
Efficient polynomial commitment schemes for

multiple points and polynomials

Dan Boneh
Stanford University

Justin Drake
Ethereum Foundation

Ben Fisch
Stanford University

Ariel Gabizon
AZTEC Protocol

May 27, 2021

Abstract

We present an enhanced version of the Kate, Zaverucha and Goldberg polynomial
commitment scheme [KZG10] where a single group element can be an opening proof
for multiple polynomials each evaluated at a different arbitrary subset of points.

As a sample application we “plug in” this scheme into the PLONK proving system[GWC19]
to obtain improved proof size and prover run time at the expense of additional ver-
ifier G2 operations and pairings, and additional G2 SRS elements.

We also present a second scheme where the proof consists of two group elements
and the verifier complexity is better than previously known batched verification
methods for [KZG10].

1 Introduction

Polynomial commitment schemes (PCS)[KZG10] have become a central ingredient in re-
cent constructions of succinct arguments [MBKM19, Gab19, CHM+19, GWC19, BFS19]
when one desires a “universal and updatable” setup procedure [GKM+]. They “force”
a prover to answer verifier queries according to a fixed polynomial of bounded degree.

The use of a PCS typically starts by an initial prover message com(f) corresponding
to the commitment to a polynomial f . Then, in the more straightforward use of this
primitive, whenever the prover sends a value s ∈ F which is allegedly the value f(z) for
z known to the verifier, the prover will send a corresponding “opening proof” π that
this is indeed the case. When a PCS is used in this way during a protocol execution for
several polynomials and several evaluation points, prover run time and communication
will increase with each of these opening proofs.

Thus, it is of interest to construct PCS where the prover overhead doesn’t grow, or
at least grows more slowly with the number of openings.

1

1.1 Previous work and our results

The notion of a PCS was introduced in the influential work of Kate, Zaverucha and
Goldberg [KZG10]. They presented a pairing-based scheme where an opening proof π
consists of a single G1 group element.

[MBKM19], who introduced the use of [KZG10] for universal and updatable SNARKs,
modified the PCS of [KZG10] in the random oracle model, so that a single G1 el-
ement can be an opening proof for several polynomials at the same point z ∈ F.
[Gab19, CHM+19, GWC19] followed and used similar single-point multi-polynomial
batching protocols.

[KZG10] give in their paper a less known version of their scheme allowing for a one
G1 element opening proof for one polynomial at several evaluation points.

For the case of multiple polynomials and evaluation points, [CHM+19, GWC19] use
randomized techniques for batching pairing equations to improve verification efficiency;
however opening proof size and prover computation still grow linearly with the number
of distinct points.

In this paper, we give two PCS for multiple evaluation points and polynomials.

� In our first scheme the opening proof is only a single G1 element, but verifier
operations are considerably heavier than previous variants of [KZG10] when the
number of distinct evaluation points is large (cf. Lemma 3.3).

� In our second scheme the opening proof is two G1 elements, and the verifier
complexity is somewhat better than previous multipoint variants of [KZG10] (cf.
Lemma 4.1).

We compare the performance of our PCS to a more straightforward batched version
of the [KZG10] scheme as in [GWC19]. For simplicity, we look at the restricted case
where we want to open t polynomials all with the same degree bound n, each at one
distinct point. See Lemma 3.3 and 4.1 for the more detailed efficiency properties in the
general case (where each polynomial is opened at a subset of points, and the subsets
may repeat).

Table 1: Comparison of opening complexity for t polynomials on t distinct points. In
prover/verifier work columns Gi means scalar multiplication in Gi, F means addition or
multiplication in F, and P means pairing.

SRS size prover work
proof
length verifier work

KZG as in [GWC19] n G1, 2 G2 t · n G1, O(t · n log n) F t G1 3t− 2 G1, 2 P

This work, ver. 1 n G1, t+ 1 G2 n G1, O(t · n+ n log n) F 1 G1 t− 1 G1, t
2 G2, t+ 1 P

This work, ver. 2 n G1, 2 G2 2n G1, O(t · n+ n log n) F 2 G1 t+ 3 G1, 2 P

Application to PLONK: The PLONK proving system [GWC19] allows generating proofs of
knowledge for assignments to fan-in two arithmetic circuits with a universal and updat-

2

able SRS (see the paragraph on this topic in Section 2.1). Most of the prover computation
involves committing to several polynomials and opening them at two distinct evaluation
points. Plugging in our first PCS to PLONK allows saving in proof length and prover work
related to the opening proof of the second evaluation point (we do not give full details,
but all that is needed is repreating the transformation of Lemma 4.7 in [GWC19] using
the PCS of Lemma 3.3 instead of the PCS used there to obtain the new result).

We compare the PLONK scheme when using the [KZG10]-based PCS in [GWC19] and
the first PCS of this paper in Table 2. As in [GWC19] we present two versions of PLONK
where one optimizes fast proving, and the other small proof length.

Table 2: Comparison of PLONK efficiency for fan-in two circuit with n gates.

SRS size
prover

group exponentations
proof
length verifier work

[GWC19] (fast) n G1, 2 G2 9n G1 exp 9 G1, 7 F 18 G1, 2 P

This work (fast) n G1, 3 G2 8n G1 exp 8 G1 7 F 18 G1, 4 G2, 3 P

[GWC19] (small) 3n G1, 2 G2 11n G1 exp 7 G1, 7 F 16 G1, 2 P

This work (small) 3n G1, 3 G2 10n G1 exp 6 G1 7 F 16 G1, 4 G2, 3 P

SHPLONK? Our second PCS does not give interesting tradeoffs for PLONK as two evalua-
tion points are not enough for its advantages to “kick in”. However, in a scenario where
constraints between more than two evaluation points are used, e.g. [Dra], the advan-
tages of both of our new schemes will become more prominent. Thus, the PCS of this
paper encourage designing constraint systems using multiple SHifts and Permutations
over Largange bases for Oecumenical Noninteractive arguments of Knowledge.

2 Preliminaries

2.1 Terminology and conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate
polynomials over F of degree smaller than d. In expressions involving both polynomials
and constants, we will write f(X) instead of f for to help distinguish the two; but in
contexts where it is clear f is a polynomial, we will simply write f for brevity.

We assume all algorithms described receive as an implicit parameter the security
parameter λ.

Whenever we use the term “efficient”, we mean an algorithm running in time poly(λ).
Furthermore, we assume an “object generator” O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G1,G2,Gt, e, g1, g2, gt) where

� F is a prime field of super-polynomial size r = λω(1) .

3

� G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G1 ×G2 → Gt.

� g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1

and G2 additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p for “except

with probability”; i.e. e.w.p γ means with probability at least 1− γ.

Universal SRS-based public-coin protocols We describe public-coin (meaning the verifier
messages are uniformly chosen) interactive protocols between a prover and verifier; when
deriving results for non-interactive protocols, we implicitly assume we can get a proof
length equal to the total communication of the prover, using the Fiat-Shamir transform/a
random oracle. Using this reduction between interactive and non-interactive protocols,
we can refer to the “proof length” of an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that
can be derived in deterministic poly(λ)-time from an “SRS of monomials” of the form{[
xi
]
1

}
a≤i≤b,

{[
xi
]
2

}
c≤i≤d, for uniform x ∈ F, and some integers a, b, c, d with absolute

value bounded by poly(λ). It then follows from Bowe et al. [BGM17] that the required
SRS can be derived in a universal and updatable setup[GKM+] requiring only one honest
participant; in the sense that an adversary controlling all but one of the participants in
the setup does not gain more than a negl(λ) advantage in its probability of producing a
proof of any statement.

For notational simplicity, we sometimes use the SRS srs as an implicit parameter in
protocols, and do not explicitly write it.

2.2 Analysis in the AGM model

For security analysis we will use the Algebraic Group Model of Fuchsbauer, Kiltz and
Loss [FKL18]. In our protocols, by an algebraic adversary A in an SRS-based protocol
we mean a poly(λ)-time algorithm which satisfies the following.

� For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v
over F such that A =< v, srsi >.

Idealized verifier checks for algebraic adversaries We introduce some terminology to cap-
ture the advantage of analysis in the AGM.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈
F<Q[X] and uniform x ∈ F. In the following discussion let us assume we are executing a
protocol with a degree Q SRS, and denote by fi,j the corresponding polynomial for the
j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic
adversary A outputs during a protocol execution; e.g., the j’th G1 element output by A
is [aj]1.

4

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0

for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently
given the encoded elements and the pairing function e : G1 ×G2 → Gt.

Given such a “real pairing check”, and the adversary A and protocol execution during
which the elements were output, define the corresponding “ideal check” as follows. Since
A is algebraic when he outputs [aj]i he also outputs a vector v such that, from linearity,
aj =

∑
v`fi,`(x) = Ri,j(x) for Ri,j(X) :=

∑
v`fi,`(X). Denote, for i ∈ {1, 2} the vector

of polynomials Ri = (Ri,j)j . The corresponding ideal check, checks as a polynomial
identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

The following lemma is inspired by [FKL18]’s analysis of [Gro16], and tells us that
for soundness analysis against algebraic adversaries it suffices to look at ideal checks.
Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 2.1. Fix an integer Q. The Q-DLOG assumption for (G1,G2) states that
given

[1]1 , [x]1 , . . . ,
[
xQ
]
1
, [1]2 , [x]2 , . . . ,

[
xQ
]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).

The following lemma is proved in [GWC19]-based on the arguments of [FKL18].

Lemma 2.2. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A partic-
ipating in a protocol with a degree Q SRS, the probability of any real pairing check passing
is larger by at most an additive negl(λ) factor than the probability the corresponding ideal
check holds.

Knowlege soundness in the Algebraic Group Model We say a protocol P between a
prover P and verifier V for a relation R has Knowledge Soundness in the Algebraic
Group Model if there exists an efficient E such that the probability of any algebraic
adversary A winning the following game is negl(λ).

1. A chooses input x and plays the role of P in P with input x.

2. E given access to all of A’s messages during the protocol (including the coefficients
of the linear combinations) outputs ω.

3. A wins if

(a) V outputs acc at the end of the protocol, and

(b) (x, ω) /∈ R.

5

2.3 Polynomial commitment schemes

We define polynomial commitment schemes similarly to [GWC19]. Specifically, we define
the open procedure in a batched setting having multiple polynomials and evaluation
points. In the context of multiple points, it will be more convenient to assume the alleged
evaluations of a polynomial f on a set S ⊂ F are given as a polynomial r ∈ F<|S|[X] with
r(z) = f(z) for each z ∈ S. Under this convention, the condition that the evaluations
are correct; i.e. r(z) = f(z) for each z ∈ S, is equivalent to f(X)− r(X) being divisble
by ZS(X); where ZS(X) :=

∏
z∈S(X − z).

Definition 2.3. A polynomial commitment scheme is a triplet S = (gen, com, open)
such that

� gen(d) - is a randomized algorithm that given positive integer d outputs a structured
reference string (SRS) srs.

� com(f, srs) - is an algorithm that given a polynomial f ∈ F<d[X] and an output srs
of gen(d) returns a commitment cm to f .

� open is a public coin protocol between parties PPC and VPC. PPC is given f1, . . . , fk ∈
F<d[X]. PPC and VPC are both given

1. positive integers d, t = poly(λ),

2. srs = gen(d),

3. a subset T = {z1, . . . , zt} ⊂ F,

4. subsets S1, . . . , Sk ⊂ T ,

5. cm1, . . . , cmk - the alleged commitments to f1, . . . , fk,

6.
{
ri ∈ F<|Si|[X]

}
i∈[k] - the polynomials describing the alleged correct openings,

i.e. having ri(z) = fi(z) for each i ∈ [k], z ∈ Si.

At the end of the protocol VPC outputs acc or rej; such that

– Completeness: Fix any k, t = poly(λ), T = {z1, . . . , zt} ⊂ F, S1, . . . , Sk ⊂
T , f1, . . . , fk ∈ F<d[X],

{
ri ∈ F<|Si|[X]

}
i∈[k]. Suppose that for each i ∈ [k],

cmi = com(fi, srs), and for each i ∈ [k] we have ZSi |(fi − ri). Then if PPC

follows open correctly with these values, VPC outputs acc with probability one.

– Knowledge soundness in the algebraic group model: There exists an
efficient E such that for any algebraic adversary A and any choice of d =
poly(λ) the probability of A winning the following game is negl(λ) over the
randomness of A, VPC and gen.

1. Given d and srs = gen(d), A outputs cm1, . . . , cmk ∈ G1.

2. E, given access to the messages of A during the previous step, outputs
f1, . . . , fk ∈ F<d[X].

6

3. A outputs T = {z1, . . . , zt} ⊂ F, S1, . . . , Sk ⊂ T,
{
ri ∈ F<|Si|[X]

}
i∈[k].

4. A takes the part of PPC in the protocol open with the inputs cm1, . . . , cmk,
T, S1, . . . , Sk, {ri}.

5. A wins if

* VPC outputs acc at the end of the protocol.

* For some i ∈ [k], ZSi - (fi − ri).

3 Our first scheme

We first state the following straightforward claim that will allow us to efficiently “uni-
formize” checks on different evaluation points.

Claim 3.1. Fix subsets S ⊂ T ⊂ F, and a polynomial g ∈ F<d[X]. Then ZS(X) divides
g(X) if and only if ZT (X) divides ZT\S(X) · g(X).

We also use the following claim, which is part of Claim 4.6 in [GWC19] where a proof
of it can be found.

Claim 3.2. Fix F1, . . . , Fk ∈ F<n[X]. Fix Z ∈ F<n[X] that decomposes to distinct linear
factors over F. Suppose that for some i ∈ [k], Z - Fi. Then, e.w.p k/|F| over uniform
γ ∈ F, Z does not divide

G :=

k∑
j=1

γj−1 · Fj .

We present our first PCS.

1. gen(d) - choose uniform x ∈ F. Output srs = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 , [x]2 , . . . ,

[
xt
]
2
).

2. com(f, srs) := [f(x)]1.

3. open
(
d, t, {cmi}i∈[k] , T = {z1, . . . , zt} ⊂ F, {Si ⊂ T}i∈[k] , {ri}i∈[k]

)
:

(a) VPC sends a random γ ∈ F.

(b) PPC computes the polynomial

h(X) :=
∑
i∈[k]

γi−1 · fi(X)− ri(X)

ZSi(X)

and using srs computes and sends W := [h(x)]1.

(c) VPC computes for each i ∈ [k], Zi :=
[
ZT\Si

(x)
]
2
.

(d) VPC computes

F :=
∏
i∈[k]

e
(
γi−1 · (cmi − [ri(x)]1), Zi

)
.

7

(e) VPC outputs acc if and only if

F = e(W, [ZT (x)]2).

We argue knowledge soundness for the above protocol. More precisely, we argue
the existence of an efficient E such that an algebraic adversary A can only win the
KS game described in Section 2.3 w.p. negl(λ).

Let A be such an algebraic adversary.

A begins by outputting cm1, . . . , cmk ∈ G1. Each cmi is a linear combination∑d−1
j=0 ai,j

[
xj
]
1
. E, who is given the coefficients {ai,j}, simply outputs the polyno-

mials

fi(X) :=
d−1∑
j=0

ai,j ·Xj .

A now outputs T = {z1, . . . , zt} ⊂ F, {Si ⊂ T}i∈[k] , {ri}i∈[k]. Assume that for
some i∗ ∈ [k],, we have ZSi∗ - (fi∗ − ri∗). We show that for any strategy of A from
this point, Vpoly outputs acc w.p. negl(λ).

In the first step of open, Vpoly chooses a random γ ∈ F. Let

f(X) :=
∑
i∈[t]

γi−1 · ZT\Si
(X) · (fi(X)− ri(X)).

We know from Claim 3.1 that Fi∗ := ZT\Si∗ · (fi∗ − ri∗) is not divisible by ZT .
Thus, using Claim 3.2, we know that e.w.p k/|F| over γ, f is not divisble by ZT .
Now A outputs W = [H(x)]1 for some H ∈ F<d[X]. According to Lemma 2.2, it
suffices to upper bound the probability that the ideal check corresponding to the
real pairing check in the protocol passes. It has the form

f(X) ≡ H(X)ZT (X).

The check passing implies that f(X) is divisible by ZT . Thus the ideal check can
only pass w.p. k/|F| = negl(λ) over the randomness of Vpoly, which implies the
same thing for the real check according to Lemma 2.2.

We summarize the efficiency properties of the scheme.

Lemma 3.3. There is a PCS S = (gen, com, open) such that

1. For positive integer d, srs = gen(d) consists of d G1 elements and t+1 G2 elements.

2. For integer n ≤ d and f ∈ F<n[X], computing com(f, srs) requires n G1-exponentiations.

3. Given T := (z1, . . . , zt) ∈ Ft, f1, . . . , fk ∈ F<d[X], {Si}i∈[k], denote by k∗ the num-
ber of distinct subsets {S∗1 , . . . , S∗k∗} in {Si}; and let K := t+

∑
i∈[k∗] (t− |S∗i |). and

denote n := max {deg(fi)}i∈[k]. Let cmi = com(fi). Then open ({cmi} , {fi} , T, {Si ⊂ T} , {ri} , srs)
requires

(a) A single G1 element to be passed from Ppoly to Vpoly.

(b) At most n G1-exponentiations of Ppoly.

(c) k− 1 G1-exponentiations, K G2-exponentiations and k∗+ 1 pairings of Vpoly.

8

4 Reducing verifier operations at the expense of proof length

We describe a variant of the scheme of Section 3 where we eliminate the verifier’s G2

operations and reduce the number of pairings to two. This comes at the cost of an
extra G1 element sent by the prover. Roughly speaking, while in Section 3 VPC used
G2 and pairing operations to compute the evaluation of a certain polynomial f encoded
in the target group Gt, in this protocol PPC gives VPC this evaluation encoded in G1,
accompanied by a proof that it is correct. We first describe the PCS, and end the section
by stating the obtained final result.

1. gen(d) outputs srs = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 , [x]2) for a random x ∈ F.

2. com(fi) = [fi(x)]1.

3. We describe the open procedure twice below. First, in a way that will be convenient
for the security analysis, and later in an equivalent more concise way that also
optimizes verifier operations, .e.g. moves operations from G2 into G1 when possible.

open({cmi} , T, {Si} , {ri}):

1. VPC sends random γ ∈ F.

2. PPC computes the polynomial

f(X) :=
∑
i∈[k]

γi−1 · ZT\Si
(X) · (fi(X)− ri(X)).

Recall that f is divisible by ZT according to Claim 3.2, and define h(X) :=
f(X)/ZT (X). Using srs, PPC computes and sends W := [h(x)]1.

3. VPC sends random z ∈ F.

4. PPC computes the polynomial

L(X) := fz(X)− ZT (z) · h(X),

where
fz(X) :=

∑
i∈[k]

γi−1 · ZT\Si
(z) · (fi(X)− ri(z))

Note that L(z) = f(z)− ZT (z) · h(z) = 0, and thus (X − z) divides L. PPC sends

W ′ :=
[
L(x)
x−z

]
1
.

5. VPC computes:

F :=
∑
i∈[k]

γi−1 · ZT\Si
(z) · (cmi − [ri(z)]1)− ZT (z) ·W

9

6. VPC outputs acc if and only if

e(F, [1]2) = e(W ′, [x− z]2).

We argue knowledge soundness for the above protocol. More precisely, we argue the
existence of an efficient E such that an algebraic adversary A can only win the KS game
w.p. negl(λ). The proof begins identically to the previous one.

Let A be such an algebraic adversary.
A begins by outputting cm1, . . . , cmk ∈ G1. Each cmi is a linear combination∑d−1

j=0 ai,j
[
xj
]
1
. E, who is given the coefficients {ai,j}, simply outputs the polynomials

fi(X) :=

d−1∑
j=0

ai,j ·Xj .

A now outputs T = {z1, . . . , zt} ⊂ F, {Si ⊂ T}i∈[k] , {ri}i∈[k]. Assume that for some
i∗ ∈ [k], we have ZSi∗ - (fi∗ − ri∗). We show that for any strategy of A from this point,
Vpoly outputs acc w.p. negl(λ).

In the first step of open, Vpoly chooses a random γ ∈ F. Let

f(X) :=
∑
i∈[k]

γi−1 · ZT\Si
· (fi(X)− ri(X)).

We know from Claim 3.1 that Fi∗ := ZT\Si∗ (fi∗−ri∗) is not divisible by ZT . Thus, using
Claim 3.2, we know that e.w.p k/|F| over γ, f is not divisble by ZT . Assume we are in
this case. Now A outputs W = [H(x)]1 for some H ∈ F<d[X], followed by VPC sending
uniform z ∈ F. Since we are in the case that f is not divisble by ZT , we know there are
at most 2d values z ∈ F such that f(z) = H(z) · ZT (z); and thus z chosen by VPC is of
this form only w.p. negl(λ). Assume we are in the case that z sent by VPC is not of this
form. PPC now outputs W ′ = [H ′(x)]1 for some H ′ ∈ F<d[X]. According to Lemma 2.2,
it suffices to upper bound the probability that the ideal check corresponding to the real
pairing check in step 6 passes. Denoting

L′(X) :=
∑
i∈[k]

γi−1ZT\Si
(z) · (fi(X)− ri(z))− ZT (z) ·H(X),

the ideal check has the form

L′(X) ≡ H ′(X) · (X − z),

and thus can pass for some H ′ ∈ F<d[X] only if L′ is divisible by (X − z), which means
L′(z) = 0. However

L′(z) =
∑
i∈[k]

γi−1ZT\Si
(z) · (fi(z)− ri(z))− ZT (z) ·H(z) = f(z)− ZT (z) ·H(z),

and we are in the case where f(z) 6= ZT (z) ·H(z). In summary, the ideal check can only
pass w.p. negl(λ) over the randomness of VPC, which implies the same thing for the real
check according to Lemma 2.2.

10

4.1 The open procedure, “cleaned up” and optimized

open({com(fi)} , {Si} , {ri}):

1. VPC sends a random challenge γ ∈ F.

2. PPC sends W := [(f/ZT)(x)]1 where

f :=
∑
i∈[k]

γi−1 · ZT\Si
(fi − ri).

3. VPC sends a random evaluation point z ∈ F

4. PPC sends W ′ := [(L(x)/(x− z)]1 where

L :=
∑
i∈[k]

γi−1ZT\Si
(z) · (fi − ri(z))− ZT (z) · (f/ZT).

5. VPC outputs acc iff e(F + zW ′, [1]2) = e(W ′, [x]2), where

F :=
∑
i∈[k]

γi−1ZT\Si
(z) · cmi −

∑
i∈[k]

γi−1ZT\Si
(z)ri(z)

1

− ZT (z)W.

From the description and analysis we obtain

Lemma 4.1. There is a PCS S = (gen, com, open) such that

1. For positive integer d, srs = gen(d) consists of d G1 elements and 2 G2 elements.

2. For integer n ≤ d and f ∈ F<n[X], computing com(f, srs) requires n G1-exponentiations.

3. Given T := (z1, . . . , zt) ∈ Ft, f1, . . . , fk ∈ F<d[X], {Si}i∈[k] and denote n :=
max {deg(fi)}i∈[k]. Let cmi = com(fi). Then open ({cmi} , {fi} , T, {Si ⊂ T} , {ri} , srs)
requires

(a) 2 G1 elements sent from PPC to VPC.

(b) at most 2n+ 1 G1-exponentiations of PPC.

(c) k + 3 G1-exponentiations and 2 pairings of VPC.

Acknowledgements

Part of this research was conducted while the second author was supported by Protocol
Labs. We thank Zachary J. Williamson for helpful conversations. We thank Suyash
Bagad for a correction.

11

References

[BFS19] B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from DARK
compilers. IACR Cryptology ePrint Archive, 2019:1229, 2019.

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-
snark parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.

[CHM+19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin:
Preprocessing zksnarks with universal and updatable SRS. IACR Cryptology
ePrint Archive, 2019:1047, 2019.

[Dra] J. Drake. https://ethresear.ch/t/slonk-a-simple-universal-snark/6420.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part II, pages 33–62, 2018.

[Gab19] A. Gabizon. Auroralight:improved prover efficiency and SRS size in a sonic-
like system. IACR Cryptology ePrint Archive, 2019:601, 2019.

[GKM+] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updat-
able and universal common reference strings with applications to zk-snarks.
IACR Cryptology ePrint Archive, 2018.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326, 2016.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Pro-
ceedings, pages 177–194, 2010.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-
knowledge snarks from linear-size universal and updateable structured ref-
erence strings. IACR Cryptology ePrint Archive, 2019:99, 2019.

12

https://eprint.iacr.org/2017/1050

	Introduction
	Previous work and our results

	Preliminaries
	Terminology and conventions
	Analysis in the AGM model
	Polynomial commitment schemes

	Our first scheme
	Reducing verifier operations at the expense of proof length
	The open procedure, ``cleaned up'' and optimized

	References

