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Abstract. We introduce the notion of Witness Maps as a cryptographic notion of a
proof system. A Unique Witness Map (UWM) deterministically maps all witnesses for an
NP statement to a single representative witness, resulting in a computationally sound,
deterministic-prover, non-interactive witness independent proof system. A relaxation of
UWM, called Compact Witness Map (CWM), maps all the witnesses to a small number
of witnesses, resulting in a “lossy” deterministic-prover, non-interactive proof-system. We
also define a Dual Mode Witness Map (DMWM) which adds an “extractable” mode to a
CWM.

Our main construction is a DMWM for all NP relations, assuming sub-exponentially secure
indistinguishability obfuscation (iO), along with standard cryptographic assumptions. The
DMWM construction relies on a CWM and a new primitive called Cumulative All-Lossy-
But-One Trapdoor Functions (C-ALBO-TDF), both of which are in turn instantiated based
on iO and other primitives. Our instantiation of a CWM is in fact a UWM; in turn, we
show that a UWM implies Witness Encryption. Along the way to constructing UWM
and C-ALBO-TDF, we also construct, from standard assumptions, Puncturable Digital
Signatures and a new primitive called Cumulative Lossy Trapdoor Functions (C-LTDF).
The former improves up on a construction of Bellare et al. (Eurocrypt 2016), who relied
on sub-exponentially secure iO and sub-exponentially secure OWF.

As an application of our constructions, we show how to use a DMWM to construct the
first leakage and tamper-resilient signatures with a deterministic signer, thereby solving a
decade old open problem posed by Katz and Vaikunthanathan (Asiacrypt 2009), by Boyle,
Segev and Wichs (Eurocrypt 2011), as well as by Faonio and Venturi (Asiacrypt 2016).
Our construction achieves the optimal leakage rate of 1− o(1).
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1 Introduction

A foundational innovation of theoretical computer science has been the generalization of
the notion of what a proof is. Interactive proofs, zero-knowledge proofs and probabilisti-
cally checkable proofs are all critical to the current theory – and practice – of computer
science. In this work, we introduce and explore yet another notion of a proof, against
the backdrop of recent advances in cryptography.

A conventional proof of a statement that can be verified by an efficient program is
called a witness for the statement. Goldwasser, Micali and Rackoff, in their seminal work
on interactive proofs [30], introduced the fascinating concept of zero-knowledge proof
protocols which reveal no “knowledge” about the witness to a verifier, yet can soundly
convince her of the existence of a witness. The notion of knowledge was formalized
using simulators. An important direction of subsequent investigation has been to develop
more rudimentary models of proofs, which when realized, offer powerful cryptographic
applications. In particular, Blum, Feldman and Micali [6] introduced the notion of non-
interactive zero-knowledge proofs (NIZK), wherein they reverted to the conventional
notion of a proof being just a single message that the prover can send to the verifier, but
allowed a “trusted setup” in the form of a common reference string, with respect to which
the proof would be verified. Feige and Shamir [23] defined witness indistinguishability as
a simpler notion of hiding information about the witness.

The central object we investigate in this paper – called a Witness Map – is an
even more rudimentary notion of a proof, wherein a proof is simply an alternate
representation of a witness, verified using an alternate relation.

The prover and the verifier are required to be efficient and deterministic, and the proof
system is required to be computationally sound. A common reference string is used
to generate and verify the proofs. Instead of zero-knowledge property, we require a
“lossiness” property. Specifically, in a Compact Witness Map (CWM), each statement
has a small number of proofs that its witnesses could map to, with an important special
case being that of a Unique Witness Map (UWM).

One may wonder if it is possible to hide the witness to any extent at all, when
the prover is deterministic. But we show that if indistinguishability obfuscation (iO)
and one-way functions exist, then UWMs do exist. On the other hand, we show that
the existence of UWMs imply the existence of Witness Encryption (WE). Hence UWM
could be viewed as the newest member of “obfustopia,” and arguably the one with the
simplest definition.1

We extend the scope of witness maps further to define the notion of a Dual Mode
Witness Map (DMWM). In a DMWM, a proof either allows the original witness to

1 We present a brief formulation (omitting some formalism) here. A UWM for an NP language L is
specified by a distribution over polynomial time verifiable relations RK, such that (1) for every x ∈ L,
there is a canonical witness w∗K,x with (x,w∗K,x) ∈ RK, which can be efficiently computed from any

witness w for x ∈ L, and (2) it is computationally infeasible to find a pair (x,w∗) ∈ RK such that
x 6∈ L.
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be extracted (using a trapdoor) or it is lossy. Which mode a proof falls into depends
on whether or not the “tag” used for constructing the proof equals a hidden tag used
to derive the mapping key. In defining the lossy mode, we introduce a strong form of
lossiness – called cumulative lossiness – which bounds the total amount of information
about a witness that can be revealed by all the proofs using all the lossy tags. We also
show how to construct a DMWM for any NP relation using a CWM and a new notion
of lossy trapdoor functions (which may be of independent interest).

We show that DMWMs can be readily used to solve an open problem in the area
of leakage-resilient cryptography, namely, that of constructing a leakage and tamper re-
silient signature scheme (where all the data and randomness used by the signer are open
to leakage and tampering). A crucial aspect of our construction that helps in achieving
this is that signing algorithm in our scheme is deterministic, a property it inherits from
the prover in a DMWM. We also extend our results to a continuous leakage and tam-
pering model.

We expand on each of these contributions in greater detail below.

1.1 Witness Maps

We introduce a new primitive called a compact/unique witness map (CWM/UWM).
Informally, CWM/UWM deterministically maps all possible valid witnesses for some
NP statement to a much smaller number of representative witnesses, resulting in loss of
information regarding the original witness. Nevertheless, the mapping should preserve
the functionality of the witnesses, namely that the representative witnesses should be
efficiently verifiable and (computationally) guarantee the soundness of the statement.
A particularly strong form of CWM is a Unique Witness Map (UWM), in which all
the possible witnesses for a statement are mapped to a single representative witness. In
other words, in a UWM the representative witness only depends on the statement being
proved, but not which of the original witnesses was used to prove it.2 While we require the
CWM/UWM to be deterministic, it can depend on some public common reference string
(CRS). A UWM is essentially equivalent to a non-interactive witness indistinguishable
argument (in the CRS model) with a deterministic prover and a deterministic verifier.

Defining CWM/UWM. In more detail, a CWM consists of three algorithms (setup,
map, check). The setup algorithm generates a CRS K. The deterministic algorithm map(K, x, w)
takes as input a statement x and a witness w and maps it to a representative witness
w∗. The algorithm check(K, x, w∗) takes as input the statement x and the representa-
tive witness w∗ and outputs 1 if it verifies and 0 otherwise. We require the standard
completeness property (if w is good witness for x then check(K,map(K, x, w)) = 1) and
computational soundness (if x is false then it’s computationally hard to produce w∗ such
that check(K, x, w∗) = 1). Lastly, we require that for any true statement x the set of

2 Note that uniqueness is a property of the map/prover, but we do not require uniqueness for the
verifier; for any given statement, there may be many representative witnesses that the verifier would
accept, but the map/prover always produces a unique one.
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possible representative witnesses {w∗ = map(K, x, w) : w witness for x} is small, and
potentially much smaller than the set of all original witnesses w for x. In a UWM, the set
of representative witnesses needs to be of size 1, meaning there is a unique representative
witness for each x in the language.

Constructing UWM. We give a simple construction of a UWM from iO and a
punctured digital signature (PDS) scheme (see below), by leveraging the framework of
Sahai and Waters [49] previously used to construct NIZKs. Our construction could be
seen as implementing “deterministic witness signatures,” wherein the signing key is a
valid witness to a statement. We remark that a notion of witness signatures exists in
the literature [32], building on the notion of “Signatures of Knowledge” [13]; however,
these are incomparable to our UWM construction, as they allow randomized provers,
but demand extractability of the witness (and in the case of Signatures of Knowledge,
simulatability as well).

Puncturable Digital Signatures (PDS). As part of our UWM construction, we rely
on Puncturable Digital Signatures (PDS). This primitive allows us to create a punctured
signing key that cannot be used to sign some specified message m but otherwise correctly
produces signatures for all other messages m′ 6= m. We improve upon the construction
of PDS by Bellare et al. [5], who relied on sub-exponentially secure Indistinguishability
Obfuscation andsub-exponentially secure one-way functions (OWF). Our construction
shows that PDS is equivalent to OWF.

Implications of UWM. We show that UWMs are a powerful primitive and, in par-
ticular, imply witness encryption (WE) [25]. However, we do not know of any such im-
plication for CWMs in general, especially if the image size of the map can be (slightly)
super-polynomial.

Dual-Mode Witness Maps. We also introduce a generalization of compact/unique
witness maps (CWM/UWM) that we call dual-mode witness maps (DMWM). In a
DMWM the map and check algorithms take as input an additional tag or branch param-
eter b. Furthermore the setup algorithm also takes as input a special “injective branch”
b∗ which is used to generate the CRS along with a trapdoor td. If b = b∗ then the map
is injective and the original witness w can be extracted from the representative witness
w∗ output by the map using the trapdoor td. On the other hand, the maps for all b 6= b∗

is cumulatively lossy – i.e., even taken together, they do not reveal much information
about the original witness. The identity of the injective branch b∗ is hidden by the CRS.

Our definition of the cumulative lossiness property for DMWM is motivated by its
application to leakage and tamper resilient signatures (see below). But it is in itself
a property that can be applied more broadly. In particular, we introduce the follow-
ing primitives and employ them in our construction of DMWMs (in combination with
CWMs).

Cumulatively Lossy Trapdoor Functions. We introduce new variants of lossy
trapdoor functions (LTDFs) [45], which we call cumulatively lossy trapdoor functions
(C-LTDFs). Recall that, in an LTDF, a function f can be sampled to either be injective
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(and the sampling algorithm also generates an inversion trapdoor) or lossy (the image of
f is substantially smaller than the input domain) and the two modes should be indistin-
guishable. For C-LTDFs, we further require that arbitrarily many lossy functions taken
together are jointly lossy. In other words, if we sample arbitrarily many independent
lossy functions fi then their concatenation (f1, . . . , f`)(x) = (f1(x), . . . , f`(x)) is also
lossy. We can construct C-LTDFs from DDH or LWE.

We also define cumulatively all-lossy-but-one trapdoor functions (C-ALBO-TDFs).
This is a collection of functions f(b, ·) parametrized by a branch index b. We can sample
f with a special injective branch b∗ such that f(b∗, ·) is injective (and we have the
corresponding inversion trapdoor) but f(b, ·) is lossy for all b 6= b∗. We should not be
able to distinguish which branch is the injective one. Furthermore, the lossy branches
b 6= b∗ are cumulatively lossy. Previous constructions of LTDFs with branches [45] only
achieved the opposite notion of “all-but-one lossy”, where there is one lossy branch and
all the other branches are injective. To the best of our knowledge, constructing ALBO-
LTDFs (even without the cumulative loss requirement) was previously open. We show
how to boost C-LTDFs to get C-ALBO-LTDFs via iO.

1.2 Application: Leakage and Tamper Resilient Signatures

A digital signature scheme is one of the most fundamental cryptographic primitives and
is used as an important building block in many cryptographic protocols and applica-
tions. Signature schemes are used ubiquitously in practice, in a variety of settings and
applications. In particular, signing keys are often embedded in smart cards and devices
operated by untrusted users. Such settings admit powerful “physical attacks” exploiting
numerous side-channels for leaking (e.g. power analysis, timing measurements, microwave
attacks [37,38]) and tampering (see for instance [8,47]). This has led to several works over
the last decade that addressed security of cryptographic primitives – and in particular
of digital signature schemes – that are leakage and/or tamper resistant [11,15,21,35,39].
In this work, we address an important question that this body of work has raised again
and again:

Is there a leakage and tamper resilient (LTR) signature scheme? Is there one
with a deterministic signing algorithm?

The significance of this question lies in the fact that it appears harder to protect against
an adversary who can target the randomness used in the scheme. When the randomness
is open to attacks, current state of the art can protect only against leakage attacks
[11, 14, 19], and not against tampering attacks (as explicitly posed in [21]). Note that if
the adversary can obtain signatures produced using arbitrarily tampered randomness,
it can set the randomness to a constant (say, all 0s) and therefore effectively make the
signing algorithm deterministic. Therefore, a natural solution is to entirely eliminate
attacks on the randomness by constructing a LTR signature scheme with a deterministic
signing algorithm. Indeed, this is the approach taken in [14], but unfortunately their
solution does not offer security against tampering of the secret key.
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LTR Signature Results. Our main contribution is the construction of a leakage and
tamper resilient (LTR) signature scheme with a deterministic signing algorithm. We fo-
cus on the bounded leakage and tampering model of Damg̊ard et al. [15]. In this model,
the adversary can get some bounded amount of leakage on the secret key and can also
tamper with the secret key some bounded number of times; these bounds can be made
arbitrarily large but have to be chosen a-priori. We strengthen the model so that only
publicly known, fixed components of the scheme (namely, the code and public parameters)
are fully protected. In particular, any randomness used during computation is subject
to leakage and tampering. The key-generation phase is also subject to leakage (but is
protected from tampering). Note that tamperability of the signing randomness invali-
dates prior results [15, 21], and motivates the need for finding a deterministic solution.
A recent work of Chen et al. [14] constructs a deterministic leakage-resilient (but not
tamper-resilient) signature scheme from iO and puncturable primitives. However, as we
argue later, this construction does not generalize to the setting of tampering.

Our schemes achieve a leakage rate of 1−o(1), where the leakage rate is defined as the
ratio of the amount of leakage to the size of the secret signing key. The scheme natively
only achieves selective security, where the message to be forged is chosen by the adversary
at the very beginning of the attack game. Adaptive security follows via complexity
leveraging. We present our construction using generic primitives discussed below. While
current instantiations of these primitives rely on indistinguishability obfuscation (iO)
and either DDH or LWE, there is hope that our template can also be instantiated
under weaker assumptions in the future. Our construction combines ideas from leakage-
resilience [11] and tamper-resilience [21], but replaces various ingredients with our new
building blocks to facilitate a deterministic solution.

We also discuss how to extend our results to the continuous leakage and tampering
model. In this mode, the key is periodically refreshed and the adversary is only bounded
in the amount of leakage and tampering that can be performed in each time period, but
can continuously attack the system for arbitrarily many time periods. However, in this
model, we inherently cannot allow tampering of the randomness used to perform the
refreshes.

Along the way toward our main result for LTR Signatures, we introduce several new
cryptographic primitives and constructions, which may be of independent interest and
which we now proceed to describe.

Construction Outline. We construct deterministic leakage and tamper resilient sig-
natures directly from dual-mode witness maps (DMWM) and a leakage-resilient one-way
function (which, as we shall see, can be based on general one-way functions). As men-
tioned above, we construct DMWMs by combining a compact witness map (CWM) for
NP, with a C-ALBO-LTDF, constructing other primitives like PDS and C-LTDF along
the way. While current instantiations of CWMs and C-ALBO-LTDFs rely on strong as-
sumptions (i.e., iO and either DDH or LWE), this does not appear inherent and there
is hope that future work can find alternate instantiations based on weaker assumptions.
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In particular, while UWMs imply a strong primitive (namely, Witness Encryption), the
same is not known for DMWM, CWM or C-ALBO-LTDF.

1.2.1 Related Work on Leakage & Tamper-Resilient Signatures Various no-
tions of leakage-resilient signatures (LRS) have been studied for about a decade now.
Alwen, Dodis and Wichs [2] and Katz and Vaikuntanathan [35] gave initial constructions
of LRS schemes in the bounded leakage model, where the leakage is allowed to happen
from the entire memory of the device. The construction of [2] was in the random oracle
(RO) model. [35] gave a standard model construction, which had a deterministic signing
scheme as well, but which allowed only a logarithmic number of signature queries, and
the total leakage allowed degraded with number of queries. Meanwhile, Faust, Kiltz,
Pietrzak and Rothblum [22] gave a construction of a stateful LRS scheme in the “Only
Computation Leaks” model of Micali and Reyzin [41]. The first full-fledged construction
of fully leakage-resilient (FLR) signatures – which allowed bounded leakage from the ran-
domness used for key-generation and signing – were proposed independently by Boyle et
al. [11] and Malkin et al. [39]. Faonio et al. [19] also gave a construction of FLR signa-
tures in the bounded retrieval model, where the secret key (and the leakage from it) may
be larger than the size of a signature. In this setting, standard existential unforgeability
is impossible to achieve, since the adversary can simply leak a forgery. Hence the authors
only demand a graceful degradation of security to hold. Yuen et al. [50] constructed a
FLR signature scheme in the selective auxiliary input leakage model, where it is assumed
that the leakage is a computationally hard-to-invert function. The recent work of Chen
et al. [14] gave an FLR signature scheme with a deterministic signing algorithm, and
achieved selective unforgeability, relying on iO.

Tamper resilience was addressed in [15,21]. The question of fully leakage and tamper
resilient signatures (i.e., allowing leakage from and tampering of randomness as well
as secret key) was explicitly posed as an open problem in [21]. The continual memory
leakage (CML) model has been studied in [12,16,39].

Comparison with the work of [14]. Recently, Chen et al. [14] constructed a de-
terministic leakage-resilient (but not tamper-resilient) signature scheme in the bounded
leakage model. An important limitation of their construction is that it does not ap-
pear amenable to a leakage-to-tamper reduction, which relies on being able to bound the
amount of information revealed by a signature using the tampered signing key, given
the verification key. (Their signing key sk is a ciphertext of a symmetric-key encryption
scheme and the verification key vk comprises of two obfuscated programs.)

Comparison with the work of [20]. Predictable argument of knowledge (PAoK)
[20] are 2-round public-coin argument systems where the answer of the prover can be
predicted, given the private randomness of the verifier (thus necessitating the prover
to be deterministic). They insist on knowledge soundness from PAoK and show that
a PAoK for general NP relations is equivalent to extractable witness encryption. In
contrast, DMWM are non-interactive.
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1.3 Technical Overview

1.3.1 Compact Witness Maps. We now sketch the main idea behind the construc-
tion of our unique witness map (UWM) scheme, which is the strongest form of compact
witness maps (CWMs). Our construction essentially follows the same (abstracted out)
approach of Sahai and Waters NIZKs [49]. The setup of the UWM generates a (public)
CRS K. The CRS K in our construction embeds the description of an obfuscated program
P , with the signing key of the Puncturable Digital Signature (PDS) scheme hard-coded
in it. The obfuscated program P functions as follows: the input to the program P is
a statement-witness pair, say (stmnt, w) belonging to underlying NP relation R` (we
consider statements of size at most `). The program simply checks if R`(stmnt, w) = 1,
and signs the statement stmnt using the signing key sk to obtain a signature on stmnt.
While generating the mapping, the mapping algorithm uwm.map(K, stmnt, w) runs the
obfuscated program P with input (stmnt, w) to obtain a signature σstmnt on stmnt us-
ing sk. The representative witness w∗ is just the signature σstmnt. The verification of the
mapping is done by simply verifying the signature σstmnt (using the verification algorithm
of the PDS scheme).

For proving security of the UWM scheme, we consider the notion of selective sound-
ness3, where the adversary announces the statement stmnt∗ on which it tries to break
the soundness (i.e, produce a representative witness w∗corresponding to it) of the UWM
scheme, before receiving the key K. In the hybrid, we change the obfuscated program by
puncturing the signing key sk at the statement stmnt∗. The consistency property of the
PDS scheme ensures that the signatures output by the punctured key skstmnt∗ (punc-
tured at stmnt∗) produces the same output as the signatures generated by the original
signing key sk. If the adversary could produce a witness w∗ (which is nothing but a
signature) corresponding to the false statement stmnt∗, this means it has managed to
successfully output a forgery for the PDS scheme. Also note that, our mapping satisfies
uniqueness, since (x,w) is deterministically mapped to the signature on x, independent
of w.

Construction of PDS. To instantiate the UWMs described above, it remains to con-
struct a Puncturable Digital Signature (PDS) scheme. The work of Sahai and Waters [49]
implicitly constructs one using iO as a part of their construction of NIZKs, and Bellare
et al. [5] makes this explicit. We show a simple construction from one-way functions.
The main idea is to rely on tree-based signatures, where every node of the tree is associ-
ated with a fresh verification/signing key of a standard (one-time) signature and a PRG
seed; the seed of the parent node is used to generate the values (the verification/signing
key and the seed) of each of the two children nodes. The verification key of the scheme
corresponds to that of the root note and the signing key corresponds to the (signing key,
seed) of the root. Each message traces out a path in the tree from a root to a leaf and
the signature corresponds to a “certificate chain” consisting of signed verification keys

3 The size of the statements supported by UWM scheme is bounded (looking ahead, this will indeed be
the case in our FLTR signature scheme). Hence, we can achieve adaptive soundness via a standard
complexity leveraging argument, albeit incurring a sub-exponential loss in the security parameter.
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along that path together with a signature of the message under the leaf’s key. Note that
the intermediate values in the tree are generated on the fly and the entire tree (which is
of exponential size) is never stored all at once. Puncturing the signing key is analogous
to puncturing the GGM PRF [9, 10, 27, 36]. In particular, we remove all of the values
along one path from the root to a particular leaf for the specified message on which we
are puncturing, and instead give out the values of (signing key, seed) for each sibling
along that path; this is sufficient to generate signatures for every other message aside
from the punctured one.

UWMs imply Witness Encryption. Lastly, we show that UWMs are a powerful
cryptographic primitive and in fact imply witness encryption (WE) [25]. In a WE scheme,
it is possible to encrypt a messagem under an NP statement x such that, if the statement
is true, then the ciphertext can be decrypted using any witness w for x. However, if x is a
false statement, then the ciphertext should computationally hide the encrypted message.
To construct a WE scheme from a UWM the encryption algorithm chooses a random
seed z for a pseudorandom generator G and sets y = G(z). It then uses a UWM to
get a representative witness w∗ for the statement x̂ stating that “either x is true or y
is pseudorandom”, using z as the witness. It uses the Goldreich-Levin hardcore bit of
w∗ to blind the message m and outputs the blinded value along with y. The decryption
algorithm uses the UWM to map the witness w for x into the unique witness w∗ for the
statement x̂. It then computes the hardcore bit of w∗ and uses it to recover the message.
Intuitively, if an adversary can break WE security, then it can distinguish encryptions of
0 and 1 with non-negligible probability even if x is a false statement. This means that,
using Goldreich-Levin decoding, it can compute the correct value w∗ given y with non-
negligible probability. Furthermore this value w∗ is a valid representative witness for the
statement x̂. Since the adversary cannot break the PRG, it must also compute a valid
representative witness for x̂ if we switch y to false. But this contradicts the soundness
of UWM.

1.3.2 Leakage and Tamper Resilient Signatures. We now give an overview of our
leakage and tamper resilient (LTR) signature construction. The construction proceeds in
3 steps. First, we construct LTR signatures from dual-mode witness maps (DMWMs).
Second, we construct DWMs from cummulatively all-lossy-but-one tradoor functions
(C-ALBO-TDFs) and compact witness maps (CWMs). Thirdly, we construct C-ALBO-
TDFS from DDH/LWE and iO.

LTR Signatures from DMWMs. Recall that DMWM is essentially a witness map
that takes as input a branch index b. The CRS is also generated with an injective
branch b∗ and a trapdoor td. If the map uses the branch b = b∗ then it is injective and
the original witness can be extracted using the trapdoor. Otherwise the map reveals
very little information about the original witness. The two modes are computationally
indistinguishable from each other.

Our signature scheme has the following form: The signing key is a random string x,
and the verification key is y = H(x), where H is a sufficiently compressing, second pre-
image resistant hash function. To sign a message m, we set the branch for the DMWM to
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be the message m, and construct a representative witness w∗ for the statement: ∃x, y =
H(x) using x as the original witness. Note that the signing procedure is deterministic.
The verifier checks the representative witness using the DMWM scheme.

To argue selective security, we can set up the CRS of the DMWM so that the in-
jective branch b∗ is exactly the message that the adversary will forge the signature on.
It remains indistinguishable to the adversary that this happened and hence the prob-
ability of forging does not change. However, now we can extract a pre-image x′ such
that H(x′) = y from the adversary’s forgery. Moreover, since all the other signatures
obtained by the adversary are all lossy, it would be information-theoretically hard to
recover the original pre-image x. This holds even given some bounded additional leakage
about the secret key x. It also holds even if x is tampered and then used to produce
a signature since this still only provides bounded leakage on x. Therefore we recover a
second pre-image x′ 6= x which contradicts the second pre-image resistance of H.

We also adapt our results to the continuous leakage and tampering (CLT) model.
We do so by essentially taking the same construction, but using a “entropy-bounded” or
“noisy” continuous-leakage-resilient (CLR) one-way relation [16] in place of the second
pre-image resistant hash (which can be thought of as a leakage-resilient one-way func-
tion). We achieve security as long as the adversary cannot tamper the randomness of
the refresh procedure, and this restriction is inherent.

DMWMs from CWMs via C-ALBO-TDFs. We now discuss how to construct
dual-mode witness maps (DMWMs) from compact witness maps (CWMs). Recall that
DMWM has branches in one of two modes: injective and lossy. On the other hand a
CWM does not have any branches and is always lossy. To convert a CWM into DMWM
we add a “cumulatively all-lossy-but-one trapdoor functions (C-ALBO-TDFs)”. This is
a family of functions f(b, )̇ parametrized by tags/branches b such that, for one special
branch b∗ the function f(b∗, ·) is injective and efficiently invertible using a trapdoor, but
for all other b 6= b∗ the functions f(b, ·) are cumulatively lossy. The CRS of the DMWM
will consist of the public key of the C-ALBO-TDF with the special injective branch b∗

as well as a CRS of CWM scheme. To compute a proof for a statement y with witness
w under a tag b, the prover computes z = f(b, w) and then uses the CWM to prove that
z was computed correctly using a valid witness w for the statement y.

Construction of C-ALBO-TDFs. Finally, we discuss how to construct cumulative
all-lossy-but-one trapdoor functions (C-ALBO-LTDFs). We start with a simpler primi-
tive of C-LTDFs which can be used to sample a function fek described by a public key
ek. The key ek can be sampled indistinguishably in either lossy or injective mode (with a
trapdoor). We require that the combination of arbitrarily many different lossy functions
is cumulatively lossy.

We construct C-LTDFs by adapting a construction of LTDFs from DDH due to [45].
In that construction, the key ek is given by a matrix of group elements gM where g is a
generator of the group of order q and M ∈ Zn×nq is a matrix of exponents. For x ∈ {0, 1}n

the function is defined as fek(x) = gM ·x. If M is invertible than this function is injective
and can be inverted with knowledge of M−1. If M is low rank (e.g., rank 1) then this
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function is lossy. The two modes are indistinguishable by DDH. However, if we choose
many different lossy functions by choosing random rank 1 matrices each time then the
scheme is not cumulatively lossy; in fact n random lossy function taken together are
injective! To get a cumulative lossy scheme, we fix some public parameters gA where
A ∈ Zn×nq is a random rank 1 matrix. We then choose each fresh lossy key ek by choosing

a random R ∈ Zn×nq and setting ek = gRA. Injective keys ek are still chosen as gM for
a random M , which is invertible with overwhelming probability. It’s easy to show that
lossy and injective keys are indistinguishable even given the public parameters. Now if
we apply many different lossy functions on the same input x we only reveal Ax, which
loses information about x.

The above construction can also be extended to rely on the d-Linear assumption
for larger d instead of DDH. We also provide an analogous construction under LWE by
adapting an LTDF of [3], which relies on the “lossy mode” of LWE from [29].

We then show how to bootstrap C-LTDFs to get C-ALBO-LTDFS via iO. The idea
is to obfuscate a program that, on input a branch b, applies a pseudorandom function
to b to sample a fresh lossy key of a C-LTDF, except for a special branch b∗ on which
it outputs a (hard-coded) injective C-LTDF key. By relying on standard puncturing
techniques, we show that this yields a C-ALBO-LTDF.

2 Preliminaries and Tools.

Some Notations For n ∈ N, we write [n] = {1, 2, · · · , n}. If x is a string , we denote |x|
as the length of x. For a distribution or random variable X, we denote x← X the action
of sampling an element x according to X. When A is an algorithm, we write y ← A(x)
to denote a run of A on input x and output y; if A is randomized, then y is a random
variable and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗;
the computation of A(x; r) terminates in at most poly(|x|) steps. For a set S, we let US
denote the uniform distribution over S. For an integer α ∈ N, let Uα denote the uniform
distribution over {0, 1}α, the bit strings of length α. Throughout this paper, we denote
the security parameter by κ.

2.1 Basics of Information Theory

Here we give some basic definitions related to information theory needed for the formal
proofs of some of our theorem.

Definition 1. (Min-Entropy). The min-entropy of a random variable X, denoted as

H∞(X) is defined as H∞(X)
def
= − log(maxx Pr[X = x]). This is a standard notion of

entropy used in cryptography, since it measures the worst-case predictability of X.

A distribution supported on {0, 1}n with min-entropy k is said to be an (n, k)-source.

11



Definition 2. (Average Conditional Min-Entropy). The average-conditional min-
entropy of a random variable X conditioned on a (possibly) correlated variable Z, denoted
as H̃∞(X|Z) is defined as

H̃∞(X|Z) = − log
(
Ez←Z [maxxPr[X = x|Z = z]

)
= − log

(
Ez←Z [2H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a
correlated variable Z.

We will make use of the following properties of average min-entropy.

Lemma 1. Let A,B,C be random variables. Then for any δ > 0, the conditional entropy
H∞(A|B = b) is at least H̃∞(A|B)− log(1

δ ) with probability at least 1− δ over the choice
of b.

Lemma 2. [18] For any random variable X, Y and Z, if Y takes on values in {0, 1}`,
then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− ` and H̃∞(X|Y ) ≥ H̃∞(X)− `.

2.2 Required Primitives.

1. (Puncturable Pseudo-Random Functions). A puncturable pseudorandom func-
tion (pPRF) [9, 10, 36] is a PRF which lets one modify a given key by “puncturing”
it at any input x, so that the punctured key lets one evaluate it on all inputs except
at x. The output at x remains pseudorandom even given a punctured key.We follow
the definition given in [33]. A puncturable PRF F : K × X → Y is given by a pair
of polynomial time algorithms (F.puncture, F.eval) (as defined below) and equipped
with an additional (punctured) key space K̂.

• F.puncture(K,T ) : This is a deterministic algorithm4 that takes as input a key K ∈
K, and a (polynomially bounded) set of inputs T ⊆ X , and outputs a “punctured
key” K̂T ∈ K̂ (punctured at the points in T ).

• F.eval(K̂T , x) : This is a deterministic algorithm that takes as input the punctured
key K̂T ∈ K̂, and an input x ∈ X . The correctness guarantee stipulates that for all
K ∈ K, T ⊆ X , and x ∈ X :

F.eval(F.puncture(K,T ), x) =

{
F (K,x) if x 6∈ T
⊥ otherwise.

4 Requiring puncturing to be deterministic is w.l.o.g, because one can derandomize it by generating its
random bits using a PRF that is keyed by a part of the key K on input T .
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Security of Puncturable PRFs: The security of puncturable PRFs is captured
by a game between a challenger and an adversary. The security game consists of the
following four stages:

(a) Setup Phase: The challenger chooses uniformly at random a (master) PRF key
K ∈ K and a bit b ∈ {0, 1}.

(b) Evaluation Query Phase: In this phase the adversary A queries with a point
x ∈ X . The challenger sends back the evaluation F (K,x) to A. These queries
can be made arbitrarily and adaptively by A polynomially many times.

(c) Challenge Phase: In this phase, the adversary A chooses a challenge point
T ⊆ X . C computes K̂T ← F.puncture(K,T ). For each x ∈ T , the challenger
defines yx as follows: if b = 0, yx = F (K,x) and else yx ← Y is uniformly and
independently sampled. C sends (K̂T , {yx}x∈T ) to A.

(d) Guess Phase:A continues to query F , and outputs a guess b′ for the bit b chosen
by the challenger. Let E ⊆ X be the set of evaluation queries to F through out
the game.

The output of the game is defined to be 1 iff b = b′ and T ∩E = ∅. The advantage of A
in the above game, AdvpPRF

F,A (κ) is defined as max{0, p− 1
2}, where p is the probability

that the output of the game is 1 when A plays it.

Definition 3. A pPRF scheme F is said to be secure if for all PPT adversaries A,
AdvpPRF

F,A (κ) is negligible in κ.

2. (Indistinguishability Obfuscation). A uniform PPT machine iO is called an
indistinguishability obfuscator for a circuit class {Cκ}κ∈N if it satisfies the following
conditions:

(a) (Functionality). For all security parameters κ ∈ N, for all C ∈ Cκ, for all inputs
x, we have that: Pr

[
C ′(x) = C(x) : C ′ ← iO(κ,C)

]
= 1.

(b) (Indistinguishability). For any (not necessarily uniform) PPT adversaries Samp,
D, there exists a negligible function negl(·) such that the following holds: if
for all security parameters κ ∈ N, Pr

[
∀x,C0(x) = C1(x) : (C0, C1, st) ←

Samp(κ)
]
> 1 − negl(κ), then the advantage of D, denoted by AdviOSamp,D(κ) =∣∣Pr

[
D(st, iO(κ,Cb)) = b : (C0, C1, st)← Samp(κ), b← {0, 1}

]
− 1

2

∣∣ is negligible.

Let δ : N→ R. We say that iO is δ-secure if for every PPT adversaries Samp,
D, it holds that AdviOSamp,D(κ) ≤ δ(κ). We say that iO is sub-exponentially secure

if it is 2-κε-secure, for some 0 < ε < 1.

3. (Second Pre-image Resistance). A family spr = (spr.gen, spr.eval) of efficiently
computable functions from {0, 1}n(κ) to {0, 1}m(κ) is second-preimage resistant if for
any PPT adversary A it holds that:
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Pr

[
spr.evals(x

′) = spr.evals(x)∧x′ 6= x
∣∣∣s← spr.gen(κ), x← {0, 1}n;x′ ← A(s, x)

]
< ν(κ),

for some negligible ν = ν(κ), and the probability is taken over the choice of x ∈
{0, 1}n(κ) and over the internal randomness of spr.gen and A.

3 Puncturable Digital Signature Schemes

A puncturable digital signature (PDS) scheme [5] is a digital signature scheme with the
additional facility to “puncture” the signing key at some arbitrary message, say, m∗.
The resulting punctured signing key allows one to sign all messages except m∗. A PDS
is said to be consistent, if a secret signing key sk and all possible punctured signing
keys ŝkm∗ derived from sk, for every unpunctured message, produce the same signature,
deterministically. In this paper, we shall consider only PDS schemes that are consistent,
and hence shall omit that qualifier in the sequel.

The security requirement of a PDS scheme is that the (standard) existential unforge-
ability should hold for the punctured message m∗. Following Bellare et al. [5], we focus
on selective unforgeability, wherein the adversary must specify the message m∗ at which
the signing key needs to be punctured ahead of time, i.e., before receiving the public
parameters and the verification key. It then receives the punctured signing key ŝkm∗

(punctured at m∗) and the verification key of the PDS, and the goal of the adversary is
produce a forgery on m∗. The formal definition follows.

Definition 4. (Puncturable Digital Signatures). A puncturable digital signature
(PDS) scheme consists of the following polynomial-time algorithms pds = (keygen, sign, ver,
pkeygen, psign) as detailed below:

• keygen(κ, `): The key generation algorithm takes as input the security parameter κ (in
unary) and the length of the messages to be signed `, and outputs a signing-verification
key pair (sk, vk).

• sign(sk,m): The (deterministic) signing algorithm takes as input the (master) signing
key sk, and a message m ∈ {0, 1}`, and outputs a signature σ.

• ver(vk, (m,σ)): The verification algorithm takes as input the verification key vk, the
message-signature pair (m,σ), and outputs 1 if and only if the signature verifies.

• pkeygen(sk,m∗): The punctured key generation algorithm takes as input the (master)
signing key sk and a message m∗ ∈ {0, 1}`, and outputs a “punctured” signing key
ŝkm∗.

• psign(ŝkm∗ ,m): The (deterministic) punctured signing algorithm takes as input a punc-
tured signing key ŝkm∗, and a message m ∈ {0, 1}`, to generate a signature σ′.

We say that a punctured signature scheme pds is consistent if for all κ, ` ∈ N,
(sk, vk) ← keygen(κ, `), m∗ ∈ {0, 1}`, ŝkm∗ ← pkeygen(sk,m∗), and m ∈ {0, 1}` \ m∗,
it holds that: sign(sk,m) = psign(ŝkm∗ ,m). The “consistency” requirement of the PDS
stipulates that both the algorithms sign and psign be deterministic.
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Punctured (selective) unforgeability under chosen message attacks: The (se-
lective) security of a PDS scheme pds = (keygen, sign, ver, pkeygen, psign) is defined us-
ing a game between a challenger C and a (non-uniform) PPT adversary A. The game,
parametrized with κ, consists of the following stages:

1. Selecting Message for Puncturing: The adversary outputs a message m∗ ∈ {0, 1}`
(the point to be punctured at).

2. Key and Punctured-Key Generation: Then the challenger C runs (sk, vk) ←
keygen(κ, `), and returns the verification key vk to the adversary A. It also computes
ŝkm∗ ← pkeygen(sk,m∗) and sends it to A.5

3. Forgery: Finally the adversary A outputs a purported signature σ∗ corresponding
to the message m∗.

The advantage of A in this game is AdvpdsA (κ) := Pr[ver(vk, (m∗, σ∗)) = 1].

Definition 5. A punctured signature scheme pds is said to be δ-secure if, for all PPT
adversaries A, AdvpdsA (κ) ≤ δ(κ), where δ(κ) is negligible in κ. We say that pds is
sub-exponentially secure if it is 2κ

ε
-secure, for some 0 < ε < 1.

3.1 Construction of a PDS scheme.

Our construction of the PDS relies on the sole assumption that one-way functions exist.
Below, we summarize the construction of our PDS scheme, and give a high level sketch
of the construction.

Intuition behind the construction. The construction follows the paradigm of ex-
tending one-time signatures into full-fledged signatures using a tree of pseudorandomly
generated key pairs [31, 40, 44]. Each message in the message space is associated with a
leaf in this tree, and the key pair at that leaf is used to exclusively sign that message.
The signature on a message will also certify the leaf’s verification key using a “certifi-
cate chain” that follows the path from root to leaf in the tree. Our scheme will rely on
a punctured PRF to generate this tree. The signing key punctured at a message m∗ will
include a punctured PRF key, punctured at all the points in the path from root to the
leaf corresponding to m∗; also it will include a small set of certificates that, for every
message m 6= m∗, can be used to certify the verification key for the first node that is in
the path from the root to the leaf corresponding to m, but not in the path from the root
to the leaf corresponding to m∗. Compared to the certificate chains used in the standard
signature construction, it is important in our case to verifiably tie the verification keys
to specific nodes in the tree, because otherwise the signer with a punctured signing key
can use keys for one leaf to sign the message associated with another leaf.

The construction. Given a pPRF scheme F = (F.puncture, F.eval) with key space K
and punctured key space K̂, and a (one-time) digital signature scheme Σ = (keygen, sign, verify)

5 Note that the adversary does not need access to the signing oracle. This is because the adversary can
itself compute psign(ŝkm∗ ,m) on all messages of its choice other than m∗, and by the “consistency”

condition, for such queries, access to sign(sk, ·) and access to psign(ŝkm∗ , ·) are equivalent.
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(over appropriate domains), we shall construct a PDS scheme pds = (keygen, sign, ver,
pkeygen, psign). We use the convention that Σ.keygen accepts its randomness as an input.

We let M = {0, 1}` be the message space of our PDS scheme. Let M+ denote the
set of all bit strings of length ` or less (including the empty string ε). The input domain
of the PPRF F is identified with M+. We write u ≺ z (or, u � z) to denote that u is a
strict prefix (or, respectively, prefix) of z; also let prefix(m) = {u | u � m}.

It will be convenient to have a notation for “certificate chains.” Given z ∈ M+

and signing and verification keys of Σ, (sku, vku) for every u � z, we define chain(z |
{sku, vku0, vku1}u≺z) := {(µu, σu)}u≺z where µu = (vku0, vku1, u) and σu = Σ.sign(sku, µu).
We shall denote a purported chain as chain(z | {vku}ε≺u≺z), when it has the form
{(µu, σu)}u≺z where µu = (vku0, vku1, u) (for some {σu}u≺z). We say that a purported
chain chain(z | {vku}ε≺u≺z) verifies w.r.t. vk if
Σ.verify(vk, µε, σε) = 1, and for each non-empty u ≺ z, Σ.verify(vku, µu, σu) = 1.

• keygen(κ, `): Pick K ← K. Let rε = F (K, ε), and (skε, vkε) ← Σ.keygen(rε). Output
(sk, vk) where sk = (K, `) and vk = (vkε, `).

• sign(sk = (K, `),m ∈ {0, 1}`): For each u � m, let ru = F (K,u), and (sku, vku) ←
Σ.keygen(ru). Output the tuple (Σ.sign(skm,m), chain(m | {sku, vku0, vku1}u≺m)).

• ver(vk, (m,σ)): Parse σ as (σ, chain(m | {vku}ε≺u≺m)). Output 1 iff
Σ.verify(vkm,m, σm) = 1 and the chain verifies with respect to vk.

• pkeygen(sk = (K, `),m∗ ∈ {0, 1}`): Let T = prefix(m∗), and K̂T ← F.F.puncture(K,T ).
Output ŝkm∗ := (K̂T , chain(m∗ | {sku, vku0, vku1}u≺m∗).
• psign(ŝkm∗ ,m): If m = m∗, output ⊥. Else, let z � m be such that z ∈ {v0, v1},

where v ≺ m∗ but z 6� m∗. Note that chain(z) is a prefix of chain(m∗), which is
part of ŝkm∗ . For all u such that z � u ≺ m,6 compute ru = F.F.eval(K̂T , u), and
(sku, vku) = Σ.keygen(ru). Construct chain(m) using chain(z) and the above values.
Also, compute σ = Σ.sign(skm,m). Output (σ, chain(m)).

Theorem 1. Let F be a selectively secure puncturable PRF and Σ be a secure (one-
time) digital signature scheme. Then the construction of pds shown above is a secure
puncturable digital signature scheme. In particular, we will show that:

AdvpdsA (κ) ≤ εF + (`+ 1)εΣ,

where εF and εΣ are upper bounds on the advantage of PPT adversaries for F and Σ
respectively.

Proof sketch: Firstly, note that the construction ensures that signatures constructed
using the signature key and the punctured signature keys (on non-punctured points)
will always verify.

6 This would be an empty set if m is the sibling of m∗: i.e., if m = m∗ ⊕ 0`−11; in this case z = m and
chain(z) = chain(m∗)
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In the experiment of pPRF security, let T = prefix(m∗). First, we consider a hybrid
experiment in which the challenger uses the pPRF key K only for sampling ru for u 6∈ T ,
and it uses independently sampled random values ru for u ∈ T . The difference in the
probability of A winning in the original and modified experiments is at most εF (selective
security of F is sufficient for this).

Next, we argue that the advantage of A in the modified experiment is at most
(` + 1)εΣ. For this we consider an adversary AΣ which accepts vkΣ from outside and
access to a one-time signature oracle using the corresponding signing key. It internally
simulates the above experiment perfectly, with the following further modification: it
uniformly randomly chooses u∗ ← T and lets vku∗ = vkΣ. Also, instead of using sku∗

(which it does not have access to), it queries the signing oracle for a signature on µu∗ ,
where for ease of notation we have defined

µu =

{
(u, vku0, vku1) if u ≺ m∗

u if u = m∗.
(1)

Note that when vkΣ is honestly generated, this is indeed a perfect simulation of the
hybrid experiment above.

Now, supposeA successfully produces a forgery – i.e., outputs (σ∗, chain(m∗ | {vk′u}ε≺u≺m∗))
where Σ.verify(vkm,m, σ

∗) = 1 and the chain verifies w.r.t. vk. Let vk′ε = vkε. Also, we
define µ′u analogous to µu in (1), using vk′ub instead of vkub. We consider two cases: either
vk′m = vkm or ∃v∗ ≺ m∗ such that vk′v∗ = vkv∗ and vk′v∗b 6= vkv∗b, where b ∈ {0, 1} and
v∗b � m∗. In the former case, we define v∗ := m∗. Then, in either case µ′v∗ 6= µv∗ .
Further, with probability 1/(`+ 1) v∗ = u∗ (independent of everything else). When this
happens, we have obtained a Σ-signature on µ′u∗ which verifies w.r.t. the key vku∗ = vkΣ,
where as we queried the corresponding signing oracle on a single different message, µu∗ .
Since this probability is upper bounded by εΣ, the probability A succeeds in the modified
experiment is upper bounded by (`+ 1)εΣ. �

4 Witness Maps

In this section we formally define the new primitives called Compact Witness Maps and
Dual Mode Witness Maps.

Recall that R ⊆ {0, 1}∗ × {0, 1}∗ is said to be an NP relation if membership in it
can be computed in time polynomial in the length of the first input.

Given an NP relation R, we define the NP language LR := {x | ∃w, (x,w) ∈ R}.
When referring to (x,w) ∈ R, where R is a given NP relation, x is called the statement
and w the witness. It will be convenient for us to consider NP relations parametrized
with their input length: Below we let R` := R ∩ {0, 1}` × {0, 1}∗.

Definition 6 (Compact Witness Map (CWM)). For α ≥ 0, an α-CWM for an
NP relation R is a triple cwm = (setup,map, check) where setup is a PPT algorithm
and the other two are deterministic polynomial time algorithms such that:
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• setup(κ, `) outputs a string K of length polynomial in the security parameter κ and `.

• Completeness: For any polynomial `, ∀(x,w) ∈ R`(κ), ∀K← setup(κ, `(κ)),

check(K, x,map(K, x, w)) = 1.

• Lossiness: For any polynomial `, ∀K← setup(κ, `(κ)), ∀x ∈ {0, 1}`(κ),

|{map(K, x, w) | (x,w) ∈ R`(κ)}| ≤ 2α.

• Soundess: For any polynomial ` and any PPT adversary A, Advcwm
A (κ) defined below

is negligible:

Pr
K←setup(κ,`(κ))

[A(K)→ (x∗, w∗), check(K, x∗, w∗) = 1, x∗ 6∈ LR ].

A 0-CWM is called a Unique Witness Map (UWM).

The above definition has perfect security in the sense that the completeness and
lossiness conditions hold for every possible K that cwm.setup can output with positive
probability. A statistical version, where this needs to hold with all but negligible prob-
ability over the choice of K will suffice for all our applications. But for simplicity, we
shall use the perfect version above. It is useful to consider a variant of the definition
with a selective soundness guarantee, in which the adversary is required to generate x∗

first (given κ, `) before it gets K. For some applications (e.g., construction of a witness
encryption scheme from a UWM) this level of soundness suffices. It also provides an
intermediate target for constructions, as one can convert a selectively sound CWM to a
standard CWM by relying on complexity leveraging (as we shall do in our construction
in Section 4.1).

Definition 7 (Dual Mode Witness Maps (DMWM)). An α-DMWM with tag
space T for an NP relation R is a tuple dmwm = (setup,map, check, extract) where
setup is a PPT algorithm and the others are deterministic polynomial time algorithms
such that:

• setup(κ, `, tag) outputs (K, td), where κ is a security parameter, `(κ) is a polynomial,
and tag ∈ T , K and td are strings of length polynomial in κ.

• Completeness: ∀tag, tag′ ∈ T for all polynomials `, ∀(x,w) ∈ R`(κ), ∀K← setup(κ, `(κ), tag),

check(K, tag′, x,map(K, tag′, x, w)) = 1.

• Hidden Tag: For any PPT adversary A, Advdmwm-hide
A (κ) defined below is negligible:∣∣Pr

[
A(κ, `)→ (tag0, tag1, st), b← {0, 1},

(K, td)← setup(κ, `(κ), tagb),A(K, st)→ b′, b = b′
]
− 1

2

∣∣.
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• Extraction: For any polynomial `, for any PPT adversary A, Advdmwm
A (κ) defined below

is negligible:

Advdmwm
A (κ) := Pr[A(κ, `)→ (tag, st), (K, td)← setup(κ, `(κ), tag),A(K, st)→ (x∗, w∗),

check(K, tag, x∗, w∗) = 1, (x∗, extract(td, x, w∗)) 6∈ R`(κ)]

• Cumulative Lossiness: ∀tag, `, ∀K← setup(κ, `, tag), ∀x ∈ LR`, there exist (inefficient)
functions compressK,x : {0, 1}∗ → SK,x and expandK,x : SK,x × {0, 1}∗ → {0, 1}∗ such

that |SK,x| ≤ 2α(κ), and for all tag′ 6= tag,

map(K, tag′, x, w) = expandK,x(compressK,x(w), tag′).

4.1 Unique Witness Maps

In this section, we present a construction of 0-CWM or an UWM.

4.1.1 A UWM for any NP Relation. Now we present the construction of our
UWM system uwm for any NP relation R (see Figure 1). The main building blocks of
our construction are a punctured digital signature (PDS) scheme pds and an iO scheme
(denoted as iO).

Let pds = (keygen, sign, ver, pkeygen, psign) be a secure punctured digital signature scheme and iO be a
secure indistinguishability obfuscator for circuits.

1. uwm.setup(`, κ): Generate (sk, vk) ← pds.keygen(`, κ). Then create an obfuscated program P ←
iO(EndorseR`

sk ), where the program EndorseR`
sk is as shown below. Output K = (vk, P ).

2. uwm.map(K, x, w) : Parse K as (vk, P ). Output w∗ ← P (x,w).

3. uwm.check(K, x, w∗) : Parse K as (vk, P ). Output pds.ver(vk, x, w∗).

Program EndorseR`
sk ((x,w))

Constant: Signing key sk

Input Domain: (x,w) ∈ {0, 1}` × {0, 1}`
′

if (x,w) ∈ R` then
output pds.sign(sk, x)

else

output ⊥

Program pEndorseR`

ŝkx∗
((x,w))

Constant: Punctured signing key ŝkx∗

Input Domain: (x,w) ∈ {0, 1}` × {0, 1}`
′

if (x,w) ∈ R` and x 6= x∗ then

output pds.psign(ŝkx∗ , x)

else
output ⊥

Fig. 1. The UWM for an NP relation R. The program pEndorseR`

ŝkx∗
is used only in the proof.

Theorem 2. Let iO be a (polynomially) secure indistinguishability obfuscator for cir-
cuits and pds be a (polynomially) secure consistent puncturable digital signature scheme.
Then uwm defined in Figure 1 is a UWM for the NP relation R satisfying selective
soundness.
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Proof. Firstly, we note that uwm satisfies perfect completeness (assuming iO and pds are
perfectly correct). Also, it satisfies uniqueness, since (x,w) is deterministically mapped
to the signature on x, independent of w. Below, we shall prove that the scheme is sound
as well.

Consider an adversary A in the definition of Advuwm
A (κ). Note that A outputs a

point x∗ first. We consider a hybrid experiment where, after A outputs x∗, K is derived
from a modified uwm.setup: The modified uwm.setup is only different in that instead
of using EndorseR`sk , the program pEndorseR`

ŝkx∗
(also shown in Figure 1) is used, where

ŝkx∗ ← pds.pkeygen(sk, x∗).

We claim that the advantage A has in the modified experiment can only be negli-
gibly more than that in the original experiment. For this consider, a coupled execution
of the two experiments, with A’s random tape being the same in the two executions.
Then it is enough to upper bound the the difference of probabilities of the condition
uwm.check(K, x∗, w∗) = 1 ∧ x∗ 6∈ LR` holding in the modified experiment and in the
original experiment. Fix a choice of randomness that maximizes this difference, δ. We
shall describe a (non-uniform) adversary AiO, which internally runs the coupled ex-
periment with this choice of randomness for A. Let x∗ be the output of A with this
choice. Note that for δ > 0, we need x∗ 6∈ LR` . For such x∗, observe that EndorseR`sk

and pEndorseR`
ŝkx∗

are functionally equivalent programs (for all sk). This is because, if

(x,w) ∈ R`, then x 6= x∗ and the consistency of the PDS scheme guarantees that
pds.sign(sk, x) = pds.sign(ŝkx∗ , x). So AiO can output the pair of programs EndorseR`sk

and pEndorseR`
ŝkx∗

. It receives back an obfuscated program P and carries out the rest of

the UWM security game with A using P . If P ← iO(EndorseR`sk ), then this game is ex-
actly the original game, and otherwise it is the modified game. Hence, AiO distinguishes
between these two cases with advantage δ. Hence, by the security of iO, δ is negligible;
this in turn shows that the advantage A has in the modified experiment is only negligibly
far from that in the original experiment.

Next, we argue that in the modified selective soundness experiment A has negligible
advantage. Note that in the modified experiment, A outputs a string x∗ ∈ {0, 1}`, gets
back (vk, P ), where (vk, sk)← pds.keygen(`, κ), and P is generated from the punctured
secret-key ŝkx∗ , outputs a purported signature w∗, and wins if pds.ver(vk, x∗, w∗) = 1.
By the security of pds, the probability of A winning is at most AdvpdsA (κ), which is
negligible. ut

Remark 1. In the above proof, we only show selective soundness of uwm. We note that,
one can transform a selectively sound UWM to an adaptively sound one using com-
plexity leveraging, when appropriate. This can be done by choosing pds to be 2-(`+κ)-
secure punctured digital signature scheme and iO to be 2-(`+κ)-secure indistinguisha-
bility obfuscator for circuits respectively (i.e., the advantages AdvpdsA (κ1) ≤ 2-(`+κ) and
AdviOSamp,D(κ2) ≤ 2-(`+κ), where κ1 and κ2 are the security parameters for pds and iO
respectively, and κ is the security parameter for uwm). One can set κ1 and κ2 to be
large enough to satisfy this.
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4.1.2 Implication to Witness Encryption. In this section, we show that a full-
fledged UWM implies Witness encryption (WE). We start by recalling the definition of
WE from [25].

Definition 8 (Witness Encryption). A witness encryption scheme we for an NP
language LR with witness relation R consists of the following polynomial-time algorithms:

• Encrypt(1κ, x,M). The encryption algorithm takes as input the security parameter
1κ, an unbounded-string x ∈ {0, 1}∗, and a message M ∈ {0, 1}, and outputs a cipher-
text C.
• Decrypt(w,C). The decryption algorithm takes as input a ciphertext C, and an un-

bounded length string w ∈ {0, 1}∗, and outputs a message M or the symbol ⊥.

The algorithms must satisfy the following requirements:

• Completeness: ∀κ ∈ N, ∀(x,w) ∈ R`, and any message M ∈ {0, 1}, we have: Decrypt(w,
Encrypt(1κ, x,M) = M .

• Soundness Security: For any PPT adversary Awe, there exists a negligible function
negl(·) such that for any x /∈ LR we have:

∣∣∣Pr[Awe(Encrypt(1κ, x, 0)) = 1 ]− Pr[Awe(Encrypt(1κ, x, 1)) = 1 ]
∣∣∣ < negl(κ).

In the following, we will also need to use a generalized version of the Goldreich-Levin
(GL) theorem, as stated below.

Lemma 3 (Generalized Goldreich-Levin Theorem). There exists a PPT inverter
A′ and a non-zero polynomial q(·) such that, for any machine A and any (α, β) ∈
{0, 1}k × {0, 1}` such that p(α) := Pr[A(α, r) = 〈β, r〉 : r

$←− {0, 1}`] (where 〈·, ·〉 denotes
the inner product over the binary field), then Pr[A′A(α,·)(1`, α) = β] ≥ q(p

(
α)− 1

2

)
.

We now proceed to give the construction of the witness encryption scheme WE from
a unique witness map uwm (see Figure 2). Before giving the construction, we give a
high-level idea behind the construction.

Intuition behind the construction. We show a construction of WE for an arbitrary
NP language L starting from an UWM for the language LOR = L ∨ L′, where L′ is
another NP language whose YES instances are indistinguishable from NO instances. To
WE encrypt a bit m ∈ {0, 1} with respect to an NP statement x ∈ L, we sample an
YES instance from the NP language L′. We do so by sampling a pseudo-random string
y = G(z), such that z serves as a valid witness corresponding to the string y. We then
consider the language LOR = L ∨ L′ which consists of instances x̂ of the form “either
x ∈ L ∨ y is pseudorandom”. We use the UWM to derive a representative witness w∗

for a statement corresponding to this augmented NP language (using witness z) and
then derive the Goldreich-Levin hardcore bit of w∗ to be used as a one-time pad to
encrypt the bit m. The decryptor can derive the same representative witness w∗ using
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Let R1 be an NP relation, and LR1 be the corresponding NP language defined as LR1 := {x |
∃w, (x,w) ∈ R1}. Let R2 be another NP relation defined as (y, z) ∈ R2 if and only if y = G(z),
where G : {0, 1}κ → {0, 1}q(κ) is a pseudo-random generator, and q(·) is an arbitrary polynomial. Also,
let LR2 be the corresponding NP language defined as LR2 := {y | ∃z, (y, z) ∈ R2}. Further, we assume
that R1 and R2 are parameterized with their input lengths. Define the following derived NP relation
ROR and language LOR as:

ROR
(
(x, y), (w, z)

)
= 1 iff R1(x,w) = 1 ∨ R2(y, z) = 1, and

LOR = {x, y} | ∃(w, z), (x,w) ∈ R1 ∨ (y, z) ∈ R2.

Note that, the relation ROR is parameterized with the input length `′ = max{| x |, | y |}.

(a) Let uwm = (uwm.setup,uwm.map,uwm.check) be a (selectively) sound unique witness map (UWM)
(refer to Section 4.1) for the language LOR. Further, let the length of the representative w∗ of uwm
be p(κ) bits, for some polynomial p(·).

(b) Let gl(π, r) denote the Goldreich-Levin (GL) hardcore bit [28] of π using randomness r. Recall
that, the GL predicate is the bit-wise inner product of π and r.

1. Encrypt(1κ, x,M ∈ {0, 1}): Takes as input an instance x ∈ LR1 , and a message M ∈ {0, 1}. Do the
following:

• Sample z ← {0, 1}κ and r ← {0, 1}p(κ) uniformly at random, and compute y = G(z).

• Run K← uwm.setup(`′, κ).

• Generate a representative witness w∗ = map
(
K, (x, y), (⊥, z)

)
, using (⊥, z) as witness. Note that,

the statement (x, y) ∈ LOR.

• Compute the GL hardcore bit b = gl(w∗, r) and compute c = b⊕M .

• Output the ciphertext C = (K, y, r, c).

2. Decrypt(1κ, C, w): On input a ciphertext C = (K, y, r, c), and a witness w satisfying (x,w) ∈ LR1 ,
do the following:

• Compute the representative witness w∗ = map
(
K, (x, y), (w,⊥)

)
. Note that, the witness (w,⊥) is

also consistent with the statement (x, y), and hence (x, y) ∈ LOR.

• Compute b = gl(w∗, r) and recover the message M = c⊕ b.

Fig. 2. Construction of Witness Encryption Scheme we from uwm

his witness for x ∈ L (which is also a valid witness for LOR) and therefore decrypt.
Intuitively, if an adversary can break WE security, then it can distinguish encryptions
of 0 and 1 with non-negligible probability even if x is a false statement. This means
that, using Goldreich-Levin decoding, it can compute the correct value w∗ given y with
non-negligible probability. Furthermore this value w∗ is a valid representative witness for
the statement x̂. At this point, we switch the YES instance of L′ to a NO instance (this
can be done by sampling a random y, instead of a pseudorandom y), without affecting
the advantage of the adversary much. Hence, it must also compute a valid representative
witness for x̂ if we switch y to false. But this contradicts the soundness of UWM. We
remark that, for this reduction it suffices even if the UWM is only selectively sound.

Theorem 3. If uwm is a selectively sound UWM for the NP relation ROR, then we
defined in Figure 2 is a WE for the NP relation R1.
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Proof. We show that any adversary Awe breaking the soundness security of we with a
noticeable advantage can be transformed into an adversary Auwm breaking the selective
soundness of uwm. At first, we show that the adversary Awe breaking the soundness
security of we can be converted into a predictor A′ for the generalized Goldreich-Levin
theorem. In more details, let the adversaryAwe can predict the bit M with non-negligible
probability on some instance x /∈ LR1 . Also, let α = (K, y), and β = w∗ from the gener-
alized GL theorem. This implies that we can construct a distinguisher A that on input(
α = (K, y), r

)
can distinguish the bit b from a random bit with non-negligible prob-

ability. Hence, by Lemma 3, we can use this distinguisher A to construct a predictor
A′, who given α = (K, y) can predict the pre-image w∗ with non-negligible probability.
This implies that the predictor outputs w∗ such that w∗ = map

(
K, (x, y), (⊥, z)

)
with

non-negligible probability. At this point, instead of computing y = G(z), we sample a
random y ← {0, 1}p(κ). The security of the PRG G ensures that this switch is indis-
tinguishable to A′. Hence the probability that A′ outputs a “valid” w∗ (w∗ such that
check(K, (x, y), w∗) = 1) continues to hold, except with a negligible probability. How-
ever, note that, with very high probability it holds that (x, y) /∈ LOR. This contradicts
the soundness property of UWM, since the adversary A′ outputs a valid representative
witness corresponding to a false statement (x, y) /∈ LOR. ut

4.2 Cumulative Lossy and All-Lossy-But-One Trapdoor Functions

4.2.1 Cumulative Lossy Trapdoor Functions. In this section, we introduce the
notion of “cumulative” lossy trapdoor functions (C-LTDF). A (standard) lossy trapdoor
function (LTDF) f can be sampled in one of two indistinguishable modes – injective or
lossy. In the injective mode, the function f can be efficiently inverted with the knowl-
edge of a trapdoor; whereas in the lossy mode the function statistically loses a lot of
information about its input. We say that a function f with domain {0, 1}n is (n, k)-lossy
if its image size is at most 2n−k. This implies that mapping a random x to f(x) loses,
on average, at least k bits of information about x.

Now, consider the information about x revealed by (f1(x), · · · , fm(x)), where f1, · · · , fm
are m independently sampled functions from an (n, k)-lossy function family. According
to the current definitions and constructions of LTDFs, up to m(n − k) bits could be
revealed about x; if m ≥ n/(n− k), x could be completely determined by these values.

This is where C-LTDF differs from an LTDF. In a C-LTDF, the amount of informa-
tion about x that (f1(x), · · · , fm(x)) reveals is bounded by a cumulative loss parameter
α, irrespective of how large m is. Here the lossy functions fi can all be sampled indepen-
dently, but using the same public parameters.

We now formally define C-LTDF and the corresponding properties associated with
it.

Definition 9 (C-LTDF). Let κ ∈ N be the security parameter, and `, α : N → N. A
(`, α)-cumulative lossy trapdoor function family (C-LTDF) is a tuple of (probabilistic)
polynomial time algorithms (setup, sampleinj, sampleloss, eval, invert) (the last two being de-
terministic), having properties as follows:
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• Parameter Generation. The setup algorithm setup(κ) outputs a public parameter
pp.

• Sampling: Injective mode. The algorithm sampleinj(κ, pp) outputs the tuple (ek, tk)
such that invert(tk, eval(ek, x)) = x for all x ∈ {0, 1}`(κ) (i.e., eval(ek, ·) computes an
injective function fek(·) and invert(tk, ·) computes f−1

ek (·)).

• Sampling: Lossy mode. For all pp in the support of setup(κ) there exists an (in-
efficient) function compresspp : {0, 1}`(κ) → Rpp with range |Rpp| ≤ 2`(κ)−α(κ), and
for all ek in the support of sampleloss(κ, pp) there exists an (inefficient) function
expandek(·) such that the following holds: for all x ∈ {0, 1}`(κ) we have eval(ek, x) =
expandek(compresspp(x)).

• Indistinguishability of modes. The ensembles {(pp, ek) : pp← setup(κ), (ek, tk)←
sampleinj(κ, pp)}κ∈N and {(pp, ek) : pp ← setup(κ), ek ← sampleloss(κ, pp)}κ∈N are
computationally indistinguishable.

4.2.1.1 A Construction of C-LTDF based on the d-Linear Assumption. The
d-linear assumption [7] is a generalization of the Decision Diffie-Hellman (DDH) assump-
tion. In particular, the 1-Linear assumption is precisely the DDH assumption and the
2-Linear assumption is the Decision Linear assumption [7]. For our construction, we will
actually need Matrix d-Linear assumption, which is implied by the d-Linear assumption,
as shown by Naor and Segev [43]. Before specifying the assumptions, we will need to
introduce some additional notations as follows.

Additional Notation. Let GroupGen be a PPT algorithm that takes as input the security
parameter κ and outputs the a triplet (G, p, g) where G is a group of prime order p
generated by g ∈ G. We denote by Rki(Fa×bp ) the set of all a× b matrices over the field
Fp of rank i. For a vector x = (x1, · · ·xn) ∈ Fnp , we define gx to be the column vector

(gx1 , · · · , gxn) ∈ Gn. If M = (mij) is a n × n matrix over Fp, we denote by gM the
n×n matrix over G given by (gmij ). Given any matrix M = (mij) ∈ Fn×np and a column

vector y = (y1, · · · yn) ∈ Gn, we define by yM =
(∏n

j=1 y
m1j

j , · · · ,
∏n
j=1 y

mnj
j

)
∈ Gn.

For any matrix R = (rij) ∈ Gn×n and a column vector z = (z1, · · · , zn) ∈ Fnp , we define

by Rz =
(∏n

j=1 r
zj
1j , · · · ,

∏n
j=1 r

zj
nj

)
∈ Gn. This naturally generalizes for two matrices

as well. In other words, for two matrices R ∈ Gn×n and Z ∈ Fn×np , we denote by

RZ = (Rz1 , · · · , Rzn) ∈ Gn×n, where each Rzi (i ∈ [n]) is a column vector in Gn (as
defined above) and for all i, zi denotes the ith column of the matrix Z.

Definition 10 (d-Linear assumption [7]). Let d ≥ 1 be an integer, and GroupGen be
as above. We say that the d-linear assumption holds for GroupGen if the following two
distributions are computationally indistinguishable:

{(g,G, p, {gi, grii }
d
i=1, h, h

∑d
i=1 ri) : (g,G, p)← GroupGen; gi, h

$←− G; ri
$←− Zp},

{(g,G, p, {gi, grii }
d
i=1, h, h

r) : (g,G, p)← GroupGen; gi, h
$←− G; ri, r

$←− Zp},
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Definition 11 (Matrix d-Linear assumption [43]). Let a, b, d be integers s.t. 1 ≤
d ≤ min{a, b}. Let GroupGen be as above. We say that the (a × b)-Matrix d-linear as-
sumption holds for GroupGen if, for all i, j with d ≤ i ≤ j ≤ min a, b, the two distribu-
tions {G, p, g, gR : (G, p, g) ← GroupGen, R ← Rki(Za×bp )} and {G, p, g, gR : (G, p, g) ←
GroupGen, R← Rkj(Za×bp )} are computationally indistinguishable.

Lemma 4. [43] If the d-Linear assumption holds for GroupGen, then so does the matrix
d-Linear assumption.

The construction. Let d ≥ 1 be a positive integer. Define the tuple c-ltdf = (setup, sampleinj,
sampleloss, eval, invert) as follows:

1. setup(κ) : On input the security parameter κ, do the following:

• Run GroupGen(κ) to obtain the tuple (G, p, g).

• Sample a random matrix M
$←− Rkd(Zn×np ) and let S = gM ∈ Gn×n.

• Set the public parameter pp = (G, p, g, S).

2. sampleinj(κ, pp) : On input pp, chooses a random matrix M1
$←− Rkn(Zn×np ) and com-

putes S1 = gM1 ∈ Gn×n. Set the function index as ek = S1 and the associated
trapdoor as tk = (g,M1).

3. sampleloss(κ, pp) : On input pp, chooses a random matrix M1
$←− Rkd(Zn×np ) and

computes S1 = SM1 ∈ Gn×n. Set the function index as ek = S1.

4. eval(ek,x) : On input a function index ek and an input vector x ∈ {0, 1}n, compute
the function fek(x) = Sx

1 ∈ Gn.

5. invert(ek, tk,y) : Given a function index ek = S1, the trapdoor tk = (g,M1) and a
vector y ∈ Gn, do the following:

• Compute (z1, · · · , zn) = yM
−1
1 .

• Let xi = logg(zi) for i = 1, · · · , n.

• Output the vector x = (x1, · · · , xn).

Theorem 4. Suppose the d-Linear assumption holds for GroupGen. Let pmax(κ) be an
upper bound on the order of the group generated by GroupGen(κ). Then c-ltdf is an
(n, (1−ε)n))-cumulative lossy trapdoor function family, provided ε > d log2 pmax(κ)/n(κ).

Proof. Firstly, it is straightforward to verify that the inversion algorithm invert correctly
recovers the (unique) pre-image on injective functions.

Secondly, we proceed to show the indistinguishability of lossy and injective modes.
In injective mode, we have that M1 is statistically close to uniform, and hence the
matrix S1 = gM1 is also statistically close to uniform. This implies that with very
high probability, the matrix S1 is a full rank matrix. In the lossy mode, we have that
S1 = SM1 , where both S and M1 are rank d matrices. We first sample S uniformly at
random. By the Matrix d-linear assumption (which is implied by the d-Linear assumption
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– see Lemma 4) it is hard for a PPT adversary to distinguish between these two ways
of sampling. However, the rank of matrix S1 is d.This is because the elements of the
matrix S can be generated using the canonical generator g′ (say) of Zp. Hence, each row
of S1 = SM1 can be expressed as a linear combination of the corresponding rows and
columns of S and M1 in the exponent. At this point we can again use the Matrix d-linear
assumption to sample S1 randomly. Therefore, in both modes, ek is computationally
indistinguishable from uniform, and therefore the modes are indistinguishable from each
other.

Thirdly, let pp = S = gM and let ek = S1 = SM1 . Let x ∈ {0, 1}n. Then eval(ek,x) =
Sx

1 = (SM1)
x

. Observe that, the matrix M1 is sampled independently of x. Hence, one
can completely reconstruct fek(x) = Sx

1 given (Sx,M1) as follows: Define compresspp(x) =

Sx and expandek(R) = RM1 . However, Sx reveals at most εn bits of information about
x, since in the lossy mode, the image of the function fek(·) is contained in a subgroup of
Gn of size pd < 2εn. This concludes the proof of Theorem 4. ut

4.2.2 Cumulative All-Lossy-But-One Trapdoor Functions. For our construc-
tion of dual mode witness maps (DMWM), we will need a richer abstraction, which we
call cumulative all-lossy-but-one trapdoor functions (C-ALBO-TDF). These functions
are associated with an additional branch space B = {Bκ}κ∈N. For a C-ALBO-TDF, al-
most all the branches are lossy, except for one branch which is injective. This notion of
C-ALBO-TDF is actually contrary to the notion of All-But-One Lossy TDF (ABO-
LTDF) defined by Peikert and Waters [46]. ABO-LTDFs are also associated with many
branches, all but one of which are injective. Also, note that, we do not need any ad-
ditional public parameters in the definition C-ALBO-TDF, and we require that the
residual leakages of different lossy functions are “correlated” via the public key (which
is shared by different functions). Now, we formally define C-ALBO-TDF and state its
properties as below:

Definition 12 (C-ALBO-TDF). Let κ ∈ N be the security parameter and `, α :
N → N be functions. Also, let B = {Bκ}κ∈N be a collection of sets whose elements
represent the branches. An (`, α)-cumulative all-lossy-but-one trapdoor function family
(C-ALBO-TDF) with branch collection B is given by a tuple of (probabilistic) polyno-
mial time algorithms (samplec-albo, evalc-albo, invertc-albo) (the last two being determinis-
tic), as follows:

• Sampling a trapdoor function with given injective branch. For any branch
b∗ ∈ B, samplec-albo(κ, b∗) outputs the tuple (ek, tk), where ek is the function index and
tk is its associated trapdoor.

• (Injective branch.) For the branch b∗, invertc-albo(tk, b∗, evalc-albo(ek, b∗, x)) = x
for all x ∈ {0, 1}`(κ) (i.e., evalc-albo(ek, b∗, ·) computes an injective function gek,b∗(·)
over the domain {0, 1}`(κ), and invertc-albo(tk, b∗, ·) computes g−1

ek,b∗(·)).

• (α-Cumulative Lossy branches.) For all ek there exists an (inefficient) function
compressek : {0, 1}`(κ) → Rek with range |Rek| ≤ 2`(κ)−α(κ), and for all ek, b there
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exists a function expandek,b(·) such that the following holds. For all b∗ ∈ B, all ek is

in the support of samplec-albo(κ, b∗), all b 6= b∗ and all x ∈ {0, 1}`(κ), we have

evalc-albo(ek, b, x) = expandek,b(compressek(x)).

• Hidden injective branch. ∀ b∗0, b∗1 ∈ B, the ensembles
{ek0 : (ek0, tk0)← samplec-albo(κ, b∗0)}κ∈N and {ek1 : (ek1, tk1)← samplec-albo(κ, b∗1)}κ∈N
are computationally indistinguishable.

4.2.3 A Construction of C-ALBO-TDF from iO and C-LTDF. In this section,
we present our construction of cumulative all-lossy-but-one LTDF (C-ALBO-LTDF). We
show a generic transformation from C-LTDF to C-ALBO-TDF using iO. The main
idea of our construction is as follows: We obfuscate a program that has the public
parameters pp of C-LTDF hardwired in it and internally it runs either sampleinj or
sampleloss depending on the branch b. In other words, on input a branch b, it applies
a pseudorandom function to b to sample a fresh lossy branch, except for the special
branch b∗ on which it outputs a hard-coded injective C-LTDF key. The details of our
construction follows.

The construction. Let c-ltdf = (setup, sampleinj, sampleloss, eval, invert) be collection
of (n, α)-cumulative lossy trapdoor function (C-LTDF) and let iO be indistinguishabil-
ity obfuscator for all circuits. Also, let Rinj and Rloss be the randomness spaces of the
algorithms sampleinj and sampleloss respectively. We now present our construction (see
Figure 3).

1. samplec-albo(κ, b∗) outputs the function index ek′ which contains the obfuscation of
a program Samp-index (described below). It also outputs an associated trapdoor tk′.
The output of the obfuscated program is a function index.

2. evalc-albo(ek′, b, x) runs the obfuscated program in ek′ on input b to obtain a function
index ẽk and outputs y = eval(ẽk, x).

3. invertc-albo(tk′, b, y) can be used to efficiently invert y if b = b∗.

The program Samp-index has a PRF key K, the injective branch b∗, ek and pp hard-
coded in it. On input b, if b = b∗ it outputs the injective function ek. Else, it outputs
sampleloss(κ, pp; rloss), where rloss ← PRF(K, b). The function index ek′ is set to be the
obfuscation of the above program Samp-index, and the trapdoor is set to be tk, which is
sampled as part of samplec-albo.

Theorem 5. Let c-ltdf be a collection of (`, α)-cumulative LTDF, iO be an indistin-
guishability obfuscator for circuits, F be a secure puncturable PRF with input space B.
Then the construction c-albo-tdf defined in Figure 3 is a collection of (`, α)-cumulative
all-lossy-but-one trapdoor functions.

Proof. The correctness of the inversion algorithm invertc-albo follows from the correctness
of eval when evaluated on the injective function index.
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Let c-ltdf = (setup, sampleinj, sampleloss, eval, invert) be collection of (`, α)-C-LTDF with randomness
paces Rinj and Rloss for the algorithms sampleinj and sampleloss respectively. Let F : K × B → Rloss be
a puncturable PRF given by a pair of polynomial time algorithms (F.puncture, F.eval) and iO be an
indistinguishability obfuscator for circuits.

1. samplec-albo(κ, b∗): Run setup(κ) to obtain the public parameters pp. Then it samples (ek, tk) ←
sampleinj(κ, pp). Then create an obfuscated program R← iO(Samp-indexK,b∗,ek,pp), where the program
Samp-indexK,b∗,ek,pp is as shown below. Output ek′ = R and tk′ = tk.

2. evalc-albo(ek′, b, x): Here x ∈ {0, 1}n. Parse ek′ as R. Run ẽk ← R(b), and output the value y =

eval(ẽk, x).

3. invertc-albo(tk′, b∗, y): Parse tk′ as tk, and compute invert(tk, y).

Program Samp-indexK,b∗,ek,pp(b)

Constant: PRF key K, branch b∗, (injective) function index ek and public parameters pp.

Input Domain: b ∈ B
if b = b∗ then

output ẽk := ek.

else

compute rloss ← F (K, b). Sample (ẽk,⊥)← sampleloss(κ, pp; rloss),

output ẽk.

Fig. 3. Construction of c-albo-tdf. The program Samp-indexK,b∗,ek,pp is padded to the the maximum of
the size of itself and the programs Samp-indexK,b∗,ek∗,pp (defined in Figure 4) and Samp-indexK̂b∗ ,b

∗,ek∗,pp

(defined in Figure 5).

Lemma 5. The above construction c-albo-tdf achieves hidden injective branch prop-
erty.

Proof. To prove the hidden injective branch property of c-albo-tdf, we consider the
following hybrid experiments described below. Also, let us denote by Si the probability
that A wins in Hybrid i.

Hybrid 0. This corresponds to the original security game. In particular, the chal-
lenger runs setup(κ) to obtain the public parameters pp. Then it samples (ek, tk) ←
sampleinj(κ, pp) and creates an obfuscated program R ← iO(Samp-indexK,b∗,ek,pp), as in
the original construction. It then outputs the function index ek′ = R.

Hybrid 1. In this hybrid, we change the way the function index ek′ is derived. In
particular, we derive ek′ using a modified samplec-albo: In this modified samplec-albo, the
challenger only runs the lossy sampler irrespective of the branch b used as input to the
algorithm evalc-albo. In particular, the challenger does the following: On input (κ, b∗),
computes r∗ ← F (K, b∗) and use r∗ to sample ek∗ as (ek∗,⊥) ← sampleloss(κ, pp; r∗).
Then it creates an obfuscated program R1 ← iO(Samp-indexK,b∗,ek∗,pp), as defined in
Figure 4. Output ek′ = R1.

Claim. |Pr[S1]− Pr[S0]| ≤ negl(κ).
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Program Samp-indexK,b∗,ek∗,pp(b)

Constant: PRF key K, branch b∗, ek∗ and pp.

Input Domain: b ∈ B
if b = b∗ then

output ek∗.

else

compute rloss ← F (K, b). Sample (ẽk,⊥)← sampleloss(κ, pp; rloss),

output ẽk.

Fig. 4. The program Samp-indexK,b∗,ek∗,pp

Proof. The proof of this claim follows from the indistinguishability of injective and lossy
branches of c-ltdf. In particular, if the adversary A has a non-negligible advantage in
distinguishing between Hybrid 0 and Hybrid 1, we can construct an adversary B that
breaks the indistinguishability of the injective and lossy branches property of c-ltdf.
The adversary B receives as input (pp, ẽk) from its challenger and constructs the obfus-
cated program R1 (by sampling a PRF key K by itself). Finally, it outputs the program
R1 as the function index ek′ to A. If the function index ẽk received by B was injective,
this corresponds to Hybrid 0; else if ek was lossy, it corresponds to Hybrid 1. Hence,
if the advantage of A is non-negligible, so is the advantage of B, which contradicts the
indistinguishability property of injective and lossy branches of c-ltdf (even given the
public parameters pp). ut

Hybrid 2: This is similar to Hybrid 1, except that we further change the way the func-
tion index ek′ is derived: On input (κ, b∗), the challenger computes r∗ ← F (K, b∗) and
samples ek∗ as (ek∗,⊥)← sampleloss(κ, pp; r∗) as before. Next, it K̂b∗ ← F.puncture(K, b∗),
and creates the obfuscated R2 ← iO(Samp-index

K̂b∗ ,b∗,ek∗,pp), where the program
Samp-index

K̂b∗ ,b∗,ek∗,pp is defined in Figure 5.

Program Samp-indexK̂b∗ ,b
∗,ek∗,pp(b)

Constant: Punctured PRF key K̂b∗ , branch b∗, ek∗, pp.

Input Domain: b ∈ B
if b = b∗ then

output ek∗.

else

compute rloss ← F.eval(K̂b∗ , b) . Sample (ẽk,⊥)← sampleloss(κ, pp; rloss),

output ẽk.

Fig. 5. The program Samp-indexK̂b∗ ,b
∗,ek∗,pp.

Claim. |Pr[S2]− Pr[S1]| ≤ negl(κ).
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Proof. The only difference between Hybrid 1 and Hybrid 2 is that: in Hybrid 2 the punc-
tured key K̂b∗ is used, instead of using the master PRF key K. However, the correctness
of punctured PRF guarantees that on branches b 6= b∗, F.eval(K̂b∗ , b) = F (K, b). Hence,
both the programs behave identically. Hence, the security of iO guarantees that both
these hybrids are computationally indistinguishable. ut

Hybrid 3: This is similar to Hybrid 2, except that the challenger now samples r∗

uniformly at random from Rloss, instead of computing it using F (K, b∗), and uses this
r∗ to sample ek∗ (using sampleloss as before). The rest of the computations remain the
same as in Hybrid 2.

Claim. |Pr[S3]− Pr[S2]| ≤ negl(κ).

Proof. The claim follows in a straightforward way from the pseudorandomness of the
puncturable PRF F . ut

Claim. Pr[S3] = 1
2 .

Proof. Note that, in Hybrid 3, the branch information (b∗0 or b∗1) is not used by sampleloss.
Hence, the claim follows. ut

Lemma 6. The above construction c-albo-tdf is (`, α)-cumulative lossy.

Proof. This follows from the (`, α)-cumulative lossiness of c-ltdf. Note that, on a branch
b 6= b∗ the algorithm samplec-albo(ek, b, x) just runs the algorithm eval(ẽk, x), where ẽk is
a lossy function index derived by running the obfuscated program R on input b.

Combining Lemma 5 and Lemma 6, we get the complete proof of Theorem 5. ut

4.3 Construction of Dual Mode Witness Maps

In this section, we present a construction of dual mode witness maps (DMWM) for any
NP relation R` (see Figure 6). The main building blocks of our construction are an
appropriately lossy compact witness map (CWM) and a cumulatively all-lossy-but-one
trapdoor function (C-ALBO-TDF).

Intuition behind the construction. The CRS of DMWM will consist of the function
index ek of C-ALBO-TDF sampled using the special injective tag tag∗ (we require that
the tag space of DMWM is same as the branch space of C-ALBO-TDF) as wells as a
CRS of CWM. To compute a proof for a statement x with witness w under a tag tag, the
prover computes Y = evalc-albo(ek, tag, w) and then uses the CWM to prove that Y was
computed correctly using a valid witness w for the statement x. The completeness and
soundness of DMWM follows directly from the completeness and soundness guarantees
of CWM. The cumulative lossiness of dmwm follows from the cumulative lossiness of
CWM and C-ALBO-TDF.
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(a) Let c-albo-tdf = (samplec-albo, evalc-albo, invertc-albo) be collection of (`, (`− α′))-c-albo-tdf, with
branch space B.

(b) Let cwm = (cwm.setup,cwm.map,cwm.check) be a α-cwm (please refer to Section 4) for the
following language:

L :=
{(
x, ek, tag, Y

)
: ∃ w s.t.

(
Y = evalc-albo(ek, tag, w) ∧ (x,w) ∈ R`

}
We construct dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) with tag space T = B
for the NP relation R` as follows:

1. dmwm.setup(κ, `, tag) : Here tag ∈ T . Run cwm.setup(κ, `) to output a string K′ of length poly-
nomial in the security parameter κ. Also, run samplec-albo(κ, tag) to output the tuple (ek, tk). Set
K = (K′, ek) and the trapdoor td = tk.

2. dmwm.map(K, tag′, x, w): Here tag′ ∈ T . Parse K as K = (K′, ek), and do the following:

• Compute Y = evalc-albo(ek, tag′, w), and

• Compute w∗cwm = cwm.map(K′, (x, ek, tag′, Y ), w).

Output the representative witness w∗ = (Y,w∗cwm).

3. dmwm.check(K, tag′, x, w∗): Parse K = (K′, ek) and w∗ = (Y,w∗cwm). Output
cwm.check(K′, (x, ek, tag′, Y ), w∗cwm).

4. dmwm.extract(td, x, w∗): Parse w∗ = (Y,w∗cwm). Output invertc-albo(td, tag, Y ), where (ek, tk) ←
samplec-albo(κ, tag) was generated as part of setup using the same tag tag.

Fig. 6. Construction of dmwm for an NP relation R`.

Theorem 6. Let α, α′ ≥ 0, and α′′ = (α + α′). Let cwm be a (selectively) sound α-
CWM for the NP language L, c-albo-tdf let a collection of (`, (` − α′))-cumulative
all-lossy-but-one LTDF with branch space B. Then the construction dmwm defined in
Figure 6 is α′′-DMWM with tag space T = B for the NP relation R`.

Proof sketch: Before providing the proof, we provide a proof sketch here. The complete-
ness condition of dmwm follows in a straightforward manner from the correctness of the
underlying cwm. The (selective) soundness of dmwm follows from the (selective) sound-
ness of cwm. The hidden tag property of dmwm follows from the hidden injective branch
property of the underlying c-albo-tdf. Finally, the α′′-lossiness of dmwm follows from
the cumulative loss parameters of α-cwm and (`, (`− α′))-c-albo-tdf. �

Proof. We show that the construction of DMWM shown in Figure 6 is a α′′-dmwm for
R`, when cwm is a α-CWM and c-albo-tdf is a (`, (` − α′))-ALBO-TDF. To show
this, we need to prove the following properties:

1. Extraction: We show that if there is a PPT adversary A such that the advantage
Advdmwm

A (κ) is non-negligible, then there is a PPT adversary A∗ such that Advcwm
A∗ (κ)

is also non-negligigble.

A∗ internally runs A and externally interacts with a challenger as in the definition of
Advcwm

A∗ (κ), as follows:
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• When A responds with tag, A∗ internally runs samplec-albo(κ, tag) to obtain (ek, tk).
Then it sets K = (K′, ek), and passes it to A.

• When A responds with (x∗, w∗), A∗ parses w∗ as (Y,w∗cwm), and outputs
((x∗, ek, tag, Y ), w∗cwm) to the challenger.

We shall show that Advcwm
A∗ (κ) ≥ Advdmwm

A (κ). Let ŵ = dmwm.extract(td, x∗, w∗),
where td = tk was generated along with ek, by A∗. By the definition of Advdmwm

A (κ), it
would be the case that dmwm.check(K, tag, x∗, w∗) = 1 and (x∗, ŵ) 6∈ R with probabil-
ity Advdmwm

A (κ). That is, with that probability, w∗ = (Y,w∗cwm), where cwm.check(K′,
(x∗, ek, tag, Y ), w∗cwm) = 1, but (x∗, ŵ) 6∈ R. Now, by definition of dmwm.extract, we
have ŵ = invertc-albo(tk, tag, Y ). Since tag corresponds to the injective branch of
c-albo-tdf, we are guaranteed that invertc-albo(tk, tag, Y ) is the unique value ŵ such
that evalc-albo(ek, tag, ŵ) = Y . Hence if (x∗, ŵ) 6∈ R, then (x∗, ek, tag, Y ) 6∈ L.
Thus, with probability Advdmwm

A (κ), the adversaryA∗ outputs a pair ((x∗, ek, tag, Y ), w∗cwm)
such that

(x∗, ek, tag, Y ) 6∈ L, cwm.check(K′, (x∗, ek, tag, Y ), w∗cwm) = 1.

In other words, Advcwm
A∗ (κ) ≥ Advdmwm

A (κ), as required to show.

2. Hidden Tag: Consider a PPT adversaryAdmwm-hide in the definition of Advdmwm-hide
A (κ).

We shall describe another adversary Acwm-hide, which internally runs Admwm-hide and
successfully breaks the hidden injective branch property of c-albo-tdf with the
same advantage as Admwm-hide. In particular, Acwm-hide does the following: On input
two distinct tags tag0 and tag1 from Admwm-hide, Acwm-hide forwards both tag0 and
tag1 to its challenger. It then receives ekb corresponding to one of these tags. It then
runs K′ ← cwm.setup(κ, `), and returns the tuple K = (K′, ekb) to Admwm-hide. At
some point, Admwm-hide outputs a bit b′ as a guess for which of the tags was used.
The adversary Acwm-hide also outputs the same bit b′. If the advantage of Admwm-hide

non-negligible, then so is the advantage of Acwm-hide.

3. α′′-lossiness: Note that, in our construction we assume that c-albo-tdf is a collec-
tion of (`, (`−α′))-c-albo-tdf. This implies that for all tag′ 6= tag (where tag is used
in the algorithm samplec-albo for sampling the function index ek) evalc-albo(ek, tag′, w) =
expandek,tag′(compressek(w)), where compressek : {0, 1}`(κ) → Rek and |Rek| ≤ 2α

′(κ).
Also, in our construction the CWM cwm is α-lossy. This implies that, ∀K′ ← cwm.setup(κ, `),
∀x ∈ {0, 1}`, |{cwm.map(K′, x, w) | (x,w) ∈ R`}| ≤ 2α(κ). Expressed in terms of the
functions compressK′,x(·) and expandK′,x(·), we get that compressK′,x(·) = cwm.map(K′, x, ·)
and expandK′,x(·) = id(·), where id(·) is the identity function. Here, compressK′,x :

{0, 1}∗ → RK′,x where |RK′,x| ≤ 2α(κ).
The representative witnesses for dmwm w∗ consist of a tuple of values produced by
both cwm and c-albo-tdf. Hence, for dmwm, we have that: compressK,x : {0, 1}∗ →
SK,x, where the function compressK,x(·) =

(
compressek(·), compressK′,x(·)

)
, and SK,x =

Rek ∪ RK′,x. Moreover the function expandK,x(·) =
(
expandek,tag′(·), expandK′,x(·)

)
.

Hence, we have that |SK,x| ≤ 2α+α′ = 2α
′′
.

This concludes the proof of the above theorem. ut
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5 Fully Leakage and Tamper-resilient Signature Scheme

A signature scheme with setup sig is a tuple of PPT algorithms sig = (setup, keygen, sign,
verify). The setup algorithm takes as input the security parameter κ, and outputs a set of
public parameters pub, which is taken as an implicit input (along with κ) by all the other
algorithms. We denote the message space (implicitly parametrized by κ) asM. We shall
require perfect correctness: For all pub← sig.setup(κ), any key pair (ssk, vk) produced by
sig.keygen and all messages m ∈M, we require sig.verify(vk, (m, sig.sign(ssk,m))) = 1.

We define fully-leakage and tamper-resilient (FLTR) signature security, in the bounded
leakage and tampering model. Before defining the model formally, we provide an infor-
mal description here. In this model, first the challenger sets up the public parameters
pub, and also generates a key-pair (ssk, vk). Then, vk is given to the adversary, and as
in the case of standard signature security experiment, the adversary is given access to
a signing oracle and it attempts to produce a valid signature on a message which it has
not queried. But in addition, the adversary has access to a leakage oracle and a tam-
pering oracle, as described below. Leakage and tampering act on st, which consists of
the signing key ssk and all the randomness used by the signing algorithm thus far. Note
that here, for definitional purposes, we allow sig.sign to be randomized, though in our
construction it will be deterministic.

Leakage: The adversary can adaptively query the leakage oracle with any efficiently
computable functions f and will receive f(st) in return (subject to bounds below).

Tampering: The adversary can adaptively query the tampering oracle with efficiently
computable functions T , and on each such query, the tampering oracle will generate a
signing key and randomness for signature: (s̃sk, r̃) = T (st). Subsequently, the adversary

can adaptively query each signing oracle sig.sign(s̃sk, ·, r̃), any number of times (subject
to bounds below).

Bounds on Queries: The total output length of all the leakage functions ever queried
to the leakage oracle is bounded by λ(κ). For tampering, there is an upper bound t(κ)
on the total number of tampering functions queried by the adversary. However, the
adversary may ask an unbounded number of untampered or tampered signing queries to
the signing oracle. We shall denote an FLTR signature scheme with security subject to
these bounds as (λ, t)-FLTR signature scheme.

5.1 Security model for FLTR signatures.

Definition 13. ((λ, t)-FLTR security). We say that a signature scheme sig = (sig.setup,
sig.keygen, sig.sign, sig.verify) is (λ, t)-fully-leakage and tamper-resilient (FLTR) if for
all PPT adversaries/forgers F there exists a negligible function negl : N → {0, 1} such

that Pr
[
Success

(λ,t)-FLTR
Π,F (κ)

]
≤ negl(κ), where the event Success

(λ,t)-FLTR
Π,F (κ) is defined

via the following experiment between a challenger C and the forger F :

1. Initially, the challenger C computes pub← sig.setup(κ) and (ssk, vk)← sig.keygen(κ, pub),
and sets st = ssk.
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2. The forger on receiving pub and vk, can adaptively query the following oracles as
defined below:

• Signing queries: The signing oracle sig.sign∗ssk(·) receives as input a message mi ∈
M. The challenger C then samples ri ← R, and computes σi←sig.sign(ssk,mi, ri).
It appends ri to st and outputs σi.

• Leakage queries: The leakage oracle receives as input (the description of) an
efficiently computable function fj : {0, 1}∗ → {0, 1}λj , and responds with fj(st).

• Tampering queries: When the forger F (adaptively) submits the ith tampering

query Ti, the challenger computes (s̃ski, r̃i) = Ti(st). Subsequently, F can adaptively

query the tampered-signing oracle sig.sign(s̃ski, ·, r̃i) using messages in M. We call
these as “tampered signing queries”.

3. Eventually, F outputs a message-signature pair (m∗, σ∗) as the purported forgery.

Success
(λ,t)-FLTR
Π,F (κ) denotes the event in which the following happens:

• The signature σ∗ verifies with respect to the original verification key vk, i.e.,
sig.verify(vk, (m∗, σ∗)) = 1.

• m∗ was never queried as input to the signing or tampered signing oracle by the forger
F .

• The output length of all the leakage functions
∑

j λj is at most λ(κ).

• The number of tampering queries made by F is at most t(κ).

We also consider a selective variant of the above definition, where the message m∗

(on which the forgery is to be produced) is declared by the adversary before receiving
the public parameters pub and the verification key vk. We call this selectively unforge-
able (λ, t)-FLTR signature scheme. We shall focus on this model in our construction
(see Section 5.2) and note that one can convert a selectively unforgeable (λ, t)-FLTR
signature scheme to an adaptively secure one by relying on complexity leveraging, when
appropriate.

Remark 2. Note that our definition of FLTR signatures is very general and encompasses
all other previous definitions. When (λ, t) = (0, 0), we obtain the original notion of
existential unforgeability under adaptive chosen message attacks (EUF-CMA). When
(λ, t) = (λ, 0), we recover the definition of fully leakage-resilient (FLR) signature defi-
nition proposed by Boyle, Segev and Wichs [11]. When the adversary can leak from or
tamper with only the secret signing key (and not the randomness used by the signer),
i.e., st = {ssk} only, we obtain the definition of leakage and tamper-resilient signature
schemes, as defined by Damg̊ard et al. [15] and by Faonio and Venturi [21].

We remark that the above definition can be slightly simplified if we require that the
signature scheme is deterministic. While our construction is indeed deterministic, we
present the above definition that applies to randomized schemes as well, to explicate
what full leakage and tamper resilience entails.
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Remark 3. If the construction of the FLTR signature scheme is deterministic (in which
case we simply call it a deterministic LTR signature scheme), proving security for such a
scheme in our new security scheme essentially reduces to proving security in the model
of [21], since there is no randomness to leak from or tamper with. However, we stress
that for a randomized signature scheme our model is strictly stronger than the model
of [21] or [11].

5.2 Construction of our FLTR signature scheme.

In this section, we present our construction of FLTR signature scheme. In Figure 7, we
present this construction.

1. Let spr = (spr.gen, spr.eval) be a family of SPR functions from {0, 1}d(κ) to {0, 1}m(κ), where
m(κ)� d(κ).

2. Let dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) be a κ-lossy dual-mode witness
map (DMWM) (refer to Definition 7) with tag space T =M for the following language:

L :=
{(
s, y
)

: ∃ x s.t. y = spr.evals(x)
)}

Define the signature scheme sig = (sig.setup, sig.keygen, sig.sign, sig.verify) as follows:

1. sig.setup(κ): On input κ, sample s ← spr.gen(κ). It then samples a random tag tag ∈ T , computes
(K, td)← dmwm.setup(κ, `, tag), and discards the trapdoor tk. Set pub := (s,K).

2. sig.keygen(κ, pub): On input the public parameters pub, it samples x ← {0, 1}d(κ) uniformly at
random, and compute y = spr.evals(x). Output the signing key ssk = x, and the verification key
vk = y.

3. sig.sign(ssk,m): On input a message m, do the following:

• Set the tag tag of dmwm to be tag = m.
• Re-compute the value y = spr.evals(x).
• Generate a representative witness w∗ ← dmwm.map

(
K, tag, (s, y), x

)
, where (s, y) is the statement

and x is the corresponding witness.
• Output the signature σ = w∗.

4. sig.verify(vk, (m,σ)): Parse the signature σ as σ = w∗. It then sets tag = m and runs
dmwm.check

(
K, tag, (s, y), w∗

)
to check if the mapping verifies correctly. It outputs 1 if and only

if the above verification evaluates to 1.

Fig. 7. Construction of FLTR Signature Scheme sig

Theorem 7. Let λ(κ), t(κ), d(κ) and m(κ) be parameters. Let spr be a second pre-
image resistant function mapping d(κ) bits to m(κ) bits, and dmwm be a κ-lossy DMWM
with tag space T =M (where M is the message space of sig). Then the above construc-
tion sig is a

(
λ(κ), t(κ)

)
-FLTR signature scheme, as long as the parameters satisfy:

0 ≤ λ(κ) ≤ d(κ)− κ
(
t(κ) + 1)

)
−m(κ)− ω(log κ).
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Hence, the relative leakage rate is λ(κ)
d(κ) ≈ 1 − κ(t(κ)+1)−m(κ)−ω(log κ)

d(κ) = 1 − o(1), for an

appropriate choice of
(
κ(t(κ)+1)−m(κ)−ω(log κ)

)
= o(d(κ)). The tampering rate ρ(κ)

is ρ(κ) = t(κ)
d(κ) = O(1/κ).

Proof sketch: Before presenting the detailed proof, we present a high level idea behind
our proof strategy here. Suppose there is an adversary who can break the security of the
signature scheme sig. We use this adversary to break the security of the SPR function
spr. The signing key of our LTR construction is a random pre-image x of spr, and
the public parameters pub are sampled honestly as in the construction. In the first
hybrid, we change the way the public parameters pub are generated: In particular, we run
dmwm.setup(κ, `,m∗) on the tag m∗ (recall that in the selective unforgeability game, m∗

is declared before the setup phase) to derive the string K of dmwm. Additionally, instead
of discarding the trapdoor td while sampling K, the challenger now retains td along with
the string K while running the setup algorithm dmwm.setup(κ, `,m∗). The hidden tag
property of dmwm ensures that this hybrid is computationally indistinguishable from the
real execution. At this point, all of adversary’s signing queries are answered using lossy
tags. Moreover, the extraction property of dmwm ensures that a forgery under the tag
m∗ can be efficiently inverted using the trapdoor td. We can use this property to recover
a (hopefully second) pre-image of spr from such a forgery. Note that the extraction
property ensures that the extracted value corresponds to valid pre-image x′ of y, i.e. y =
spr.evals(x

′). Now, we argue that information theoretically the original signing key x still
retains enough min-entropy in it, and hence is unpredictable. This follows from the fact
that the signing queries are (cumulatively) lossy evaluations of the original signing key
x and its derived tampered versions {x̃i}i∈[t(κ)]. In more detail, the κ-lossiness property
of dmwm ensures that, even if the adversary observes an arbitrary polynomial number
of (lossy) evaluations of the signing key x and its derived tampered versions {x̃i}i∈[t(κ)]

under different tags (which correspond to different messages in our construction), x
still has a lot of residual min-entropy. Moreover, the verification key y and the leakage
information are too short, and hence the signing key still remains unpredictable to the
adversary. (This is formalized using an information-theoretic argument.) Hence, with
very high probability the pre-image extracted from the forgery is a second pre-image of
y, thereby breaking the security of of spr.

�

Now, we present the formal proof of Theorem 7.

Proof. Let us denote the adversary for sig by F . We need to show that no PPT ad-
versary F is able to come up with a valid forgery in the FLTR signature experiment

Success
(λ,t)-FLTR
Π,F (κ), except with negligible probability. In order to show this, we define

two mental experiments GameG0 and GameG1, and show that the views of the ad-
versary when interacting with these games are computationally indistinguishable. Let
us assume that the adversary F makes at most t(κ) tampering queries and p(κ) signing
queries per tampered key (where p(·) is an arbitrary polynomial in the security parame-
ter κ). We analyze some events within the context of these experiments; events with the
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same name but different subscripts are analyzed in a similar manner, except that in the
scope of the corresponding experiments/games indicated by the subscript.

GameG0 : This is identical to the original experiment Success
(λ,t)-FLTR
Π,F (κ) as per Def-

inition 13, where the signature scheme sig is defined as in the original construction.
The adversary F declares the target m∗ in the first step. The initial state and the pub-
lic parameters are sampled as in the real construction and are set as st := ssk, and
pub := (s,K) respectively. On input the ith tampering function Ti ∈ T (i ∈ [t(κ)]),
the modified signing key x̃i = Ti(x) is computed. The answers to the signing query
{(i,mj)}i∈[t(κ)],j∈[p(κ)] to the oracle sig.sign∗(i, ·) is computed by the challenger C as fol-
lows: Set the tag tagj of dmwm to be tagj = mj . It then computes yi = spr.evals(x̃i)

and w̃ji ← dmwm.map
(
K, tagj , (s, yi), x̃i

)
and outputs the signature σ̃ij = w̃ji on the jth

message with respect to the ith tampered key. On input a leakage query fj(·) : {0, 1}∗ →
{0, 1}λj , the challenger C returns fj(st) to F , provided the cumulative leakage received
by F does not exceed the bound λ(κ).

Let Succ0 denote the following event: The forger F is able to produce a “valid”
forgery, i.e., F produces

(
m∗, σ∗ = w∗

)
such that sig.verify(vk, (m∗, σ∗)) = 1 and m∗ is

never submitted to the signing oracle. From the definition of game G0, it follows that:

Pr[ Succ0 ] = Pr
[

Success
(λ,t)-FLTR
Π,F (κ)

]
GameG1 : In this game, we change the way the public parameters are sampled using
the setup algorithm sig.setup. The adversary/forger F first declares the target message
m∗. We now change the way the string K of dmwm is generated. In particular, instead
of sampling a random tag tag∗ ∈ M, the challenger sets the tag tag∗ = m∗ to generate
(K, td) ← dmwm.setup(κ, `, tag∗). Also, instead of discarding the inversion trapdoor
td (as in the real construction), the challenger retains the td. The way the other public
parameters are sampled and the answers to the signing queries are given remain identical
to the previous game.

Claim.
∣∣ Pr[ Succ1 ]− Pr[ Succ0 ]

∣∣ ≤ negl(κ)

Proof. The proof of the above claim follows from the hidden tag property of dmwm =
(dmwm.setup,dmwm.map,dmwm.check,dmwm.extract). In particular, any distinguisher
between Game 0 and Game 1 can be used to build another distinguisher Ddmwm for
dmwm. Also, let us denote by tag0 the tag tag (used in Game 0) and by tag1 the tag
m∗. The distinguisher Ddmwm simulates the environment for F as follows:

– Receives the message m∗ from the adversary F , and sets the tag tag1 = m∗. It also
samples another random tag tag0 ∈M. It then forwards both these tags tag0 and tag1

to its challenger and receives the tuple (K, st) corresponding to one of these tags. It
then computes the public parameters as: sample the function index s← spr.gen(κ),
and sets pub = (s,K).

– Sample x ← {0, 1}d(κ), and compute y = spr.evals(x). Set ssk = x, and vk = y. It
then returns (pub, y) to F . It also sets st := {ssk}, and initializes a list L := 0.
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– On input a leakage query fj(·) :{0, 1}∗→{0, 1}λj , check if L+ |fj(st)| ≤ λ(κ), if so, it
returns fj(st) to F , and sets L := L+ |fj(st)|; else, it aborts. On input a tampering
query Ti ∈ T , it checks if i ∈ [t], if so, it computes x̃i := Ti(x), else it aborts.

– Upon input the message (i,mj) (for some message mj ∈ M), check if i /∈ [t], if so,
return ⊥. Otherwise, Ddmwm proceeds as follows: set the tag tagj = mj , compute

yi = spr.evals(x̃i), and w̃ji ← dmwm.map
(
K, tagj , (s, yi), x̃i

)
. Finally, it outputs the

signature σ̃ij = w̃ji .

- Output whatever F outputs.

For the analysis, note that, the two games Game 0 and Game 1 differ in how the public
parameters are sampled. If the tag tag0 was used for sampling the function index, this
exactly corresponds to Game 0. This is true in our case, since the tag tag0 was sampled
randomly by Ddmwm. On the other hand, if the tag tag1 was used, this corresponds to
Game 1. Hence, if the advantage of F in distinguishing these two games is non-negligible,
the adversary Ddmwm also breaks the hidden tag property of dmwm with non-negligible
probability, thus yielding a contradiction. ut

Note that, at this point all of the adversary’s signing queries correspond to messages
m 6= m∗, and hence correspond to lossy tags. Hence the signatures are essentially “lossy
evaluations” of the secret signing key x and its derived tampered versions {x̃i}i∈[t(κ)].

Let Ext1 denote the following event: The forger F is able to produce a “valid” forgery,
and it is possible to recover a “valid” pre-image from the forgery, i.e., if F produces(
m∗, σ∗ = w∗

)
such that sig.verify(vk, (m∗, σ∗)) = 1, and m∗ was never queried to the

signing oracle, then the output x∗ = extract(td, x, w∗) is such that spr.evals(x
∗) = y.

Claim.
∣∣ Pr[ Ext1 ]− Pr[ Succ1 ]

∣∣ ≤ negl(κ)

Proof. The claim follows from the extraction property of dmwm. In particular, the tag
tag∗(= m∗) is extractable and hence we can run the extractor extract of dmwm to extract
a pre-image x∗ from the representative witness w∗ (created using the tag tag∗). Further,
the extraction property of dmwm ensures that the extracted value x∗ is a valid witness
corresponding to the statement (s, y), except with negligible probability. ut

Define the event SameExt1 to be event that Ext1 happens, and in addition the extracted
value is same as the original signing key value, i.e, x∗ = extract(td, x, w∗) occurs, where
(m∗, σ∗ = w∗) is the forgery produced by F , and additionally x∗ = x.

Claim.
∣∣ Pr[ SameExt1 ]− Pr[ Ext1 ]

∣∣ ≤ negl(κ)

Proof. The claim follows from the second pre-image resistance property of spr = (spr.gen,
spr.eval). That is, if Ext1 happens but not SameExt1, then we run Game G1 with SPR
challenge (s, x) to recover a pre-image x∗ 6= x such that spr.evals(x) = spr.evals(x

∗),
thus breaking the second pre-image property of spr.eval with non-negligible probability.

ut
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Recall that, at the end of Game G1, all of adversary’s signing responses correspond to
lossy tags.

From this point onward, all our arguments will be solely information-theoretic. To com-
plete the proof we need to show that Pr[ SameExt1 ] is negligible.

Claim. Pr[ SameExt1 ] ≤ negl(κ)

Proof. Note that, the information about x that is revealed to F comes from the following
values: i) the verification key y corresponding to x, ii) the leakage queries asked by F ,
iii) the signatures w̃ji (i ∈ [t(κ)], j ∈ [p(κ)]). The verification key in our construction
reveals at most m bits of information about x. The leakage queries asked by F reveal at
most λ bits of information about x. Let us now estimate the information revealed about
x by the signatures w̃ji . Note that, in our construction

w̃ji = dmwm.map
(
K, tag, (s, yi), x̃i

)
= expandK(compressK,(s,yi)(x̃i), tag),

where compressK,(s,yi) : {0, 1}∗ → S(i), where S(i) = SK,(s,yi) and |SK,(s,yi)| ≤ 2κ (since

dmwm is κ-lossy). Hence, the tampering queries of F corresponds to sets {S(i)}i∈[t] which
collectively reveals at most κt(κ) bits of information about x. Moreover, the signing
queries (i,m) with i = 0 (i.,e, with respect to the untampered key x) also reveals at
most κ bits of information about x.

Let us denote the view of the forger F in Game G1 as ViewF ,1. We also denote by L
the random variable representing the leakage information got by F . Below, we formally
show that x still possesses a high residual min-entropy, even conditioned on ViewF ,1.

H̃∞
(
x | ViewF ,1

)
= H̃∞

(
x | (y,L, {w̃ji }i∈[t(κ)],j∈[p(κ)]])

)
≥ H̃∞

(
x | (y, {w̃ji }i∈[t(κ)],j∈[p(κ)])

)
− λ(κ).

≥ H̃∞(x | y)− λ(κ)− κ(t(κ) + 1).

≥ H̃∞(x)− λ(κ)− κ(t(κ) + 1)−m(κ).

≥ ω(log κ)

The last line of the above equation follows from our choice of parameters, i.e., d(κ) >
λ(κ)+κ(t(κ)+1)+m(κ)+ω(log κ). Hence the min-entropy H̃∞(x|ViewF ,1) of x condition
on ViewF ,1 is at least ω(log κ). This completes the proof of the above claim. ut

Putting together all the claims completes the proof of Theorem 7. ut

6 Extension to Continuous Leakage and Tampering

In this section, we show how to extend our construction of fully leakage and tamper-
resilient signatures from Section 5 to the setting of continuous leakage and tampering
attacks. However, as shown by Gennaro et al. [26] it is impossible to construct any cryp-
tographic primitive allowing an arbitrary number of unrestricted tampering functions.
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There are two main ways to bypass this impossibility result: (1) using a self-destruct
mechanism [26], meaning that when tampering is detected, the cryptographic device can
erase all internal data, so that an adversary cannot obtain anything more from the de-
vice, and (2) using a key-update mechanism, i.e., allow the device to refresh its secret
state (key) using fresh randomness [34] between periods of tampering and leakage.

Kalai, Kanukurthi and Sahai [34] gave the first construction of a signature scheme re-
silient to continual leakage and tampering (CLT) attacks, assuming (1) the signature
scheme is allowed to have a key-update mechanism and (2) the tampering is persistent,
i.e., the tampering is applied to the current version of the secret that may have been
overwritten by the previous tampering queries. They also gave a construction of a signa-
ture scheme resilient to continuous tampering and bounded leakage (CTBL) without a
key-update procedure, but assuming that the device has a self-destruct capability. Note
that, the model of tampering that we consider in this work is non-persistent tampering,
where the tampering functions are always applied to the original secret. If a signature
scheme does not have a key-update mechanism, non-persistent tampering is stronger
than persistent tampering. In fact, a recent work [24] showed that, it is impossible to
construct a signature scheme resilient to continuous non-persistent tampering attacks,
if it does not have a key-updating mechanism (even if it can self-destruct). The impossi-
bility result extends even if the signature scheme has a key-update mechanism, but the
update is run only when tampering is detected.

The above impossibility result, however, does not rule the possibility of constructing
continuous (non-persistent) tamper-resilient signature scheme. In fact, the impossibil-
ity result only hold for signature schemes that do not have a key-update mechanism
or update the key only when tampering is detected. We consider the (im)possibility
of designing signature schemes resilient to CTL attacks if the device can update its
signing key periodically, regardless of whether tampering is detected or not. Our main
observation is that, indeed, we can construct such a signature scheme with periodic
key updates, thereby bypassing the impossibility result of [24]. Our construction uses a
rather straight-forward extension of our basic construction from Section 5. To this end,
we first abstract out the SPR function as an instance of a noisy leakage-resilient one-way
relation (LR-OWR). Then, we present a generalization of (noisy) LR-OWR to allow for
continuous leakage attacks. Our definition of (noisy) continuous leakage-resilient one-
way relation (CLR-OWR) follows closely along the lines of Dodis et al. [16]. Before,
describing CLR-OWR, we first recall the definition of LR-OWR.

6.1 One-way Relation Resilient to Leakage Attacks

In this section, we define one way relations resilient to leakage attacks. Informally, a LR-
OWR function (owr.gen,owr.eval,owr.ver) guarantees the following: Given an image
y = owr.evals(x) for a random x in the domain and s ← owr.gen(1κ), it is hard for
an adversary to produce any pre-image x′ of y under owr.eval, even if the adversary
obtains λ bits of leakage on x. We call such a LR-OWR, from n-bit inputs to m-bit
outputs, a (λ;n,m)-leakage-resilient one-way relation ((λ;n,m)-LR-OWR).
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For our application to LTR signatures, we will need to rely on a stronger form leakage
resilience, namely, the noisy leakage model [16]. Noisy leakage is a generalization of
bounded leakage, where the adversary can learn functions with arbitrarily large output-
lengths, as long as the entropy of the secret-key does not decrease significantly. Following
[16] we define the leakiness of a function as follows:

Definition 14 (`-leaky functions). A probabilistic leakage function f : {0, 1}∗ →
{0, 1}∗ is `-leaky if there exists some (possibly inefficiently computable) function f ′ such
that:

• For all x ∈ {0, 1}∗, f(x) ≈s f ′(x) (over the randomness of f and f ′).
• For all integers n ≥ 1, we have that H̃∞(Un|f ′(Un)) ≥ n− `, where Un is the uniform

distribution over {0, 1}n.

It can be easily shown that a function whose output length is bounded by `-bits is `-leaky.
We now define a noisy leakage-resilient one-way relation (LR-OWR).

Definition 15 (Noisy LR-OWR). We say that (owr.gen,owr.eval,owr.ver) is a
(λ;n,m)-noisy leakage-resilient one-way relation ((λ;n,m)-noisy LR-OWR) if it satisfies
the following correctness and security properties:

Correctness. For all s ← owr.gen(1κ) and all x
$←− {0, 1}n(κ), if y = owr.evals(x),

then owr.ver(x, y) = 1, and y ∈ {0, 1}m(κ).

Security. For any PPT adversary Alr-owr, we have Pr[Alr-owr wins] ≤ negl(κ) in the
following game:

– The challenger chooses s ← owr.gen(1κ), samples x
$←− {0, 1}n(κ) and computes y =

owr.evals(x). It then gives y to Alr-owr.

– The adversary Alr-owr may provide the description of an efficiently computable leakage
function f(·), provided that f is λ-leaky.

– The adversary wins if it produces a value x∗ such that the following holds:
i) owr.ver(x∗, y) = 1, and ii) the leakage query f made by Altr-owr is λ-leaky.

We may abbreviate (λ, t;n,m)-noisy LR-OWR as λ-noisy LR-OWR when (n,m) are
not relevant or are clear from the context.

It was shown in [17] that a second pre-image resistant (SPR) function with n bits input
and m bits output is a λ-noisy LR-OWR with λ ≤ n−m− ω(log κ).

FLTR signatures from (noisy) LR-OWRs. In this section, we explain our con-
struction of FLTR signature (see Section 5) in a slightly more general way. Recall
that, our construction was based on a SPR function spr = (spr.gen, spr.eval), where
y = spr.evals(x) was the verification key and x is the secret signing key. To sign a
message m, we set the tag of the DMWM to be the message m, and construct a rep-
resentative witness w∗ for the statement: ∃x, y = spr.evals(x) using x as the original
witness. In general, we do not need a SPR function for the above construction; any
λ-noisy LR-OWR (owr.gen,owr.eval,owr.ver) will suffice.
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Theorem 8. Let (owr.gen,owr.eval,owr.ver) be a λ(κ)-noisy LR-OWR with input
size d(κ) and output size m(κ), and let dmwm be a κ-lossy DMWM with tag space T =
M. Then, the modified construction sketched above is a

(
λ′(κ), t(κ)

)
-FLTR signature

scheme in the bounded leakage model, as long as λ′(κ) ≤ λ(κ)− κ(t+ 1).

The proof of security is very similar to the original proof of Theorem 7. In particular,
when we switch from game G0 to game G1, all of adversaries’ (tampered) signing queries
correspond to lossy tags while the forgery being extractable. Hence, the entire view of
the adversary ((tampered) signing and leakage queries) does not reduce the entropy of
x significantly. Hence, we can think of the view of the adversary as entropy-bounded
leakage (but not length-bounded unless we could efficiently compress it). Note that, the
tampering queries made by the adversary is simulated by the reduction with access to
only the leakage oracle (so called leakage-to-tamper reduction). Successful forgery in
this setting means the adversary only receives entropy-bounded leakage on x, but still
manages to produce (a representative witness w∗ of) some pre-image x∗, thus breaking
one-way security.

Although the above generalization does not seem significant at first, this view of our
basic construction will make it easier to extend to the setting of continuous leakage,
which we will do in the next section.

6.2 One-way Relation Resilient to Continuous Leakage Attacks

We now present the generalization of LR-OWR to the setting of continuous leakage
attacks. We still consider the notion of noisy leakage from above.

Definition 16 (Noisy CLR-OWR). We say that (genclr-owr, refresh, verclr-owr) is a λ-
noisy continuous-leakage-resilient one-way relation (λ-noisy CLR-OWR) if it satisfies
the following correctness and security properties:

Correctness. For any polynomial p = p(n), if we sample (y, x)← genclr-owr(1
κ; r), x1 ←

refresh(x; r1), · · · , xp ← refresh(xp−1; rp), then with very high probability verclr-owr(y, x) =
verclr-owr(y, x1) = · · · = verclr-owr(y, xp).

Security. For any PPT adversary Aclr-owr, we have Pr[Aclr-owr wins] ≤ negl(κ) in the
following game:

– The challenger samples (y, x)← genclr-owr(1
κ; r), and gives y to Aclr-owr.

– The adversary Aclr-owr may run for arbitrarily many leakage rounds. In each round
(say round i):

• The adversary Aclr-owr may provide the description of an efficiently computable
leakage function fi(·), provided that fi is λ-leaky.
• At the end of the round i, the challenger samples xi+1 ← refresh(xi; ri) and updates
x := xi+1.

– The adversary wins if it produces a value x∗ such that the following holds:
(i) Verclr-owr(y, x

∗) = 1, and (ii) the leakage queries fi made by Aclr-owr in each round
must be at most λ-leaky.
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The work of [16] constructs a noisy CLR-OWR based on the k-Linear assumption.

Remark 4. One may consider a stronger notion of (λ, µ)-noisy CLR security, where the
adversary can observe up to λ entropy-bounded leakage from each secret key xi in between
the refresh operations, and additionally leak up to µ bits of leakage on the internal state
statei = (xi, ri) used during each refresh operation, i.e., xi+1 = refresh(xi; ri). This is
called the “leakage-of-refreshing security”. The CLR-OWR of [16] achieves the leakage-
of-refreshing security.

Theorem 9. [11, 16]. For any polynomial λ(·) and any constant ε > 0, there exists
λ(κ)-noisy CLR-OWR where the relative leakage rate (ratio of leakage to secret key size)
is λ/|x| = 1−ε under the linear assumption in bilinear maps. Under the same assumption
and for any polynomial λ(·), there also exists a λ(κ)-noisy CLR-OWR with the stronger
“leakage-of-refreshing security”, where, for some constant c > 0, the relative leakage rate
is λ/|x| > c.

6.3 FLTR signatures in the continuous leakage and tampering model.

6.3.1 Security Model. In this section, we present the security model for FLTR
signatures in the setting of continuous leakage and tampering (CLT) attacks. This is
an extension of the definition of FLTR signatures in the bounded leakage model (see
Section 5.1).

Definition 17. ((λ, t)-FLTR security–CLT model). We say that a signature scheme
sig = (sig.setup, sig.keygen, sig.refresh, sig.sign, sig.verify) is (λ, t)-fully-leakage and tamper-
resilient (FLTR) in the continuous leakage and tampering (CLT) model if for all PPT
adversaries/forgers F there exists a negligible function negl : N → {0, 1} such that

Pr
[
Success

(λ,t)-CFLTR
Π,F (κ)

]
≤ negl(κ), where the event Success

(λ,t)-CFLTR
Π,F (κ) is defined via

the following experiment between a challenger C and the forger F :

1. Initially, the challenger C computes pub← sig.setup(κ) and (ssk, vk)← sig.keygen(κ, pub),
and sets st = {ssk}, and L = 0.

2. The forger (on receiving pub and vk) runs for arbitrarily many leakage rounds i =
1, 2, · · · . In each round i, it can adaptively query the following oracles as defined below:

• Signing queries: The signing oracle sig.sign∗sski
(·) receives as input a message

mj ∈ M, where j is an arbitrary polynomial in the security parameter. The chal-
lenger C then samples rj ← R, and computes σj ← sig.sign(sski,mj , rj). Set
st := st ∪ {rj} and outputs σj.

• Leakage queries: The leakage oracle receives as input (the description of) an
efficiently computable function fj : {0, 1}∗ → {0, 1}λj . If |L|+λj ≤ λ(κ), it responds
with fj(st). Otherwise, it outputs ⊥.

• Key-refresh queries: On a key-refresh query, the challenger samples a fresh ran-
domness ri. The next-round secret key is then sampled as sski+1 ← sig.refreshvk(ssk; ri).
Set ssk = sski+1, and reset st = {ssk} and L = 0.
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• Tampering queries: The forger can adaptively ask at most t(κ) tampering queries
in each round. For each tampering query Tj (where j ∈ [t(κ)]), the challenger

computes (s̃skj , r̃j) = Tj(st). Subsequently, F can adaptively query the tampered-

signing oracle sig.sign(s̃skj , ·, r̃j) using messages in M.

3. Eventually, F outputs a message-signature pair (m∗, σ∗) as the purported forgery.

Success
(λ,t)-CFLTR
Π,F (κ) denotes the event in which the following happens:

• The signature σ∗ verifies with respect to the original verification key vk, i.e.,
sig.verify(vk, (m∗, σ∗)) = 1.
• m∗ was never queried as input to the signing or tampered signing oracle by the forger
F at any round.
• The output length of all the leakage functions

∑
j λj in each round is at most λ(κ).

• The number of tampering queries made by F in each round is at most t(κ).

Remark 5. As before, we also consider a selective variant of the above definition, where
the message m∗ (on which the forgery is to be produced) is declared by the adversary
before receiving the public parameters pub and the verification key vk. We call this
selectively unforgeable (λ, t)-FLTR signature scheme in the CLT model.

Remark 6. We also consider a stronger variant of the definition that provides leakage-
of-refreshing security, by modifying the challenger so that, during a key-refresh query, it
sets st = ssk||r to include the new secret key ssk and the randomness r used during the
refreshing. However, we note that, one cannot allow for tampering the randomness used
in the key refresh procedure. We explain this in more detail below.

Impossibility of FLTR signatures with tamperable randomness during up-
dates. One may be instigated to extend the above definition of (λ, t)-FLTR security in
the CLT model to the setting where the adversary may also tamper with the random-
ness used during the key refresh operations. In particular, during the update phase from
round i to round i + 1, the adversary may submit tampering functions T and get back
the (tampered) updated key sski+1 = sig.refreshvk(s̃ski, r̃i), where (s̃ski, r̃i) = T (sski, ri).
However, we observe that achieving such a notion of security is impossible. This is be-
cause, the adversary can reset the randomness ri used in each round of the refresh
operation to be the all-zero string and make the update process deterministic. At this
point, the adversary may launch a key pre-computation attack, where the adversary
(via leakage queries) may request bits of some future secret key, one by one, in earlier
rounds. This is also the reason why one cannot have a deterministic update process while
designing any continuous leakage-resilient primitive.

6.3.2 Construction of FLTR signature in the CLT model. Given a λ-noisy
CLR-OWR, we can easily generalize the construction of our signature scheme from Sec-
tion 5 to the continuous leakage and tampering setting. We now present our construction
of FLTR signatures in the CLT model (see Figure 8).
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1. Let (genclr-owr, refresh, verclr-owr) be a λ-noisy continuous-leakage-resilient one-way relation (λ-noisy
CLR-OWR) from {0, 1}d(κ) to {0, 1}m(κ), where m(κ)� d(κ).

2. Let dmwm = (dmwm.setup,dmwm.map,dmwm.check,dmwm.extract) be a κ-lossy dual-mode witness
map (DMWM) (refer to Definition 7) with tag space T =M for the following language:

L :=
{

(s, y) : ∃ x s.t. verclr-owr(y, x) = 1
}

Define the signature scheme (sig.setup, sig.keygen, sig.refresh, sig.sign, sig.verify) as follows:

1. sig.setup(κ): On input κ, sample a random tag tag ∈ T , computes (K, td) ← dmwm.setup(κ, `, tag),
and discards the trapdoor tk. Set pub := K.

2. sig.keygen(κ, pub): On input the public parameters pub, it samples (y, x)← genclr-owr(1
κ). Output the

signing key ssk = x, and the verification key vk = y.

3. sig.refreshvk(ssk): Parse vk = y. Sample randomness r and run ssk′ ← refreshy(ssk; r).

4. sig.sign(ssk,m): On input a message m, do the following:

• Set the tag tag of dmwm to be tag = m.
• Generate a representative witness w∗ ← dmwm.map

(
K, tag, (s, y), x

)
, where (s, y) is the statement

and x is the corresponding witness.
• Output the signature σ = w∗.

5. sig.verify(vk, (m,σ)): Parse the signature σ as σ = w∗. It then sets tag = m and runs
dmwm.check

(
K, tag, (s, y), w∗

)
to check if the mapping verifies correctly. It outputs 1 if and only

if the above verification evaluates to 1.

Fig. 8. Construction of FLTR Signature Scheme in the CLT model

Theorem 10. Suppose λ(κ), t(κ), d(κ) and m(κ) are parameters such that there exist
a
(
(λ(κ) + 1); d(κ),m(κ)

)
-noisy CLR-OWR, a κ-lossy DMWM with tag sapce T = M

(where M is the message sape of the signature scheme). Then there exists a selectively-
secure (λ(κ), t(κ))-FLTR signature scheme, as long as the parameters satisfy:

0 ≤ λ(κ) ≤ d(κ)− κ
(
t(κ) + 1)

)
−m(κ)− ω(log κ).

Further, if the noisy CLR-OWR satisfies leakage-of-refreshing security, then so does the
resulting signature scheme.

Proof. The main idea of the proof is similar to the proof of Theorem 7. We will refer
to that proof, highlighting the main technical differences. Suppose there is an adversary
F who can break the security of the above signature scheme. We use this adversary to
break the security of the the noisy CLR-OWR. Similar to the proof of Theorem 7, we
define Game G0 to be the original game corresponding to the FLTR security experiment
(in the CLT model), and Game G1 to be the game where we set the tag tag∗ = m∗

(note that m∗ is given by the adversary as part of the selective unforgeability game). As
argued before, the hidden tag property of dmwm ensures that both these experiments
are indistinguishable. We then define the event Ext1 as follows: The forger F is able
to produce a “valid” forgery, and it is possible to recover a “valid” pre-image from the
forgery, i.e., if F produces

(
m∗, σ∗ = w∗

)
such that sig.verify(vk, (m∗, σ∗)) = 1, and m∗
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was never queried to the signing oracle, then the output x∗ = extract(td, x, w∗) is such
that verclr-owr(y, x

∗) = 1.

As in the proof of Theorem 7, the event Ext1 happens with a noticeable probability.
We now show how to use the forger F breaking Game G1 to break the security of the
CLR-OWR. The reduction B samples (K, td) as in Game G1. Recall that the forger F
expects to run in many epochs (periods between issuing a key refresh query). The view
of F during each epoch i consists of his random coins together with the (tampered)
signing queries and leakage queries issued during that epoch. The main idea is that the
reduction B can simulate this view for F by learning a single leakage-function gi on the
secret key xi of the CLR-OWR in each epoch. The selection of gi (described below) will
ensure that:

1. The simulation perfectly matches Game G1. In particular, the event Ext1 occurs with
a non-negligible probability.

2. If the event Ext1 occurs, then every function gi queried by B is at most (λ(κ) + 1)-
leaky.

When the event Ext1 occurs, then B can extract x∗ = extract(td, x, w∗) such that
verclr-owr(y, x

∗) = 1, thereby winning the CLR-OWR security game. Therefore, the two
requirements (1) and (2) ensure that this occurs with a non-negligible probability, which
leads to a contradiction.

We are left to describe how B chooses the leakage functions so as to satisfy the above
two conditions. In epoch i, the function gi : {0, 1}∗ → {0, 1}∗ includes, in its description,
the entire view (including the random coins) of the forger F up to the start of epoch
i, along with the verification key vk of the signature scheme. The function gi(xi) first
checks whether verclr-owr(y, xi) = 1 and, if not, returns a 0. Otherwise, it internally runs
the code of F for that epoch, and uses the current secret key xi (and internal random
coins) to answer the leakage queries and the (tampered) signing queries. The output of
gi consists of all the answers to the various queries asked by F during the epoch.

It is easy to see that this leakage can be used by B to (perfectly) simulate the
epoch to F , so we satisfy the requirement (1). For requirement (2), note that the output
length of gi is long (possibly much longer than the secret key), since it includes all the
queried signatures (including the tampered signatures). However, when the event Ext1

occurs, all the signing queries correspond to lossy tags of the encryption scheme, and
hence do not reveal information about x. In particular, we can define an (inefficient)
leakage function g′i(·), so that (for fixed x) g′i(x) ≈s gi(x) are statistically close, and the
(tampered) signature portion of g′i(x) cumulatively reveals very less information about
x. This function g′i precisely corresponds to the (inefficiently) generated responses to the
signature queries (using the function expandK,(s,yi)(compressK,(s,yi)(·), ·)) and the leakage
queries in the proof of Theorem 7.

As shown in the proof of Theorem 7, the entropy loss induced by gi on x given y is
due to the output corresponding to F ’s leakage queries and the cumulative loss obtained
from the dmwm evaluations on x (and its tampered versions). For a uniformly random
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x, we also learn if verclr-owr(y, x) = 1, which can reveal up to 1 additional bit of entropy.
Therefore, since F ’s leakage queries were limited to being λ(κ)-entropy leaky, when Ext1

occurs, the function gi is (λ(κ) + 1)-entropy leaky, thereby proving condition (2). ut
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SUPPLEMENTARY MATERIALS

A A Construction of C-LTDF based on the LWE Assumption.

We now construct a “relaxed” form of C-LTDFs based on the LWE assumption. Later, we
argue that the relaxed lossy mode suffices for the applications in this work. Essentially,
we cannot guarantee that for all pp, lossy ek and x we have that fek(x) is contained
in some small set Rpp. Instead we only guarantee that this happens with overwhelming
probability. That is, we relax the notion of lossy mode to the following:

• Relaxed Lossy mode. There exists a negligible function ν and two (inefficient)
functions compresspp : {0, 1}`(κ) → Rpp with range |Rpp| ≤ 2`(κ)−α(κ), and expandek(·)
such that the following holds.

Pr

eval(ek, x) = expandek(compresspp(x)) :

pp← setup(κ),
ek← sampleloss(κ, pp),

x← {0, 1}`(κ)

 ≥ 1 − ν(κ)

Our construction is inspired by the construction of lossy trapdoor functions from
LWE of [3]. This in turn relies on the notion of learning with rounding (LWR) from [4]
and a “lossy mode” technique for LWE from [29].

Definition 18 (LWE Assumption [48]). Let κ be the security parameter, n = n(κ),m =
m(κ), q = q(κ) be integers and let χ = χ(κ) be a distribution over Zq. The LWEn,m,q,χ
assumption says that for A← Zm×nq , s← Znq , e← χm, the distribution (A, s ·A + e) is
computationally indisitinguishable from (A,u) where u← Zmq .

Let p < q be integers. We define the rounding function

b·cp : Zq → Zp : x 7→ b(p/q) · xc,

For a vector or matrix A, we let bAcp denote the output of applying the function b·cp
on each component.

For any integer τ > 0 we define the set of elements that are within distance τ of the
border between two intervals that round to different values:

borderp,q(τ) = {x ∈ Zq : ∃y ∈ Z, |y| ≤ τ, bxcp 6= bx+ ycp} .

Note that we can test membership in this set efficiently. Furthermore it’s easy to see
that:

Lemma 7 ( [3]). For every p, q, τ it holds that Prx←Zq [x ∈ borderp,q(τ)] ≤ 2τp
q .

Using well known results on trapdoors for LWE [1, 42] we also get the following
trapdoor for learning with rounding (LWR).
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Lemma 8 (Trapdoors for LWR [3]). For n ≥ 1, q ≥ 2, there exist sufficiently
large polynomials sufficiently large m = O(n log q) and p = O(

√
mn log q), there exist

algorithms (GenTrap, LWRInvert) such that:

• (A, tk)← GenTrap(1n, 1m, q) outputs a matrix A which is statistically close to uniform
over Zn×mq .
• For any (A, tk) in the support of GenTrap(1n, 1m, q) and any s ∈ {0, 1}n we have

LWRInverttk(bs ·Acp) = s.

We are now ready to give a construction of C-LTDFs from LWE. Let n = n(κ),m =
m(κ), n′ = n′(κ), q = q(κ), p = p(κ) be integers and let χ = χ(κ) be a distribution over
Z. We require that the support of χ lies in an interval [−v, v] such that v/q = negl(κ).
We further require that n,m, q, p satisfy the requirements of Lemma 8.

1. setup(κ) : Choose B← Zn×n′q , C← Zn′×mq and E ← χn×m. Let P = BC+E ∈ Zn×mq .
Output pp = P.

2. sampleinj(κ, pp) : Choose (A, tk) ← GenTrap(1n, 1m, q) and sett ek = A. Output
(ek, tk).

3. sampleloss(κ, pp) : Parse pp = P ∈ Zn×mq . Choose R← {0, 1}m×m and set A = P ·R.
Output ek = A.

4. eval(ek,x) : Parse ek = A ∈ Zn×mq . On input vector x ∈ {0, 1}n output bx ·Acp.
5. invert(ek, tk,y) : Output LWRInverttk(y).

Theorem 11. Under the LWEn′,m,q,χ assumption, the above is an (n, n′ log q)-C-LTDF
with “relaxed” lossiness and error ν(κ) = 2nm2vp/q = negl(κ).

Proof. First, let us show the indistinguishability of lossy and injective modes. In injective
mode, we have ek = A is statistically close to uniform by Lemma 8. In lossy mode, we
have ek = A = P · R = (BC + E)R. We first apply the LWE assumption to replace
P by uniform (here we think of the rows of B as the LWE secrets and the matrix C
as the LWE coefficients). Next we apply the leftover hash lemma to argue that A =
P ·R is statistically close to uniform. Therefore, in both modes, ek is computationally
indistinguishable from uniform and therefore the modes are indistinguishable from each
other.

Secondly, in injective mode, the inversion algorithm is correct by Lemma 8.
Thirdly, let pp = P = BC + E and let ek = A = P ·R for some R ∈ {0, 1}m×m.

Let x ∈ {0, 1}n. Then eval(ek,x) = bxAcp = bx(BC + E)Rcp. Furthermore bx(BC +
E)Rcp = bx(BCR)cp unless one of the components of xBCR lies in borderp,q(nmv),
which (by Lemma 7 and union bound over the m components) happens with probability
at most ν(κ) = 2nm2vp/q = negl(κ). Therefore if we define compresspp(x) = xB and
expandek(z) = bzCRcp then Pr[eval(ek,x) = expandek(compresspp(x))] ≥ 1− ν(κ).

A.1 Relying on Relaxed Lossy Mode

We now discuss how the rest of the paper is affected by using a C-LTDF with relaxed
lossiness. In particular, we sketch the changes that need to be made for all of the results
to go through as previously by starting with relaxed lossiness.
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From C-LTDF to C-ALBO-LTDF. We can define a relaxed lossy mode for C-
ALBO-LTDF analogously to that of C-LTDF. That is we now require that:

• Relaxed Lossy mode. There exists a negligible function ν and two (inefficient)
functions compressek : {0, 1}`(κ) → Rek with range |Rek| ≤ 2`(κ)−α(κ), and expandek,b(·)
such that the following holds. For all b∗ ∈ B,

Pr
[
∀ b ∈ B \ {b∗} eval(ek, b, x) = expandek,b(compressek(x))

]
≥ 1− ν(κ)

where the probability is over ek← samplec-albo(κ, b∗), x← {0, 1}`(κ).

We would like to say that the construction of C-ALBO-TDF from C-LTDF and iO in
Section 4.2.3 also works for the relaxed notion of lossiness. Unfortunately, we cannot do
so directly. In that construction we are sampling the lossy keys ẽk of the C-LTDF pseudo-
randomly inside of an obfuscated program by applying a PRF to the branch index b. We
therefore cannot directly rely on the relaxed lossy mode property of the C-LTDF which
requires that the lossy key ẽk is chosen randomly. To overcome this issue, we modify
the construction of C-ALBO-TDF, and in particular, the obfuscated program as follows.
We now hard-code a uniformly random pad into the obfuscated program and, in the
“else” part, we now use the randomness rloss = F (K, b) ⊕ pad to sample the lossy key
(ẽk,⊥)← sampleloss(κ, pp; rloss). This ensures that for any particular branch b ∈ B \{b∗}
fixed a-priori we have Pr

[
eval(ek, b, x) 6= expandek,b(compressek(x))

]
≤ ν(κ) where ν is

the lossiness error of the underlying C-LTDF. We can then apply a union bound over
all b ∈ B \ {b∗} to argue that we get the relaxed lossiness for the C-ALBO-TDF with
error |B| · ν(κ). By ensuring that the error ν of unrelying C-LTDF is small enough, we
can make this negligible. Luckily, the LWE construction allows us to set the error to be
an arbitarily small 2−poly(κ).

From C-ALBO-TDF to DMWM. Lastly, we need to ensure that a C-ALBO-TDF
with relaxed lossiness is good enough for the construction of DMWM. This holds because
the lossiness is used inside of an information theoretic argument, which is itself used to
argue lossiness of dmwm (see Section 5.2). In particular, we can switch from computing
evalc-albo(ek, tag′, w) to expandek,tag′(compressek(w)) for each tag′ 6= tag and this only
induces a negligible difference in probabilities. The rest of the argument proceeds as
previously.
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