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Abstract—If two or more identical HTTPS clients, located at
different geographic locations (regions), make an HTTPS request
to the same domain (e.g. example.com), on the same day, will they
receive the same HTTPS security guarantees in response? Our
results give evidence that this is not always the case. We conduct
scans for the top 250,000 most visited domains on the Internet,
from clients located at five different regions: Australia, Brazil,
India, the UK, and the US. Our scans gather data from both
application (URLs and HTTP headers) and transport (servers’
selected TLS version, ciphersuite, and certificate) layers. Overall,
we find that HTTPS inconsistencies at the application layer are
higher than those at the transport layer. We also find that
HTTPS security inconsistencies are strongly related to URLs
and IPs diversity among regions, and to a lesser extent to the
presence of redirections. Further manual inspection shows that
there are several reasons behind URLs diversity among regions
such as downgrading to the plain-HTTP protocol, using different
subdomains, different TLDs, or different home page documents.
Furthermore, we find that downgrading to plain-HTTP is related
to websites’ regional blocking. We also provide attack scenarios
that show how an attacker can benefit from HTTPS security
inconsistencies, and introduce a new attack scenario which
we call the “region confusion” attack. Finally, based on our
analysis and observations, we provide discussion, which include
some recommendations such as the need for testing tools for
domain administrators and users that help to mitigate and
detect regional domains’ inconsistencies, standardising regional
domains format with the same-origin policy (of domains) in mind,
standardising secure URL redirections, and avoid redirections
whenever possible.

Index Terms—Internet, security, TLS, SSL, protocol, mea-
surement, https, configuration, consistency, attack, application,
transport.

I. INTRODUCTION

A. Motivation

The Transport Layer Security (TLS) protocol is one of the

most important and widely used protocols to date. It provides

integrity, secrecy, and authentication for application layer pro-

tocols such as the HyperText Transfer Protocol (HTTP), which

carries sensitive data such as those transferred in e-banking,

e-government, and e-commerce applications. Since its early

versions, TLS, especially in the context of HTTPS, has been

receiving scrutiny from the security research community. This,

in turn, revealed a large number of vulnerabilities. As a

result, new TLS versions, ciphersuites, HTTP security headers,

and guidelines, have been introduced to achieve the desired

security of HTTPS.

With the existence of multiple TLS versions, ciphersuites,

and HTTP security headers, it is important to continuously

assess the real world deployment of HTTPS security configu-

rations. Several studies have assessed some aspects of HTTPS

deployment in the real world, such as [1][2][3]. However, the

quest for assessing the consistency of servers’ HTTPS security

guarantees in response to requests from different geographic

regions for the same domain remains largely overlooked.

B. Research Question

In this paper, we aim to answer the following question:

If two or more identical HTTPS clients, located at different

regions, make an HTTPS request to the same domain, on

the same day, will they receive the same HTTPS security

guarantees in response?

In particular, we investigate the security guarantees from

three vectors: 1) URLs security, 2) Security headers, and

3) TLS security, with respect to certain security properties,

chosen due to their perceived importance. Table I list the

vectors and properties we examine.

C. Contributions

The contributions of this paper are as follows: first, we

provide the first assessment for the inconsistencies of servers’

HTTPS security guarantees in response to requests for the

same domain from different regions. That is, we quantify

servers that exhibit weakness indicators in their responses to

some but not all regions. Second, we study the relationship

between HTTPS security inconsistencies and URLs diversity,

IPs diversity, and the presence of redirections. Third, we

introduce a novel attack scenario that we call the “region

confusion” attack. In this attack, the attacker exploits HTTPS

security inconsistencies in servers’ responses, and redirects a

client’s request, e.g. via DNS spoofing, from a region with

strong HTTPS security, to another region with weak HTTPS

security, to exploit the weaker region’s weaknesses.

http://arxiv.org/abs/2010.10170v1


TABLE I: The three vectors along with the security properties

that we examine in our research question.

Vector Property

URL Security

HTTPS in final URLs
HTTPS in intermediate URLs
Compatible domains in final URLs
Compatible domains in intermediate URLs

Security Headers
HSTS headers
CSP headers
The Secure attribute in Set-Cookie headers

TLS Security

Protocol version TLS 1.3
Protocol version TLS 1.2 or higher
The Forward Secrecy (FS) property
The FS and Authenticated Encryption (AE) properties
Non-expired certificates
Valid hostnames in certificates

D. Organisation

The rest of the paper is organised as follows: In section II,

we provide a brief background and the threat model. In

section III, we describe our experiment. In section IV, we

summarise our results. In section V, we provide two attack

scenarios. In section VI, we provide recommendations. In

section VII, we summarise related work. We list some lim-

itations in section VIII. Finally, in section IX, we conclude

our research.

II. BACKGROUND AND PRELIMINARY

A. TLS, HTTP, and HTTPS

The TLS protocol [4][5], formerly known as SSL, is one of

the most widely used protocols to date. It has been in use since

1996. The latest and sixth version of TLS is known as TLS 1.3

[5], which was standardised in August 2018. TLS operates

below application layer protocols such as the HTTP protocol,

to provide them with a secure channel. HTTP on its own is

insecure. Indeed, websites running plain-HTTP are prone to

eavesdropping, manipulation, and impersonation attacks. TLS

consists of multiple sub-protocols including the handshake

protocol, which is the most security-critical part of the TLS

protocol. In the handshake protocol, both communicating par-

ties negotiate the protocol version and the ciphersuite that will

be used in subsequent messages of the protocol, authenticate

each other1, and exchange the session keys. The ciphersuite is

an identifier, represented by a string or a hexadecimal value,

which defines the cryptographic algorithms (e.g. symmetric

encryption) and their parameters (e.g. key length) that will be

used in subsequent messages of the protocol. The negotiation

of the protocol version and ciphersuite is intrinsic. It defines

the security guarantees that the protocol can provide in a

particular session. Some ciphersuites provide stronger secu-

rity guarantees than others. For example, some ciphersuites

provide the Forward Secrecy (FS) property (FS-ciphersuites)

which provides resilience against mass surveillance, or the Au-

thenticated Encryption (AE) property (AE-ciphersuites) which

protects against attacks over the MAC-then-encrypt schemes,

or both FS and AE (FS+AE-ciphersuites), while some other

1In our paper, we only consider unilateral server authentication, where only
the client authenticates the server.

ciphersuites neither provide FS nor AE (non-FS+non-AE-

ciphersuites). The same applies to TLS versions, where version

TLS 1.3 provides stronger guarantees than older versions,

which have known design weaknesses.

B. HTTP Redirection

HTTP redirection, also known as URL redirection [6],

is a technique that allows a resource (e.g. a website) to

be reachable from multiple URL addresses. URL redirec-

tion also includes domain redirection, where a website is

reachable from one or more domain names. For example,

when a website can be reached through either its plain-

domain (e.g. example.com) or its equivalent www-domain

(e.g. www.example.com), it is because requests to the plain-

domain are redirected to its equivalent www-domain, or vice

versa. Similarly, domain redirection is used when requests

to a domain with a generic Top Level Domain (gTLD)

(example.com) are redirected to a regional domain with a

country code TLD (ccTLD) (e.g. example.co.uk), or to a

regional subdomain (e.g. uk.example.com). HTTP redirec-

tion can be achieved through various methods. However, one

of the most widely used methods is redirection through the

server redirection response, which is the method we consider

in our work. The redirection response is identified by the

response status code (300-308). In this method, upon receiving

the server’s redirection response, the client uses the new URL

provided in the Location header, and sends a new request to

the new URL. The new URL that resulted from the redirection

response can also perform a redirection, forming what we call

a “redirection chain”. The recommended maximum number

of redirections that a client can accept is five redirections [6].

However, enforcing it may vary between client vendors.

C. HTTP Headers

HTTP headers allow clients and servers to exchange addi-

tional information in the HTTP requests and responses. HTTP

headers are sent as a key/value pairs, with the header name

as the key. There are many types of HTTP headers, including

those for signaling and specifying security policies, which we

refer to as “security headers”. In servers’ security headers,

the server sends one or more security headers to instruct the

client to enforce a security policy. Some of the most important

security headers are:

1) Content-Security-Policy (CSP) [7], to restrict the sources

a client can load content from, to protect against code

injection attacks such as Cross-Site Scripting (XSS) at-

tacks.

2) Strict-Transport-Security (HSTS) [8], to inform the client

to always enforce HTTPS, to provide protection against

TLS layer downgrade attacks (see [9] for a taxonomy and

a survey of TLS downgrade attacks).

3) The Secure attribute in the Set-Cookie header [10], to

restrict sending the cookies over a secure HTTPS channel,

to protect against leaking users’ private data, and identity

theft attacks.
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D. Threat Model

We assume an attacker aiming to cause an HTTPS client

to connect to the requested domain in a region that provides

weaker HTTPS security guarantees than those in the client’s

native region. The attacker’s goal is to either exploit or enable

a third party to exploit the “weaker” region’s flaws that

do not exist in the client’s native region. The attacker can

be represented by a man-in-the-middle, or a discriminatory

server. The latter can be due to a dishonest service provider,

dishonest server administrator, or a malware. More concrete

attack scenarios are provided in section V.

III. EMPIRICAL STUDY

A. Dataset

Our dataset consists of the top 250,000 most visited do-

mains on the Internet, obtained from the Tranco list [11]2,

a configurable research oriented top domains list, hardened

against manipulation attacks. We first extract the top 1 million

list, then we extract the top 250,000 from it. We choose

to use the “standard” configurations of the list, which ag-

gregates the ranks of “pay-level”3 domains, which do not

contain subdomains, from four widely used top domains lists:

Alexa [12], Umbrella [13], Majestic [14], and Quantcast [15],

over the past 30 days. We retrieved the list on the 10th of

April, 2019. In our top 250,000 domains list, the majority of

domains have generic TLDs in the form of “domain.TLD”.

However, our dataset contains 9.19% domains with “multi-

level” TLDs, e.g. ccTLDs, which we identify by searching

for domains that have more than one dot “.”. We also check

our list against Google’s Safe Browsing database by setting

up a local server using Google’s open source Safe Browsing

Go implementation [16], which receives updates frequently.

We query Google’s Safe Browsing database using the API

v4 threatMatches using an HTTP POST request to the local

server. We made the query on the 27th of June, 2019. We

found a total of 250 malicious distinct domains in our dataset.

The threat types, based on Google classifier, are: Malware

(25 domains), unwanted software (29), and social engineering

(197) (note: there is one domain that appeared in two threat

types). In our results in the coming sections, we exclude

known malicious domains.

B. Setup

To conduct our experiment, we create five machines

(clients), configured to be identical from all aspects (hard-

ware, software, and configurations), physically located at five

different geographic locations, rented from a cloud provider

(Amazon Elastic Compute Cloud (EC2) [17]). We considered

choosing locations that are geographically, economically, and

politically distant. Therefore, we select a country from 5

different continents. The locations we choose are (continent,

country): Australia, Australia (AU); South America, Brazil

(BR); Asia, India (IN); Europe, United Kingdom (UK); North

2https://tranco-list.eu/
3According to the list’s authors, “Pay-level” domain refer to “a domain

name that a consumer or business can directly register.” [11]

America, United States (US). Note that our choices are bound

by the region’s availability and requirements at Amazon EC2.

For example, China would be an interesting region to have,

however, it has different requirements such as a valid business

license from the Chinese government, which we do not have.

We first launch the first client in the first region using Ubuntu

18.04 Operating System (OS) and OpenSSL 1.1.0g and an

updated Certificate Authority (CA) store, and we install and

configure the software we need in our experiment including

the scanners and their libraries. We then create an image of

the first client’s disk. After that, we create the remaining four

clients with the same hardware specifications, running a copy

of the first client’s image.

C. Data Collection

To collect data, we run two scans: a redirection scan

followed by a TLS scan. The redirection scan collects data

at the application layer such as the servers’ response headers

and the URL redirection chains. The TLS scan collects data

at the transport layer such as the servers’ selected protocol

versions, ciphersuites, and TLS certificates. To run the scans,

we use a mixture of existing open source and those developed

in-house tools.

First, for the redirection scan, we develop our own redirec-

tion scanner using the Python’s Requests 2.21.0 library [18],

which allows us to automate sending HTTPS requests, collect

response URLs, redirection chains (if exist), and the full

content of response headers. Our scanner utilises a Transport

Adapter that is configured with Chrome’s latest version pre-

TLS 1.3 ciphersuites. The ciphersuites list at this stage is

not sensitive as we do not collect transport layer data at the

redirection scan. However, the default ciphersuites list that

is shipped with the Requests library is much longer than

Chrome’s list. Therefore, using Chrome’s ciphersuites list has

a performance advantage and can maximise the response rate

as it contains the most widely supported ciphersuites. We

disable the certificate validation as we use the redirection

scanner to collect application layer data regardless of the

certificate status.

For the TLS scan, we use the tls-scan tool, an open source

fast TLS scanner [19]. We customise the tls-scan client to

utilise the OpenSSL 1.1.1g which supports versions from

TLS 1.0 to TLS 1.3, and to offer Google Chrome’s latest ver-

sion4 ciphersuites, which adds support for three new TLS 1.3

ciphersuites besides Chrome’s pre-TLS 1.3 ciphersuites.

After setting up the experiment clients, from each region,

on the same day, we first run the redirection scan which

gathers application layer data. The redirection scanner takes

the domain names from our dataset as input. After that, for

each domain, the scanner conducts an HTTPS GET request,

collects the final response URL, and the URL redirection

chain (if exists) starting from the requested URL until the

one before the final response URL. In addition, we collect

the response status codes and the full content of the response

headers. After finishing the redirection scan, in each region,

for each request made, we extract the domain (including the

4As of April 2019, version 74.0.3729.108.
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TLD and subdomains if exist) of the HTTPS final response, to

use it as an input for the TLS scan phase. Note the difference

in the input domains between the redirection scan and the

TLS scan. The redirection scanner makes requests for the

same domains in all regions. For example, if the dataset

contains example.com, clients in all regions make requests

to example.com. However, since our redirection scanner

follows redirections, the response domain in the redirection

scan may differ based on the region, e.g. the US-based client

receives us.example.comwhile the UK-based client receives

uk.example.com. The TLS scanner takes the final response

distinct domains as input, and does not perform redirection as

these are the final response domains based on the redirection

scan results. The TLS scan results reflect the state of the final

domain. We conduct both scans between the 11th and 20th

April, 2019. However, requests for any set of domains from

the five regions are sent on the same day. Finally, after the data

is collected, we load and analyse them using MySQL database

and queries. We describe the data analysis methodology in

more detail next.

D. Ethical Considerations

Our experiment is in compliance with the ethical consider-

ations in carrying out measurement studies. First, we do not

collect any private data. The data we collect are public meta

data that are provided by websites to any client such as web

browsers. Second, we do not perform so many handshakes as

to exhaust any single server. Our clients’ handshakes can by

no means be classified as a Denial of Service (DoS) attack.

E. Data Analysis

To analyse data, we define HTTPS weakness indicators

based on well-known security guidelines and recommenda-

tions that are adopted by secure HTTPS clients and servers.

For example, using HTTPS not HTTP, using security head-

ers such as HSTS and CSP. In addition, we define some

TLS weakness indicators based on recommendations such as

NIST’s recommendations on using the latest TLS version and

the secure ciphersuites that provide strong guarantees such as

FS and AE [20]. We consider the security of servers’ response

from three vectors:

1) URLs security.

2) Security headers.

3) TLS security.

Then, to find inconsistent HTTPS cases, we count domains

that satisfy a weakness indicator in some but not all of their

responses to our clients in the five regions. In what follows,

we define the weakness indicators in each vector.

1) URLs Security Weakness Indicators:

• plain-HTTP (final/intermediate) URL: This weakness

indicator is satisfied if the server’s response URL is using

the plain-HTTP protocol. Needless to say, plain-HTTP

does not give the security guarantees of HTTPS. We

analyse the server’s response URL from two perspectives:

the response’s final (landing) URL, and the response’s

intermediate URL(s) that appear in the redirection chain,

if any. Our clients’ requests are initiated using the HTTPS

protocol, but may receive plain-HTTP in intermediate or

final responses, depending on the server’s response.

• Incompatible (final/intermediate) domain: This weak-

ness indicator is satisfied if the server’s response URL

contains a domain that is different from the requested

domain. By “incompatible” we mean unequal, different,

or inconsistent. However, we avoid reusing the term

“inconsistent” to avoid ambiguity as we already use

the term “inconsistent” to describe unequal response

for requests from the five regions with respect to the

defined weakness indicators including the “incompatible

(final/intermediate) domain” indicator. Similar to the pre-

vious indicator, we analyse the server’s response domain

from two perspectives: the response’s final (landing)

URL, and the response’s intermediate URL(s) that appear

in the redirection chain, if any. To examine the requested

domains against the final/intermediate response’s domain,

we extract the “pay-level” domain (a.k.a. main-domain

or base-domain) of the request and response domains

using the tldextract Python library [21], which identify

the pay-level domain by maintaining an updated list of

all known public TLDs obtained from Mozilla’s public

suffix list [22]. Then, we compare them using a case-

insensitive equality check. If they are not equal, they are

classified as incompatible. For the intermediate domains

check, since a response may contain multiple intermediate

URLs, this weakness indicator is satisfied if one or more

intermediate domains are incompatible with the requested

domain.

The compatibility check is implemented in Python. The

results are then stored and queried using MySQL.

2) Security Headers Weakness Indicators:

• No-HSTS: This weakness indicator is satisfied if the

Strict-Transport-Security header is absent from the

server’s response.

• No-CSP: Similar to the previous indicator but for the

Content-Security-Policy header.

• No-“Secure”-Set-Cookie: This indicator is satisfied if

the Set-Cookie header is sent in the servers’ responses

to the five regions’ client requests to a particular domain,

and one or more cookie values in the Set-Cookie header

do not contain the Secure attribute value.

The headers’ presence check is implemented in Python

by parsing the headers which are loaded as a dictionary of

key/value objects, where the header name is the key. The

results are then stored and queried in MySQL.

3) TLS Weakness Indicators:

• Version <TLS 1.3: This indicator is satisfied if the

server selects a TLS version less than TLS 1.3. TLS 1.3

is the latest version of the TLS protocol. Since it was

standardised in August 2018 and our scan is in April

2019, the resulting inconsistencies against TLS 1.3 can

be influenced by its recency. For this reason, we also

examine “Version <TLS 1.2” weakness indicator, to have

a balanced perspective.
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• Version <TLS 1.2: This indicator is satisfied if the

server selects a TLS version less than TLS 1.2. Versions

less than TLS 1.2 are officially weak and should not be

used today. This indicator is negated if the server selects

version TLS 1.2 or TLS 1.3.

• Non-FS: This indicator is satisfied if the server selects

a non-FS-ciphersuite. We define5 non-FS-ciphersuites

as those that do not support the Elliptic-Curve Diffie-

Hellman (ECDHE) key-exchange, and also are not nego-

tiated with version TLS 1.3 since TLS 1.3 enforces FS

by design in separate extensions.

• Non-FS+Non-AE: This indicator is satisfied if the server

selects a non-FS and a non-AE ciphersuite (non-FS+non-

AE-ciphersuite), i.e. neither provide FS nor AE. We

define non-FS+non-AE ciphersuites as those that do not

support ECDHE, are not negotiated with version TLS 1.3,

do not support the ChaCha20 symmetric encryption, and

do not support the GCM symmetric encryption mode.

This indicator is negated if the server selects either a FS-

ciphersuite, or AE-ciphersuite, or FS+AE-ciphersuite.

• Expired Certificate: This indicator is satisfied if the

server provides an expired certificate. The certificate

expiration date is checked against the scan date using

the tls-scan client [19].

• Invalid Host Name: This indicator is satisfied if the

server provides an invalid host name in the certificate.

The validation is based on the tls-scan client using the

X509 check host function in the OpenSSL library [23].

It checks if the certificate’s Subject Common Name (CN)

or Subject Alternative Name (SAN) matches the specified

host name.

IV. RESULTS

In this section, we first provide a general overview of the

response data. Then, we provide the results of our incon-

sistency analysis against each weakness indicator, which we

defined in section III-E. In this section, we are concerned about

inconsistencies. That is, we quantify domains that satisfy a

weakness indicator in some but not all of their responses to

our clients’ requests from the five regions. We do not report

domains that consistently satisfy a weakness indicator in their

responses to the clients in the five regions.

A. Responses

Table II provides a summary of the “joint” response data.

That is, a joint response is counted if we receive responses for

requests from the 5 regions. We follow a best effort approach

in data collections. That is, we do not investigate the reasons

of failed responses in one or more regions, which can be

for various reasons, and we count as a joint fail. However,

the failure rate affects the collected data size, but not the

validity of the collected data. We compile the data twice:

first, without considering the response status code, i.e. any

code (see the first half of Table II), which we prefix them by

“Any”. Second, when considering only those responses that

5Our ciphersuites’ definitions are based on Chrome’s TLS configurations.

provide the “200 OK” status code, which indicates that the

HTTP request has succeeded (see the second half of Table II),

which we prefix them by “Valid”. We then dissect the overall

HTTP(S) responses in both categories, i.e. the (Any/Valid)

categories, into two sub-categories: “(Any/Valid) plain-HTTP

Final response”, which denotes responses with the insecure

plain-text HTTP protocol (without TLS), and “(Any/Valid)

HTTPS Final Response”, which denotes responses with the

secure HTTPS protocol. From the “(Any/Valid) HTTPS Final

Responses”, we count those with “(Any/Valid) Redirections

>0”. From those, we count the redirections that contain one

or more “(Any/Valid) plain-HTTP Intermediate Response”. As

depicted in Table II, the “Joint Response” column shows the

number of cases that received responses from the five regions.

Finally, the percentages of the overall responses “(Any/Valid)

HTTP(S) Final Responses” are computed over the dataset size

(250,000). However, each indented row in Table II means that

the percentages of that row are computed over the previous

indentation level.

In the remaining sections, we base our analysis on the

valid HTTP(S) and the valid HTTPS final responses (see the

highlighted rows in the second half of Table II).

B. HTTPS Security Inconsistencies

We now summarise the HTTPS security inconsistent cases

that we find from three vectors:

1) URLs security.

2) Security headers.

3) TLS security.

We now divide this section into three subsections according

to the three vectors listed above as follows:

1) URLs Security: In this section, we consider the valid

HTTP(S) final responses (the highlighted row labeled “Valid

HTTP(S) Final Response” in Table II) as we require both

plain-HTTP as well as HTTPS responses to be analysed. The

results of our inconsistency analysis of URLs security are

summarised in Table III. The following subsections are divided

according to the security properties related to the “URLs

security” vector (see Table I), using the weakness indicators

that we defined in our data analysis in section III-E1 under

the “URLs security” vector.

a) HTTPS in Final URLs: Using the plain-HTTP final

URL weakness indicator, we find 232 inconsistent cases for

domains that send their final responses in plain-HTTP URL to

some but not all of the five regions. Needless to say, domains

that send plain-HTTP responses are prone to impersonation

attacks due to lack of authentication, data manipulation during

transmission due to lack of integrity, and espionage, e.g. to

steal users’ credentials, due to a lack of secrecy (encryp-

tion). To understand the reasons for inconsistent plain-HTTP

responses, we manually inspect the plain-HTTP final URLs

in each region, within around two weeks after completing

the scans. Through the Remote Desktop Protocol (RDP), we

connect to the remote client, and from there we manually

visit each website that resulted in plain-HTTP response, using

the Firefox web browser. We identify several reasons for

inconsistent plain-HTTP responses. We find that blocking
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TABLE II: Summary of the redirection scan responses. The percentages of the responses “(Any/Valid) HTTP(S) Final

Responses” are computed over the 250,000 input domains. Each indentation in a row means that the percentages of that

row are computed from the previous indentation level.

Response Type Status Code Joint Responses

Any HTTP(S) Final Response Any 187,902 (75.16%)
Any consistent plain-HTTP Final Response Any 10,320 (5.49%)
Any consistent HTTPS Final Response Any 176,936 (94.16%)

Any consistent HTTPS with Redirections > 0 Any 86,123 (48.67%)
Any consistent HTTPS with plain-HTTP Inter. Response Any 12,198 (14.16%)

Valid HTTP(S) Final Response 200 163,235 (65.29%)
Valid consistent plain-HTTP Final Response 200 9242 (5.66%)
Valid consistent HTTPS Final Response 200 153,761 (94.2%)

Valid consistent HTTPS with Redirections > 0 200 81,019 (52.69%)
Valid consistent HTTPS with plain-HTTP Inter. Response 200 11,873 (14.65%)

TABLE III: Summary of the URLs security inconsistencies.

The “Inconsistent” column shows the overall inconsistent

cases against the weakness indicator. The percentages are

computed over the 163,235 valid joint HTTP(S) responses.

Weakness Indicator Inconsistent

plain-HTTP Final URL 232 (0.14%)
plain-HTTP Inter. URL 501 (0.31%)

Incompatible Final URL 280 (0.17%)
Incompatible Inter. URL 205 (0.13%)

pages play a considerable role in such inconsistencies, where

these domains provide a valid plain-HTTP response (200 OK)

status code, but display a plain-HTTP blocking page to inform

the user that the requested domain (website) is not accessible

in the client’s region. See Figure 1 for sendspace.com case,

and Figure 2 for gannett.com case. The latter is an American

media company which owns the “US Today” newspaper. Out

of the active websites at the time of the manual inspection, we

identify blocking pages in (note: the total numbers provided

here are excluding domains that did not respond to the manual

inspection): 19/80 (23.75%) in AU, 20/98 (20.41%) in BR,

42/132 (31.82%) in IN, 28/93 (30.11%) in the UK, and 4/71

(5.63%) in the US. Clearly out of the five regions, IN has the

highest percentage of blocking pages, followed by the UK,

while the US has the lowest percentage. There are various

reasons for regional blocking as also noted in [24], including,

but not limited to: government orders (observed mostly in IN.

See Figure 1 for example), GDPR compliance (mostly in the

UK), business unavailability (e.g. a company does not offer

its products to some regions). One might argue that blocking

pages do not contain sensitive data and therefore there is little

or no impact from the absence of HTTPS on these pages. This

argument is true with respect to secrecy. However, using TLS

in HTTP (i.e. HTTPS) is meant to provide secrecy, integrity,

and authentication to prevent “eavesdropping, tampering, and

message forgery” [5]. Therefore, the absence of HTTPS even

in blocking pages is harmful. It makes the page’s authenticity

and integrity questionable. That is, users can not trust whether

the plain-HTTP response is a genuine blocking page or a faked

response, e.g. to deny users from reaching the genuine website

to cause losses to it.

Apart from regional blocking, there are indeed inconsistent

(a) sendspace.com over plain-HTTP in the IN due to block-
ing.

(b) sendspace.com over HTTPS in the US.

Fig. 1: The case of sendspace.com in IN vs. the US.

(a) gannett.com over plain-HTTP in the UK due to blocking.

(b) gannett.com over HTTPS in the US.

Fig. 2: The case of gannett.com in the UK vs. the US.
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(a) match.com over HTTP in BR.

(b) match.com over HTTPS in the US.

Fig. 3: The case of match.com in BR vs. the US.

cases where the same domain is deployed in plain-HTTP in

some but not all regions. For example, the case of match.com,

a high profile dating website, if visited from BR, the client is

redirected to the plain-HTTP domain br.match.com, while

all the other examined regions, such as the US, are provided

with HTTPS. See Figure 3 for illustration. Interestingly, we

revisited match.com from BR around four months after our

initial observation. We find that it stopped redirecting to

br.match.com, and when we manually visit br.match.com

directly, we notice that it is using HTTPS, with a certificate

starting from March 8, 2019, around one month before our

scan. This indicates that the insecurity of br.match.com that

we initially observed is due to insecure redirection, which

redirects to the insecure plain-HTTP version of the website.

From this case we find that visiting the regional domains man-

ually, e.g. br.match.com can be more secure than visiting the

generic domain, e.g. match.com that redirects to the regional

domain, to avoid potential redirection misconfigurations.

We also identify inconsistent cases of plain-HTTP due to

partial HTTPS in some but not all regions. By partial HTTPS

we refer to websites deploying HTTPS partially, e.g. in some

pages such as login pages, while leaving the rest of the pages

sent over plain-HTTP, which endangers users’ privacy. This

is the case we find in westelm.com which deploys partial

HTTPS in the UK, while deploying full HTTPS in other

regions such as the US. See Figure 4, which shows that

some data such as users’ postcode and item prices are sent

in plaintext for the UK clients. We have emailed the customer

service about this weakness, and we offered clarification and

help, but we have not heard back yet.

Despite the fact that the user credentials of the weak and

strong domains in the aforementioned two examples: the

US’s match.com versus the BR’s br.match.com, and the

US’s westelm.com versus the UK’s westelm.co.uk, are not

shared, and each region requires a separate account (we tested

this manually), plain-HTTP final URL inconsistencies are

still dangerous for several reasons. First, it provides degraded

security for some regions’ users. Second, high profile domains

provide a false sense of security. For example, a user in one

region that used to receive strong HTTPS security guarantees,

will expect the same security guarantees if the user moved or

traveled to another region. Third, the scenario of shared user

(a) westelm.com browsing over HTTP in the UK. The image in the
border shows some personal data such as postcode and product prices
are sent in clear-text.

(b) westelm.com browsing over HTTPS in the US.

Fig. 4: The case of westelm.com in the UK vs. the US.

credentials between different regions is not unusual, and we

have found it used in amazon.com for example, where we can

use a single credential among various regional domains such as

amazon.com for the US users and amazon.co.uk for the UK

users. This can enable an attacker who succeeds in redirecting

a user from a secure version of the website in one region to an

insecure one in another region, from compromising the user’s

credentials while using the insecure domain.

b) HTTPS in Intermediate URLs: Using the plain-HTTP

intermediate URLs weakness indicator, we find 501 inconsis-

tent cases, where one or more plain-HTTP intermediate URLs

are found in some but not all of the responses to the five

regions. Note that the results in this indicator are computed

out of HTTP(S) responses. However, if we compile the plain-

HTTP intermediate URLs inconsistent cases out of the HTTPS

final responses only, the number of inconsistent plain-HTTP

intermediate URLs drops to 344, which means that 31.34%

of plain-HTTP inconsistent intermediate URLs cases contains

plain-HTTP final URLs in one or more regions. Moreover,

there are 105 (20.96%) domains of the plain-HTTP interme-

diate URLs inconsistent cases that intersect with the domains

of plain-HTTP final URLs inconsistent cases. Unlike final

URLs which are normally visible to the user, e.g. through the

URL bar in web browsers, intermediate URLs in redirection

chains are invisible to the user, which make inconsistencies

in plain-HTTP intermediate URLs worse than those in final

URLs. plain-HTTP intermediate URLs can enable a man-in-

the-middle attacker to impersonate an intermediate domain,

and redirect the user to a malicious, e.g. a phishing website.
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TABLE IV: Examples of incompatible final domains and the regions they are found in.

Region Initial Domain Final Domain

AU https://bbcchannels.com https://www.bbcaustralia.com

UK https://aa.com https://www.americanairlines.co.uk/homePage.do?locale=en_GB

UK https://live2all.com https://www.livetotal.net

UK https://cartoonnetworkasia.com https://www.cartoonnetworkeurope.com

US https://hoteis.com https://www.hotels.com/?pos=HCOM_US&locale=en_US

TABLE V: The tefal.com case of incompatible final re-

sponse URLs found in BR and US regions.

Region Requested Domain Final Domain

AU https://tefal.com https://www.tefal.com.au

BR https://tefal.com https://www.arno.com.br

IN https://tefal.com https://www.tefal.in

UK https://tefal.com https://www.tefal.co.uk

US https://tefal.com https://www.t-falusa.com

c) Compatible Domains in Final URLs: Using the In-

compatible Final URLs weakness indicator, we find 280

inconsistent cases for domains that send incompatible final

URLs in their responses to some but not all regions. We

consider incompatible final URLs as a weakness indicator as

they contradict the common security advice to users which rec-

ommends visually checking the compatibility of the requested

domain (e.g. in e-mail links) against the displayed response do-

main, and suspect response domains that are incompatible with

the requested domain. Although HTTP(S) response domains

can be incompatible with the requested domain for benign

reasons (e.g. a different brand name for a company), having

incompatible response domains in some but not all of the

regions is particularly suspicious. Table IV provides few ex-

amples which we also cross-checked with the Chrome browser

and found the same behavior that our dataset indicates. The

examples also illustrate the difficulty of judging whether an

incompatible final domain name is benign or not. For example,

in the case of hoteis.com, the response domain hotels.com

differs from the requested domain only in one letter, which is a

common phishing technique. It also shows the lack of standard

domain name format for regional domain names. While many

domains tend to change either the subdomain or the TLD

for regional domains, we found several cases of completely

different domain names with regional indication. For example,

requesting bbcchannels.com from the AU is redirected to

www.bbcaustralia.com, a whole different domain name.

Table V shows an example for tefal.com which illustrates

the incompatible final URLs inconsistency. That is the final

domain differs from the requested domain in some but not

all of the regions: the US and BR final domains are different

than the requested domain, while the AU, IN and UK final

domains are identical to the requested one (except the TLDs

which are tolerated). The lack of standard regional domain

names hardens the verifiability of the requested domain, and

opens a door for phishing attacks when users benignly believe

that the new domain name is a result of regional redirection.

d) Compatible Domains in Intermediate URLs: Using

the Incompatible Intermediate URLs weakness indicator,

TABLE VI: Summary of the security headers’ inconsistencies.

The “Inconsistent” column shows the overall inconsistent

cases against the weakness indicator. The No-HSTS and No-

CSP percentages are computed over the 153,761 valid joint

HTTPS responses. The No-Secure in Set-Cookie percentage

is computed over the 77,568 valid joint HTTPS responses that

contain Set-Cookie headers.

Weakness Indicator Inconsistent

No-HSTS 517 (0.34%)
No-CSP 481 (0.31%)
No-Secure in Set-Cookie 223 (0.29%)

we find 205 inconsistent cases for domains that send one or

more incompatible intermediate URLs in their responses to

some but not all regions. Note that we count the incompatible

intermediate URLs inconsistencies regardless of the status

of the final URLs. However, there are 100 (48.78%) of the

domains in the incompatible intermediate URLs inconsistent

cases that intersect with the domains of incompatible final

URLs inconsistent cases. Unlike final URLs, intermediate

URLs are requested silently in the background and are invisi-

ble to the user, which makes incompatible intermediate URLs

even more suspicious than incompatible final URLs.

2) Security Headers: The results of our analysis of security

headers’ inconsistencies are computed over the valid HTTPS

responses only as measuring security headers’ inconsistencies

is more meaningful in HTTPS connections. For the cookies,

we check the consistency of the Secure attribute among

HTTPS responses that have the Set-Cookie header in all the

five responses to our clients’ requests in the five regions.

Table VI summarises the results. The following subsections

are divided according to the security properties related to the

“security headers” vector (see Table I), using the weakness

indicators that we defined in our data analysis in section III-E1

under the “security headers” vector.

a) HSTS headers: Using the “No-HSTS” weakness in-

dicator, we find 517 inconsistent cases, where domains do

not send the HSTS header in their responses to some but

not all regions. The HSTS header has highest number of

inconsistency cases we find in the security headers vector.

b) CSP headers: Using the “No-CSP” weakness indi-

cator, we find 481 inconsistent cases, where domains do not

send the CSP header in their responses to some but not all

regions. The CSP header has the second highest number of

inconsistent cases we find in the security headers vector.

c) The Secure attribute in Set-Cookie headers: Using

the “No-Secure in Set-Cookie” weakness indicator, we find

223 inconsistent cases, where domains do not send the Secure
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CSP is absent.

(a) The CSP header is absent in gizmodo.com in BR.

(b) The CSP header is absent in gizmodo.com in US.

Fig. 5: The case of gizmodo.com in BR vs. the US.

TABLE VII: Summary of the TLS security inconsistencies.

The “Inconsistent” column shows the overall inconsistency

cases against the weakness indicator. The percentages are

computed over the 152,836 valid joint HTTPS responses that

also have responses in the TLS scan.

Weakness Indicator Inconsistent

Version <TLS 1.3 579 (0.38%)
Version <TLS 1.2 54 (0.04%)
Non-FS 100 (0.07%)
Non-FS+Non-AE 71 (0.05%)
Expired Cert. 21 (0.01%)
Invalid Cert. Host Name 54 (0.04%)

attribute in the Set-Cookie header in their responses to some

but not all regions. The Secure attribute in the Set-Cookie

headers has the lowest number of inconsistent cases we find

in the security headers vector.

3) TLS Security: The results of our analysis of transport

layer security (TLS) inconsistencies are computed over the

valid HTTPS responses that also responded to the TLS scan.

The results of our analysis of TLS inconsistencies are sum-

marised in Table VII. The following subsections are divided

according to the security properties related to the “TLS secu-

rity” vector (see Table I), using the weakness indicators that

we defined in our data analysis in section III-E1 under the

“TLS security” vector.

a) Protocol version TLS 1.3: Using the “Version

<TLS 1.3” weakness indicator, we find 579 inconsistent

cases, where domains use version <TLS 1.3 in their responses

to some but not all regions. This is the highest number of

inconsistent cases we find in the TLS security vector. Versions

<TLS 1.3 are prone to various attacks including several cases

of downgrade attacks (see [9] for a background and a survey

of downgrade attacks).

b) Protocol version TLS 1.2 or higher: Using the

“Version <TLS 1.2” weakness indicator, we find 54 incon-

sistent cases, where domains use version <TLS 1.2 in their

responses to some but not all regions. TLS versions <TLS 1.2

do not support AE, hence, are prone to attacks over the MAC-

then-encrypt schemes.

c) The Forward Secrecy (FS) property: Using the “Non-

FS” weakness indicator, we find 100 inconsistent cases, where

domains use Non-FS ciphersuites in their responses to some

but not all regions. Websites that select Non-FS ciphersuites

endanger users’ data for future decryption as non-FS cipher-

suites do not provide protection to past session keys if the

servers’ long-term key is compromised at some point in time.

d) The FS and Authenticate Encryption (AE) properties:

Using the “Non-FS+Non-AE” weakness indicator, we find

71 inconsistent cases, where domains use Non-FS+Non-AE

ciphersuites in their responses to some but not all regions.

Non-AE ciphersuites are prone to some attacks over the MAC-

then-encrypt schemes as shown in [25][26].

e) Non-expired certificates: Using the “Expired Cert.”

weakness indicator, we find only 21 inconsistent cases6, where

domains send expired certificates in their responses to some

but not all regions. This is the lowest inconsistency in the TLS

security vector.

f) Valid hostnames in certificates: Using the “Invalid

Host Name” weakness indicator, we find 54 inconsistent

cases, where domains send invalid hostnames in certificates

in their responses to some but not all of regions.

4) Relationship to URLs and IPs Diversity, and to Redi-

rection Presence: We also check whether HTTPS security

inconsistencies have a relationship to URLs and IPs diversity,

and to the presence of redirections. To this end, we define

three new criteria:

1) Diverse URLs: is satisfied if the final URLs of a server’s

responses to the five regions clients’ requests to a particu-

lar domain are not equal. We compare the final responses’

URLs as is, including the protocol scheme part (i.e.

http(s)://).

2) Diverse IPs: is satisfied if the IPs of a server’s responses

to the clients’ requests to a particular domain are not

equal.

3) Redirections >0: is satisfied if a server’s responses to

the clients’ requests to a particular domain contain one

or more redirections.

After that, for each criterion, we compute the number of

domains that satisfy the criterion under two conditions:

6We exclude six inconsistent cases from the result of our query for
inconsistent cases using the “Expired Cert.” weakness indicator. In these
cases, the inconsistencies arise from the fact that these certificates expired
during the scan, where some clients connected to the server before the
certificate’s expiration while others connected to it after the certificate’s
expiration. Since the reason is related to the scan time, we decided to exclude
them.
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1) Inconsistent HTTPS responses that have some but not

all responses satisfy a weakness indicator denoted by

“Inconsistent” in Table VIII. For example, the “expired

cert.” weakness indicator is satisfied if some but not all re-

sponses have expired certificate, and “version <TLS 1.2”

if some but not all responses have version <TLS 1.2.

2) Secure HTTPS responses that do not satisfy the weakness

indicator (i.e. satisfy the negation of the weakness indica-

tor that is specified in the second column in Table VIII)

denoted by “Secure” in Table VIII. For example, in

the “expired cert.” weakness indicator, the secure cases

are those that receive responses with valid certificates

for the five regions clients’ requests, and for “Version

<TLS 1.2” indicator, the Secure cases are those that

receive responses with versions ≥ TLS 1.2 to the five

regions clients’ requests.

The higher the number we obtain from this calculation, the

stronger relationship to the criterion (divers URLs, diverse IPs,

or redirection >0). To compute the percentages, as depicted

in Table VIII, for each of the three criteria we examine, we

divide the number of “Inconsistent” cases that also satisfy

the examined criterion by the total number of inconsistent

cases. The same is applied to the “Secure” cases. We divide

the number of “Secure” cases that also satisfy the examined

criterion by the total number of secure cases. It should be noted

that the total number of inconsistent cases, i.e. the divisor

of the “Inconsistent” columns in Table VIII should be equal

to the results we obtained in our inconsistency analysis in

Table III, Table VI, and Table VII, expect in the “Divers IPs”

criterion where this does not hold because we compute the

total inconsistent cases that responded to the TLS scan, as we

only collect IPs in the TLS scan, while the inconsistent cases

in Table III, Table VI are computed from the redirection scan.

The results show that domains with inconsistent HTTPS

security tend to have higher percentages of diverse URLs

and IPs, and to a lesser extent redirections, than secure

domains. There are few exceptions (highlighted in gray color)

in the TLS weakness indicators, where inconsistent cases

with respect to “Non-FS+Non-AE” indicator have less diverse

IPs than those in secure cases. Similarly, inconsistent cases

with respect to “Version <TLS 1.2” and “Expired Cert.” has

less redirection >0 than secure cases. Table VIII summarises

these results, and Figure 6 demonstrates the percentages of

URL diversity in inconsistent HTTPS responses compared

to the secure ones. Note that inconsistent HTTPS against

the “plain-HTTP Final URL” and “Incompatible Final URL”

weakness indicators imply diverse URLs. This is because it

is always the case that some URLs differ in the URL scheme

(“https” vs. “http”) in inconsistent HTTPS cases against the

“plain-HTTP Final URL” weakness indicator, which implies

diverse URLs. Similarly, it is always the case that some

URLs differ in the domain names in inconsistent HTTPS cases

against the “Incompatible Final URL” weakness indicator. This

explains the 100% diverse URLs in the inconsistent cases

against these two weakness indicators in Table VIII. The same

applies to the HTTPS inconsistent cases against the following

weakness indicators: “plain-HTTP Final URL”, “plain-HTTP

Fig. 6: A chart illustrating the percentages of diverse URLs in

inconsistent versus secure HTTPS domains.

Inter. URL”, “Incompatible Final URL”, and “Incompatible

Inter. URL”: they imply redirection, therefore the percentage

of diverse URLs with them is 100% as illustrated in Table VIII.

V. ATTACK SCENARIOS

We now provide two attack scenarios that can benefit from

the regional HTTPS security inconsistencies.

A. Region-Confusion Attack

In this attack, the attacker is located on the communication

channel and has control over it. It can passively eavesdrop,

or actively inject, modify, drop, replay, or redirect messages,

sent from, or to, the client or server. We assume that the

domain has regional HTTPS security inconsistencies. That

is, if two clients at different regions request the same do-

main (e.g. example.com), some regions receive weak security

guarantees, while other regions receive strong guarantees. The

requested domain may perform URL redirection based on

the region (“regional redirection”) to a different domain that

may have a different IP, contains a new or different subdo-

main, different TLD, or different documents. We assume the

redirection occurs form gTLDs to ccTLDs, and not between

ccTLDs. For example, requesting “example.com.sg” from the

UK does not redirect to any other domain, while requesting

“example.com” redirects to “example.co.uk”. We also assume

that the requested domain uses the same user credentials (e.g.

username and password) such that users can login to multiple

domains with the same credentials. Our attacker aims to force

the user, e.g. via DNS spoofing if the targeted domains share

the certificate, to connect to the weaker domain that has

weaker security guarantees. For example, the attacker redirects

a UK-based client’s request for example.com from going

to example.co.uk to another regional domain that belongs

to the same domain, but provides weaker HTTPS security

guarantees, e.g. example.co.br. This allows the attacker to

exploit the weaknesses that exist in the weak region’s domain,

e.g. perform an XSS attack, due to the absence of a security

configuration, e.g. the CSP header, or perform TLS stripping
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TABLE VIII: The percentage of diverse final URLs, diverse IPs, and redirections >0 in two cases: inconsistent HTTPS

responses that have some but not all responses satisfy a weakness indicator (Inconsistent) and consistent HTTPS responses that

do not satisfy the weakness indicator (Secure). The “Diverse IPs” column results are computed over domains that responded

to the TLS scan as we retrieve the IPs in the TLS scan only.

Vector Weakness Indicator
Diverse URLs Diverse IPs Redirection >0

Inconsistent Secure Inconsistent Secure Inconsistent Secure

U
R

L
s

plain-HTTP Final URL 232 / 232 (100%) 2822 / 153761 (1.84%) 148 / 211 (70.14%) 56384 / 152836 (36.89%) 232 / 232 (100%) 81405 / 153761 (52.94%)
plain-HTTP Inter. URL 434 / 501 (86.63%) 2317 / 149012 (1.55%) 376 / 492 (76.42%) 53254 / 147729 (36.05%) 501 / 501 (100%) 76656 / 149012 (51.44%)
Incompatible Final URL 280 / 280 (100%) 2576 / 155689 (1.65%) 249 / 263 (94.68%) 55818 / 154501 (36.13%) 280 / 280 (100%) 83333 / 155689 (53.53%)
Incompatible Inter. URL 193 / 205 (94.15%) 2724 / 160378 (1.7%) 185 / 201 (92.04%) 58082 / 159026 (36.52%) 205 / 205 (100%) 88022 / 160378 (54.88%)

H
ea

d
er

s No-HSTS 200 / 517 (38.68%) 820 / 31062 (2.64%) 462 / 516 (89.53%) 13245 / 30945 (42.8%) 494 / 517 (95.55%) 19842 / 31062 (63.88%)
No-CSP 110 / 481 (22.87%) 463 / 10403 (4.45%) 442 / 481 (91.89%) 4111 / 10382 (39.6%) 449 / 481 (93.35%) 7246 / 10403 (69.65%)
No-Secure in Set-Cookie 32 / 223 (14.35%) 236 / 13684 (1.72%) 164 / 222 (73.87%) 7036 / 13637 (51.59%) 142 / 223 (63.68%) 6979 / 13684 (51%)

T
L

S

Version <TLS 1.3 77 / 579 (13.3%) 389 / 35399 (1.1%) 547 / 579 (94.47%) 27867 / 35399 (78.72%) 532 / 579 (91.88%) 17038 / 35399 (48.13%)
Version <TLS 1.2 8 / 54 (14.81%) 2793 / 149939 (1.86%) 26 / 54 (48.15%) 56283 / 149939 (37.54%) 21 / 54 (38.89%) 80153 / 149939 (53.46%)
Non-FS 13 / 100 (13%) 2714 / 146180 (1.86%) 43 / 100 (43%) 55964 / 146180 (38.28%) 57 / 100 (57%) 77903 / 146180 (53.29%)
Non-FS+Non-AE 9 / 71 (12.68%) 2615 / 139558 (1.87%) 25 / 71 (35.21%) 55662 / 139558 (39.88%) 38 / 71 (53.52%) 74241 / 139558 (53.2%)
Expired Cert. 3 / 21 (14.29%) 2804 / 149945 (1.87%) 15 / 21 (71.43%) 56325 / 149945 (37.56%) 6 / 21 (28.57%) 80499 / 149945 (53.69%)
Invalid Cert. Host Name 31/54 (57.41%) 2767 / 142126 (1.95%) 39 / 54 (72.22%) 55703 / 142126 (39.19%) 37/54 (68.52%) 79950 / 142126 (56.25%)

DNS Server

DNS query:
 a.com

a.com   1.2.3.4

a.co.in   5.6.7.8
1.2

.3
.4

5.6
.7

.8

a.com

a.co.in

Client

HTTPS request
HTTPS response

Shared 

TLS Cert.

Forward Zone File

a.com

a.co.in

Fig. 7: The region-confusion attacker model.

attack, due to the absence of the HSTS header combined with

the absence of the includeSubDomains (if the HSTS is present

in the parent domain and the regional domain is a subdomain

of the parent domain). In the same vein, the absence of the

FS property can enable long-term mass surveillance since the

attacker can decrypt past session keys whenever the long-term

non-FS key is broken. The absence of the AE property can

enable some attacks over the MAC-then-Encrypt schemes as

shown in [26], [25]. Moreover, using legacy versions of the

TLS protocol can enable some known attacks that has been

batched in the newer versions including downgrade attacks [9].

Finally, expired certificates and invalid hostnames can be

abused by man-in-the-middle attackers that can confuse users

with forged certificates, thus, they should not be used by

legitimate website. This attacker model allows more persistent,

and harder to detect attacks than in the classical phishing

attacks, e.g. via a faked website. This is because, in this

attack, the user is redirected to a legitimate website that accepts

the user’s credentials. The attacker can obtain and abuse, in

the long-term, the user’s credentials, as opposed to a faked

phishing website, where the user is normally more likely to

find out that the website is faked, due to the absence of

real content. Figure 7 illustrates the region-confusion attacker

model.

B. Discrimination Attack

This attack scenario is based on the “discriminatory” adver-

sarial model, which is initially introduced in [27]. This attacker

is located on the server side. It can be represented by an

insider attacker (dishonest system administrator), a dishonest

organisation (e.g. giant cloud provider), or a malware that

hit the server. It weakens the security guarantees provided to

clients in some regions, for a powerful third-party’s advantage,

e.g. a state-level attacker, who has the capabilities to exploit

this weakness. For example, the discriminatory attacker can

deny some regions from some security guarantees such as

the FS property, to enable the powerful third-party attacker

to decrypt collected traffic either at present, due to the third

party’s powerful capabilities of breaking non-FS keys, or in

the future once the server’s long-term key is broken due to

advancement in computing power, or if the key is given to the

powerful third-party attacker, after the key is expired when

it is no longer used by the server. The semi-trusted server

colludes with, or compelled by, a powerful third-party attacker.

This model gives the server a financial, legal, and reputation

advantage over giving every session key or the decrypted

traffic to the third-party powerful attacker. This attacker model

is inspired by real-world incidents such as the “export-grade”

cryptography, a depreciated US law that mandated weaker

cryptography to products, including software, exported outside

the US [28], in addition to the alleged “PRISM” program in

which giant service providers open back-doors that are known

to third parties (e.g. intelligence) [29]. Figure 8 illustrates the

discriminatory attacker model.

VI. DISCUSSION

Based on our analysis and observations in this experiment,

we provide the following discussion:

1) Security favours simplicity: as shown in section IV-B4,

domains with inconsistent HTTPS security tend to have

higher percentages of URLs and IPs diversity, and to a

lesser extent higher redirections, compared to domains

with secure HTTPS. This suggests that the more complex

the domain is (e.g. diverse IPs and URLs) the more

inconsistent HTTPS security is.

2) The need for secure redirection, and avoiding redi-

rection if possible: the security of intermediate URLs
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Fig. 8: The discriminatory attacker model.

in redirections is no less important than the security of

final URLs. Therefore, all intermediate connections need

to be over TLS and need to deploy the same security

measures as final URLs. This is also noted in [30], where

they suggest strict redirection policy in the same vein

as HSTS. We also recommend users to use the regional

domain directly in their requests if known, as this can

provide better security than requesting the generic domain

that redirects to the regional domain, to avoid insecure

redirections, as shown in the case of match.com in

section IV-B1. Additionally, avoiding redirections can be

automated by a browser extension that buffers the URL

chain and makes the request to the final URL, and by

prioritizing regional domains in search engines.

3) TLS is not only about secrecy: while blocking pages

content is public and may not require secrecy, the au-

thenticity and integrity of such pages are still important

to avoid Denial of Service (DoS) attacks for example.

Therefore, domain owners and governments need to be

aware of the TLS goals and the possible harm that can

result from unauthenticated blocking pages and the users’

habituation to them.

4) HTTPS security inconsistencies and the potential

effect on Tor network users: the Onion Router (Tor)

network aims to provide anonymity to its users. It hides

users’ locations and the websites they visit online, by

routing traffic through multiple relay servers run by

volunteers all over the world [31]. In Tor, if the domain

names are resolved using “SOCKS 4a”, which passes

hostnames to relays, or through “Tor-resolve”, which

uses Tor network to resolve host names remotely [31],

this means that Tor users may be redirected to regional

domain names that are different from their region. As our

results show, there is evidence of HTTPS security incon-

sistencies in servers’ responses to requests from different

regions. Therefore, a user may end up connecting to a

weaker version of the intended website, mainly because

the generic domains, e.g. example.com are resolved in

another region, e.g. in.example.com, which may have

weaker HTTPS security.

5) Regional domain format: a single standard format for

regional domains, with the same-origin policy in mind,

can help in reducing phishing attacks’ surface and help

users identify malicious domains and redirections. The

domain same-origin policy can be achieved in brand

TLDs, where brands are used as a TLD instead of the

traditional TLDs, and in regional subdomains, but not in

ccTLDs.

6) Tools for consistency and redirection testing: tools for

consistency assessment may help administrators and users

in mitigating and detecting HTTPS security inconsisten-

cies.

VII. RELATED WORK

In recent years, several studies have looked at servers’

responses inconsistencies among clients that differ in some

aspects such as client type, vantage point, or geographic

location. However, to the best of our knowledge, our study is

the first that reports on HTTPS security inconsistencies among

different regions. In what follows, we summarise relevant

work.

In terms of inconsistencies from the client type aspect,

Mendoza et al. [32] analysed the inconsistencies of security

headers in servers’ responses to mobile versus desktop users.

Out of the 70,000 examined Alexa’s top domains, they found

overall 2000 domains with inconsistencies in one or more of

the examined security headers. Khattak et al. [33] measured

the inconsistencies of servers’ responses to anonymous (e.g.

using Tor) versus normal users. They report 1.3 million

addresses of the IPv4 address space and around 3.67% of the

top 1000 Alexa domains either block or provide a degraded

service to Tor users.

In terms of inconsistencies from the regional aspect, Afroz

et al. [24] studied server-side blocking of regions. They

confirmed the existence of servers that block users based

on region. Several recent studies such as Samarasinghe and

Mannan [34], and Fruchter et al. [35] reported inconsistencies

in users’ privacy such as the use of third party trackers between

clients from different regions. Eijk et al. [36] studied a similar

aspect and found that the inconsistencies in cookie notices

are related to TLDs and not the user location. However, [36]

pointed out this conclusion does not hold with com domains,

where the location relates to cookie notices inconsistencies,

because these generic TLDs perform redirection based on the

location. Niaki et al. [37] provide a framework for measuring

Internet censorship against users from different regions.

In terms of inconsistencies from vantage point aspect,

Jueckstock et al. [38] examined the consistency of servers’

responses to requests initiated from different vantage points

(VP): cloud data centre, research university, residential net-

work, and Tor gateway proxy. They found slight differences,

and they recommend university VP over cloud providers VP in

measurement studies, as the university VP generalises “slightly

better” to the actual residential browsing experience.

From TLS configurations and HTTPS redirections aspect,

Amann et al. [3] conducted TLS scans from various locations.
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They noticed a small fraction of inconsistencies in the HSTS

and HPKP headers in the active scans, but they do not analyse

them. Unlike Amann et al. who do not follow redirections and

connect to the “base domain” in all regions, we do follow

HTTPS redirections, then, we make TLS handshakes with

the final response domains at each region (which can differ

between regions). Following redirections is more representa-

tive of web browsers behaviour, and revealed inconsistencies.

In terms of HTTPS redirections security, Chang et al. [30]

examined Alexa’s top 1 million domains and found that the

majority (83.3%) of HTTPS redirections in TLS servers are

insecure. Alashwali et al. [39] measured the differences in

TLS configurations and certificates between plain-domains

and their equivalent www-domains. They found that www-

domains tend to be more secure than plain-domains. In addi-

tion, they found that over 50% of the HTTPS plain-domains

that showed weaker configurations than their equivalent www-

domain are redirected to www-domains. However, these redi-

rections are not always secure.

VIII. LIMITATIONS AND FUTURE WORK

In terms of limitations, first, due to the dynamic and

rapidly changing nature of the web, the domains and examples

included in this study may have changed their configurations

over time. This is a well-understood limitation in Internet

measurement studies in general. However, even if some of

those websites have changed, this does not diminish the value

of the insights we gained from analysing those data. Addition-

ally, this does not eliminate the existence of inconsistencies in

another set of websites. Second, in order to scale, the HTTP

and TLS connections to the domains were automated through

programmable HTTP and TLS clients. These tools simulate

an HTTPS client such as a web browser. However, we do not

advertise a specific browser vendor in the requests’ headers.

Nevertheless, the domains we present in the tables or figures

in this paper are cross-validated against the latest version of

the Chrome browser at the time of the study. Additionally,

we measure the consistency of servers’ responses between

different regions despite the client’s vendor. We use the same

client in all regions. Thus, our results should not be affected

if a server provides different responses to different vendors.

Third, in headers and TLS security inconsistencies, we check

the values provided in the final response only and we do

not check the intermediate URLs. Analysing each URL in

the redirection chain is time and resource prohibitive for this

project. Fourth, we analyse security headers in terms of head-

ers’ presence/absence only. Checking the headers’ values such

as syntax and configurations correctness is a further level in the

analysis depth that is outside our paper’s scope, and we leave

it to future work. Fifth, we do not analyse the responses page

content except the manual analysis we did in section IV-B1 to

identify blocking home pages. Finally, we check our dataset

domains (requests’ domains) against known malicious domain

by Google’s safe browsing, and we exclude the responses of

malicious domains requests from our analysis. However, we

do not check intermediate or final response domains against

malicious domains nor exclude them, if any. Future work can

look at malicious final and intermediate response URLs, and

their inconsistencies, possibly using new methods for detecting

malicious URLs such as the one introduced in [40].

IX. CONCLUSION

In this paper, we demonstrated the existence of a pre-

viously unexplored phenomenon. That is, the existence of

HTTPS security inconsistencies in servers’ responses to clients

located in five different regions. We quantified the HTTPS

security inconsistencies we identified. These inconsistencies

can provide a false sense of security among users from

different locations, and can enable attacks that redirect the

user’s request to the weaker region to exploit the weaker

region’s weaknesses. We draw the recommendations from our

experiment observations, which suggest standardising regional

domain format and secure redirection, in addition to the need

for testing tools for domain administrators and users that help

to mitigate and detect regional domains’ inconsistencies.
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