
Streamlet: Textbook Streamlined Blockchains

Benjamin Y Chan1 and Elaine Shi1

1Cornell University - {byc, elaine}@cs.cornell.edu

January 24, 2020

Abstract

In the past five years or so, numerous blockchain projects have made tremendous progress
towards improving permissioned consensus protocols (partly due to their promised applications
in Proof-of-Stake cryptocurrencies). Although a significant leap has silently taken place in our
understanding of consensus protocols, it is rather difficult to navigate this body of work, and
knowledge of the new techniques appears scattered.

In this paper, we describe an extremely simple and natural paradigm for constructing con-
sensus protocols called Streamlet. Our protocols are inspired by the core techniques that have
been uncovered in the past five years of work; but to the best of our knowledge our embodiment
is simpler than ever before and we accomplish this by taking a “streamlining” idea to its full
potential. We hope that our textbook constructions will help to decipher the past five year’s
of work on consensus partly driven by the cryptocurrency community — in particular, how
remarkably simple the new generation of consensus protocols have become in comparison with
classical schemes such as PBFT and Paxos.

1

1 Introduction

Distributed consensus allows a set of players to agree on an ever-growing, linearly ordered log of
transactions, and is the core abstraction behind modern cryptocurrency systems such as Bitcoin
and Ethereum. Since transactions are typically batched into “blocks” during consensus, we also
refer to such consensus protocols as blockchain protocols.

As we all know, by leveraging Proof-of-Work (PoW), Bitcoin’s Nakamoto consensus [9,17,19,20]
was the first to achieve consensus in an open environment where everyone can join as a participant.
However, partly due to the enormous energy waste of PoW, the community has been pushing for
a new paradigm called Proof-of-Stake (PoS), where, roughly speaking, players have voting power
proportional to their stake (i.e., in terms of cryptocurrencies owned) in the system. Interesting,
as many works have shown [6, 7, 12], PoS systems actually return to the roots of the classical
distributed systems literature, and rely instead on “permissioned” consensus as a core building
block. In essence, these PoS systems typically employ a committee reconfiguration mechanism
to rotate the consensus participants over time based on the latest stake distribution; and at any
snapshot of time, the elected participants run a permissioned consensus protocol — motivating a
renewed focus on the permissioned setting.

Consensus protocols are notoriously difficult to understand [18]. In this paper, building on
recent work motivated by new applications in blockchain protocols, we present an absurdly simple
protocol that we hope simplifies the consensus problem once and for all.

1.1 The Streamlined Blockchain Paradigm

In this paper, we focus on how to construct such a permissioned consensus protocol. Specifically,
we consider a classic setting where the set of players is known a-priori and their public keys are
common knowledge. A subset of the players may be corrupt, and corrupt players can deviate from
the protocol arbitrarily (also called the Byzantine fault model). Partly driven by the PoS paradigm,
in the past five years, cryptocurrency developers and academic researchers have made tremendous
efforts at designing better permissioned consensus protocols, and a plethora of protocols [1, 2, 4–6,
11,14,22] have been proposed, making it difficult to navigate and compare.

Recently, a tutorial by Shi [21] tried to decipher the recent body of work on distributed con-
sensus. Shi points out that in fact, a tremendous leap has silently taken place: thanks to the
community’s joint efforts, we now have a new family of protocols, referred to by Shi as “stream-
lined blockchains”, that are remarkably simple and depart from the framework adopted by classical
protocols such as PBFT [3] and (Byzantine) Paxos [15].

More concretely, almost all known classical protocols such as PBFT [3], Paxos [15], and their
variants [10,13], adopt a bi-modal approach: the protocol typically consists of a simple normal path
where a leader makes proposals and everyone votes; and when the normal path fails, the protocol
switches to a (typically much more complicated) fall-back mode typically called a “view change” [3].
From a technical perspective, the normal path promises only consistency and offers no liveness if
the leader is corrupt; whereas the view change protocol must essentially embed a “full-fledged”
consensus that offers both consistency and liveness. As such, the complexity of classical protocols
such as PBFT and Paxos arises due to the view change.

By contrast, Shi [21] described streamlined blockchains as a family of protocols that are (almost)
as simple and natural as the normal path of classical protocols, but provide full consensus. In a
streamlined blockchain protocol, there is only one mode of operation: a leader proposes a block,

1

players vote, and this propose-vote process repeats over time for confirming more and more blocks.
Essentially, by making a couple minor and natural tweaks to the normal path of classical consensus
(e.g., PBFT and Paxos), we can get full consensus!

We point out that like in most schemes that have been adopted in practice, we directly construct
a blockchain; whereas an alternative approach is through sequential and/or parallel composition of
single-shot consensus instances (often called Byzantine Agreement [16]). The former approach (i.e.,
direct construction) typically results in a blockchain protocol where there is no clear-cut boundary
between consensus instances — this is favorable in practice partly because it facilitates system-level
pipelining and optimization (some of which are “cross-instance” in nature). In our protocol, every
epoch implicitly offers a view-change opportunity, and this is also why we can have a different
leader in every epoch.

1.2 Goal: A Simplest-Possible, Unified Protocol

In the same tutorial, Shi [21] also advocated for having a simplest-possible, unified protocol under
the streamlined blockchain paradigm — such that not only is this protocol an ideal candidate for
teaching, but also an ideal candidate for practical implementation and deployment.

Like in [21], we take simplicity to be a first-order principle. Especially with consensus protocols,
complexity often results in safety or liveness bugs in practice, a priori defeating the point of per-
formance optimization in applications where safety is important (like cryptocurrency). A protocol
that is hard to understand makes for code that is hard to understand. Therefore, we strongly
believe that designing simpler protocols is important work; if it is performant, even better.

One area for improvement immediately comes to mind: the protocols described in Shi’s tuto-
rial [21] (and the closely related Pili [5] and Pala [4]) use a freshness/staleness trick where voters
must check that the proposed block is extending from a parent chain that is “not too stale” by
some technical definition of “staleness” before voting on the block. The definition of staleness is
subtle and requires significant care. Unfortunately, this complexity has proven to be a central point
of confusion while teaching the protocol and throughout attempts to implement the protocol.

An ideal protocol would avoid complexity such as the staleness check, while preserving consis-
tency and liveness. This is non-trivial. We emphasize that even though the output of this process
may be a simple 5-line protocol, it is the culmination of a long line of work by the distributed
systems community, marred by failure, to make consensus understandable to all.

1.3 Our Contributions

In this work, we make a further attempt at designing a simplest-possible, textbook streamlined
blockchain protocol. We present a new family of protocols called Streamlet, which we believe to
be simpler and more natural than any of the existing efforts towards this direction [1,4,5,21,22] (we
will elaborate on the comparison later on). We stress that our goal is not to propose a new consensus
protocol with theoretically novel properties, but rather, to simplify consensus to an extreme such
that the entire protocol is the simplest possible, takes little effort to understand and memorize,
and thwarts mistakes during implementation in the sense that there is no subtlety in the protocol
description that a non-expert would find unintuitive.

Specifically, we present two instantiations of our Streamlet paradigm: one that is secure
against < 1/3 corruptions and tolerates arbitrary network delays; and one that secures against
minority corruptions and whose safety guarantees rely on network synchrony assumptions.

2

Since our protocols are extremely simple, we informally describe the Streamlet paradigm
right off the bat. The protocol below is for the 1/3 setting and tolerates arbitrary network delays
— such protocols are said to be partially synchronous [8] — but we will later explain how to make
a couple minor tweaks to turn it into a synchronous, honest-majority protocol.

Consider a network where delays can be arbitrary. We would like to have a consensus protocol
that always preserves consistency regardless of the network delay; however, when the network
conditions are good (often called a period of synchrony), i.e., when honest processes can send
messages to each other within ∆ rounds of delay, we would like the protocol to achieve liveness.

Imagine that the protocol continues in incrementing epochs, where each epoch consists of 2∆
rounds, i.e. each epoch is long enough for honest processes to perform at least one network round-
trip during a period of synchrony. In each epoch e, a well-defined and publicly known process is
elected as the leader who will be in charge of proposing a block. A valid blockchain is an ordered
sequence of blocks each containing a parent hash that encodes the hash of the parent chain, an epoch
number denoted e, and an arbitrary payload string (e.g., a set of transactions). In our protocol,
processes will vote on blocks proposed by the leader of each epoch. Henceforth, a collection of
signatures on some block from at least 2n/3 distinct processes is called a notarization for the block.
A notarized block is a block accompanied by a notarization. If every block is notarized in some
chain, we say that the chain is notarized.

Notably, blocks are tagged with the epoch number e, so that at most one block can be notarized
(in honest view) per epoch. This fact is crucial to the design and safety of the protocol.

The Streamlet protocol in a nutshell. In each epoch e = 1, 2, . . . ,, the processes perform the
following where all messages are signed by the sender:

• Propose. The leader of epoch e identifies the longest notarized chain observed so far, and
proposes a new block extending from this parent chain.

• Vote. A process votes on the first proposal received from the current epoch’s leader iff 1) it has
observed a notarized parent chain consistent with the parent hash declared in the proposed
block; 2) it has not yet observed any block notarized at the same height (henceforth a block’s
position in a blockchain is said to be its height).

Finality rule. At any time, if a notarized chain has been observed in which the last three blocks
have consecutive epochs, then the prefix of the chain, chopping off the last block, is considered
final.

In Section 3 we present our protocol more formally, and we show a simple consistency and
liveness proof for a partially synchronous network with < 1/3 corruptions. In Section 4, we make
a couple minor tweaks to the above protocol and prove it secure under honest majority in a syn-
chronous network1. The tweaks include 1) requiring ≥ n/2 signatures for notarization; 2) looking
for 6 consecutive epochs in a notarized chain and chopping off 5 for finalization; further, at final-
ization time, checking to make sure that the 6 blocks at consecutive epochs do not have conflicting
notarizations at the same heights.

1Note that due to a well-known lower bound by Dwork et al. [8], for 1/3 or more corruptions, network synchrony
assumptions are necessary for reaching consensus.

3

For both our partially synchronous and synchronous protocols, we will show that transactions
get confirmed in expected O(1) rounds under random leader election. In the appendix, we show
tweaks to our protocol that yield better constants.

1.4 Comparison with Existing Works

As mentioned, the streamlined blockchain idea was born out of the joint efforts of the community,
but knowledge of this approach seems very much scattered, which strongly calls for a unified
textbook scheme. In comparison with earlier works, we believe that our protocols are the simplest
and most natural of them all — we therefore recommend it for pedagogical purposes and for
practical implementation. A major reason we can achieve simplicity is that we exploit the full
power of “streamlining”:

• Single type of vote. Whereas earlier works including classical approaches (e.g., PBFT [3],
Paxos [15]) and even very recent, more streamlined approaches (e.g., Hotstuff [1,2]) required
multiple rounds of voting or multiple types of votes (e.g., in PBFT, the multiple rounds of
voting are called prepare and commit respectively), we get away with a single type of vote.
In some (informal) sense, we are piggybacking the later rounds of voting onto the subsequent
blocks’ notarizations; and notarizations on subsequent blocks amplify the common belief of
ancestor blocks.

• A unified “propose-vote” paradigm. Classical approaches (e.g., PBFT [3], Paxos [15]) work
by combining a normal path and a (often complicated) view change sub-protocol. Although
more recent works such as Hotstuff [1,2] have made the view change subprotocol very simple,
it did not appear to be a primary goal of these works to streamline the blockchain protocol
to the full potential and completely remove the need for a separate view change path.

In a sense, Streamlet builds upon the core techniques these earlier works (e.g., Hotstuff [1,
2]) leveraged to simplify the view change, but we streamline even the view change away and
fit the entire protocol under a unified “propose-vote” paradigm — this is accomplished with
the help of a new and natural finalization rule that works very much like the way Bitcoin’s
Nakamoto consensus chops off trailing blocks for finalization (however our finality guarantees
are deterministic assuming ideal signatures and hash functions whereas Bitcoin’s finality
guarantees are probabilistic).

Closest related works. Our protocol is closest in nature to the ones described in Shi’s tuto-
rial [21], which in turn are inspired by the recent works Pili [5] and Pala [4]. To the best of our
knowledge, these [4, 5, 21] are the only known works (offering full consistency and liveness proofs)
where the authors aim to fit the entire consensus protocol under a unified “propose-vote” paradigm
(we may call this paradigm “full streamlining”). The Streamlet family of protocols are immedi-
ately inspired by their full-streamlining paradigm, but our approach is even simpler. Specifically,
the prior works [4,5,21] use a freshness/staleness trick where voters must check that the proposed
block is extending from a parent chain that is “not too stale” by some technical definition of “stal-
eness” before voting on the block. The definition of staleness is the most subtle part of the prior
protocols [4, 5, 21] and also requires some care in implementation.

In our Streamlet protocol family, we completely remove the notion of freshness/staleness.
Instead, the staleness check during voting is replaced with a natural rule that is easy to implement:
a voter now checks that there is no conflicting block notarized at the same height before voting.

4

Finally, we point out that the first streamlined blockchain is in fact implicitly embodied in the
Casper protocol by Buterin and Griffith [22], which Ethereum plans to use as a finality gadget on
top of their PoW chain. Casper in fact also leverages a full-streamlining idea although their work
did not provide a full liveness proof and their (unproven) liveness mechanism is somewhat coupled
with the underlying PoW’s block proposal process.

Non-goals. We stress that micro-optimizing the concrete constants related to confirmation time
is not a goal of our paper. In this paper, we instead take simplicity and understandability to be
first-class principles.

In our protocols, transactions get confirmed in 4∆ rounds during a period of synchrony in
the partially synchronous protocol in the optimistic case, and in 12∆ rounds for the synchronous
protocol. It is in fact easy to reduce the constants further by introducing additional artifacts into the
protocol description. Indeed, some earlier works (e.g., Sync-Hotstuff [2]) focused on the somewhat
opposite goal of getting the constants to be the smallest possible at the price of complicating the
protocol description — for example, Sync-Hotstuff claims 2∆ confirmation latency but they need
to retain a bi-modal approach with a normal path and a separate view change. To illustrate this
point, in our appendices, we show some ways to improve the confirmation time but at the price of
introducing more types of votes or more synchronization points during the protocol — we stress
that even the protocols in our appendices are notably simple in comparison with related works and
they only have one mode of operation rather than two.

2 Preliminaries

2.1 Execution Model

We consider the following execution environment. There are in total n processes, and all processes
have a public key that is common knowledge. Each process retains its own secret key for signing
messages.

The adversary may control a subset of the processes which are said to be corrupt, and the
remaining processes not under adversarial control are honest. Honest processes always faithfully
follow the prescribed protocol but corrupt processes can deviate from the prescribed protocol ar-
bitrarily (often called Byzantine faults). W assume that the adversary chooses which processes to
corrupt prior to the execution, i.e., we consider the static corruption model.

A protocol’s execution proceeds in rounds, which we use to denote a basic unit of time. The
adversary can arbitrarily delay messages sent by honest processes. Obviously one cannot hope
to achieve liveness when message delays are arbitrary, we therefore model “periods of synchrony”
using the standard Global Stabilization Time (GST) approach [8]. Roughly speaking, before the
GST, message delays can be arbitrary; however, after the GST, messages sent by honest processes
are guaranteed to be received by honest recipients within ∆ number of rounds. More precisely, we
assume the following:

∆-bounded assumption during periods of synchrony: When an honest process sends a mes-
sage in round r, an honest recipient is guaranteed to receive it at the beginning of round
max(GST, r + ∆).

5

Partial synchrony vs synchrony. We assume that a protocol is always informed of (i.e.,
parametrized with) the maximum network delay ∆ during periods of synchrony (i.e., after GST)2.
The main difference between partial synchrony and synchrony is the following:

• A partially synchronous protocol does not know when GST will take place, and is required to
ensure consistency regardless; however, liveness is only required after the GST.

• A synchronous protocol is essentially promised that GST will start from the beginning of the
execution, i.e., the network must satisfy the aforementioned ∆-bounded assumption.

By a famous lower bound proven by Dwork et al. [8], one cannot tolerate 1/3 or more corruptions
in a partially synchronous environment and therefore the 1/3 protocol we present achieves optimal
resilience.

Message echo assumption. Throughout our paper, we assume that when an honest process
receives a fresh, previously unseen message (or input from the environment), it immediately mul-
ticasts the message to all other processes. To keep the presentation concise, we do not repeat this
implicit echoing in our protocol descriptions. With such implicit message echoing, we can in fact
strengthen the above ∆-bounded assumption to the following:

Strong ∆-bounded assumption during periods of synchrony: if an honest process observes a
message in round r, then all honest processes will have observed it at the beginning of round
max(GST, r + ∆).

2.2 Blockchain Protocols

Processes participating in a blockchain protocol receive inputs (e.g. transactions) from an external
environment. The processes are tasked to maintain an ordered log, called a blockchain, containing
a sequence of strings called blocks (note that a blockchain protocol is allowed to define additional
validity rules for its blockchain data structure). At any point of time, a process’s output is the
blockchain it maintains. Henceforth if a process p outputs some blockchain ch at some time, we
also say that p considers ch final, or that ch is the finalized chain for process p.

Without loss of generality, we may assume that the protocol guarantees that a process p’s
output chain never decreases in length — given any protocol Π in which a process p’s output chain
may decrease in length, we can always compile it to a modified protocol Π′ in which if any process
p’s output is ever going to shrink in length in Π, p would simply stick to the present, longer output.

We require that a blockchain protocol satisfies consistency and liveness as defined below with
all but negligible (in some security parameter) probability over the choice of the random execution.

• Consistency. If two blockchains ch and ch′ are ever considered final by two honest processes,
it must be that either ch � ch′ or ch′ � ch where “�” means “is a prefix of or equal to”.

• Liveness. If some honest process receives some input txs in round r, txs will eventually be
included in all honest processes’ finalized chains.

2 Dwork et al. [8] also propose another model of partial synchrony where ∆ is unknown. The two models of partial
synchrony are equivalent from a feasibility perspective [8]. Protocols in the unknown-∆ model typically try different
guesses of ∆, doubling the guess each time until correct. Typically, the unknown-∆ model is more of theoretical
interest, since this repeated trying technique makes the resulting protocols more complex and less practical.

6

3 A Blockchain Secure Against < 1/3 Corruptions

3.1 Definitions and Notations

Throughout, we use the notation H : {0, 1}∗ → {0, 1}κ to denote a hash function selected at random
from a collision-resistant hash family.

Valid block and blockchain. A valid block is a tuple of the form (d−1, e, txs) where d−1 ∈ {0, 1}κ
is called the parent hash, e ∈ N is called the epoch number, and txs ∈ {0, 1}∗ is an application-
specific payload string such as a set of transactions. A valid blockchain (or chain for short), often
denoted b0b1 . . . bh, is an ordered sequence of blocks such that3

• b0 is a canonical “genesis” block of the form (⊥, 0,⊥); and

• for every i ∈ [h], bi is a valid block and moreover bi.d−1 = H(b0b1 . . . bi−1). (Again, bi.d−1
refers to block bi’s parent hash value.) i.e., every block bi’s parent hash value must be a
correct hash of the parent chain b0b1 . . . bi−1.

The index of the block in a valid blockchain is called the height. Throughout the paper, we will
use the notation bh to denote a block at height h in some valid blockchain.

Notarization. Given a valid block b, a collection of valid signatures on the tuple 〈notarize, b〉
from at least 2n/3 processes is called a notarization for b. We assume that the globally unique
genesis block b0 is always notarized (even without any signatures).

Notations. We will make use of the following helpful notations.

• Notarization and notarized chain. Henceforth we will use the notation [b] to denote the block
b along with an arbitrary valid notarization for b (note that the notarization may not be
unique).

Given a valid blockchain b0b1 . . . bh, we use the notation [b0][b1] . . . [bh] to denote the same
blockchain along with an arbitrary valid notarization for every block. Such a blockchain is
also said to be a notarized chain.

• Signature notation. We will use the notation 〈m〉p to denote a message m tagged with a valid
signature by process p on m.

3.2 Protocol

Our protocol proceeds in incrementing epochs where each epoch is 2∆ rounds, i.e., long enough for
honest processes to perform a network round-trip during a period of synchrony.

Each epoch e has a unique leader is elected according to some publicly known function. For the
time being, we can imagine that epoch e’s leader, henceforth denoted `e, is defined as as `e := H∗(e)
mod n, where H∗ is a random oracle used for leader election, and we assume that H∗ is randomly
chosen after the adversary decides which processes to corrupt.

Our partially synchronous, 1/3-protocol is presented below — we also refer the reader to Sec-
tion 1 for a slightly more narrative-style description of the same protocol.

3Although we do not require the epochs contained in a valid blockchain to be strictly increasing, it is not hard to
show that indeed in any notarized chain, this constraint must hold.

7

Partially synchronous Streamlet blockchain secure against < 1/3 corruptions

Notarization for a block b. A collection of signatures on 〈notarize, b〉 from at least 2n/3
distinct processes.

For every epoch e = 1, 2, . . ., a process p performs the following actions:

• Propose. If p = `e, i.e., if p is the leader of the epoch:

1. Let [b0][b1] . . . [bh−1] be longest notarized chain seen by p (if there exist multiple, choose
any.) Let txs be all transactions observed but not yet included in its finalized chain,
and let bh = (H(b0 . . . bh−1), e, txs).

2. Multicast the proposal 〈propose, bh〉`e .

• Vote. On seeing the first valid proposal 〈propose, (d−1, e, txs)〉`e multicast 〈notarize, bh〉p iff
the following hold:

1. p has seen a notarized parent chain [b0] . . . [bh−1] such that d−1 = H(b0 . . . bh−1);

2. p has not seen a conflicting notarization for a conflicting block b′h 6= bh at the same
height h;

Finality rule. At any time, upon observing a notarized chain [b0][b1] . . . [bh−2] [bh−1][bh] such
that the last 3 blocks bh−2bh−1bh have consecutive epoch numbers, then prefix b0b1 . . . bh−1 is
considered final. A process always outputs the longest final chain it has observed so far.

3.3 Proofs

Additional terminology and conventions. We say that a message m is in honest view in some
execution iff some honest process ever observes it at some point during the execution. Similarly,
“a block is notarized (or finalized resp.) in honest view” in some execution iff some honest process
ever observes a notarization (or finalization resp.) for the block at some point during the execution.

In our proofs, we consider only executions in which no signature forgery or hash collision happen.
All the lemmas and theorems below hold for executions where these two bad events do not happen.
By the security of the signature scheme and the collision resistance of the hash family, all the
lemmas and theorems below hold except with negligible (in the security parameter) probability
over the choice of the execution.

Fact 1. Suppose that some block bh is notarized or finalized in honest view. It must be that there
exists one and only one blockchain in honest view b0b1 . . . bh that ends at bh, and moreover, every
block bi in this chain for i ∈ [0..h] must be notarized in honest view.

Proof. The uniqueness of a blockchain ending at bh stems from our assumption of no hash collision
(or alternatively, ignoring the negligible fraction of executions in which hash collisions happen).

Now, if some prefix b0b1 . . . bi where i < h is not notarized in honest view, then no honest
process could have signed the next block bi+1, and thus bi+1 cannot be notarized in honest view
either. Therefore, through a simple induction, we can show that every block bi in this chain where
i ∈ [0..h] must be notarized in honest view.

8

3.3.1 Consistency Proof

We now give a consistency proof. It is important to observe that in the entire consistency proof,
we never rely on network synchrony assumptions. For this reason, our 1/3 protocol can ensure
consistency even when network delays can be arbitrarily long.

Fact 2. If blocks b and b′ both of epoch e are notarized in honest view, it must be that b = b′.

Proof. Let f < n/3 be the number of corrupt processes. Let S be the set of at least 2n/3 − f
honest processes that signed b in epoch e and let S′ be the set of at least 2n/3− f honest processes
that signed b′ in epoch e. The intersection of these two sets (of honest processes) is |S ∩ S′| ≥
(2n/3 − f) + (2n/3 − f) − (n − f) = (n/3 − f) > 0. |S ∩ S′| > 0 implies that at least one honest
process must have signed both b and b′ in epoch e. This is a contradiction, since by the protocol
definition, an honest process signs at most one unique block per epoch.

Lemma 1. Suppose that a notarized chain in honest view contains three consecutive blocks bh, bh+1, bh+2,
with consecutive epoch numbers e, e+1, and e+2 respectively. Then there cannot exist a conflicting
block b′h+1 6= bh+1 such that b′h+1 is notarized in honest view.

Proof. Assume for contradiction that b′h+1 6= bh+1 is notarized in honest view. Let e′ denote the
epoch number of b′h+1. Then either e′ < e, or e′ > e+ 2, by Facts 1 and 2. In both cases we derive
a contradiction — in the following let f < n/3 be the number of corrupt processes:

1. Let e′ < e. At least 2n/3 − f honest processes signed the tuple 〈notarize, b′h+1〉 in epoch
e′; let S denote this set. This implies that by the end of epoch e′, every process in S
observed a notarized parent chain ending at height h. By the protocol definition, no honest
process in S will vote for any block whose height is ≤ h after the end of epoch e′. But since
e > e′, this implies that bh cannot gain notarization in honest view in epoch e, since at most
n− (2n/3−f) = n/3 +f < 2n/3 processes can vote for it. This in turn implies that bh+1 will
not be notarized in honest view, because honest processes only vote for blocks with notarized
parent blocks. This leads to a contradiction.

2. Let e′ > e + 2. Since bh+2 is notarized in honest view, it must be that at least 2n/3 − f
honest processes signed bh+2 in epoch e + 2; let S denote this set of honest processes. This
implies that every process in S must have observed a notarized parent chain ending at bh+1

by the end of epoch e + 2. By our protocol definition, no process in S will vote for any
competing block whose height is ≤ h + 1 in epoch e′ > e + 2. So again strictly fewer than
n− (2n/3− f) = n/3 + f < 2n/3 processes can vote for b′h+1, which leads to a contradiction.

Theorem 2 (Consistency). If ch := [b0][b1] . . . [bh−2][bh−1][bh] and ch′ := [b0][b
′
1] . . . [b

′
k−2][b

′
k−1][b

′
k]

are two notarized chains in honest view and both chains end at three blocks with consecutive epochs
— without loss of generality, assume that h ≤ k. Then, it must be that b0b1 . . . bh−1 is either a
prefix of or equal to b0b

′
1 . . . b

′
k−1.

Proof. Let the epochs of bh−2, bh−1 and bh be denoted e, e + 1, and e + 2 respectively.
For the sake of contradiction, suppose that b0b1 . . . bh−1 is not a prefix of or equal to b0b

′
1 . . . b

′
k−1.

This means that b′h−1 6= bh−1, due to Fact 1. By Lemma 1, since bh−2, bh−1, bh are each notarized

9

and have consecutive epochs, the conflicting notarized block b′h−1 6= bh−1 cannot exist in honest
view, which is a contradiction.

3.3.2 Liveness Proof

We now present a liveness proof. Obviously when the network is partitioned and delays can be
arbitrarily long, one cannot hope to have liveness. Therefore, our liveness guarantees hold after
the GST, i.e., when the network eventually becomes synchronous. It can be easily seen that our
liveness proofs do need to rely on the strong ∆-bounded network assumption after the GST.

Fact 3. Suppose that some honest process p has observed a notarization for block bh at the beginning
of round r. It must be that at the beginning of round max(GST, r + ∆), every honest process has
seen a notarized chain [b0][b1] . . . [bh−1][bh] ending at the block bh.

Proof. Some honest process p′ must have signed 〈notarize, bh〉 in or before round r, and p′ must
have observed the notarized prefix [b0][b1] . . . [bh−1] by the beginning of round r.

By our strong ∆-bounded assumption during periods of synchrony (see Section 2.1), all honest
processes will have observed the notarized prefix [b0][b1] . . . [bh−1] and a notarization for bh by
max(GST, r + ∆).

Fact 4. Suppose that after the GST, there are two epochs e and e + 1 both with honest leaders
denoted `e and `e+1 respectively, and suppose that `e and `e+1 each proposes a block at height h0
and h1 respectively in epochs e and e + 1 respectively, it must be that h1 ≥ h0 + 1.

Proof. At the beginning of the round4 ∆ into epoch e, every honest process will have observed `e’s
proposal of epoch e for the block bh0 . Moreover, due to the strong ∆-bounded assumption during
periods of synchrony, the notarized parent chain [b0] . . . [bh0−1] that triggered `e to propose bh0 must
have been observed by every honest process at the beginning of the round ∆ into epoch e.

Every honest process will either sign notarize for this proposal unless by the beginning of round
∆ into epoch e, it has already observed a conflicting notarization for some b′h0 6= bh0 at the same
height. Now there are two cases:

1. If at least one honest process, say p, has observed a conflicting notarization for some b′h0 6= bh0
by round ∆ of epoch e, then due to Fact 3, by the beginning of epoch e + 1, every honest
process must have seen a notarized chain ending at height h0.

2. If no honest process has signed and multicast saw a conflicting notarization at height h0 by
round ∆ of the epoch, then all honest processes will sign `e’s proposal in or before round ∆
of the epoch e. Thus by the beginning of epoch e+1, every honest process will have observed
the notarized chain [b0] . . . [bh−1][bh].

Therefore, `e+1 must propose a block at height h0 + 1 or greater.

Lemma 3 (Main liveness lemma). After GST, suppose there are three consecutive epochs (e, e +
1, e + 2) all with honest leaders denoted `e, `e+1, and `e+2, then the following hold — below we use
bh2 to denote the block proposed by `e+2 during epoch e + 2:

4The initial round of epoch is numbered round 0.

10

a) by the beginning of epoch e+ 3, every honest process will observe a notarized chain ending at
bh2 (and bh2 was not notarized before the beginning of epoch e);

b) furthermore, no conflicting block b′h2 6= bh2 at the same height will ever get notarized in honest
view.

Proof. Let h0, h1, h2 be the respective heights of the proposals made by `e, `e+1, and `e+2 in epochs
e, e + 1, and e + 2 respectively. By Fact 4, h2 > h1 > h0. Let bh2 be the block proposed by `e+2

in epoch e + 2. We now argue that by the beginning of epoch e + 3, no honest process signed
〈notarize, b′h2〉 for any conflicting b′h2 6= bh2 . Suppose that this is not true and some honest process
p∗ signed 〈notarize, b′h2〉 a conflicting b′h2 6= bh2 by the beginning of epoch e + 3. Now, p∗ cannot
have signed 〈notarize, bh2〉 during epochs e, e + 1, or e + 2 since `e and `e+1 cannot have proposed
a block at height h2 in epochs e and e + 1 respectively by Fact 4, and `e+2 proposed bh2 6= b′h2 in
epoch e + 2

Therefore, the honest process p∗ must have signed 〈notarize, bh2〉 before epoch e started, and at
this time p∗ must have observed a notarized parent chain ending at height h2−1. Due to our strong
∆-bounded network assumption during periods of synchrony, this notarized parent chain ending at
height h2 − 1 must have been observed by all honest processes by the beginning of epoch e + 1.
Therefore, `e+1 must propose a block at height at least h2. Thus we have reached a contradiction.

Since by the beginning of epoch e + 3, no honest process has signed notarize for any b′h2 6= bh2 ,
at this time there cannot be a notarization for any b′h2 6= bh2 in honest view. Moreover, `h+2’s
proposal and the notarized parent chain that triggered the proposal will be observed by all honest
processes at the beginning of round ∆ into epoch e + 2. Therefore all honest processes will sign
and multicast 〈notarize, bh2〉 in or before round ∆ into epoch e+ 2. Thus by the beginning of epoch
e + 3, all honest processes will have seen a notarization for bh2 . Thus, no honest process will ever
sign notarize for any conflicting b′h2 6= bh2 after the start of epoch e + 3 either; and any conflicting
b′h2 6= bh2 cannot ever gain notarization in honest view.

Theorem 4 (Liveness). After GST, suppose that there are 5 consecutive epochs e, e+1, . . . , e+4 all
with honest leaders, then by the beginning of epoch e + 5, every honest process must have observed
a new final block that was not final at the beginning of epoch e.

Note that every time a new block proposed by an honest leader becomes final, this creates
an opportunity for outstanding transactions to be incorporated into honest processes’ finalized
chain — specifically, in our protocol, an honest process always proposes a new block containing all
outstanding transactions it has seen.

Proof. Due to Lemma 3, by the beginning of epoch e + 5, the blocks proposed by `e+2, `e+3, and
`e+4, henceforth denoted bh2 , bh3 , and bh4 , will be notarized in every honest process’s local view.
Moreover, these blocks cannot have been notarized in honest view before the beginning of epoch e,
and no conflicting blocks can ever be notarized in honest view at heights h2, h3, and h4.

We now show that bh3 must extend from the parent chain ending at bh2 and similarly bh4
must extend from the parent chain ending at bh3 . To see this, notice that by Lemma 3, at the
beginning of epoch e + 3, the notarized parent chain ending at bh2 must have been observed by all
honest processes and no honest process can have observed any notarized chain that is longer, or
any different notarized chain of the same length. Thus `e+3’s proposal must extend from the chain
ending at bh2 . Similarly `e+4’s proposal must extend from the chain ending at bh3 .

11

Now, by the finality rule, at the beginning of epoch e + 5, the block proposed by `e+3 will be
considered final by every honest process.

Remark 1 (Leader election policies and confirmation time). Our earlier presentation considered
a random leader election policy where each epoch’s leader is H∗(e) mod n where H∗ is a random
oracle. With such a random policy, assuming that fewer than n/3 processes are corrupt, it takes
in expectation O(1) number of rounds before we can have 5 consecutive epochs all with honest
leaders. Alternatively, we may consider a policy where each randomly elected process serves as
the leader for 5 consecutive epochs to improve the confirmation time by a constant when up to
< n/3 processes can be corrupt. Note that in the optimistic case when all processes are honest,
our protocol can confirm transactions in merely 2 epochs.

4 A Blockchain Secure Against Minority Corruptions

We now show that by making a couple minor tweaks to the protocol described earlier, we can obtain
an honest-majority protocol that is secure in a synchronous network.

4.1 Protocol

The new protocol is described below with the modifications highlighted in red. Unless otherwise
stated, in this section, all definitions and notations (including the definition of valid blocks and
valid blockchains, leader election, etc.) are the same5 as in Section 3.

5Although we do not impose any restrictions on the epoch numbers in a valid blockchain, it is not hard to show
that for our synchronous honest-majority protocol, in any notarized chain, the epochs must be non-decreasing.

12

Synchronous Streamlet blockchain secure against minority corruptions

Notarization for a block b. A collection of signatures on 〈notarize, b〉 from at least n/2
distinct processes.

For every epoch e = 1, 2, . . ., a process p performs the following actions:

• Propose. If p = `e, i.e., if p is the leader of the epoch:

1. Let [b0][b1] . . . [bh−1] be longest notarized chain seen by p (if there exist multiple, choose
any.) Let txs be all transactions observed but not yet included in its finalized chain,
and let bh = (H(b0 . . . bh−1), e, txs).

2. Multicast the proposal 〈propose, e, bh〉`e .

• Vote. On seeing the first valid proposal 〈propose, (d−1, e, txs)〉`e multicast 〈notarize, bh〉p iff
the following hold:

1. p has seen a notarized parent chain [b0] . . . [bh−1] such that d−1 = H(b0 . . . bh−1);

2. p has not seen a notarization for a conflicting block b′h 6= bh at the same height h;

Finality rule. At any time, upon observing a notarized chain [b0][b1] . . . [bh] such that the
last 6 blocks bh−5 . . . bh have consecutive epoch numbers, and moreover no notarizations have
been observed for any conflicting block at height h′ ∈ [h− 5, h], then, the prefix b0b1 . . . bh−5 is
considered final. A process always outputs the longest final chain it has observed so far.

Remark 2 (A variant: 4 consecutive blocks, chop off trailing 3). In the synchronous Streamlet
blockchain protocol described above, we need to wait for 6 blocks with consecutive epoch numbers
and chop off the trailing 5 for finalization.

We note that there are easy ways to tighten this constant 6; however, our philosophy in this
paper is to convey a protocol that is easiest to understand rather than tightening this constant to
the best it can be (e.g., by adding a little complexity to the protocol description). We believe that
simple protocols should facilitate optimizations. To elaborate on this point, we point out a simple
tweak to our above protocol allows for finalization when the last 4 blocks have consecutive epoch
numbers, finalizing the first of those 4 blocks (if no competing notarizations were observed for any
of those 4 blocks).

The tweak is as follows: insist that propose and vote are sent at the beginning of the first and
second super-rounds of the epoch, respectively where each super-round is a span of ∆ rounds. Now,
it is not hard to show a tighter version of Fact 5 for this modified protocol, that is if an honest
node votes for some block in epoch e, then all honest nodes will observe it by the beginning of the
“Vote” super-round of epoch e+1 (instead of the current e+2). In this way, the liveness theorem
would require only 6 consecutive epochs with honest leaders for progress to ensue.

4.2 Proofs

It is not hard to show that Fact 1 still holds for our synchronous, honest-majority protocol.

13

4.2.1 Consistency Proof

Fact 5. Suppose that some block bh of epoch e is notarized in honest view, it must be that by the
beginning of epoch e + 2, every honest process has observed a notarized chain [b0] . . . [bh−1] that is
a valid parent of bh.

Proof. Since bh is notarized in honest view, at least one honest process p must have signed bh in
epoch e and p must have observed a notarized chain [b0] . . . [bh−1] that is a valid parent for bh in
epoch e. By our strong ∆-bounded network assumption (see Section 2.1), every honest process will
have observed [b0] . . . [bh−1] by the beginning of epoch e + 2.

Lemma 5. Suppose that there is a notarized chain in honest view containing two adjacent blocks
bhbh+1 at consecutive epoch numbers e and e + 1 respectively, then, no block of height h and epoch
greater than e + 2 can be notarized in honest view.

Proof. By Fact 5, every honest process will have observed a notarized chain [b0][b1] . . . [bh] that is a
valid parent of bh+1 by the beginning of epoch e + 3. This means that no honest process will sign
any block of height h or smaller in epoch e + 3 or greater. Thus no block at height h and of epoch
greater than e + 2 can be notarized in honest view.

Theorem 6 (Consistency). Suppose that some honest process finalizes b0b1 . . . bh−5 by applying the
finality rule to the notarized chain [b0][b1] . . . [bh], and some honest process finalizes b0b

′
1 . . . b

′
k−5 by

applying the finality rule to the notarized chain [b0][b
′
1] . . . [b

′
k]. Without loss of generality, assume

that k ≥ h. It must be that b0b1 . . . bh−5 is a prefix of or equal to b0b
′
1 . . . b

′
k−5.

Proof. Suppose that this is not true, by Fact 1, it must be that b′h−5 6= bh−5 and b′h−4 6= bh−4.
Let e− 5, e− 4, . . . , e be the epochs of bh−5, bh−4, . . . , bh respectively. By Lemma 5, b′h−4 must be
of epoch e′ ≤ e − 2. By Fact 5, by the beginning of epoch e′ + 2 ≤ e, every honest process will
have observed a notarized parent chain [b0][b

′
1] . . . [b

′
h−5]. Obviously bh cannot gain notarization in

honest view before epoch e. This means that when any honest process observes a notarization for
bh, it must also have observed a notarization for b′h−5. Thus no honest process will successfully
apply the finalization rule to [b0][b1] . . . [bh] due to this conflicting notarization for b′h−5 and this
leads to a contradiction.

4.2.2 Liveness Proof

Fact 3, Fact 4, and Lemma 3 of Section 3.3.2 still hold (with identical proofs) for our new syn-
chronous, honest-majority scheme — with the difference that now, GST starts at the beginning of
the execution, i.e., the network synchrony assumption holds throughout.

Theorem 7 (Liveness). Suppose that there are 8 consecutive epochs e, e + 1, . . . , e + 7 all with
honest leaders, then by the beginning of epoch e+ 7, every honest process must have observed a new
final block that was not final at the beginning of epoch e.

Proof. The proof follows in the same way as that of Theorem 4, additionally observing that there
cannot ever be any conflicting notarizations in honest view at the same heights as the blocks
proposed by `e+2, `e+3, . . ., `e+7 due to Lemma 3.

14

References

[1] Ittai Abraham, Guy Gueta, and Dahlia Malkhi. Hot-stuff the linear, optimal-resilience, one-
message BFT devil. CoRR, abs/1803.05069, 2018.

[2] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. Cryptology ePrint Archive, Report
2019/270, 2019. https://eprint.iacr.org/2019/270.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, 1999.

[4] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous
blockchain. Manuscript, 2018. https://eprint.iacr.org/2018/981.

[5] T-H. Hubert Chan, Rafael Pass, and Elaine Shi. Pili: A simple, fast, and robust family of
blockchain protocols. Cryptology ePrint Archive, Report 2018/980, 2018. https://eprint.

iacr.org/2018/980.

[6] Jing Chen and Silvio Micali. Algorand: The efficient and democratic ledger.
https://arxiv.org/abs/1607.01341, 2016.

[7] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. Cryp-
tology ePrint Archive, Report 2016/919, 2016.

[8] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 1988.

[9] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Eurocrypt, 2015.

[10] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 bft
protocols. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,
pages 363–376, New York, NY, USA, 2010. ACM.

[11] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series:
Consensus system. https://dfinity.org/tech.

[12] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Crypto, 2017.

[13] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong.
Zyzzyva: speculative byzantine fault tolerance. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October
14-17, 2007, pages 45–58, 2007.

[14] Jae Kwon. Tendermint: Consensus without mining. http://tendermint.com/docs/

tendermint.pdf, 2014.

[15] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, May
1998.

15

https://eprint.iacr.org/2019/270
https://eprint.iacr.org/2018/981
https://eprint.iacr.org/2018/980
https://eprint.iacr.org/2018/980
https://dfinity.org/tech
http://tendermint.com/docs/tendermint.pdf
http://tendermint.com/docs/tendermint.pdf

[16] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[17] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[18] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, page 305–320, USA, 2014. USENIX Association.

[19] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Eurocrypt, 2017.

[20] Rafael Pass and Elaine Shi. Rethinking large-scale consensus. In CSF, 2017.

[21] Elaine Shi. Streamlined blockchains: A simple and elegant approach (a tutorial and survey).
In Asiacrypt, 2019.

[22] Virgil Griffith Vitalik Buterin. Casper the friendly finality gadget. https://arxiv.org/abs/
1710.09437.

A Another Variant

For the partially synchronous, 1/3-setting, we describe yet another variant, with a simpler consis-
tency proof and better confirmation time. It leverages two types of votes per block but can confirm
transactions in 3∆ rounds in the optimistic case (c.f., the scheme in Section 3 confirms transactions
in 4∆ rounds - 2 epochs of 2∆ each). The primary difference from the protocol in Section 3 is a
new finalization rule: a process votes to finalize a notarized block if it has not notarized any other
block at the same height. When at least 2n/3 finalize-votes have been collected, a block becomes
final.

In our new variant, it turns out that the blocks need not be tagged with an epoch number; thus
we assume that a valid block is of the format b := (d−1, txs) where d−1 is the parent hash and txs
is an application-specific payload. Blockchain validity is defined in the same way as before.

A notarize-finalize variant for the partially synchronous setting

The protocol proceeds in incrementing epochs where each epoch is 2∆ + 1 rounds.

For every epoch e = 1, 2, . . .,, each process p performs the following:

1. If p = `e, the leader of the epoch, multicast 〈propose, e, bh〉`e , choosing bh as follows:

let [b0][b1] . . . [bh−1] be the longest notarized chain seen by p (if there exist multiple,
choose any.) Choose txs to be all transactions observed but not yet included in p’s
finalized output chain, and let bh = (H(b0 . . . bh−1), txs).

2. On seeing the first valid proposal 〈propose, e, bh〉`e , multicast
〈notarize, bh〉p iff

(a) p has seen a notarized chain [b0] . . . [bh−1] such that

16

https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1710.09437

bh.d−1 = H(b0 . . . bh−1), and

(b) p did not previously multicast 〈finalize, b′h〉p for a conflicting block b′h 6= bh at height h.

Finality rule. At any time, upon observing a notarization for a block bh, process p multicasts
〈finalize, bh〉p iff it has not previously multicast 〈notarize, b′h〉p for a conflicting block b′h 6= bh at
the same height. Upon observing at least 2n/3 valid signatures for 〈finalize, bh〉 from distinct
processes, p considers any valid blockchain ending at the block bh to be final. At any time, p
outputs the longest final chain seen so far.

Note that in the above protocol, an important invariant for consistency is that honest processes
would never sign notarize for some block bh and sign finalize for a differing block b′h 6= bh at the
same height.

A.1 Consistency Proof

We now present a consistency proof. Again, the consistency proof does not rely on any network
synchrony assumption and it holds even when network delays can be arbitrarily long.

For convenience we define a finalization for a block b to be a collection of valid signatures on
the tuple 〈finalize, b〉 from at least 2n/3 processes. A block is said to be finalized in honest view if
there exists a finalization for it in honest view.

Lemma 8. If there is a finalization for a block bh at height h in honest view, then there cannot be
a notarization for a conflicting block b′h 6= bh at the same height in honest view.

Proof. Let f < n/3 be the number of corrupt nodes. Suppose for the sake of contradiction that bh
is finalized in honest view and a conflicting b′h 6= bh is notarized in honest view. Now, this means
that exist in honest view a set of signatures on 〈finalize, bh〉 from at least 2n/3 distinct processes
— let this set of processes be S; and there exist in honest view a set of signatures on 〈notarize, b′h〉
from at least 2n/3 distinct processes — let this set of processes be S′. Now, the intersection
|S ∩ S′| ≥ 2n/3 + 2n/3 − n = n/3. Since f < n/3, it must be that there is an honest process
p ∈ S ∩ S′; and this honest process p must have signed both 〈finalize, bh〉 and 〈notarize, b′h〉. By
the protocol definition, p cannot have signed 〈notarize, b′h〉 either before signing 〈finalize, bh〉 or after
signing 〈finalize, bh〉, and thus we have reached a contradition.

It is not hard to see that Fact 1 of Section 3 still holds.

Theorem 9 (Consistency). Suppose that two blockchains ch0 := b0, b1, . . . , bh0 and ch1 := b0, b
′
1, . . . , b

′
h1

are both finalized in honest view and without loss of generality, assume that ch1 is at least as long
as ch0. Then either ch0 = ch1 or ch0 is a prefix of ch1.

Proof. Note that both bh0 = b′h1 must be notarized by Fact 1. We consider two cases. First, if ch0

and ch1 are equal in length, s.t. h0 = h1, by Lemma 8, then bh0 = b′h1 . Second, consider h0 < h1.
Let b′h0 be the block in ch1 at height h0. By Fact 1, b′h0 must be notarized in honest view. By
Lemma 8, b′h0 must be equal to bh0 .

A.2 Liveness Proof

We now present a liveness proof. The liveness proof relies on the strong ∆-bounded network
assumption after the GST.

17

Fact 6. Suppose that some honest process p has observed a notarization or finalization for block
bh at the beginning of round r. It must be that at the beginning of round max(GST, r + ∆), every
honest process has seen a notarized chain [b0][b1] . . . [bh−1][bh] ending at the block bh.

Proof. Similar to that of Fact 3.

Fact 7. Suppose that after GST, there are two epochs e and e+ 1 both with honest leaders denoted
`e and `e+1 respectively, and suppose that `e and `e+1 each proposes a block at height h0 and h1
respectively in epochs e and e + 1 respectively. Then h1 > h0.

Proof. By the beginning of round ∆ into epoch e, every honest process will have observed `e’s
proposal bh0 . Moreover, `e must have observed a notarized parent chain [b0] . . . [bh0−1] when con-
structing the proposal. By ∆-bounded network assumption after the GST, the notarized parent
chain will also be observed by every honest process by the beginning of round ∆ into epoch e.

Thus every honest process will sign 〈notarize, bh0〉, unless it has previously multicast 〈finalize, b′h0〉
for some b′h0 6= bh0 . Now there are two cases:

1. If at least one honest process, say p, previously multicast 〈finalize, b′h0〉 for some b′h0 6= bh0 prior
to round ∆ into epoch e, then p must have observed a valid notarized chain [b′0], . . . , [b

′
h0

] when
it signed the finalize message. Now, by the ∆-bounded network assumption, by the beginning
of epoch e + 1, every honest process must have seen a notarized chain ending at height h0.

2. If no honest process previously multicast 〈finalize, b′h0〉 for some b′h0 6= bh0 , then all honest
processes will sign `e’s proposal by the end of round ∆ into epoch e. Thus by the beginning
of epoch e+1, every honest process will have observed the notarized chain [b0] . . . [bh0−1][bh0].

Therefore, `e+1 must propose a block at height h0 + 1 or greater.

Theorem 10 (Liveness). After GST, suppose there are three consecutive epochs (e, e + 1, e + 2)
all with honest leaders denoted `e, `e+1, and `e+2 respectively, then by the beginning of epoch e + 3,
every honest process will observe a new finalized block (that was not finalized at the beginning of
epoch e) that is proposed during epoch e + 2 by `e+2.

Proof. Let h0, h1, h2 be the respective heights of the proposals made by `e, `e+1, and `e+2 in epochs
e, e + 1, and e + 2 respectively. By Fact 7, h2 > h1 > h0. Let bh2 be the block proposed by `e+2 in
epoch e + 2.

We now argue that before the beginning of epoch e+3, no honest process signed 〈notarize, b′h2〉 for
any conflicting b′h2 6= bh2 . For contradiction, suppose some honest process p∗ signed 〈notarize, b′h2〉 a
conflicting b′h2 6= bh2 before the beginning of epoch e+3. Now, p∗ cannot have signed 〈notarize, bh2〉
during epochs e, e + 1, or e + 2, since honest leaders `e and `e+1 cannot have proposed a block at
height h2 in epochs e and e + 1 respectively (since h2 > h1 > h0) and `e+2 proposed bh2 6= b′h2 in
epoch e+2 (here we rely on the fact that the proposals are tagged with the corresponding epoch to
distinguish from proposals made by the same process when it was leader in the past). Therefore,
the honest process p∗ must have signed 〈notarize, bh2〉 before the beginning of epoch e, and at this
time p∗ must have observed a notarized parent chain ending at height h2 − 1. By the ∆-bounded
network assumption, this notarized parent chain ending at height h2 − 1 must be observed by all
honest processes by the beginning of epoch e + 1. Therefore, `e+1 must propose a block at height
at least h2, which is a contradiction.

18

Since no honest process signed notarize for conflicting block b′h2 6= bh2 before the beginning of
epoch e+ 3, a conflicting notarization at height h2 cannot exist in honest view and thus no honest
process signed finalize for conflicting block b′h2 6= bh2 before the beginning of epoch e+3. Moreover,
by ∆-bounded network assumption, both `e+2’s proposal in epoch e + 2 and the notarized parent
chain of bh2 that triggered `e+2 to propose bh2 must be observed by all honest processes by the
beginning of round ∆ into epoch e. Thus all honest processes will sign and multicast 〈notarize, bh2〉
by the end of round ∆ into epoch e + 2. By the ∆-bounded network assumption every honest
process will observe a notarization for bh2 by the beginning of round 2∆ into epoch e + 2. Since
every epoch is 2∆+1 rounds, by the end of epoch e+2, all honest processes will sign and multicast
〈finalize, bh2〉, which will eventually be delivered. The proof now follows due to Fact 6.

19

	Introduction
	The Streamlined Blockchain Paradigm
	Goal: A Simplest-Possible, Unified Protocol
	Our Contributions
	Comparison with Existing Works

	Preliminaries
	Execution Model
	Blockchain Protocols

	A Blockchain Secure Against <1/3 Corruptions
	Definitions and Notations
	Protocol
	Proofs
	Consistency Proof
	Liveness Proof

	A Blockchain Secure Against Minority Corruptions
	Protocol
	Proofs
	Consistency Proof
	Liveness Proof

	Another Variant
	Consistency Proof
	Liveness Proof

