
Streamlined Blockchains: A Simple and Elegant Approach

(A Tutorial and Survey)

Elaine Shi
Cornell University runting@gmail.com

September 16, 2019

Abstract

A blockchain protocol (also called state machine replication) allows a set of nodes to agree on
an ever-growing, linearly ordered log of transactions. The classical consensus literature suggests
two approaches for constructing a blockchain protocol: 1) through composition of single-shot
consensus instances often called Byzantine Agreement; and 2) through direct construction of
a blockchain where there is no clear-cut boundary between single-shot consensus instances.
While conceptually simple, the former approach precludes cross-instance optimizations in a
practical implementation. This perhaps explains why the latter approach has gained more
traction in practice: specifically, well-known protocols such as Paxos and PBFT all follow the
direct-construction approach.

In this tutorial, we present a new paradigm called “streamlined blockchains” for directly
constructing blockchain protocols. This paradigm enables a new family of protocols that are
extremely simple and natural: every epoch, a proposer proposes a block extending from a
notarized parent chain, and nodes vote if the proposal’s parent chain is not too old. Whenever
a block gains enough votes, it becomes notarized. Whenever a node observes a notarized chain
with several blocks of consecutive epochs at the end, then the entire chain chopping off a few
blocks at the end is final.

By varying the parameters highlighted in blue, we illustrate two variants for the partially
synchronous and synchronous settings respectively. We present very simple proofs of consistency
and liveness. We hope that this tutorial provides a compelling argument why this new family of
protocols should be used in lieu of classical candidates (e.g., PBFT, Paxos, and their variants),
both in practical implementation and for pedagogical purposes.

1 Introduction

In a blockchain protocol, a set of nodes seek to reach agreement on an ever-growing, linearly ordered
log. It is helpful to think of this log as an ordered chain of blocks where each block may contain
application-specific payload as well as metadata pertaining to the consensus protocol, and hence
the name blockchain.

In this tutorial, we consider how to construct a blockchain protocol in a “permissioned” setting,
assuming the existence of a public-key infrastructure and that the public key of every consensus
node is common knowledge. This is the also the classical setting under which consensus has been
studied for more than three decades. Classically, this problem was often called “State Machine
Replication” [12, 13, 15] or “Byzantine Fault Tolerance” [3, 9]. In this work, we also refer to it as
“consensus” for short.

Such permissioned blockchains can serve as the cornerstone not only for a private, consortium
blockchain, but also for building open-access “proof-of-stake” systems. In a proof-of-stake setting,

1

a set of nodes (called a committee) are elected based on their stake in the system to vote in the
consensus protocol. The election is typically repeated over time, using the blockchain protocol
itself to agree on the next committee (and assuming the existence of an initial committee that is
common knowledge).

The goal of this tutorial is to illustrate a new paradigm called “streamlined blockchains” that
enables extremely simple and natural blockchain constructions. This new paradigm emerged as a
result of the community’s joint push at building better consensus protocols in the past few years,
motivated by large-scale cryptocurrency applications. Elements of this idea were developed and
improved in a sequence of works, including Casper-FFT [16], Dfinity [8], Hotstuff [1], Pili [5] and
Pala [4], but understanding of this line of work still appears somewhat “scattered”.

In this tutorial, we hope to describe the simplest possible embodiments of this idea, with concise
and clean proofs that are suitable for pedagogy. We hope that this tutorial helps to illustrate the
most compelling advantage of this new paradigm, i.e., its conceptual simplicity, making the resulting
protocols desirable for practical implementation. We also contrast this new paradigm with classical
blockchain constructions represented by Paxos [9], PBFT [3], and their variants. We hope that
this will shed light on how the community’s push in the past few years has enabled a leap: we now
have practical blockchain constructions that are significantly simpler and fundamentally better than
classical approaches.

1.1 Problem Statement

Slightly informally, we would like to construct a blockchain protocol satisfying two properties for
all but a negligible fraction of executions:

• Consistency: if two blockchains chain and chain′ are ever considered final by two honest nodes,
it must be that chain � chain′ or chain′ � chain where � means “is a prefix of or equal to”.

• Liveness: if an honest node receives a transaction, the transaction will appear in every honest
node’s finalized blockchain in a bounded amount of time.

In a cryptocurrency application, all transactions contained in a final chain are considered confirmed
and the merchant may ship the product. If all nodes are honest and always correctly follow the
prescribed protocol, then designing a blockchain protocol is trivial. We consider a setting where a
subset of the nodes can be corrupt; corrupt nodes are controlled by a single adversary and they can
deviate from the protocol arbitrarily — such a fault model is commonly referred to as Byzantine
Faults in the classical distributed consensus literature.

In general, we can construct a blockchain protocol in two ways: 1) through composition of
single-shot consensus instances; and 2) direct construction of a blockchain protocol where there
is no clearly defined boundary between consensus instances. From a historical perspective, the
study of distributed consensus in fact originated from the study of one-shot consensus protocols,
often called Byzantine Agreement [10]. While composing single-shot instances is a conceptually
clean approach towards building a blockchain, cross-instance performance optimizations are often
challenging. This is arguably why later approaches such as Paxos and PBFT and their variants
— also coinciding with most deployed systems — adopt the direct-construction approach. In this
tutorial we will also focus on the direct-construction approach.

2

1.2 Classical Blockchain Protocols: A Bi-Modal Approach

Most approaches in the classical consensus literature adopt a bi-model approach. We illustrate the
idea assuming that fewer than n/3 nodes are corrupt where n denotes the total number of nodes1.

1.2.1 Normal Mode: A Natural Voting Protocol

The normal mode is simple and natural and works by super-majority voting. We shall explain
the idea semi-formally, since this is the nice part of the protocol we would like to preserve in our
new paradigm. Recall that every block is part of a blockchain and henceforth its index within the
blockchain is called its position. We assume that every block encodes its own position.

Imagine that a designated proposer proposes blocks, and nodes vote on the proposed blocks
by signing the block’s hash. Whenever a block gains votes from at least 2n/3 distinct nodes, it
becomes final. If in a blockchain every block is final, then the chain is considered final too.

An important invariant is that an honest node never votes for two distinct blocks at the same
position (even if the proposer is corrupt and proposes multiple blocks at the same position). This
enforces consistency at every position, i.e., at each position, there cannot be two different blocks
both gaining at least 2n/3 votes. The proof of consistency is extremely simple: suppose that two
different blocks at the same position both gain at least 2n/3 votes. It must be that a set of at
least 2n/3 distinct nodes denoted S1 have voted for one, and a set of at least 2n/3 distinct nodes
denoted S2 have voted for the other. Obviously |S1 ∩ S2| ≥ 2n/3 + 2n/3 − n = n/3. Since fewer
than n/3 nodes are corrupt, it must be that an honest node lives in the intersection S1∩S2 and has
voted for both blocks at the same position — but this is ruled out by the aforementioned invariant.

Such a normal-mode protocol is extremely simple and natural, and it gives consistency as long
as fewer than n/3 nodes are corrupt; and moreover, consistency does not rely on the proposer being
honest. However, if the proposer is corrupt, e.g., if it stops making proposals or makes different
proposals to different nodes, then liveness can be stalled and the blockchain can stop growing.
We note also that here, consistency is guaranteed without having to make any network timing
assumptions such as synchrony assumptions.

1.2.2 Recovery Mode: Ensuring Liveness

Given the aforementioned normal-mode protocol, the only remaining problem is how to achieve
liveness when the proposer is corrupt. We informally explain how classical protocols deal with this
problem without going into details, since this is the complicated part of classical approaches that
we would ideally like to get rid of.

Most classical protocols such as Paxos, PBFT and their variants solve this problem by falling
back to a recovery mode (often called “view change”) whenever liveness is stalled. Typically the
view change implements a mechanism to rotate to the next proposer such that progress can be
resumed. Thus a view can be regarded as a phase of the protocol in which a specific node acts as
the proposer. Without going into details, and perhaps unsurprisingly, from a technical standpoint
the view change protocol must be a full-fledged consensus protocol offering both consistency and
liveness (c.f. the normal mode guarantees only consistency assuming fewer than n/3 corrupt).

At an intuitive level, this perhaps explains why in most classical consensus approaches, the
view change is often much more complicated to understand and subtle to implement correctly than
the normal mode. In fact, the need for such a recovery mode often imposes more requirements

1Our exposition in spirit illustrates the ideas behind most classical blockchain constructions although our exposition
is not necessarily faithful to any particular protocol. In fact, we give a simplified exposition of the technical ideas to
maximally aid understanding.

3

on the normal mode too — and this is why most actual instantiations of this bi-modal idea such
as Paxos and PBFT introduce more iterations of voting in the normal mode (unlike our earlier
description that has only one iteration of voting). Very roughly, the additional iterations of voting
in the normal mode give amplified properties that the recovery mode can make use of.

1.3 Streamlined Blockchains: A New Paradigm

Classical approaches are somewhat undesirable because most of the time we expect that the pro-
tocol should operate in the normal mode (since faults should not happen very often); however,
the conceptual complications and the heavy-lifting in implementation stem from the complicated
recovery path. Ideally, we would like to achieve the following holy grail:

Can we have a blockchain protocol that is (almost) as simple as the normal mode?

Amazingly, it turns out that this is in fact possible! All the protocols we describe in this tutorial,
for different settings, can be obtained by making small tweaks to the aforementioned normal-path
voting protocol. Through these tweaks we now offer not just consistency but also liveness and thus
there is no need for a separate recovery mode! Specifically, the entire protocol always follows a
unified propose-vote paradigm as described below:

• Every epoch, a proposer proposes a block extending from a parent chain. Every block encodes
its own epoch.

• Nodes vote on the proposed block if they have seen the parent chain’s notarization and if the
parent chain is not too old (where “old” means that the block contains a small epoch number,
and we will specify the concrete parameter in the later sections).

• Whenever a block gains sufficiently many votes, it becomes notarized.

• Notarized does not mean final. Finality is determined as follows: if all blocks in a blockchain
are notarized and the chain ends at several blocks of consecutive epochs, then the entire chain
chopping off the trailing few blocks are considered final.

We show how to use this simple paradigm to obtain protocols under various network assump-
tions, by modifying the parameters highlighted in blue, and by slightly varying a couple other
details such as how epochs are determined for different settings.

So what became of the view change? As mentioned earlier, in classical approaches the view
change was necessary to attain liveness under a corrupt proposer. So technically, how can we achieve
both consistency and liveness without the view change? In the streamlined blockchain paradigm
described in this tutorial, basically every epoch embeds a proposer-rotation opportunity, and thus
an implicit view change mechanism is already inherently baked in the protocol everywhere. This is
arguably the coolest feature of this new paradigm: we show that the traditionally complicated view
change can be embedded into an extremely simple paradigm by small tweaks to the normal-path
voting protocol.

For this reason, another advantage of our streamlined blockchain protocols is that they readily
support two distinct proposer-rotation policies: the democracy-favoring policy where one wishes
to rotate proposer every block; and the classical stability-favoring policy (adopted by classical
approaches such as Paxos and PBFT) where we stick to the same proposer until it starts to
misbehave. In new cryptocurrency applications, the democracy-favoring policy may be more desired

4

due to better decentralization; however, a stability-favoring policy is likely more friendly towards
performance optimizations.

Throughout this paper, we use the democracy-favoring policy for exposition. Some recent
works [4,5] have shown how minor tweaks to the protocol can support a stability-favoring policy2.

2 A Blockchain Tolerating < 1/3 Corruptions

Recall that we consider a network consisting of n nodes numbered 0, 1, . . . , n − 1 respectively.
We assume that there is a public-key infrastructure such that all nodes’ public keys are common
knowledge. In this section we shall assume that fewer than n/3 nodes are corrupt. In our protocol,
whenever a node multicasts a message to everyone, it means it sends this message to every node.

Delay parameter ∆. The protocol is parametrized with a parameter ∆ which captures our a-
priori guess of the maximum message delay. We will prove that consistency holds regardless even
if our guess of ∆ is wrong and network delays are arbitrary. However, liveness only holds during
“periods of synchrony”, i.e., periods in which honest messages are delivered in at most ∆ rounds.

Remark 1. Although we assume that time progresses in discrete rounds in this tutorial, all the
results still hold if the round is infinitesimally small, i.e., if time is continuous. We assume that
all nodes have local clocks that increment per round. Since clock offsets can be absorbed by
the network delay, our consistency proof holds even if clock offsets between nodes are arbitrarily
large. However, unsynchronized clocks may stall liveness by preventing a period of synchrony from
happening.

2.1 Valid Blockchain and Freshness

Our protocol will progress in epochs where each epoch contains 2∆ rounds, i.e., long enough for
honest nodes to make a round trip during a period of synchrony.

Valid blockchain. A blockchain, often denoted chain, is an ordered sequence of blocks. Each
block chain[`] where ` ≥ 0 is of the format (e,TXs, h−1), where e encodes the epoch number, TXs
is application-specific payload (e.g., a set of transactions to confirm), and h−1 is the parent block’s
hash. In a valid blockchain chain, the 0-th block must be a special genesis block of the form
(0,⊥,⊥).

When we define a chain’s length denoted |chain|, it does not count the genesis block. This way,
the chain’s length is the same as the index of the last block. Henceforth for ` ≥ 0, we use the
notation chain[: `] to denote the prefix of the blockchain up to the `-th block. and chain[: −`] is an
alias for chain[: m− `] where m := |chain| denotes the length of the blockchain. Similarly, chain[−`]
is an alias for chain[m− `].

For a blockchain chain to be valid, all the blocks must have strictly increasing epoch numbers,
and moreover for every ` ≥ 0, the block chain[`].h−1 must be equal to H(chain[: ` − 1]). In our
protocol, all protocol messages containing ill-formed blockchains are immediately discarded.

2Author’s note: even if the syntactical changes to the protocol are minor, it is important that they be done
correctly since some additional subtleties arise in the liveness proof for a stability-favoring policy. See the recent
works [4, 5] for more explanation.

5

Freshness. For a blockchain chain, the larger chain[−1].e is the fresher chain is. Formally, we say
that chain is fresher than chain′ if chain[−1].e > chain′[−1].e. For a blockchain chain, chain[−1].e is
also said to be the blockchain chain’s epoch number.

2.2 Protocol

Now, imagine that the protocol proceeds in epochs numbered 1, 2, Each epoch is 2∆ rounds,
i.e., the maximum round-trip delay during a period of synchrony. In each epoch e ∈ {1, 2, . . . , }, we
use a hash function H∗ (i.e., a random oracle) to select a random node (H∗(e) mod n) to be the
designated proposer — note that here we are using a democracy-favoring proposer-rotation policy
as an example.

The protocol proceeds as follows where we assume that a node always signs every message it
wants to send, and that every valid message must be tagged with the purported sender; further,
nodes discard messages with invalid signatures. The notation “ ” denotes a wildcard field.

Notarization: A valid vote for chain from node i is a valid signature from node i on H(chain)
where H is a global hash function chosen at random from a collision-resistant hash family upfront.
A collection of at least 2n/3 votes from distinct nodes on some chain is said to be a notarization
for chain.

For each epoch e = 1, 2, . . .:

• Propose: At the beginning of the epoch, node (H∗(e) mod n) proposes a new block B :=
(e,TXs, h−1) extending the freshest notarized chain in its view denoted chain. Here TXs
denotes a set of outstanding transactions to confirm and h−1 = H(chain). The proposal,
containing chain||B and a notarization for chain, is signed and multicast to everyone — here
chain is referred to as the parent chain of B.

• Vote: Every node performs the following: when the first valid proposal of the form
chain||(e, ,) is received from node (H∗(e) mod n) with a valid notarization on chain, vote
on the proposal iff chain is at least as fresh as the freshest notarized chain the node has
observed at the beginning of the previous epoch or if the current epoch e = 1.

To vote on chain||B, simply multicast a signature on the value H(chain||B) to everyone.

Finalization: At any time, if a notarized chain has been observed ending at three consecutive
epochs, then chain[: −2] is considered final.

Remark 2 (Block and chain as aliases of each other). Suppose that there are no hash collisions,
then due to the structure of the blockchain where every block must refer to its parent’s hash, in
fact a block chain[`] and the chain chain[: `] can be used interchangeably, since the block chain[`]
uniquely defines the entire prefix chain[: `]. Therefore, henceforth whenever convenient, we use “a
vote or a notarization for chain[`]” and “a vote or notarization for chain[: `]” interchangeably.

Remark 3 (Practical considerations). The above protocol is described in a way that maximizes
conceptual simplicity. In practice, a couple of obvious optimizations can be made. First, the hash
H can be computed incrementally by hashing the parent block’s hash and the current block’s
contents. Second, the proposer need not include the entire parent chain in the proposal, it suffices
to include the hash h−1 = H(chain). When a proposal is received, if the recipient has not received
a parent chain consistent with h−1, it buffers this proposal until it has received a consistent parent
chain.

6

2.3 Consistency Proof

We now present a very simple consistency proof. Recall that the adversary controls strictly fewer
than n/3 nodes. Throughout, we assume that the signature and hash schemes are ideal, i.e., the
adversary cannot forge honest nodes’ signatures or find hash collisions. Technically we are removing
from our consideration the negligible fraction of bad executions in which an honest node’s signature
is forged or hash collisions are found — all the lemmas and theorems below hold for all but the
negligible fraction of such bad executions.

We say that some string is in honest view iff some honest node observes it at some point during
the execution. The following simply lemma is in fact already proven in Section 1, but we restate it
for completeness.

A simple fact is the following: if there is a notarization for chain in honest view, there must be
a notarization chain[: −1] in honest view since if not, no honest node would have voted for chain
and chain cannot gain notarization in honest view. Applying this argument inductively, if there is
a notarization of chain in honest view then there must be a notarization of every prefix of chain in
honest view.

Lemma 2.1 (Uniqueness per epoch). There cannot be two different blocks of epoch e both notarized
in honest view.

Proof. Suppose that two different blocks B1 and B2 of epoch e both gained notarization in honest
view. Let S1 be the set of at least 2n/3 nodes who have signed B1 and let S2 be the set of at least
2n/3 nodes who have signed B2. It must be that |S1 ∩ S2| ≥ 2n/3 + 2n/3− n = n/3. This means
that at least one honest node is in S1 ∩ S2, and this honest node must have signed both B1 and
B2 in epoch e. By our protocol definition, every honest node signs only one epoch-e block in each
epoch e. Thus we have reached a contradiction.

Theorem 2.2 (Consistency). Suppose that chain and chain′ are notarized chains in honest view
both ending at three consecutive epochs, it must be that chain[: −2] � chain′[: −2] or chain′[: −2] �
chain[: −2].

Proof. Suppose that chain ends with three blocks of epochs e−2, e−1, and e, and chain′ ends with
three blocks of epochs e′− 2, e′− 1, and e′. Without loss of generality, assume that e′ ≥ e. For the
sake of reaching a contradiction, suppose that chain[: −2] and chain′[: −2] are not prefixes of each
other. Due to Lemma 2.1, chain′ cannot have a block at epochs e− 2, e− 1, or e; since otherwise
chain′[: −2] must contain the prefix chain[: −2] which ends at a block of epoch e − 2. Therefore,
there is some block in chain′ with an epoch number greater than e. Let e′′ > e be the smallest
epoch number greater than e in chain′, and let chain′[`] be the block in chain′ with epoch number
e′′. It must be that chain′[`− 1] has epoch smaller than e− 2.

Since (every prefix of) chain gained notarization in honest view, it must be that at least 2n/3
distinct nodes have signed the block chain[−1] of epoch e− 1, meaning that more than n/3 honest
nodes have signed this block. Moreover, honest nodes can only sign this block in epoch e− 1. This
means that more than n/3 honest nodes have observed a notarization for chain[: −2] of epoch e− 2
in epoch e − 1, i.e., before the beginning of epoch e — let S denote this set of more than n/3
honest nodes. The set S therefore will not vote for chain′[`] in epoch e′′ > e which extends from a
parent chain of epoch less than e− 2; and thus chain′[`] cannot have gained notarization in honest
view.

7

2.4 Liveness Proof

Message delivery assumption during periods of synchrony. As mentioned earlier, a period
of synchrony is a period with good network conditions such that all messages sent by honest nodes
are delivered to the recipients within at most ∆ rounds.

Without loss of generality, we shall assume that every honest node always echos (i.e., multicasts)
every fresh message as soon as it is observed. Thus, during a period of synchrony, the following
holds:

If an honest node has observed a message m in round t, then all honest nodes must have
observed m by the beginning of round t+ ∆ if not earlier.

Liveness proof. Suppose a period of synchrony eventually takes place. We now prove liveness
during such a period of synchrony. Specifically, we prove that during a period of synchrony, honest
nodes’ finalized blockchains will grow whenever there are 3 consecutive epochs with honest proposers
(note that under random proposer election, this takes O(1) number of epochs in expectation).

To see this, it suffices to show that every honest node will vote on the proposal of an honest
proposer — since an honest proposer makes a proposal at the beginning of the epoch e, as long as
every honest node votes on it, the honest votes will have been received by all honest nodes by the
beginning of epoch e + 1; and thus epoch (e + 1)’s proposer, if honest, will propose to extend a
notarized chain ending at epoch e+ 1. We now prove this.

If an honest node i rejects a proposal from an honest proposer j, it must be that the proposed
block extends from a parent chain that is less fresh than the freshest notarized chain (denoted
chain∗) observed at the beginning of the previous epoch. However, if i has observed chain∗ at the
beginning of the previous epoch, then due to the message delivery assumption during a period of
synchrony, by the beginning of this epoch, node j must have observed it and thus j cannot have
proposed to extend from a less fresh parent chain.

Remark 4. Alternatively, we can modify the proposer rotation policy for the same node to serve
as a proposer for three consecutive epochs. In this case, progress will be made whenever an honest
proposer makes proposals for 3 consecutive epochs.

3 A Synchronous Blockchain Tolerating Minority Corruptions

In the previous section, we presented a streamlined blockchain protocol whose consistency guarantee
holds with arbitrary network delays, but whose liveness guarantee may hold only during periods
of synchrony — such protocols are said to be secure in a “partially synchronous” network [6]. Due
to a well-known lower bound by Dwork et al. [6], no partially synchronous protocol can tolerate
n/3 or more corruptions, and therefore the protocol in the previous section is in fact optimal in
resilience.

In this section we illustrate another streamlined blockchain protocol that tolerates up to mi-
nority corruptions. To achieve this, however, we must make a synchrony assumption even for the
consistency proof. Recall that earlier in Section 2.4 we made the following synchrony assumption
for proving liveness:

If an honest node has observed a message m in round t, then all honest nodes must have
observed m by the beginning of round t+ ∆ if not earlier.

In this section, we shall make this assumption for proving both consistency and liveness.

8

Remark 5. The consensus problem would be trivial if all honest nodes must observe every message
m in the same round. In fact, in the synchronous setting, the crux of the consensus problem is
essentially to overcome the ∆ difference in the timing at which honest nodes observe the same
message m.

3.1 Protocol

The protocol is almost identical as the one in Section 2 except for two modifications: 1) the param-
eters for forming a notarization and for finalizations are chosen differently; and 2) the finalization
rule makes an additional check for conflicting proposals. The protocol is described below and the
difference from the earlier protocol in Section 2 is highlighted in blue.

Notarization: A valid vote for chain from node i is a valid signature from node i on H(chain)
where H is a hash function chosen at random from a collision-resistant hash family. A collection
of at least n/2 votes from distinct nodes on some chain is said to be a notarization for chain.

For each epoch e = 1, 2, . . .:

• Propose: At the beginning of the epoch, node (H∗(e) mod n) proposes a new block B :=
(e,TXs, h−1) extending the freshest notarized chain in its view denoted chain. Here TXs
denotes a set of outstanding transactions to confirm and h−1 = H(chain). The proposal,
containing chain||B and a notarization for chain, is signed and multicast to everyone — here
chain is referred to as the parent chain of B.

• Vote: Every node performs the following: when the first valid proposal of the form
chain||(e, ,) is received from node (H∗(e) mod n) with a valid notarization on chain, vote
on the proposal iff chain is at least as fresh as the freshest notarized chain the node has
observed at the beginning of the previous epoch or if the current epoch e = 1.

To vote on chain||B, simply multicast a signature on the value H(chain||B) to everyone.

Finalization: At any time, if a notarized chain has been observed ending at 6 blocks with
consecutive epoch numbers, and moreover for each these 6 epoch numbers, no conflicting proposal
(from an eligible proposer) for a different block has been seen, then the prefix chain[: −5] is final.

3.2 Consistency Proof

In comparison with Section 2.3, under minority corruption, the “uniqueness per epoch” lemma
(Lemma 2.1) no longer holds. Consistency now crucially relies on the new finalization rule which
additionally checks for conflicting proposals. We thus present a different but nonetheless simple
consistency proof. Henceforth we use the notation chain〈e〉 to denote the block at epoch e in chain,
and we use chain〈: e〉 to denote the prefix of chain up to and including the block of epoch e.

Lemma 3.1 (No contiguous skipping). Suppose that a notarized chain with two consecutive epoch
numbers e and e+ 1 appear in honest view. Then, no notarized chain in honest view whose ending
epoch at least e can skip all of the epochs e, e + 1, e + 2, e + 3 (i.e., one of these epochs must be
contained in the notarized chain).

Proof. Let chain be the notarized chain in honest view with two consecutive epochs e and e+ 1. It
must be that at least one honest node i has voted for chain〈: e + 1〉 during epoch e + 1, and thus
i has observed a notarization for chain〈: e〉 in epoch e + 1. Therefore all honest nodes must have

9

observed a notarization for chain〈: e〉 in epoch e+ 2, i.e., by the beginning of epoch e+ 3. Thus in
any epoch e′ > e+ 3 no honest node will vote to extend a parent chain whose epoch is smaller than
e.

Suppose chain′ is a notarized chain in honest view whose ending epoch is at least e + 4 and
moreover chain′ does not contain the epochs e, e + 1, e + 2, e + 3. Let e′ be the smallest epoch in
chain′ that is greater than e + 3. It must be that at least one honest node voted on chain′〈: e′〉
during epoch e′ but this is impossible because chain′〈: e′〉’s parent has epoch smaller than e.

Theorem 3.2 (Consistency). Suppose that an honest node i triggered the finalization rule on
chain and an honest node j triggered the finalization rule on chain′, then it must be that either
chain[: −5] � chain′[: −5] or chain′[: −5] � chain[: −5].

Note that i and j can be the same or different node in the above theorem.

Proof. Suppose that chain ends at 6 consecutive epochs e − 5, e − 4, . . . , e and chain′ ends at 6
consecutive epochs e′ − 5, e′ − 4, . . . , e′. Without loss of generality, assume that e′ ≥ e.

Since chain contains two consecutive epochs e − 5 and e − 4, due to Lemma 3.1, chain′ cannot
skip all of epochs e − 5, e − 4, e − 3, e − 2. Therefore there must be a block in chain′ at epoch
ẽ ∈ {e−5, e−4, e−3, e−2}. Thus, at least one honest node must have voted for chain′〈ẽ〉 in epoch
ẽ, and this honest node must have observed a proposal for chain′〈ẽ〉 from an eligible proposer in
epoch ẽ. This means that all honest nodes must have observed a proposal for chain′〈ẽ〉 from an
eligible proposer by the beginning of ẽ+ 2 ≤ e.

Notice that a notarization for chain cannot appear in honest view before epoch e since honest
nodes will only vote for chain in epoch e. Thus the finalization rule for chain must be triggered after
epoch e starts, but by this time all honest nodes have observed a proposal for chain′〈: ẽ〉. Therefore
it must be that chain′〈: ẽ〉 = chain〈: ẽ〉 since otherwise the finalization rule cannot trigger on chain
due to seeing a conflicting proposal for ẽ.

3.3 Liveness Proof

We can show that honest nodes’ finalized chains must grow whenever there are 6 consecutive
epochs all with honest proposers. The proof follows almost identically as in Section 2.4, where we
can prove that an honest proposer’s proposal never gets rejected by honest recipients. The liveness
claim therefore follows by observing that an honest proposer does not propose two blocks of the
same epoch.

4 Additional Improvements and References

Optimistic responsiveness. The protocols described earlier are preconfigured with an antici-
pated delay parameter ∆, and a new block can only be confirmed per Θ(∆) rounds (also called
an epoch earlier). In practice, if and whenever the actual network delay δ is much smaller than
∆, it would be desirable to confirm transactions as fast as the network makes progress, i.e., the
confirmation time should be dependent only on the actual delay δ and not on the a-priori upper
bound ∆. Protocols that achieve this property are said to be optimistically responsive [14].

In Pala [4] and Pili [5], the authors show that with very minor tweaks to protocols described in
this tutorial, one can achieve optimistic responsiveness in the partial synchronous and synchronous
settings respectively. Later versions of the Hotstuff [1] paper and subsequently Sync Hotstuff [2]
also achieved optimistic responsiveness.

10

Synchronous and yet partition tolerant. The synchronous, honest-majority protocol de-
scribed in Section 3 makes a strong network synchrony assumption for its consistency proof. Specif-
ically, every honest node’s messages must be delivered within ∆ delay. In other words, if an honest
node ever temporarily drops offline and violates the ∆ bound, it is treated as corrupt by the model
and the consensus protocol is no longer required to provide consistency and liveness guarantees
for this node. In practice, typically no one can deliver 100% uptime — since blockchains are long
running, every node may become offline at some point, and thus at the end time, the classical
synchronous model will treat everyone as corrupt! This means that protocols proven secure in
the classical synchronous model do not necessarily offer strong enough robustness for practical de-
ployment. A symptom of this is that almost all known synchronous consensus protocols appear
under-specified and unimplementable: typically these protocols do not fully specify what a node
should do if it receives messages out of sync, e.g., after coming back online after a short outage
(and it is dangerous to leave this decision entirely to an ordinary implementer).

Recently, Guo, Pass, and Shi [7] propose a new model that allows one to capture a notion of
“best-possible partition tolerance” while making mild network timing assumptions. Specifically, in
their model, a secure consensus protocol must provide both consistency and liveness to all honest
nodes, even those who might have suffered from temporary outages but have come back online,
as long as at any point of time, there exists a set of honest and online nodes that are majority
in size. Moreover, this honest and online set may even churn rapidly over time. Given Guo et
al.’s model, a recent work called Pili showed how to achieve this notion of best-possible partition
tolerance through very minor tweaks to the protocol described in Section 3 (and at the same time
offering optimistic responsiveness too).

Reference implementation. We refer the reader to an open-source implementation of Pala
(https://github.com/thundercore/pala). This implementation adopted a doubly-streamlined,
and optimistically responsive variant of the protocol described in Section 2. We briefly explain
the “doubly-streamlined” idea: in the protocol in Section 2, a node must have received the parent
chain’s notarization to vote on the next block — this can lead to pipeline stalls in settings with long
delay and large bandwidth. Double streamlining is a generalization of the protocol in Section 2
such that nodes can propose and vote on a block as long as its k-th ancestor’s notarization has
been received; however, for finalization, one has to chop off roughly k blocks too.

Acknowledgments

We gratefully acknowledge Kartik Nayak, Ling Ren, Robbert van Renesse, and Steven Galbraith
for helpful feedback on improving the writeup. The author would like to thank T-H. Hubert Chan
and Rafael Pass for inspiring discussions.

References

[1] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience, one-
message BFT devil. CoRR, abs/1803.05069, 2018.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. Cryptology ePrint Archive, Report
2019/270, 2019. https://eprint.iacr.org/2019/270.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, 1999.

11

https://eprint.iacr.org/2019/270

[4] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous
blockchain. Manuscript, 2018. https://eprint.iacr.org/2018/981.

[5] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pili: A simple, fast, and robust family of
blockchain protocols. Cryptology ePrint Archive, Report 2018/980, 2018. https://eprint.

iacr.org/2018/980.

[6] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 1988.

[7] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance.
Cryptology ePrint Archive, 2018.

[8] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series:
Consensus system. https://dfinity.org/tech.

[9] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998.

[10] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[12] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In DISC, 2017.

[13] Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In CSF, 2017.

[14] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Eurocrypt, 2018.

[15] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[16] Virgil Griffith Vitalik Buterin. Casper the friendly finality gadget. https://arxiv.org/abs/
1710.09437.

A Notations

12

https://eprint.iacr.org/2018/981
https://eprint.iacr.org/2018/980
https://eprint.iacr.org/2018/980
https://dfinity.org/tech
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437

Variable Meaning

chain blockchain
chain[: `] prefix of chain upto and including the `-th block
chain[: −`] prefix of chain after removing the trailing ` blocks

∆ maximum network delay between honest nodes (during a period of synchrony)
e epoch number, i.e., a collection of 2∆ rounds
n number of nodes
h−1 parent hash encoded in a block
TXs application-specific payload in a block, e.g., a set of transactions to confirm
H collision-resistant hash function for hashing blockchains
H∗ a random oracle for proposer election

13

	Introduction
	Problem Statement
	Classical Blockchain Protocols: A Bi-Modal Approach
	Normal Mode: A Natural Voting Protocol
	Recovery Mode: Ensuring Liveness

	Streamlined Blockchains: A New Paradigm

	A Blockchain Tolerating <1/3 Corruptions
	Valid Blockchain and Freshness
	Protocol
	Consistency Proof
	Liveness Proof

	A Synchronous Blockchain Tolerating Minority Corruptions
	Protocol
	Consistency Proof
	Liveness Proof

	Additional Improvements and References
	Notations

