pp← Setup() pp← Setup()

(pk, sk)← Gen(pp) (pk, sk)← Gen(pp)
(c, k)← Encaps(pp, pk) (c, k)← Encaps(pp, pk)

k∗ ← K
Output(pp, pk, c, k) Output(pp, pk, c, k∗)



Ring-LWE: We state the ring-LWE problem in its dis-
cretized form. First of all, let’s define the ring-LWE distri-
bution:

Definition 1. For a distribution χ on R∨ and s
$←− χ, a sample

from the ring-LWE distribution As,χ over Rq×R∨q is generated
by choosing a ← Rq uniformly at random, choosing e ← χ,
and outputting (a,b = a · s + e) ∈ Rq ×R∨q .

Definition 2 (Ring-LWE, Decision). The decision version of
the ring-LWE problem, denoted R-DLWEq,χ, is to distinguish
with non-negligible advantage between independent samples
from As,χ, where s

$←− χ is chosen once and for all, and the
same number of uniformly random and independent samples
from Rq ×R∨q .

Theorem 2 ([16], Theorem 2.22). Let R be the mth cy-
clotomic ring, having dimension N = ϕ(m). Let α =
α(N) <

√
logN/N , and let q = q(N) = 1 modm

be a poly(N)-bounded prime such that αq ≥ ω(
√

logN).
There is a poly(N)-time quantum reduction from Õ(

√
N/α)-

approximate SIVP (or SVP) on ideal lattices in R to solving
R-DLWEq,ψ given only ` samples, where ψ is the Gaussian
distribution Dξq for ξ = α · (N`/ log(N`))

1/4.

The following result extends the hardness guarantees to the
case of discrete error. We make use of what is called a valid
discretization from Section 2.4.2 in [16]:

Theorem 3 ([16], Lemma 2.24). Let b·e be a coordinate-wise
randomized rounding to R∨. If R-DLWEq,ψ is hard given `
samples, then so is the variant of R-DLWEq,χ in which the
secret is sampled from χ given `− 1 samples.

Remark 1. To apply Theorem 3 with two samples, we let
` = 3. Hence ψ is a continuous Gaussian with parameter
r′ = q · α · (3N/ log(3N))

1/4.

III. BARNES-WALL LATTICES AND THE
MICCIANCIO-NICOLOSI BDD DECODER

The Barnes-Wall lattice BWn is an N = 2n dimensional
lattice over the Gaussian integers G = Z[i] ∼= Z2 [11, 10].
Note that BWn can be seen as a real lattice contained
in Z2N = Z2n+1

. Moreover, dmin (BWn) =
√
N and

Vol(BWn) =
√
NN .

Micciancio and Nicolosi [11] give a polynomial time al-
gorithm to solve the bounded distance decoding (BDD) for
Barnes-Wall lattices: given a vector s ∈ CN within distance
dmin/2 =

√
N/2 from some lattice point λ in BWn, find λ.

This algorithm called PARBW has complexity O
(
N log2N

)
and we can prove that it is linear in the following sense:

Theorem 4. Let s ∈ CN . For a fixed λ ∈ BWn, we have

PARBW(λ+ s) = λ+ PARBW(s).

This means that the operation PARBW induces a partition
of CN ∼= Z2N into fundamental cells. The proof of Theorem
4 can be found in the Appendix.

We can also scale the Barnes-Wall lattice by an N × N
matrix T to obtain T · BWn. For invertible matrix T and
s ∈ CN we define the operation PARBWT as:

PARBWT (s) = T · PARBW(T−1 · s),

and x mod(T · BWn) = x− PARBWT (x). It is not hard to
prove that for λ′ ∈ T ·BWn and s ∈ CN , PARBWT (λ′+s) =
λ′+ PARBWT (s), and (s +λ′) mod(T ·BWn) = s mod(T ·
BWn).

Proposition 4. For any k ≥
⌊
n+1

2

⌋
, we have that 2kZ2N ⊆

BWn ⊆ Z2N , where N = 2n.

IV. KEY GENERATION ALGORITHM

We give here the key generation algorithm below between
Alice and Bob.

Parameters are q; N = [K : Q] and error distribution χ on R∨

Alice (Server) Bob (Client)
a

$←− Rq

s, e
$←− χ s′, e′, e′′

$←− χ
b := as + e ∈ R∨q

(b,a)−−−−→
u := as′ + e′

v := θ−1(b)s′ + e′′

v′ := θ−1 (u) s
(u,r)←−−− r = QΛ1

(v) mod Λ2

k̂ = QΛ2
(v′ − r) mod Λ3 k = QΛ2

(v − r) mod Λ3

TABLE I
KEY GENERATION ALGORITHM

We start by considering the lattice Λ0 = σ(R∨) = 1√
N
·

Φ · ZN , a scaled rotation of ZN where N = ϕ(m) with
m a power of 2. After that, Λ3 = qΛ0 = 1√

N
· Φ · qZN ,

thence Λ0/Λ3 is identified to σ(R∨q ). Note that σ induces an
isomorphism between the additive quotient groups R∨q and
Λ0/qΛ0 = Λ0/Λ3. With slight abuse of notation, in the rest
of the paper we identify the two quotient groups. For the
remaining two lattices, we choose Λ1 (quantization lattice) and
Λ2 (coding lattice) with partitions P1,P2 into fundamental sets
such that the operation QPi(Λi) can be done in polynomial
time for i = 1, 2 and such that QΛ2

performs BDD, i.e.
given s ∈ Z2N within distance dmin(Λ2)/2 from λ ∈ Λ2,
QΛ2(s) = λ. We will use the notation QΛi when there is no
ambiguity about the chosen partition. Moreover, we impose
that Λ2 ⊆ Λ0 and Λ3 ⊆ Λ2 ⊆ Λ1.

The reconciliation rate og the protocol is RP = 1
N ·

log2

(
Vol(Λ2)
Vol(Λ1)

)
, and the key rate RK = 1

N · log2

(
Vol(Λ3)
Vol(Λ2)

)
.

We suppose that the error terms e, e′, e′′, and the secret
terms s, s′, are taken independently from the χ distribution on
R∨, which is subgaussian with parameter r (see Proposition
3). We define the modulus to noise ratio as the quotient
between the modulus q and the parameter r of the error
distribution χ. A smaller modulus to noise ratio provides
stronger concrete security against known attacks. Moreover,
since all the exchanged messages are modulo q, the size of q
affects the overhead of the protocol.



Referring to Table I, the KEM algorithm consists of the
following steps:
• Setup() : Alice chooses a random element a from Rq

and outputs pp = a.
• Gen(a) : She then chooses e, s ← χ in R∨q , computes

b = a · s + e, and outputs a public key pk = b and a
secret key sk = s.

• Encaps(pp = a, pk = b) : Bob chooses independent
e′, e′′, s′ ← χ. He then computes u = a · s′ + e′ ∈ R∨q
and v = θ−1(b) · s′+ e′′ ∈ R∨q . He outputs c = (u, r) ∈
R∨q × Λ1/Λ2 with

r := HelpRec(v) = QΛ1
(v) mod Λ2 (1)

and k in Λ2/Λ3 such that

k := Rec(v, r) = QΛ2
(v − r) mod Λ3. (2)

• Decaps(sk = s, c = (u, r)) : Alice computes v′ :=
θ−1 (u) · s and outputs k̂ = Rec(v′, r).

Remark 2. This algorithm can essentially be seen as a
generalization of the KEM in [7] and [8], where the rec-
onciliation step is also lattice-based. For instance, in [8] the
functions HelpRec and Rec can be written in the form (1)
and (2) by taking Λ0 = Z1024, and the product lattices
Λ1 = (qD̃4/2

r)256, Λ2 = (qD̃4)256. Note that unlike [7, 8],
a dither is not required in our algorithm.

a) Construction using Barnes-Wall lattices: For an ex-
plicit construction we choose Λ1 = Λ0 and Λ2 = T ·BWn−1,
where T = β · 1√

N
·Φ and β a power of 2. By this choice, all

the operations with Λ2 in Table I can be deduced from Section
III. The operation PARBWT corresponds to a quantization
operation QΛ2,P induced by a partition P of the Barnes-
Wall lattice: PARBWT = QΛ2,P (see Theorem 4). Since
βBWn−1 ⊆ BWn−1 ⊆ ZN , we obtain that Λ2 ⊆ Λ1 = Λ0.
For the inclusion Λ3 ⊆ Λ2, we must have qZN ⊆ βBWn−1,
or q

βZ
N ⊆ BWn−1. By Proposition 4, this is true when

q/β = 2k,with k ≥ bn/2c . (3)

Note that the key rate of the protocol is 1
4 logN − 1

4 ≈
Θ(logN).

V. ERROR PROBABILITY

Here we give a general estimation for the error probability
P{k 6= k̂}, and then specialize to the case when Λ2 is a
Barnes-Wall lattice. We start by observing that v = ass′ +
es′ + e′′ and v′ = ass′ + e′s, therefore v = v′ + ē
with ē = es′ + e′′ − e′s. Define the quantization error
as eQ = v − QΛ1

(v). Hence, v − r = [eQ +QΛ1
(v)] −

[QΛ1(v)−QΛ2 (QΛ1(v))] = eQ + QΛ2 (QΛ1(v)). In the
expressions of the shared keys we obtain

k− k̂ = [QΛ2(eQ)−QΛ2(eQ − ē)] mod Λ3.

Note that k = k̂ if QΛ2
(eQ) = 0 and QΛ2

(eQ − ē) = 0.
To simplify the analysis we suppose from now on that Λ0 =

Λ1 so that eQ = 0. 2 Due to the BDD assumption for QΛ2
,

we have that k = k̂ if ‖ē‖ ≤ 1
2dmin (Λ2). Now we want to

estimate

P
{
‖ē‖2 ≥ dmin(Λ2)

2

}
= P

{
‖es′ + e′′ − e′s‖2 ≥ dmin(Λ2)

2

}
.

(4)
For any constant c > 0, by the law of total probability the
term (4) can be bounded by

P {‖e‖2 > c}+P {‖s‖2 > c}+P
{
‖ē‖2 > dmin(Λ2)

2

∣∣∣ ‖e‖2≤c,‖s‖2≤c.

}
(5)

Assuming that ‖e‖2 ≤ c, and s′ is subgaussian with
parameter r, then by Proposition 2, we can say that
σ(e) � σ(s′) is subgaussian with parameter ‖σ(e)‖2 ·
r; and so es′ is subgaussian with parameter c · r. Following
the same argument, given that ‖s‖2 ≤ c we get that
e′s is subgaussian with parameter c · r. Since e′′ is subgaus-
sian with parameter r, then under the condition that ‖e‖2 ≤ c
and ‖s‖2 ≤ c we obtain using Proposition 1:

ē is subgaussian with parameter r̄ = r ·
√

2c2 + 1.

Therefore, by Theorem 1 if we set c = r√
2π

√
N · (ε+ 1), and

dmin(Λ2)
2 ≥ r̄√

2π

√
N · (ε+ 1), then

P
{
‖es′ + e′′ − e′s‖2 ≥ dmin(Λ2)

2

}
≤ 3 · e−Nε

2/2. (6)

Choose ε =
√

2π − 1. The above conditions become c =
r
√
N and

dmin(Λ2)
2 ≥ r̄

√
N = r

√
N(2r2N + 1) (7)

Using Proposition 3 with m a power of 2, one can say r2 =
r′2 + 2π · rad(m)/m = r′2 + 2π/N. So r2N = Nr′2 + 2π =
Nq2α2

√
(3N/ log(3N) + 2π. Note that in R-LWE we need

that α <
√

log(N)/N , q = poly(N) and αq ≥ ω(
√

logN)
(see Theorem 2).

When dealing with our explicit construction in paragraph
IV-a, the condition on dmin becomes for large N :

dmin(Λ2)
2 = β

2
√

2
≥
√
r2N(2r2N + 1). (8)

In order to satisfy condition (8) and to minimize the error
probability, we choose according to (3) β = q/2bn/2c which
is equal to q/

√
N if 2|n. Hence, equation (8) becomes

q√
N
≥
√

8r2N(2r2N + 1) (9)

For example, we can choose

α = O
(

1
N2(log logN)

)
; q = O

(
N2
√

logN (log logN)
2
)
.

It is not hard to see that these are the only values of α and q,
up to logarithmic factors, that satisfy the R-LWE conditions
and equation (9). With this choice, it follows from the bound
(6) that the error probability can be as small as 2−1675 for
N = 1024. Note that the modulus to noise ratio q/r of our
scheme is of order Õ

(
N7/4

)
, i.e. the same as in [7].

2More generally, to deal with the quantization error one could impose the
condition that P{‖eQ‖ < dmin(Λ2)/4} vanishes exponentially fast.



VI. SECURITY

We will prove that the algorithm is IND-CPA secure,
assuming the hardness of R-DLWEq,χ given two samples.
This proof is generic and holds in the setting of the key
generation protocol in Section IV independently of the choice
of the lattices Λ1 and Λ2 as long as QPi(Λi) can be done
efficiently. We follow the same argument as Section 4.2 in
[7]. We consider the adjacent games below:

Game 1 Game 1 ’

a
$←− Rq a

$←− Rq

(b, s)← Gen(a) (b, s)← Gen(a)
((u, r),k)← Encaps(a,b) ((u, r),k)← Encaps(a,b)

k∗
$←− Λ2/Λ3

Output (a,b, (u, r),k) Output (a,b, (u, r),k∗)

Game 2 Game 3

a
$←− Rq (a,b)

$←− Rq ×R∨q

b
$←− R∨q (u,v)

$←− R∨q ×R∨q
((u, r),k)← Encaps(a,b) r = HelpRec(v)

k∗
$←− Λ2/Λ3

Output (a,b, (u, r),k) Output (a,b, (u, r),k∗)

Notice that Game 1 is the “real” game defined in Section
II, and Game 1’ is the “ideal” one. Our aim is to prove that
Game 1 and Game 1’ are computationally indistinguishable.
We’ll do so sequentially.

Clearly Game 1 and Game 2 are computationally indistin-
guishable under the assumption of hardness of R-DLWEq,χ.

To prove that Game 2 and Game 3 are computationally
indistinguishable, we use the following Theorem which is
essentially a consequence of the Crypto Lemma [17, Lemma
4.1.1]. It guarantees uniformity of the key without a dither.

Theorem 5. If v ∈ R∨q is uniformly random, then k =
Rec(v, r) is uniformly random, given r = HelpRec(v).

Proof: For fixed k,k′ ∈ Λ2/Λ3, we define ∀v ∈ Λ0/Λ3,

πk,k′(v) = (v − k + k′) mod Λ3.

Notice that v ∈ Λ0, (−k + k′) ∈ Λ2 ⊆ Λ0; then πb(v) ∈
Λ0/Λ3. Hence, πk,k′ is a permutation of R∨q by Lemma 1.
The proof of Theorem 5 results from these lemmas:

Lemma 2. ∀ k,k′ ∈ Λ2/Λ3 and ∀ v ∈ Λ0/Λ3 we have
HelpRec(v) = HelpRec (πk,k′(v)).

Proof:

r′ = QΛ1 (πk,k′(v)) mod Λ2

= QΛ1 ((v − k + k′) mod Λ3) mod Λ2

= QΛ1 (v − k + k′ −QΛ3 (v − k + k′)) mod Λ2

= (QΛ1 (v)− k + k′ −QΛ3 (v − k + k′)) mod Λ2

= QΛ1 (v) mod Λ2 = r.

Lemma 3. Suppose that k = Rec(v, r) = QΛ2
(v − r)

mod Λ3, then ∀ k′ ∈ Λ2/Λ3 we have k′ = Rec(πk,k′(v), r).

Proof:

Rec(πk,k′(v), r) = [QΛ2
(v − r)− k + k′] mod Λ3

= [QΛ2
(v − r) mod Λ3 − k + k′] mod Λ3

= [k− k + k′] mod Λ3 = k′.

Corollary 1. ∀ k,k′ ∈ Λ2/Λ3 and ∀ v ∈ Λ0/Λ3, there exist
v′ = πk,k′(v) such that HelpRec(v) = HelpRec (πk,k′(v)) ,
and k = Rec(v, r)⇐⇒ k′ = Rec(πk,k′(v), r).

We conclude the proof of Theorem 5 by showing that k is
uniform and independent of r when v is uniform:

P{k | r} =
∑

v∈Λ0/Λ3

P{v} · P{k | r,v}

=
∑

v∈Λ0/Λ3

1{
r=HelpRec(v)
k=Rec(v,r)

} · P{v}
=

∑
v∈Λ0/Λ3

1{
r=HelpRec(πk,k′ (v))

k′=Rec(πk,k′ (v),r)

} · P{v}
=

∑
v′∈Λ0/Λ3

1{
r=HelpRec(v′)
k′=Rec(v′,r)

} · P{v′}
=

∑
v′∈Λ0/Λ3

P{v′} · P{k′ | r,v′} = P{k′ | r}.

Returning to Game 2 and Game 3, we construct an ef-
ficient reduction S as follows: it takes as input two pairs
(a,u), (b′,v) ∈ Rq ×R∨q , and outputs

(a,b = θ(b′) , (u, r = HelpRec(v)),k = Rec(v, r)) .

After that, we will take two indistinguishable inputs, and
hence, by efficiency of S, get two indistinguishable outputs.
First suppose that the inputs are drawn from As′,χ; i.e.
u = as′ + e′ and v = b′s′ + e′′ = θ−1(b)s′ + e′′ for
independent e′, e′′ ←− χ; and then a,b are uniformly random
and independent from Rq and R∨q respectively (because θ is
an isomorphism). Hence, the output of S will be exactly as in
Game 2. Now suppose that the inputs given to S are uniformly
random in Rq × R∨q and independent, then the outputs of S
are exactly as in Game 3. In fact, a,b,u,v are uniform, and
hence by Theorem 5, k is uniformly random conditioned on
r = HelpRec(v).

To show that Game 3 and Game 1’ are indistinguishable, we
modify Game 1 and Game 2 by choosing k∗

$←− Λ2/Λ3 and
output it instead of k. In this case Game 1 becomes Game
1’. Let Game 2’ be the modified version of Game 2. By
the same reasoning as above, we can prove that Game 1’ is
computationally indistinguishable from Game 2’ and Game 3.

Remark 3. Following the steps in [7, Section 5], we can
construct a passively secure encryption scheme based on our
passively secure KEM, which yields an actively secure encryp-
tion scheme and an actively secure key transport protocol.
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APPENDIX
PROOF OF THEOREM 4

In the following we refer to the functions PARBW, SEQBW,
RMDEC in Algorithms 1,2 and 3 of Micciancio and Nicolosi’s
paper [11].

A. Modification
We modify Algorithm 3 in [11] in the case r = 0 as follows:

if
∑
bj=0 ρj =

∑
bj=1 ρj , then return b1 · [1, 1, . . . , 1].

It means that we choose the output vector based on the first bit
of b. Note that the decoder is still BDD with this modification.

B. Linearity of PARBW
In this subsection we will prove the following proposition:

Proposition 5. Let λ ∈ BWn and w ∈ CN a target, where
N = 2n, then

PARBW(p,λ + w︸ ︷︷ ︸
s

) = λ + PARBW(p,w), ∀ p = 4k.

We will prove this by induction on p and N . The cases
p = 1 or N = 1 will be proven in the next subsection.
Now consider the case where p ≥ 4 and s /∈ C1. Suppose
that Proposition 5 holds for N/2-dimensional vectors and p/4
processors; we will show that it also holds for N -dimensional
vectors and p processors.
Let λ = [λ0,λ1] and w = [w0,w1]. As defined in Algorithm
1, we have:

s : = [s0, s1]

= [λ0 + w0,λ1 + w1]

= [λ0,λ1] + [w0,w1],

and the candidate vectors are
z0(s)
z1(s)
z−(s)
z+(s)

 :=


PARBW(p/4,λ0 + w0)
PARBW(p/4,λ1 + w1)

PARBW
(
p/4, φ2 [λ0 − λ1] + φ

2 [w0 −w1]
)

PARBW
(
p/4, φ2 [λ0 + λ1] + φ

2 [w0 + w1]
)
 .

Here we use implicitly the fact that [λ0,λ1] ∈ BWn =⇒
λ0,λ1 ∈ BWn−1. Note that

z−0 (s) := [z0(s), z0(s)− 2φ−1z−(s)]

=
[
λ0 + PARBW(p/4,w0),λ0 + PARBW(p/4,w0)

......− (λ0 − λ1)− 2φ−1PARBW
(
p/4, φ2 (w0 −w1)

) ]
= [λ0,λ1] +

[
PARBW(p/4,w0), PARBW(p/4,w0)

......− 2φ−1PARBW
(
p/4, φ2 (w0 −w1)

) ]
= λ + [z0(w), z0(w)− 2φ−1z−(w)]

= λ + z−0 (w).

Following the same steps, we can prove that

z+
0 (s) = λ + z+

0 (w),

z−1 (s) = λ + z−1 (w),

z+
1 (s) = λ + z+

1 (w).

The algorithm will return the value z′(s) in
{z+

0 (s), z−0 (s), z+
1 (s), z−1 (s)} such that ‖s − z′(s)‖

is minimal. This is equivalent to saying that
z′(s) ∈ {λ + z+

0 (w),λ + z−0 (s),λ + z+
1 (s),λ + z−1 (s)} such

that ‖(λ + w) − (λ + z∗∗(w))‖ = ‖w − z∗∗(w)‖ is minimal.
In any case, the output is of the form λ + PARBW(p,w).

Our next step now is to prove that Proposition 5 holds
for p = 1 or s ∈ C1. In this case Algorithm 1 returns
SEQBW(0,λ + w). This function is presented in Algorithm
2.

C. Linearity of SEQBW(r, ∗)
In this subsection we refer to the functions t(s) =

(b(s), ρ(s)) and RMDEC(r, t) = RMDEC(r,b, ρ) in Algo-
rithms 2 and 3 and to the function ψ : FN2 7→ Z[i]N defined
in [11].
Recall that each vector λ in BWn can be written as

λ =

n−1∑
r=0

φrψ(cr) + φncn,

where cn ∈ GN and cr ∈ RMn
r for r = 0, . . . , n− 1.

For any 0 ≤ r ≤ n, let

BWn
r =

{
n−1∑
k=r

φk−rψ(ck) + φn−rcn : ck ∈ RMn
k , cn ∈ GN

}
Proposition 6. Let w ∈ CN and cr ∈ RMn

r . Then
˜RMDEC(r, cr ⊕ b(w), ρ) = cr ⊕ ˜RMDEC(r,b(w), ρ),

where ˜RMDEC = RMDEC mod 2.

Proof: Before we start the proof, observe that for cr ∈
RMn

r , ψ(cr) mod 2 = cr.
Let’s start with n = 1, r = 0. In this case it is easy to see
from Algorithm 3 that ψ is the identity function and

RMDEC(0, c0 ⊕ b(w), ρ) = ψ(c0)⊕ RMDEC(0,b(w), ρ).

So this remains true for ˜RMDEC.
For n = 1 and r = 1 we have 2r = N . Thus

RMDEC(1, c1 ⊕ b(w), ρ) = c1 ⊕ b(w)

= c1 ⊕ RMDEC(1,b(w), ρ)

This remains also true for ˜RMDEC. Now we continue by
induction: suppose Proposition 6 holds for (r− 1, n− 1) and
(r, n−1). We want to show that it holds for (r, n). Following
the notation in Algorithm 3, we find:

[t0, t1]←− t = (cr ⊕ b(w), ρ),

cr ∈ RMn
r ⇒ cr = [u′, u′ ⊕ v′], u′ ∈ RMn−1

r , v′ ∈ RMn−1
r−1 ,

t+j =
(
v′j ⊕ b(w)+

j ,min(ρ0
j , ρ

1
j )
)
.

Note that

v mod 2 = ˜RMDEC(r − 1, t+)

= ˜RMDEC(r − 1, v′ ⊕ b+(w), ρ+)

= v′ ⊕ ˜RMDEC(r − 1,b+(w), ρ+)

= v′ ⊕ ˜RMDEC(r − 1, t(w)+).



Now we compute the vector u. If vj = v′j ⊕ b
+
j (w) mod 2,

then
t−j =

(
u′j ⊕ b0j (w), (ρ0

j + ρ1
j )/2

)
.

Otherwise,

t−j =
(
u′j ⊕ b0j (w)⊕ EVAL(ρ0

j < ρ1
j ), |ρ0

j − ρ1
j |/2

)
.

Then we have

u mod 2 = ˜RMDEC(r, t−)

= ˜RMDEC(r, u′ ⊕ b−(w), ρ−)

= u′ ⊕ ˜RMDEC(r,b−(w), ρ−)

= u′ ⊕ ˜RMDEC(r, t(w)−).

Hence we obtain:

˜RMDEC(r, cr ⊕ b(w), ρ)

= [u mod 2, (u+ v) mod 2]

= [u′ ⊕ ˜RMDEC(r, t(w)−), u′⊕
..... ˜RMDEC(r, t(w)−)⊕ v′ ⊕ ˜RMDEC(r − 1, t(w)+)]

= [u′, u′ ⊕ v′]⊕ [ ˜RMDEC(r, t(w)−),

..... ˜RMDEC(r, t(w)−)⊕ ˜RMDEC(r − 1, t(w)+)]

= cr ⊕ ˜RMDEC(r,b(w), ρ).

Lemma 4. If d ∈ BWn
r , then (d,d) ∈ BWn+1

r .

Proof: Suppose d = ψ(cr)+φ ·ψ(cr+1)+ · · ·+φn−1−r ·
ψ(cn−1) + φn−r · cn, where ci ∈ RMn

i .
Hence,

(d,d) =
(
ψ(cr) + · · ·+ φn−r · cn, ψ(cr) + · · ·+ φn−r · cn

)
= (ψ(cr), ψ(cr)) + · · ·+ φn−r · (cn, cn)

= ψ(cr, cr) + · · ·+ φn−r · (cn, cn),

noting that (ψ(ci), ψ(ci)) = ψ(ci, ci). Also note that if
ci ∈ RMn

i , then (ci, ci) ∈ RMn+1
i . This proves that

(d,d) ∈ BWn+1
r .

Lemma 5. If d′ ∈ BWn
r−1, then (0,d′) ∈ BWn+1

r .

Proof: Let d′ = ψ(c′r−1) + φ · ψ(c′r) + · · · + φn−r ·
ψ(c′n−1) + φn−r+1 · c′n, where c′i ∈ RMn

i .

(0,d′) = (ψ(0), ψ(0) + d′)

= (ψ(0), ψ(0) + ψ(c′r−1)) + · · ·+ φn−r+1 · (0, c′n)

= ψ(0, 0⊕ c′r−1︸ ︷︷ ︸
∈RMn+1

r

) + · · ·+ φn−r+1 · (0, 0 + c′n︸ ︷︷ ︸
∈Z[i]2n+1

)

This shows that (0,d′) ∈ BWn+1
r .

Lemma 6. For any a, b ∈ RMn
r and r < n we have ψ(a⊕ b)

= ψ(a) + ψ(b) + 2d for some d ∈ BWn
r+1.

Proof: Let’s first define the Schur product: for binary
vectors x,y ∈ FN2 , we set

x ∗ y = (x1y1, . . . , xNyN ).

For n = 1, and r = 0, we have for a, b ∈ RM1
0 =

{(0, 0), (1, 1)}:

ψ(a⊕ b) = a⊕ b = a+ b− 2(a ∗ b).

So here d = −(a ∗ b) ∈ Z[i]2 = BW 1
1 .

Suppose that the hypothesis holds for n, for all r < n. Let
(a, b) ∈ RMn+1

r .
- If r < n, then write a = (u, u ⊕ v) and b = (u′, u′ ⊕ v′),
where u, u′ ∈ RMn

r and v, v′ ∈ RMn
r−1. Then

ψ(a⊕ b) = ψ(u⊕ u′, u⊕ u′ ⊕ v ⊕ v′)
= (ψ(u⊕ u′), ψ(u⊕ u′) + ψ(v ⊕ v′))

By inductive hypothesis{
ψ(u⊕ u′) = ψ(u) + ψ(u′) + 2d; d ∈ BWn

r+1

ψ(v ⊕ v′) = ψ(v) + ψ(v′) + 2d′; d′ ∈ BWn
r

So we can write

ψ(a⊕ b) = (ψ(u) + ψ(u′) + 2d,

......ψ(u) + ψ(u′) + 2d + ψ(v) + ψ(v′) + 2d′)

= (ψ(u), ψ(u) + ψ(v))

...... + (ψ(u′), ψ(u′) + ψ(v′)) + 2(d,d + d′)

= ψ(a) + ψ(b) + 2(d,d + d′)

But (d,d) ∈ BWn+1
r+1 and (0,d′) ∈ BWn+1

r+1 , so (d,d+d′) ∈
BWn+1

r+1 .
- If r = n, BWn+1

n+1 = Z[i]2N , so the statement is trivially
true.

Proposition 7. For λr ∈ BWn
r and w ∈ CN , we have

SEQBW(r,λr + w) = λr + SEQBW(r,w).

Proof: We will proceed by decreasing induction on r.
If r ≥ n, then SEQBW is nothing more than the rounding
function, and the property holds.
Now suppose that the hypothesis remains true for r + 1; let’s
prove it for r:

SEQBW(r,λr + w)

= RMDEC(r, t(λr + w)))

+ φ SEQBW
(
r + 1,

λr + w − RMDEC(r, t(λr + w))

φ

)
= ψ

(
˜RMDEC(r, t(λr + w))

)
+ φ SEQBW

(
r + 1,

λr + w − ψ
(

˜RMDEC(r, t(λr + w))
)

φ

)
(a)
=ψ

(
˜RMDEC(r, cr ⊕ b(w), ρ)

)
+φ SEQBW

(
r + 1,λr+1+

ψ(cr)+w−ψ
(

˜RMDEC(r, cr ⊕ b(w), ρ)
)

φ

)
= ψ

(
cr ⊕ ˜RMDEC(r,b(w), ρ)

)
+ φ · λr+1

+ φ SEQBW

(
r + 1,

ψ(cr) + w − ψ
(
cr ⊕ ˜RMDEC(r,b(w), ρ)

)
φ

)
(b)
=ψ (cr) + ψ

(
˜RMDEC(r,b(w), ρ)

)
+ 2d + φ · λr+1

+ φ SEQBW

(
r + 1,

w − ψ
(

˜RMDEC(r,b(w), ρ)
)
− 2d

φ

)
,



where (a) follows from the fact that λr = ψ(cr) + φ ·
λr+1 for cr ∈ RMn

r and λr+1 ∈ BWn
r+1, and (b) follows

from Lemma 6. Observe that 2d
φ = (1 − i)d ∈ BWn

r+1. By
inductive hypothesis for SEQBW(r + 1, ∗):

SEQBW(r,λr + w)

= λr + ψ
(

˜RMDEC(r,b(w), ρ)
)

+ 2d− 2d+

......φ · SEQBW

(
r + 1,

w − ψ
(

˜RMDEC(r,b(w), ρ)
)

φ

)
= λr + RMDEC(r,b(w), ρ)+

......φ · SEQBW
(
r + 1,

w − RMDEC(r,b(w), ρ)

φ

)
= λr + SEQBW(r,w).
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