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Abstract. We provide the first systematic analysis of (Non-Interactive) Fully Distributed
Verifiable Random Functions (DVRFs), including their syntax, definition of integrity and
privacy properties, and describe and analyse three concrete constructions, two of which are
original. Building on recent work (Agrawal, Mohassel, Mukherjee, Rindal: CCS 2018), we
strengthen the standard pseudorandomness property by allowing an adversary to make par-
tial queries on the challenge value, and call the resulting property strong pseudorandomness.
We show how a prominent DVRF construction in the blockchain space meets standard pseudo-
randomness, and provide two other instantiations that meet strong pseudorandomness, under
widely accepted cryptographic assumptions. We review how to generically build a Decen-
tralized Random Beacon (DRB) from any DVRF instance. DRBs have recently gained a lot
traction as a key component for leader(s) election in decentralized ledger technologies. We
provide implementations and experimental evaluations of three concrete DVRFs, using differ-
ent cryptographic libraries. Our two new DRB instantiations are strongly pseudorandom and
strongly unbiasable, while exhibiting high performance and linear communication complexity
(as they are in essence non-interactive). We provide a C++ reference implementation that is
available in open source form.

Keywords Cryptography, Blockchain, Random Beacon, Distributed Computation, Leader
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1 Introduction

In recent years there has been prolific development in blockchain technologies [Nak08,Woo19], and
a plethora of platforms relying on blockchains have seen the light of day. The various platforms
often differ in their design choices, and thus on the consensus protocol they rely on. Many consensus
protocols involve allocating the creation of blocks with a block producer, whose selection procedure
most often than not[GHM+17,BKM18,DGKR18,HMW18,KJG+18] requires a method for collective
randomness sampling. In order to avoid reliance on a trusted party, a common approach is to use
a mechanism that allows the distributed computation of an unpredictable and unbiased source of
randomness, verifiably.

Verifiable Random Function (VRF) This primitive was introduced by Micali, Rabin and Vadhan
[MRV99] and can be seen as the public-key version of a keyed cryptographic hash Fsk(·), where a
trusted party evaluates Fsk(x) on inputs x in such a way that the output can publicly be verified for
correctness via an auxiliary proof πx. The secret key sk allows i) evaluation of Fsk(·) on any input x
and ii) to compute and provide proof πx of the correct evaluation Fsk(x). The proof correctness can
be verified by means of an algorithm Verify that takes as inputs the public key pk corresponding to
sk, the values x, Fsk(x), and proof πx, and outputs accept or reject.



Unique Signatures There are similarities between a VRF and a digital signature scheme with unique
signatures. On inputs a string x and a secret signing key SKS , a signing algorithm outputs a
signature σx. If the signature scheme is unforgeable, the latter value σx is unpredictable given the
public key PKS . Despite its unpredictability, the signature σx on string x is publicly verifiable.
There are two issues that may prevent signature schemes with unique signatures from being used
straightforwardly as a VRF: i) signatures σx may not be unique given x and PKS ; and ii) σx is
unpredictable but not pseudorandom (e.g. signatures could contain some bias and be distinguishable
from a random distribution). Needless to say, most secure signature schemes (e.g. ECDSA, Schnorr,
PSS-RSA, qTESLA) are either probabilistic or history dependent, i.e. stateful (e.g. eXtended Merkle
Signature Scheme). Both these properties are in conflict with the uniqueness requirement. It is hence
necessary that the verification procedure accepts a unique signature for any given message, for a
fixed public key. A signature scheme living up to those criteria is said to have unique signatures
[GO93,FZ12]. VRFs derived from unique signatures present strong unbiasibility properties due to
the uniqueness, even in the presence of active adversaries, of the corresponding pseudorandom value.

Our contributions. We provide the first systematic analysis of (Non-Interactive) Fully Distributed
Verifiable Random Functions (DVRFs), including their syntax and the definition of their integrity
and privacy properties. We extend [AMMR18] and define standard and strong pseudorandomness
for DVRFs, where the latter strengthens the standard pseudorandomness property by allowing an
adversary to make partial queries on the target pseudorandom value (Section 3). We validate the
security of Dfinity-DVRF, a prominent DVRF construction in the blockchain space [HMW18], by
showing that it meets standard pseudorandomness (Section 5) and discuss how standard proof
techniques [Bol02,GJKR07] fail to extend to prove strong pseudorandomness.

We review how to to generically build a Decentralized Random Beacon (DRB) from any secure
DVRF (Section 6). Additionally, we provide two new instantiations that meet strong pseudoran-
domness, under widely accepted cryptographic assumptions. One of these constructions is called
DDH-DVRF and uses standard elliptic curve cryptography (Section 4), whereas the other construc-
tion is named GLOW-DVRF and uses cryptographic pairings (Section 5). By applying the generic
DVRF-to-DRB transformation, we obtain two new DRBs designs that enjoy strong pseudorandom-
ness and strong unbiasability. We note that the proof of correctness πx in DDH-DVRF is non-compact,
i.e., its size is linear in the threshold t, while Dfinity-DVRF and GLOW-DVRF are able to provide
compact proof, i.e., constant-size.

We provide an experimental evaluation of GLOW-DVRF, DDH-DVRF and Dfinity-DVRF, using the
cryptographic libraries MCL [Mis19], RELIC [AG14] and Libsodium [BD19b]. Our experiments show
that both GLOW-DVRF and DDH-DVRF outperform Dfinity-DVRF in running time, approximately
by x3 and x5 respectively at the 128-bit security level. We provide a reference implementation in
C++ and make it widely available as open source code [Fet20] (Apache 2.0 license).

1.1 Related Work

To our knowledge, the first distributed VRF construction was proposed by Dodis [Dod03] and
required the existence of a trusted dealer. The constructions described in this work dispose of
this trusted dealer by using a Distributed Key Generation (DKG) sub-protocol: Dfinity-DVRF
and DDH-DVRF use a protocol by Gennaro, Jarecki, Krawczyk and Rabin [GJKR07], whereas
GLOW-DVRF required several modifications to the latter. Manulis and Kuchta [KM13] proposed
a generic construction for interactive distributed VRFs based on unique aggregate signatures in
the shared random string model. Compared to our DVRF syntax and new designs, the concrete
constructions obtained from [KM13] are at least two orders of magnitude less efficient than ours,
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both in running time (as they use pairings and an inefficient generic transformation of pseudoran-
dom functions from unpredictable functions [MRV99]) and in latency (as they involve sequential
interaction between a number of peers).

Recently [AMMR18] introduced strong notions of correctness and pseudorandomness for Dis-
tributed Pseudorandom Functions in the presence of active adversaries. Our work generalises these
definitions to the Verifiable Random Functions scenario. [HMW18] informally introduced the in-
fluential Dfinity-DVRF (used e.g. in [Cor19,Kee19,Clo19,DAO19,SJSW19]) with no formal security
model nor analysis. We formalize Dfinity-DVRF and prove its security wrt to standard pseudoran-
domness under the co-CDH assumption in pairing groups in the random oracle model. We discuss
how the techniques [Bol02,GJKR07] that have been used to prove strong unforgeability of threshold
BLS signatures [BLS01] do not trivially allow to prove strong pseudorandomness. In contrast, our
new GLOW-DVRF also uses pairing groups, but achieves strong pseudorandomess in the random or-
acle model under the co-CDH and eXternal DDH assumptions. Perhaps surprsingly, GLOW-DVRF
shows not only stronger security than Dfinity-DVRF but also possesses better running times.

Our construction DDH-DVRF also achieves strong pseudorandomness but under the standard
DDH assumption. The main drawback raised in [SJSW20] against DRBs built from DVRFs is the
fact that they rely on computational assumptions on pairing groups, which are known to be easier
hard problems to cryptoanalyse than those obtained from ordinary elliptic curves [BD19a]. Our
proposed DDH-DVRF resolves this issue as it builds on ordinary elliptic curves.

2 Building Blocks

We recall next the Chaum-Pedersen proof system for equality of discrete logarithms, the syntax of
VRFs and the computational assumptions needed to build our concrecte DVRFs constructions.

2.1 Equality of Discrete Logarithms NIZK

We need NIZK proof systems as an ingredient to our construction, namely the Equality of Discrete
Logarithms proof system. Formally, given a cyclic group G of order q and g, h ∈ G, the NIZK proof
(PrEqH ,VerifyEqH) to show k = logg x = logh y for x, y ∈ G, k ∈ Zq is described as below [CP93]:

– PrEqH(g, h, x, y, k) chooses r
R← Zq, computes com1 = gr, com2 = hr and sets ch← H(g, h, x, y,

com1, com2). Output is (ch, res = r + k · ch).

– VerifyEqH(g, h, x, y, ch, res) computes com1 ← gres/xch and com2 ← hres/ych and outputs ch
?
=

H(g, h, x, y, com1, com2).

2.2 Verifiable Random Function (VRF)

Formally, a Verifiable Random Function (VRF) V = (KeyGen,Eval,Verify) consists of the following
algorithms [MRV99]:

KeyGen(1λ) is a key generation algorithm that takes as input a security parameter 1λ; it outputs a
public key pk and a secret key sk.

Eval(sk, vk, x) is an evaluation algorithm that takes as input secret key sk and verification key vk, a
message x, and outputs a triple (x, Fsk(x), π), where Fsk(x) is the function’s evaluation on input
x and π is a non-interactive proof of correctness.

Verify(pk, vk, x, v, π) is a verification algorithm that takes as input the public key pk, a verification
key vk, a message x, a value v and a proof π and outputs accept or reject.

3



2.3 Assumptions

In the following we recall the definitions of two variants of the Decisional Diffie-Hellman assumption,
the Discrete Logarithm assumption and Lagrange coefficients for polynomial interpolation.

Definition 1 (Diffie-Hellman Groups). Let G = 〈g〉 be a (cyclic) group of order q prime. We
assume there exists an efficient group instance generator algorithm I that on input a security pa-
rameter 1λ outputs the description of 〈G, q, g〉, with q a λ-bit length prime.

Definition 2 (DDH assumption). Let X ←
(
G, q, g, ga, gb

)
where 〈G, q, g〉 ← I(1λ) and a, b

R←
Z∗q . We say that I satisfies the Decisional Diffie-Hellman assumption if for r

R← Z∗q the value

AdvDDH
I,A (λ) :=

∣∣ Pr
[
A(X, gab) = 1

]
− Pr [A(X, gr) = 1]

∣∣
is negligible in λ. The probabilities are computed over the internal random coins of A, I and the
random coins of the inputs.

Definition 3 (Asymmetric Pairing Groups). Let G1 = 〈g1〉 , G2 = 〈g2〉 and GT be (cyclic)
groups of prime order q. A map e : G1 × G2 → GT to a group GT is called a bilinear map, if it
satisfies the following three properties:

– Bilinearity: e(ga1 , g
b
2) = e(g1, g2)ab for all a, b ∈ Zp.

– Non-Degenerate: e(g1, g2) 6= 1.
– Computable: e(g1, g2) can be efficiently computed.

We assume there exists an efficient bilinear pairing instance generator algorithm IG that on input
a security parameter 1λ outputs the description of 〈e(·, ·),G1,G2,GT , q〉.

Asymmetric pairing groups can be efficiently generated [GJNB11]. Pairing group exponentiations
and pairing operations can also be efficiently computed [DSD07].

Definition 4 (Computational co-CDH assumption [BDN18]). Let

X ←
(
e(·, ·),G1,G2,GT , q, g1, g2, ga1 , gb1, ga2

)
where 〈e(·, ·),G1,G2,GT , q〉 ← IG(1λ) and a, b

R← Z∗q and g1
R← G1, g2

R← G2. We say that IG
satisfies the Computational co-CDH assumption in G1 if

Advco-CDH
IG,A (λ) := Pr

[
A(X) = gab1

]
is negligible in λ.

Definition 5 (XDH assumption [CHL05]). Let 〈e(·, ·),G1,G2,GT , q〉 ← IG(1λ) be a a bilinear
mapping. The XDH assumption states that DDH is hard in G1.

Definition 6 (Lagrange coefficients). For a key reconstruction set ∆, we define the Lagrange
basis polynomials λj,∆(x) =

∏
k∈∆\{j}

x−k
j−k ∈ Zq[X] and the Lagrange coefficients λi,j,∆ = λj,∆(i) ∈

Z∗q . For any polynomial f ∈ Zq[X] of degree at most |∆| − 1 this entails
∑
i∈∆ f(i)λ0,i,∆ = f(0).

3 Distributed Verifiable Random Functions: Formal Definitions

Let a, b : N → N be polynomial time functions, and where a(λ), b(λ) both are bounded by a poly-
nomial in λ. Let F be a function with domain D and range R. Let D and R be sets of size 2a(λ)

and 2b(λ) respectively. The goal of a DVRF is to initialize a Pseudo-Random function and compute
Fsk(x) for inputs x by a set of servers S1, . . . , S` with no central party.
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3.1 Syntax and Basic Properties

In the Setup phase ` servers S1, . . . , S` communicate via pairwise private and authenticated channels.
They have access to an append-only public board where every server can post messages, and these
posts cannot by repudiated by their senders. A setup interaction is then run between the ` servers
to build a global public key pk, individual servers’ secret keys sk1, . . . , sk`, and individual servers’
public verification keys vk1, . . . , vk`. The servers’ secret and verification keys (ski, vki) for i = 1, . . . , `
will later enable any subset of t+1 servers to non-interactively compute the verifiable random value
Fsk(x) on a plaintext x ∈ D. On the contrary, any set of at most t servers can not learn any
information on Fsk(x) for any x not previously computed.

Definition 7 (DVRF). A t-out-of-` (Non-Interactive) Fully Distributed Verifiable Random Func-
tion (DVRF) V = (DistKG,PartialEval,Combine,Verify) consists of the following algorithms:

DistKG(1λ, t, `) is a fully distributed key generation algorithm that takes as input a security param-
eter 1λ, the number of participating servers `, and the threshold parameter t; it outputs a set
of qualified servers QUAL, a public key pk, a list {sk1, . . . , sk`} of servers’ secret keys, a list
vk = {vk1, . . . , vk`} of servers’ verification keys.

PartialEval(ski, vki, x) is a partial evaluation algorithm that takes as input server Si ∈ QUAL, secret
key ski and verification key vki, a plaintext x, and outputs either a triple six = (i, vi, πi), where
vi is the i-th evaluation share and πi is a non-interactive proof of correct partial evaluation.

Combine(pk, vk, x, E) is a combination algorithm that takes as input the global public key pk, the

verification keys vk, a plaintext x, and a set E = {si1x , . . . , s
i|E|
x } of partial function evaluations

originating from |E| ≥ t+ 1 different servers, and outputs either a pair (v, π) of pseudo-random
function value v and correctness proof π, or ⊥.

Verify(pk, vk, x, v, π) is a verification algorithm that takes as input the public key pk, a set of veri-
fication keys vk, a plaintext x, a value v and a proof π and outputs accept or reject.

Any DVRF must satisfy four basic properties: consistency, meaning that no matter which col-
lection of correctly formed shares is used to compute the function on a plaintext x the same random
value v = Fsk(x) is obtained; domain-range correctness, meaning that every computed value v be-
longs to the range domain R; provability, meaning that the uniquely recovered value v = Fsk(x)
passes the verification test; and uniqueness, meaning that for every plaintext x a unique value
v = Fsk(x) passes the verification test. Formally,

Definition 8 (Admissibility). A (Non-Interactive) Fully Distributed Verifiable Random Func-
tion V = (DistKG,PartialEval,Combine,Verify) is said to be admissible if it satisfies the following
properties of consistency, domain range correctness, provability and uniqueness with overwhelming
probability, namely with probability at least 1− negl(λ) for a negligible function negl(λ):

Consistency: for any integers 0 ≤ t < `, for every plaintext x ∈ D, and any two (t+ 1)-subsets of
partial evaluation shares E 6= E ′ obtained by running PartialEval(·, ·, x), it holds that v = v′(6=⊥),
where (v, π)← Combine(pk, vk, x, E) and (v′, π′)← Combine(pk, vk, x, E ′).

Domain Range Correctness: for any integers 0 ≤ t < `, for every plaintext x ∈ D, and any (t+ 1)-
subset E of partial evaluation shares such that Combine(pk, vk, x, E) = (v, π) 6= ⊥ it holds that
v ∈ R.

Provability: for any integers 0 ≤ t < `, every plaintext x ∈ D, and any t+1-subset E of partial eval-
uation shares such that Combine(pk, vk, x, E) = (v, π) 6= ⊥ it holds that Verify(pk, vk, x, v, π) =
accept.

Uniqueness: no integers t, ` with 0 ≤ t < `, no plaintext x ∈ D, no proofs π, π′ and no values v, v′ ∈
R can be found such that v 6= v′ and Verify(pk, vk, x, v, π) = Verify(pk, vk, x, v′, π′) = accept.
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3.2 Security Properties: Correctness and Pseudorandomness

We give rigorous definitions of correctness and pseudo-randomness properties against active adver-
saries, building on [AMMR18]. Roughly speaking, correctness ensures the availability of computing
the random function value on any plaintext in an adversarial environment; pseudo-randomness en-
sures that no adversary controlling at most t servers is able to distinguish the outputs of the function
from random.

Definition 9 (Correctness). A DVRF protocol V = (DistKG,PartialEval,Combine,Verify) satisfies
correctness if for all PPT adversaries A, there exists a negligible function negl(·) such that the
following experiment outputs 1 with probability at most negl(λ).

[Corruption] On input the Servers list S = {S1, . . . , S`} and threshold 0 ≤ t < `, a correctness
adversary A chooses a collection C of servers to be corrupted with |C| ≤ t. Adversary A acts on
behalf of corrupted servers, while the challenger acts on behalf of the remaining servers, which
behave honestly (namely they follow the protocol specification).

[Initialization] Challenger and adversary engage in running the distributed key generation protocol
DistKG(1λ, t, `). After this phase, the protocol establishes a qualified set of servers QUAL. Every
(honest) server Sj ∈ QUAL \ C obtains a key pair (skj , vkj). In contrast, (corrupted) servers
Sj ∈ C end up with key pairs (skj , vkj) in which one of keys may be undefined (i.e. either skj = ⊥
or vkj = ⊥). At the end of this phase, the global public key pk and the verification keys vector
vk is known by both the challenger and the attacker.

[Evaluation] In response to A’s evaluation query (Eval, x, i) for some honest server Si ∈ QUAL\C
and plaintext x ∈ D, the challenger returns six ← PartialEval(ski, vki, x). In any other case, the
challenger returns ⊥.

[Computation] The challenger receives from the adversary A a set U of size at least t + 1 and
U ⊆ QUAL, a plaintext x? ∈ D and a set of evaluation shares {(i, v?i , π?i )}i∈U∩C . Com-
pute (j, vj , πj) ← PartialEval(skj , vkj , x

?) for j ∈ U and (j, v?j , π
?
j ) ← PartialEval(skj , vkj , x

?)
for j ∈ U \ C. Let v ← Combine(pk, vk, x?, {(j, zj , πj)}j∈U ) and v? ← Combine(pk, vk, x?,
{(i, v?i , π?i )}i∈U ). Output 0 if v? ∈ {v,⊥}; else, output 1.

In the above definition the value v is obtained by running the combine function on inputs that
were output by calling the partial evaluation function, whereas v? is obtained by running the combine
function on a set that contains adversarial inputs. Correctness demands that an adversary cannot
alter the output of Combine(·) (i.e. making v? 6= v) other than getting adversarial input rejected.

For strong pseudorandomnes the definition captures the intuition of the real world security
explicitly and accurately by allowing an adversary to choose the set of parties to corrupt, obtain
partial evaluations from the honest parties on the challenge plaintext (up to the threshold), and
participate in computing the pseudorandom function on the challenge plaintext.

Definition 10 (Strong Pseudorandomness [AMMR18]). A DVRF V = (DistKG,PartialEval,
Combine,Verify) is strongly pseudorandom if for all PPT adversaries A, there exists a negligible
function negl(·) such that

∣∣Pr[PseudoRandV,A(1λ, 0) = 1]−Pr[PseudoRandV,A(1λ, 1) = 1]
∣∣ = negl(λ)

where the experiment PseudoRandV,A(1λ, b) is defined below:

[Corruption] On input the Servers list S = {S1, . . . , S`} and threshold 0 ≤ t < `, a correctness
adversary A chooses a collection C of servers to be corrupted with |C| ≤ t. Adversary A acts on
behalf of corrupted servers, while the challenger acts on behalf of the remaining servers, which
behave honestly (namely they follow the protocol specification).
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[Initialization] Challenger and adversary engage in running the distributed key generation protocol
DistKG(1λ, t, `). After this phase, the protocol establishes a qualified set of servers QUAL. Every
(honest) server Sj ∈ QUAL \ C obtains a key pair (skj , vkj). In contrast, (corrupted) servers
Sj ∈ C end up with key pairs (skj , vkj) in which one of keys may be undefined (i.e. either skj = ⊥
or vkj = ⊥). At the end of this phase, the global public key pk and the verification keys vector
vk is known by both the challenger and the attacker.

[Pre-Challenge Evaluation] In response to A’s evaluation query (Eval, x, i) for some honest server
Si ∈ QUAL \C and plaintext x ∈ D, the challenger returns six ← PartialEval(ski, vki, x). In any
other case, the challenger returns ⊥.

[Challenge] The challenger receives from the adversary A a set of evaluation shares {six?}Si∈U∩C
with U ⊆ QUAL and |U | ≥ t + 1, and a plaintext x? ∈ D, such that (Eval, x?, i) has been
queried at most t−|C| times for different Si ∈ QUAL\C. Let sjx? ← PartialEval(skj , vkj , x

?) for

Sj ∈ U \ C and (v?, π?) ← Combine(pk, vk, x?, {sjx?}Sj∈U ). If v? = ⊥ the experiment output ⊥.
Otherwise, if b = 0 the adversary receives v?; if b = 1 the adversary receives a uniform random
value in R.

[Post-Challenge Evaluation] In response to A’s evaluation query (Eval, x, i) with x 6= x? for some
server Si ∈ QUAL \ C and plaintext x ∈ D, the challenger returns six ← PartialEval(ski, vki, x).
In any other case, the challenger returns ⊥.

When the adversary is not allowed to obtain any partial evaluation on the challenge plaintext
in the above experiment, we refer to it as standard pseudorandomness. This weaker notion of pseu-
dorandomness has been the standard up to now in the related literature on Distributed Random
Verifiable Functions [DY05,BLMR13,KM13]. The usage of this weaker definition of pseudorandom-
ness can also be found in the DRB literature e.g. [CD17].

4 DDH-based DVRF with non-compact proofs

In this section we give full descriptions and proofs of a fully distributed non-interactive verifiable
random function based on the Decisional Diffie-Hellman problem. The construction is obtained by
using the distributed key generation protocol by Gennaro, Jarecki, Krawczyk and Rabin [GJKR07]
in the setup phase and the DDH-based VRF presented in [MBB+15,GRPV18].

Let (G, g, q) be a mutiplicative group where the DDH assumption holds. Let H1 : {0, 1}∗ → G
and H2 : {0, 1}∗ → Zq be hash functions. Let VDDH-DVRF = (DistKG,PartialEval,Combine,Verify) be
the DVRF defined as follows:

DistKG(1λ, t, `) is run by ` participating severs S = {S1, . . . , S`}. Each server Si chooses a random
polynomial fi(z) = ai,0 + ai,1z + · · · + ai,tz

t. The protocol outputs a set of qualified servers
QUAL ⊆ S, a secret key ski =

∑
j∈QUAL fj(i) ∈ Zq and a verification key vki = gski ∈ G for each

i ∈ QUAL, an implicit distributed secret value sk =
∑
i∈QUAL ai,0 ∈ Zq, and a global public key

pk =
∏
i∈QUAL g

ai,0 . The full description of the protocol can be found in Figure 1 in Appendix
A.

PartialEval(ski, vki, x) outputs six = (i, vi, πi) for a plaintext x, where vi ← H1(x)ski and πi ←
PrEqH2

(g, vki, H1(x), vi; r) for randomness r
R← Zq.

Combine(pk, vk, x, E) parses list E = {sj1x , . . . , s
j|E|
x } of |E| ≥ t+ 1 partial function evaluation candi-

dates originating from |E| different servers, and obtains verification keys vkj1 , . . . , vkj|E| . Next,
1. Identifies an index subset I = {i1, . . . , it+1} such that VerifyEqH2

(g, vki, H1(x), vi, πi) =
accept holds for every i ∈ I, where (i, vi, πi)← six. If no such subset exists, outputs reject.

2. Sets v ←
∏
i∈I

v
λ0,i,I

i and π ←
{
six
}
i∈I .
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3. Outputs (v, π).

Verify(pk, vk, x, v, π) parses π =
{
six
}
i∈I such that |I| = t+ 1 and

1. Parses (i, vi, πi)← six for i ∈ I
2. Checks if VerifyEqH2

(g, vki, H1(x), vi, πi) = accept for every i ∈ I; if some of the checks fail,
outputs reject

3. Checks if v =
∏
i∈I

v
λ0,i,I

i ; if so outputs accept; otherwise outputs reject.

Theorem 1. VDDH-DVRF is admissible and correct.

Proof (Sketch). The full proof can be found in Appendix B. First, we show that VDDH-DVRF is
admissible. To see that consistency and domain range correctness are satisfied by VDDH-DVRF it
suffices to see that the following equality holds:

∑
j∈∆

skjλ0,j,∆ =
∑
j∈∆

λ0,j,∆

 ∑
i∈QUAL

si,j

 =
∑

i∈QUAL

∑
j∈I

λ0,j,∆ · si,j


=

∑
i∈QUAL

∑
j∈∆

λ0,j,∆ · fi(j)

 =
∑

i∈QUAL

ai,0 = sk

Then
∏
j∈∆(H1(x)skj )λ0,j,∆ = H1(x)(

∑
j∈∆ λ0,j,∆·skj) = H1(x)sk holds for every subset ∆ ⊆ {1, . . . , `}

with |∆| = t+ 1.

Domain range correctness is obvious and omitted. Provability follows from the completeness
property of the NIZKs and the consistency of the DVRF. Uniqueness can be proven using the
extractability of the NIZKs. That is, for any (v, π), if π verifies, we can extract a k such that
v = H1(x)k and vk = gk. The correctness is also proven using the extractability of the NIZKs. The
NIZKs guarantee that the adversary is not able to include junk data in the computation of the
pseudorandom function.

Theorem 2. VDDH-DVRF is strongly pseudorandom under the DDH assumption in the random oracle
model.

Proof (Sketch). The full proof is given in Appendix B. The proof goes by constructing a sequence
of hybrid games: HybzkA (b), HybsimA (b) and HybkA(b) for 0 ≤ k ≤ qE where qE is the total number
of distinct x in the evaluation/challenge queries. This proof structure is similar to [AMMR18] but
we are dealing with the distributed key generation protocol (the secure DKG protocol described in
Figure 1) instead of a trusted dealer used in [AMMR18].

HybzkA (b) replaces all the NIZKs in the original strong pseudorandomness game PseudoRandA(b)
with simulated proofs using a random oracle H2. PseudoRandA(b) and HybzkA (b) are indistinguishable
due to the zero-knowledge property of the NIZKs.

HybsimA (b) is defined exactly the same as HybzkA (b) except a simulator [GJKR07] is used to simulate
the DKG protocol. W.l.o.g., assume the participating servers are S = {1, . . . , `} and the adversary
corrupts servers C = {1, . . . ,m} with m ≤ t. The simulator acts on behalf of all the honest servers
{m + 1, . . . , `}, while the adversary controls all the corrupted servers {1, . . . ,m}. The generating
phase is run exactly the same as described in Figure 1, which determines a set of non-disqualified
servers QUAL. The set QUAL contains all the honest servers and some of the corrupted servers.
Since the simulator runs all the honest servers, it obtains all the shares from the corrupted servers
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and can recover all the polynomials fi with i ∈ QUAL ∩ C chosen by the adversary. 3 Assume the
combined polynomial after the generating phase is f . In the extracting phase, the simulator modifies
the last polynomial, i.e., the `-th polynomial f?` , to set the value of the global public key pk = gα

with α unknown. f?` is constructed implicitly to take the values: α−
∑
j∈QUAL\{`} fj(0), f`(1), . . . ,

f`(m), f`(m+ 1), . . . , f`(t). Note that the shares f`(1), . . . , f`(m) are given to the adversary in the
generating phase, thus they cannot be changed. We can compute Ai,j , A

?
`,j for i ∈ QUAL \ {`} and

0 ≤ j ≤ t as below:

– For i ∈ QUAL \ {`}, the simulator has all the coefficients ai,j for 0 ≤ j ≤ t for polynomial fi,
thus Ai,j = gai,j can be easily computed.

– For the `-th polynomial f?` , the simulator computes A?`,0 = gα0
∏
i∈QUAL\{`}A

−1
i,0 and A?`,j =

(A?`,0)δ0,j
∏t
i=1 g

f`(i)·δi,j where δi,j is the coefficient of xj in the lagrange basis polynomial λi,T (x)
with T = {0, 1, . . . , t}.

Therefore, the final polynomial f? takes the values f?(0) = α, f?(1) = f(1), . . . , f?(t) = f(t). The
global public key pk = A?`,0

∏
i∈QUAL\{`}Ai,0 = gα. HybsimA (b) and HybzkA (b) are indistinguishable

due to the secrecy property of the secure DKG prtoocol.
HybkA(b) for 0 ≤ k ≤ qE is defined exactly the same as HybsimA (b) except the first k distinct

plaintext x in the evaluation/challenge queries are answered using random polynomials f1, f2, . . . , fk

which only matches on the adversary’s shares, i.e., f i(1) = f?(1), . . . , f i(m) = f?(m) for 1 ≤ i ≤ k.
The indistinguishability between Hybk−1A (b) and HybkA(b) for 1 ≤ k ≤ qE relies on the extended

DDH problem [AMMR18] which can be easily derived from the original DDH problem. Formally,
the extended DDH problem is of the form (gα0 , gα1 , . . . , gαw , gβ , y0, y1, . . . , yw) where either y0 =

gα0β , y1 = gα1β , . . . , yw = gαwβ or y0
R← G, y1

R← G, . . . , yw
R← G. Suppose there exists a PPT

adversary A that can distinguish between the hybrids Hybk−1A (b) and HybkA(b) with non-negligible
probability then we can construct a PPT adversary B to break the extended DDH assumption
using A as a subroutine. In the proof, B first simulates the DKG protocol. Assume the combined
polynomial after the generating phase is f . In the extracting phase, the last polynomial, i.e., the
`-th polynomial f?` , is constructed to take the values: α0 −

∑
j∈QUAL\{`} fj(0), f`(1), . . . , f`(m),

αm+1 −
∑
j∈QUAL\{`} fj(m + 1), . . . , αt −

∑
j∈QUAL\{`} fj(t) where α0, αm+1, . . . , αt are from the

extended DDH problem which are not known to B. We show how to compute Ai,j , A
?
`,j for i ∈

QUAL \ {`} and 0 ≤ j ≤ t:

– For i ∈ QUAL\{`}, B has all the coefficients ai,j for 0 ≤ j ≤ t for polynomial fi, thus Ai,j = gai,j

can be easily computed.
– For the `-th polynomial f?` , B setsA?`,0 = gα0

∏
i∈QUAL\{`}A

−1
i,0 andA?`,j = (A?`,0)δ0,j

∏m
i=1 g

f`(i)·δi,j∏t
i=m+1(gαi

∏
k∈QUAL\{`} g

−fk(i))δi,j where δi,j is the coefficient of xj in the lagrange basis poly-

nomial λi,T (x) with T = {0, 1, . . . , t}.

Let the final combined polynomial be f?. We know that f?(0) = α0, f?(1) = f(1), . . . , f?(m) =
f(m), f?(m+1) = αm+1, . . . , f

?(t) = αt. This sets the global public key pk0 = A?`,0
∏
i∈QUAL\{`}Ai,0

= gα0 and the implicit secret value is sk0 = α0. The secret key ski for an honest server m+1 ≤ i ≤ t
is set to be ski = αi while the corresponding verification key is vki = gαi . The secret key ski for

an honest server i ≥ t + 1 is set to be ski =
∏
j∈T sk

λi,j,T
j where T = {0, 1, . . . , t} and λi,j,T are

3 This typically requires the condition t < `/2 which guarantees the honest parties can run the protocol
without the corrupted parties, i.e., ` − t > t under the assumption that the adversary can compromise
up to t servers. However, the condition t < `/2 is not a necessary condition. A more general description
is `hon > t ≥ `corr where `hon is the number of the honest parties and `corr is the number of the corrupted
servers.
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the lagrange coeffients, while the corresponding verification key is vki =
∏
j∈T vk

λi,j,T
j . Note that,

for each honest server i (m + 1 ≤ i ≤ `), its secret key ski cannot be computed by B because
αjs are unknown but the corresponding verification key vki can be computed. B chooses a random

η?
R← [qH1 ] where qH1 is the total number of distinct random oracle queries to H1. For the η?-th

query xη? to H1, B sets H1(xη?) = gβ .

We shall briefly describe how to answer the evaluation queries. B chooses k − 1 random poly-
nomials f i (1 ≤ i ≤ k − 1) such that f i(1) = f?(1), . . . , f i(m) = f?(m). On the i-th distinct

evaluation query (Eval, x, j) with i < k, B returns (j,H1(x)f
i(j), πj) where πj is a simulated proof

generated using random oracle H2. On the k-th distinct evaluation query on (Eval, x, j), B answers

with (j, yj , πj) for m+ 1 ≤ j ≤ t, while answers with (
∏
i∈T y

λj,i,T
i , πj) for j ≥ t, where yis are from

the DDH problem and πj is a simulated proof. On the i-th distinct evaluation query (Eval, x, j) with
i > k, B returns (j, vkrj , πj) with πj a simulated proof. With 1/qH1 probability (qH1 is polynomially
bounded in the security parameter), the xη? is also the k-th distinct evaluation/challenge query xk.
Let’s assume this is the case. When yi = gαiβ , B answers the evaluation queries on xk correctly, thus

it simulates Hybk−1A (b) perfectly; when yi
R← G, the partial evaluation/challenge queries on xk are

answered using random polynomials, thus it simulates HybkA(b). Therefore, Hybk−1A (b) and HybkA(b)
are indistinguishable under DDH assumption.

Finally HybqEA (0) and HybqEA (1) can be shown to be indistinguishable because all the evalua-
tion/challenge queries are answered using a unique random polynomial. This concludes the proof of
the indistinguishablity of PseudoRandA(0) and PseudoRandA(1).

5 Pairings-based DVRF with compact proofs

The construction of the non-interactive DDH-based DVRF is simple and can be implemented effi-
ciently on any elliptic curve DDH group, but it cannot provide compact proofs π for verifying the
pseudorandom value v, i.e., π is linear in the threshold t. Constructing a DVRF based on crypto-
graphic pairings can achieve compact proofs, probably at the expense of computational efficiency,
due to the slightly less efficient operations on pairing groups.

In this section, we shall first formalize one such a pairing-based construction that was sketched by
Hanke, Movahedi and Williams [HMW18] and that we call Dfinity-DVRF. We notice that no formal
treatment nor security proofs have been given to our knowledge. We show that Dfinity-DVRF achieves
standard pseudorandomness. Next, we shall propose a new pairing-based non-interactive DVRF,
called GLOW-DVRF, that has strong pseudorandomness and compact proofs, while also improving
on the efficiency of Dfinity-DVRF.

5.1 Formalisation of Dfinity-DVRF

As outlined in [HMW18], Dfinity-DVRF uses a well-known DKG protocol by Pedersen [Ped91] where
the adversary can bias the distribution of the joint public key [GJKR07]. In order to formalise
Dfinity-DVRF and study its security properties, instead of the biasable DKG protocol we use the
secure DKG protocol proposed in [GJKR07] and we shall prove that the resulting DVRF construction
satisfies standard pseudorandomness.

Let (e,G1,G2,GT , q, g1, g2, h1, h2) be a bilinear pairing group where the co-CDH assumption
holds and g1, g2 are generators of G1,G2 respectively (same applies to h1, h2). Let H1 : {0, 1}∗ → G1,
H2 : G1 → {0, 1}b(λ) be hash functions. VDfinity-DVRF is defined as follows:

DistKG(1λ, t, `) proceeds in the same way as in the non-compact case, with the difference that
exponentiations take place in group G2, i.e. the verification keys vki = gski

2 ∈ G2 and the global
public key pk =

∑
i∈QUAL g

ai,0
2 ∈ G2. Full details can be found in Figure 2 in Appendix C.
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PartialEval(ski, x) outputs a share six = (i, vi) with vi = H1(x)ski .

Combine(pk, vk, x, E) : parses list E = {sj1x , . . . , s
j|E|
x } of |E| ≥ t + 1 partial evaluation candidates

originating from |E| different servers, and obtains verification keys vkj1 , . . . , vkj|E| . Next,
1. Identifies an index subset I = {i1, . . . , it+1} such that for every i ∈ I it holds that e(vi, g2) =
e(H1(x), vki). If no such subset exists, outputs reject.

2. Sets π ←
∏
j∈I

v
λ0,j,I

j and v = H2(π).

3. Outputs (v, π).
Verify(pk, x, (v, π)) outputs accept if, given a public key pk and a plaintext x, the relation holds:

e(π, g2) = e(H1(x), pk) and v = H2(π). Otherwise output reject.

Theorem 3. VDfinity-DVRF is admissible and correct.

Proof. For admissibility: the proof of consistency and domain range correctness is essentially the
same as in Theorem 1. The provability follows from the fact that if e(vi, g2) = e(H1(x), vki) then
we can derive vi = H1(x)ski . Similarly, the uniqueness follows from the fact that if e(v, g2) =
e(H1(x), pk) = e(v′, g2) then v = v′ = H1(x)sk.

For correctness: the proof is similar to that of Theorem 1, except that it does not need to use
the random oracle model and the NIZKs are replaced with pairing equations. Suppose there exists
an adversary A leading the challenger to output 1 with non-negligible probability, i.e., v? 6= v. This
means there exists i ∈ U such that v?i 6= vi. If i ∈ U \C, this is not possible since v?i = vi = H1(x?)ski .
If i ∈ U ∩ C, we know that e(v?i , g2) = e(H1(x?), vki), where {(i, v?i )}i∈U∩C and U ⊆ QUAL are
evaluation shares received from the adversary. This gives us that v?i = H1(x?)ski = vi for i ∈ U ∩C
which contradicts the hypothesis.

Theorem 4. VDfinity-DVRF achieves standard pseudorandomness under the co-CDH assumption.

Proof (Sketch). The full proof is given in Appendix C. Recall that standard pseudorandomness does
not allow the adversary to query partial evaluations on the challenge plaintext x?. This implies that
standard pseudorandomness can be derived from the unforgeability of the threshold BLS signature
[Bol02]. The definition of unforgeability of the threshold BLS does not allow an adversary to obtain
any partial signature on the challenge plaintext even if the adversary compromises less than t servers.
Similarly to Theorem 2, we construct the hybrid Hybsim(b) to simulate the DKG protocol, and show
that Hybsim(0) and Hybsim(1) are indistinguishable under the co-CDH assumption.

Suppose there exists an adversary A that distinguishes Hybsim(0) and Hybsim(1), then we can
construct an adversary B that breaks the co-CDH assumption using A as a subroutine. Given a

co-CDH instance problem (e,G1,G2,GT , q, g1, g2, gα1 , g
β
1 , g

α
2 ) with g1 ∈ G1, g2 ∈ G2, α, β

R← Zq,
adversary B’s goal is to output gαβ1 . In the DKG setup, B simulates the DKG protocol to interact
with the corrupted servers. The protocol constructs Ci,k using g2, h2 from G2. The computation of
Ai,j , A

?
`,j for i ∈ QUAL \ {`} and 0 ≤ j ≤ t are similar to HybsimA (b) in Theorem 2 except they are

constructed on G2. The global public key is pk = gα2 . Similarly, the simulator can compute (ski, vki)
for honest servers m + 1 ≤ i ≤ t, while it cannot compute vki but not ski for i ≥ t + 1 because

α is unknown. B chooses a random η?
R← [qH1

] where qH1
is the total number of distinct random

oracle queries to H1. For the η?-th query xη? to H1, B sets H1(xη?) = gβ1 . With 1/qH1 probability
(qH1

is polynomial), xη? is also the challenge query x?. Let’s assume this is the case. Because the
adversary is not allowed to query partial evaluations on the challenge plaintext, we don’t need to
handle the evaluation query on xη? . The other evaluation queries (Eval, x, j) with x 6= x? can be
easily answered by computing vkrj where (x, r, gr) ∈ LH1

is an entry in the random oracle H1 and
r is chosen randomly by B. On the challenge query, the simulator checks if there exists any entry
(y, c) ∈ LH2 in the random oracle H2 such that e(y, g2) = e(gβ1 , g

α
2 ) which means y = gαβ1 . If not,
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B chooses a random c and adds the entry (⊥, c) to the random oracle H2. B returns c if b = 0 and
returns a random if b = 1.

We define an event C to hold when the adversary queries y? to H2 such that e(y?, g2) = e(gβ1 , g
α
2 ),

i.e., y? = gαβ1 . Naturally, when C happens, B can output y? as a solution to the co-CDH problem.
Now we shall show that the probability Pr[C] that C happens is non-negligible. We can prove that the
probability that C does not happen is the same for b = 0 and b = 1, i.e., Pr[¬C|b = 0] = Pr[¬C|b = 1]
due to the fact that the adversary sees the same probability distribution on B’s outputs before
querying y? to H2 for the first time. Based on this, we can also derive that Pr[C|b = 0] = Pr[C|b = 1]
and Pr[C] = Pr[C|b = 0] Pr[b = 0] + Pr[C|b = 1] Pr[b = 1] = Pr[C|b = 0]. Obviously, when C does
not happen, the adversary sees the same probability distribution on B’s outputs, and thus the
probability that A outputs 1 is also the same for b = 0 and b = 1, i.e., Pr[b′ = 1|b = 0,¬C] =
Pr[b′ = 1|b = 1,¬C]. Therefore we can compute A’s advantage of distinguishing b = 0 and b = 1 as

Adv = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|
= |Pr[b′ = 1|b = 0, C] Pr[C|b = 0] + (Pr[b′ = 1|b = 0,¬C] Pr[¬C|b = 0]

− Pr[b′ = 1|b = 1, C] Pr[C|b = 1]− Pr[b′ = 1|b = 1,¬C] Pr[¬C|b = 1]|
= |Pr[b′ = 1|b = 0, C] Pr[C|b = 0]− Pr[b′ = 1|b = 1, C] Pr[C|b = 1]|
= |Pr[b′ = 1|b = 0, C]− Pr[b′ = 1|b = 1, C]| · Pr[C|b = 0]

≤ Pr[C|b = 0] = Pr[C]

Since we assume A distinguishes b = 0 and b = 1 with non-negligible advantage Adv, C happens
with non-negligible probability Pr[C]. Therefore B outputs y as a solution to the co-CDH problem
with non-negligible probability Pr[C]/qH1

.

Strong pseudorandomness of Dfinity-DVRF. Adversarial capabilities in standard pseudorandomness
of Dfinity-DVRF and unforgeability of threshold BLS signatures [Bol02] go hand in hand, as in
both cases an adversary is not given the option to make partial queries on the challenging plain-
text x?. It is not surprising then that the previous security reduction does not allow to prove
strong pseudorandomness of Dfinity-DVRF. Indeed, since the verification key vki of the i-th server
is in G2, then the adversary can verify if an answer vi is correct or not by checking the pairing
e(vi, g2) = e(H1(x?), vki). Alas, the security reduction does not provide the challenger with knowl-
edge of logg2 vki, and then the challenger cannot answer a partial signature/evaluation query on the
challenge plaintext.

Next we propose a new pairing-based DVRF called GLOW-DVRF that has strong pseudoran-
domness and improved running times with respect to Dfinity-DVRF.

5.2 An improved pairing-based DVRF: GLOW-DVRF

In order to achieve and prove strong pseudorandomness, we need to perform a few modifications to
Dfinity-DVRF, most notably:

– The DKG protocol generates the verification keys vki = gski
1 in G1 and the global public key

pk =
∏
i∈QUAL g

ai,0
2 in G2.

– The PartialEval(ski, x) algorithm produces a NIZK to show the partial evaluation is correctly
formed.

In comparison to Dfinity-DVRF, having the i-th verification key vki ∈ G1, does not allow an
adversary to check the validity of the i-th partial evaluation (provided that the eXternal DDH
assumption holds in G1). Instead, the well-formedness of PartialEval(ski, vki, x) will be checked by
verifying a NIZK proof of equality of discrete logarithms. This allows the security reduction to
simulate PartialEval(ski, vki, x

?), where x? is the challenge plaintext.
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Let (e,G1,G2,GT , q, g1, g2, h1, h2) be a bilinear pairing where the DDH assumption holds in G1,
where g1, g2 are generators of G1,G2 respectively (same applies to h1, h2). Let H1 : {0, 1}∗ → G1,
H2 : G1 → {0, 1}b(k) andH3 : {0, 1}∗ → Zq be hash functions. Let VGLOW-DVRF = (DistKG,PartialEval,
Combine,Verify) be a DVRF for a pseudo-random function Fsk : {0, 1}a(λ) → {0, 1}b(λ) that is defined
as follows:

DistKG(1λ, t, `) proceeds in the same way as in the non-compact case in Figure 1, with the difference
described as below:
– In the Generating phase, g, h are replaced with g1, h1 ∈ G1.
– In Step 4, each server Si with i ∈ QUAL exposes Bi,0 = g

ai,0
2 via Feldman-VSS.

• In Step 4(a), each server Si with i ∈ QUAL broadcasts Ai,k = g
ai,k
1 for 0 ≤ k ≤ t and

Bi,0 = g
ai,0
2 .

• In Step 4(b), for each i ∈ QUAL, Sj checks if g
si,j
1 =

∏t
k=0(Ai,k)j

k

and e(Ai,0, g2) =
e(g1, Bi,0).

• In Step 4(c), set the global public key as pk =
∏
i∈QUALBi,0.

To summarise, the verification keys vki are generated on G1 using the generator g1 and the global
public key pk are generated on G2 using the generator g2. Full details can be found in Figure 3
in Appendix D.

PartialEval(ski, x) outputs a share six = (i, vi, πi) with vi = H1(x)ski and πi ← PrEqH3
(g, vki, H1(x), vi;

r) for randomness r
R← Zq.

Combine(pk, vk, x, E) parses list E = {sj1x , . . . , s
j|E|
x } of |E| ≥ t + 1 partial evaluation candidates

originating from |E| different servers, and obtain verification keys vkj1 , . . . , vkj|E| . Next,
1. Identifies an index subset I = {i1, . . . , it+1} such that for every i ∈ I it holds that VerifyEqH3

(g,
vki, H1(x), vi, πi) = accept, where (i, vi, πi)← six. If no such subset exists, outputs reject.

2. Sets π ←
∏
j∈I

v
λ0,j,I

j and v = H2(π).

3. Outputs (v, π).
Verify(pk, x, v, π): output accept if given a public key pk and a plaintext x, the relation holds:

e(π, g2) = e(H1(x), pk) and v = H2(π). Otherwise output reject.

Note that while in GLOW-DVRF partial evaluations are validated by verifying NIZKs, the well-
formedness of the pseudorandom value v is still validated using a pairing equation, which provides
the compact proof for the pseudorandom value as in Dfinity-DVRF. Using NIZKs to validate partial
evaluations can speed up the Combine algorithm by computing 4·|E| exponentiations in G1 instead of
computing 2 · |E| pairings. This potentially makes our scheme x2.5 to x4.5 faster than Dfinity-DVRF,
depending on the ratio of computing an exponentiation in G1 versus computing a pairing (see Section
6.2 for concrete experimental values).

One may argue that Dfinity-DVRF allows the Combine algorithm to verify partial evaluations in
batches in order to reduce the number of pairings to be computed. However, batch verification is
ill-suited for the Combine algorithm for three reasons: i) batch verification is meaningful only when
every individual verification is successful; when verification fails, the partial evaluations would still
need to be verified one-by-one to find the ill-formed input; ii) batch verification requires additional
randomisation before coalescing the pairings (e.g., [BDN18]). That is, for each partial evaluation
share vi, it needs to choose a random ri and compute vrii and vkrii . This introduces additional |E|
exponentiations on G1 and |E| exponentiations on G2. The exponentiation in G2 is about 2 times
slower than in G1, e.g., [Mis19]; iii) using batch verification here is not better than applying the
lagrange coefficients to directly compute the pseudorandom function v without verifying the partial
evaluations and then checking if the result is correct by testing if e(v, g2) = e(H1(x), pk). This can
be performed in our scheme as well.
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Theorem 5. VGLOW-DVRF is admissible and correct.

The proof of admissibility and correctness is similar to Theorem 1 and is omitted.

Theorem 6. VGLOW-DVRF is strongly pseudorandom under the XDH assumption and co-CDH as-
sumption in the random oracle model.

Proof (Sketch). The full proof is given in Appendix D. Similar to Theorem 2, we construct Hybzk(b)
to simulate all the NIZKs using random oracle H3 and construct Hybsim(b) to simulate the DKG
protocol. We have that the original strong pseudorandomness game and Hybzk(b) are indistinguish-
able due to the zero-knowledge property of NIZKs, and Hybzk(b) and Hybsim(b) are indistinguishable
due to the secrecy of the simulator. Assume m is the total number of corrupted servers, we consider
two cases m = t and m < t.

The case when m = t: this is the simplest case and the proof is similar to Theorem 4. This
is because m = t means an adversary has already compromised t servers and cannot issue any
evaluation query on the challenge plaintext x?. Given an adversary A that distinguishes Hybsim(0)
and Hybsim(1), the construction of an adversary B breaks the co-CDH assumption using A as a
subroutine is exactly the same as the proof of Theorem 4 except that

1. In the DKG setup, the verification keys are generated in G1 and the global public key is generated
in G2.

2. In the challenge query, the challenger verifies the NIZKs to identify a set of correct partial
evaluation shares.

3. An additional random oracle H3 is constructed in the standard way.

The rest of the analysis is similar to Theorem 4: we can prove that B outputs a solution to the
co-CDH problem with non-negligible probability Pr[C]/qH1 .

The case when m < t: in this case, the adversary is allowed to make up to t−m(≥ 1) evaluation
queries on the challenge plaintext x?. To prove the strong pseudorandomness, we shall construct k-
hybrids HybkA(b) with 0 ≤ k ≤ qE and qE the total number of distinct x in the evaluation/challenge
queries. We prove that

1. Hybk−1A (b) and HybkA(b) for 1 ≤ k ≤ qE are indistinguishable under XDH assumption. This
part of the proof is similar to Theorem 2 except that the global public key pk = gγ2 where

γ
R← Zq is chosen by the simulator and cannot be changed throughout the game. Assume the

final polynomial after the DKG protocol is f?. When the simulator chooses random polynomials
f1, f2, . . . , fk to answer the first k distinct evaluation/challenge queries, these polynomials need
to satisfy f i(0) = γ in addition to f i(1) = f?(1), . . . , f i(m) = f?(m). This is because the global
public key is constructed on G2. If the simulator changes the value of f i(0), the adversary can
detect it by issuing t+ 1 queries on a plaintext x( 6= x?) and then recovering the pseudorandom
value v and checking if e(v, g2) = e(H1(x), pk). This is not a problem for Theorem 2 because the
global public key is generated on G1 and the NIZKs can be simulated.

2. HybqEA (0) and HybqEA (1) are indistinguishable under co-CDH assumption. Suppose there exists
an adversary A that distinguishes HybqEA (0) and HybqEA (1), then we can construct an adversary
B breaks the co-CDH assumption using A as a subroutine.

Given a co-CDH problem (e,G1,G2,GT , q, g1, g2, gα1 , g
β
1 , g

α
2 ) with g1 ∈ G1, g2 ∈ G2, α, β

R←
Zq. B’s goal is to output gαβ1 . B simulates the DKG protocol to interact with the corrupted
servers. Let QUAL be the non-disqualified servers determined after the generating phase. Assume
the combined polynomial after the generating phase is f . In the extracting phase, for the `-th
polynomial, B constructs f?` to replace f`: f

?
` has the values α−

∑
j∈QUAL\{`} fj(0), f`(1), . . . ,

f`(t). Ai,j , A
?
`,j for i ∈ QUAL \ {`} and 0 ≤ j ≤ t can be computed similar to [GJKR07]. B?i,0

for i ∈ QUAL \ {`} and B?`,0 are computed as:
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– For i ∈ QUAL \ {`}, Bi,0 = g
ai,0
2 since B has the coefficients of all the polynomials except

the `-th polynomial.
– B?`,0 = gα2

∏
i∈QUAL\{`}B

−1
i,0 .

The global public key is pk = B?`,0
∏
i∈QUAL\{`}Bi,0 = gα2 . Let the final combined polynomial

be f?. We know that f?(0) = α, f?(1) = f(1), . . . , f?(t) = f(t). The corrupted servers that are

included in QUAL have the shares ski = f?(i) and vki = g
f?(i)
1 for i ∈ QUAL ∩ C. The shares

of the honest servers are set to be ski = f?(i) and vki = g
f?(i)
1 for m + 1 ≤ i ≤ `. Note that,

for the honest servers t+ 1 ≤ i ≤ `, the simulator cannot compute ski because it does not know

the value of α, but can compute vki = g
αλi,0,T
1

∏
j∈T,j 6=0 g

f?(j)λi,j,T
1 with T = {0, 1, . . . , t}. B

chooses a random η?
R← [qH1

] where qH1
is the total number of distinct random oracle queries

to H1. For the η?-th query xη? to H1, B sets H1(xη?) = gβ1 . With 1/qH1
probability (qH1

is
polynomial), xη? is also the challenge query. Let’s assume this is the case from now on. B chooses
qE random polynomials f1, f2, . . . , fqE such that for 1 ≤ j ≤ qE , f j(0) = α and for all i ∈ C,
f j(i) = f?(i). Note that, we cannot compute f j(i) for i ≥ m+ 1 because α is unknown, but we

can compute g
fj(i)
1 in the way similar to vki. For the i-the distinct evaluation query x(6= x?),

B answers with (g
fj(i)·r
1 , πi) where (x, r, gr1) is an entry in the random oracle H1 and πi is a

simulated proof. For each evaluation query (Eval, x, i) on the challenge plaintext x?, B answers
with a random zi. The adversary is allowed to make at most t − m evaluation queries on x?.
Let these evaluation queries be (Eval, x?, i1), . . . , (Eval, x?, it−m) and the returned randoms be
zi1 , . . . , zit−m . These values (i1, zi1), . . . , (it−m, zit−m) together with (0, αβ) and (1, f?(1)β), . . . ,

(m, f?(m)β) implicitly defines an unique random polynomial f̂ such that f̂(0) = α, f̂(1) = f?(1),

. . . , f̂(m) = f?(m), and f̂ is only used for computing evaluations on x?. Note that, it does not

matter if the adversary makes less than t −m evaluation queries on x? since the polynomial f̂
will never be explicitly computed. Therefore, B simulates HybqEA (b) perfectly.
The rest of the analysis is similar to the one in the case m = t. We define an event C as
when the adversary queries y? to H2 such that e(y?, g2) = e(gβ1 , g

α
2 ), i.e., y? = gαβ1 . We can

prove that A’s advantage Adv of distinguishing b = 0 and b = 1 is not bigger than Pr[C], i.e.,
Adv ≤ Pr[C]. Since we assume A distinguishes b = 0 and b = 1 with non-negligible advantage
Adv, C happens with non-negligible probability Pr[C]. Therefore B outputs y? as a solution to
the co-CDH problem with non-negligible probability Pr[C]/qH1

.

6 Decentralised Random Beacon and Performance Evaluation

A Decentralised Random Beacon (DRB) provides a way to distributedly agree on a randomly
chosen leader in Proof-of-Stake blockchains (e.g. Dfinity [HMW18], Ethereum 2.0 [But18], Om-
niLedger [KJG+18], Tendermint [BKM18]), without the need for a coordinator. DRBs are a par-
ticular case of Multi-Party Computation protocol and it can be straightforwardly obtained from a
DVRF as follows.

The DRB is initiated during a Setup phase that involves a set of ` nodes that can participate
in the consensus and in essence it corresponds to the DVRF Setup phase. At the end of the Setup
phase, each node that followed protocols ends up with a pair of verification and secret keys (vki, ski)
for the i-th node, as well as a global key pair (pk, sk). The latter key pair implicitly defines the VRF
function Fsk(·)·, where sk can be thought of as a virtual secret key that is never computed explicitly.
The set of nodes’ secret keys thereby computed enable any subset of nodes of size t+ 1 to compute
the verifiable random value Fsk(x) for a publicly known input x, via running Combine(pk, vk, x, E)

for a list E = {sj1x , . . . , s
j|E|
x } of |E| ≥ t+1 partial function evaluation candidates originating from |E|

different servers. Conversely, any set of at most h nodes cannot learn any information on Fsk(x) for
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any x not previously evaluated. It is assumed that an adversary that wants to predict the random
value for future rounds will not control more than h nodes at any point in time, where typically
h = `/3.

Successive random values σr for a given round r ≥ 1 are defined as σr ←− Fsk (σr−1||r), starting
from a publicly known initial seed σ0, not controlled by an adversary. The output σr of the VRF
can be verified against its proof of correctness π(σr−1||r), by running the verification algorithm of
the concrete DVRF protocol by running

Verify(pk, x, σr, πx) =

{
1 if true

0 otherwise
where x = σr−1||r

Choosing the initial seed. The seed initial σ0 to bootstrap the DRB should be free from manipulation
by an attacker. Previous DRB constructions have not convincingly provided an explicit initial seed
free from adversarial bias. We propose as explicit initial seed σ0 := pk, where pk is the global public
key computed in any of our concrete constructions. Indeed pk is uniformly distributed at random
in the corresponding DH group, a property inherited by our DKG protocols from that of Gennaro
et al. [GJKR07].

Strong bias resistance. The uniqueness of the pseudorandom output of our constructions provides
the strongest form of bias resistance, as it stands against any adversary independently from the
number of corrupted servers that the adversary controls.

6.1 Theoretical performance

In Table 1, we give analytical measurements for the size of the output of the partial evaluation
and the combine algorithms of the DVRFs studied in this paper. The size is represented using
the number of group elements. In Table 2, we give analytical measurements for the computational
costs of the secure DKG protocol, the partial evaluation algorithm, the combine algorithm and
the verification of the pseudorandom value. The costs are computed using the number of group
operations expG,mulG, pairing which represent the exponentiation in G, the multiplication in G and
the pairing operation, respectively.

6.2 Implementation

We compare the efficiency of different DVRF implementations by benchmarking the time required
to generate a single random value for DRB purposes. The protocols, and associated curves, studied
in the reference implementation [Fet20] are shown in Table 3, where the protocols are implemented
using mcl library [Mis19], RELIC [AG14], Libsodium [BD19b].

The results are summarised in Table 4, which shows the average time for each protocol to
generate a single random value based on the average execution time of the functions PartialEval and
Combine. Benchmarking was done using Catch2 [Nas19] on a laptop running Ubuntu 18.04. LTS
with 64bit Intel Core i7-8550U processor, with 4GHz capacity, and 16GiB of memory. We observe
that the DDH-DVRF protocol with Ristretto255 outperforms the Dfinity-DVRF protocol with curves
offering the same 128-bit security level 4 by approximately a factor of 5. In the case of BN256,
which has the same prime field size that Ristretto255 but lower security level, the times for random
value generation are 1.5 slower if using the mcl library, and slower by over a factor of 10 if using

4 See https://tools.ietf.org/id/draft-yonezawa-pairing-friendly-curves-00.html for a discussion
of revised security strength of pairing-based cryptographic assumptions.
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Protocol GLOW-DVRF DDH-DVRF Dfinity-DVRF

PartialEval 1 ·G1 + 2 · Zq 1 ·G + 2 · Zq 1 ·G1

Combine 1 ·G1 + 1 · Zq 1 ·G + 2(t + 1) · Zq 1 ·G1 + 1 · Zq

Table 1: Size of the output of PartialEval and Combine algorithm

Operations GLOW-DVRF DDH-DVRF Dfinity-DVRF

DistKG
Gen.

(2t + 3 + `(t + 2)) · expG1

+(t + 1)(` + 1) ·mulG1

(2t + 3 + `(t + 2)) · expG
+(t + 1)(` + 1) ·mulG

(2t + 3 + `(t + 2)) · expG2

+(t + 1)(` + 1) ·mulG2

Extra.
(2nt + n + 1) · expG1

+(3nt + 2n− 2t− 2) ·mulG1

+(n− 1) ·mulG2 + 2n · pairing

(2nt + n + 1) · expG
+(3nt + 2n− 2t− 2) ·mulG

(2nt + n + 1) · expG2

+(3nt + 2n− 2t− 2) ·mulG2

PartialEval 3 · expG1
3 · expG 1 · expG1

Combine (4k + t + 1) · expG1
+ t ·mulG1 (4k + t + 1) · expG + t ·mulG

(t + 1) · expG1
+ t ·mulG1

+2k · pairing

Verify 2 · pairing 5(t + 1) · expG + t ·mulG 2 · pairing

Table 2: Theoretical computational costs. Notations: ` represents the total number of participating servers.
n = |QUAL| is the number of qualified servers. k = |E| is the number of partial evaluations with k ≥ t + 1
given to the Combine algorithm. For the DistKG sub-protocol, we compare the number of computations that
each server performs in the generating phase and the extracting phase.

RELIC. Between the protocols with compact proofs, the GLOW-DVRF protocol outperforms the
Dfinity-DVRF implementation on randomness generation for the same curve by at least a factor of 2.5,
and the highest performing implementation, disregarding other factors, is therefore the GLOW-DVRF
protocol with curve BN256. However, comparing implementations with the same security level the
DDH-DVRF protocol produces the fastest times. These benchmarks are promising for distributed
ledger applications, discussed in Section 6, where random value generation can impose a lower bound
on block production times.

The benchmarks discussed in this section can be reproduced using the reference implementation
[Fet20] that is released in Apache 2.0 license. The code provided also allows for separate benchmark-
ing of the DistKG phase and randomness generation with message passing for all curves listed in
Table 3. The communication between servers is implemented either locally, by means of a scheduler,
or using network connections. For the former all nodes must reside within the same process, and can
be used for running the DistKG and DRB with simulated network latency. A simple implementation
of the latency, where each node’s latency is sampled from a Gamma distribution with some chosen
mean, is currently available. In the latter case of network connections the servers can be run on dif-
ferent computers identified by their IP address. Each server has an ECDSA and Diffie-Hellman key
pair, which are used to sign all outgoing messages and to set up the point-to-point secure channels
using Noise-C [Wea16], respectively. We assume both the ECDSA and Diffie-Hellman public keys
for each server are synchronised using a third trusted party. In addition to the secure point-to-point
channels, the DistKG additionally provides a secure bulletin for broadcasting information to all par-
ticipants, that has been implemented using the reliable broadcast protocol described in [CKPS01],
and that is of independent interest.
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A Secure DKG protocols

We recall in Figure 1 the DKG protocol originally proposed in [GJKR07]. This protocol is used in
our proposed DDH-based DVRF called DDH-DVRF. The DKG protocol used in Dfinity-DVRF can
be found in Figure 2, whereas the protocol used in GLOW-DVRF is given in Figure 3.

B Security proofs for DDH-DVRF

Theorem 1. VDDH-DVRF is admissible and correct.
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– Generating phase:
1. Each server Si performs a Pedersen-VSS of a random value ai,0:

(a) Si chooses two random t-degree polynomials fi, f
′
i over Zq:

fi(z) = ai,0 + ai,1z + · · ·+ ai,tz
t f ′

i(z) = bi,0 + bi,1z + · · ·+ bi,tz
t

Si broadcasts Ci,k = gai,khbi,k for 0 ≤ k ≤ t. Si computes the shares si,j = fi(j), s
′
i,j = f ′

i(j) for
1 ≤ j ≤ ` and sends si,j , s

′
i,j to server Sj .

(b) Each server Sj verifies the shares he received from the other servers. Sj checks if

gsi,jhs′i,j =

t∏
k=0

(Ci,k)j
k

(1)

for 1 ≤ i ≤ `. If the check fails for an index i, Sj broadcasts a complaint against Si.
(c) Each server Si who received a complaint from server Sj broadcasts the values si,j , s

′
i,j that satisfy

Equation 5.
(d) Each server marks as disqualified any server that either

• Received more than t complaints in Step 1b, or
• Answered to a complaint in Step 1c with values that falsify Equation 5.

2. Each server then builds the set of non-disqualified players QUAL.
3. Each server Si sets his share of the secret as ski =

∑
j∈QUAL sj,i, the verification key vki = gski and

the value ri =
∑

j∈QUAL s′j,i.
– Extracting phase:

4. Each server i ∈ QUAL exposes Ai,0 = gai,0 via Feldman-VSS
(a) Each server Si with i ∈ QUAL, broadcasts Ai,k = gai,k for 0 ≤ k ≤ t.
(b) Each server Sj verifies the values broadcast by the other servers in QUAL, formally, for each

i ∈ QUAL, Sj checks if

gsi,j =

t∏
k=0

(Ai,k)j
k

(2)

If the check fails for some index i, Sj complains against Si by broadcasting the values si,j , s
′
i,j

that satisfy Equation 5 but not Equation 6.
(c) For server Si who receives at least one valid complaint, i.e., values which satisfy Equation 5 but

not Equation 6, the other servers run the re-construction phase of Pedersen-VSS to compute
ai,0, fi, Ai,k for 0 ≤ k ≤ t. Compute the global public key as pk =

∏
i∈QUAL Ai,0. The distributed

secret value sk =
∑

i∈QUAL ai,0 is not explicitly computed by any party.
(d) Each server Si can reconstruct the verification keys of other servers:

• Compute vk =
∏

i∈QUAL Ai,k for 0 ≤ k ≤ t.

• For each j ∈ QUAL such that j 6= i, compute vkj =
∏t

k=0 v
jk

k .

Fig. 1: Secure distributed key generation (DKG) protocol [GJKR07] used in DDH-DVRF.
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Proof. First, we show that VDDH-DVRF is admissible. To see that consistency and domain range
correctness are satisfied by VDDH-DVRF it suffices to see that the following equality holds:

∑
j∈∆

skjλ0,j,∆ =
∑
j∈∆

λ0,j,∆

 ∑
i∈QUAL

si,j

 =
∑

i∈QUAL

∑
j∈I

λ0,j,∆ · si,j


=

∑
i∈QUAL

∑
j∈∆

λ0,j,∆ · fi(j)

 =
∑

i∈QUAL

ai,0 = sk

Then
∏
j∈∆(H1(x)skj )λ0,j,∆ = H1(x)(

∑
j∈∆ λ0,j,∆·skj) = H1(x)sk holds for every subset ∆ ⊆ {1, . . . , `}

with |∆| = t+ 1.
Domain range correctness is obvious and is omitted. Provability follows from the completeness

property of the NIZKs and the consistency of the DVRF. Uniqueness can be proven using the
extractability of the NIZKs. That is, for any (v, π), if π verifies, we can extract k such that v = H1(x)k

and vk = gk.
Next, we shall prove the VDDH-DVRF scheme satisfies the correctness defined in 9. The proof

relies on the extractibility property of NIZKs. We first describe the original correctness game in the
random oracle model:

CorrectA(b):

1. Give the public parameters (G, q, g) and a list of servers S = {1, · · · , `} to the adversary A
2. A chooses to corrupt a collection C of servers with |C| ≤ t. Without loss of generality, let
C = {1, · · · ,m}. Get the set C from A.

3. Run the distributed key generation protocol DistKG(1k, t, `) with ` servers S. The protocol out-
puts a set QUAL of qualified servers, a key pair (ski, vki) for every honest server Si ∈ QUAL\C,
and outputs key pair (ski, vki) in which one of keys may be undefined for corrupted servers
Si ∈ C.

4. The random oracle H1 is programmed as follows: Define a list LH1
= ∅. For a query on x:

(a) If there exists (x, r, h) ∈ LH1 , then the oracle outputs h.

(b) Otherwise, choose a random r
R← Zq and set h = gr and update the list LH1 = LH1∪(x, r, h).

The oracle outputs h.

5. The random oracle H2 is programmed as follows: Define a list LH2
= ∅. For a query on y, choose

a random c
R← Zq and update the list LH2 = LH2 ∪ (y, c). The oracle outputs c.

6. On an evaluation query (Eval, x, i) for an honest server Si ∈ QUAL \ C, compute H1(x)ski and
run PrEqH2

to generate a proof πi, and return (i,H1(x)ski , πi). Otherwise return ⊥.
7. On the challenge query (Challenge, x?, U, {(i, v?i , π?i )}i∈U∩C) with U ⊆ QUAL:

(a) If |U | ≤ t or any of π?i do not verify, output 0
(b) Else, compute vj = H1(x?)skj for j ∈ U and v?j = H1(x?)skj for j ∈ U \ C. Let v =∏

j∈U v
λ0,j,U

j and v? =
∏
j∈U v

?
j
λ0,j,U . If v? = v, output 0.

(c) Else, output 1.

Suppose there exists an adversary A leading the challenger to output 1 with non-negligible
probability. We will show that this leads to a contradiction. When the challenger outputs 1, all
the proofs {π?i }i∈U∩C received from the adversary are verified but v? 6= v. This means there exists
i ∈ U such that v?i 6= vi. If i ∈ U \ C, it is impossible since v?i = vi = H1(x?)ski . If i ∈ U ∩ C, use

the extractor of the NIZKs to obtain a witness sk′i such that vki = gsk′i and v?i = H1(x?)sk′i . Since
v?i 6= vi, we know that sk′i 6= ski which leads to vki 6= gski which contradicts to the premise.
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Next we give a proof for the strong pseudorandomness of DDH-based DVRF. Our proof is
constructed using the simulator for proving secrecy of the secure DKG protocol in [GJKR07] and
the proofs of Theorem 8.1 and 8.2 in [AMMR18]. In addition, we use standard zero-knowledge
property to simulate NIZKs.

Theorem 2. VDDH-DVRF is strongly pseudorandom under the DDH assumption in the random oracle
model.

Proof. For any PPT adversary, we shall first describe the real game PseudoRandA(b) as below.

PseudoRandA(b):

1. Give the public parameters (G, q, g) and a list of servers S = {1, · · · , `} to the adversary A
2. A chooses to corrupt a collection C of servers with |C| ≤ t. Without loss of generality, let
C = {1, · · · ,m}. Get the set C from A.

3. Run the distributed key generation protocol DistKG(1k, t, `) with ` servers S. The protocol out-
puts a set QUAL of qualified servers with QUAL ⊆ S, key pair (ski, vki) for every honest server
i ∈ QUAL\C, and outputs key pair (ski, vki) in which one of keys may be undefined for corrupted
servers i ∈ C.

4. The random oracle H1 is programmed as follows: Define a list LH1
= ∅. For a query on x:

(a) If there exists (x, r, h) ∈ LH1 , then the oracle outputs h.

(b) Otherwise, choose a random r
R← Zq and set h = gr and update the list LH1

= LH1
∪(x, r, h).

The oracle outputs h.
5. The random oracle H2 is programmed as follows: Define a list LH2 = ∅. For a query on y, choose

a random c
R← Zq and update the list LH2 = LH2 ∪ (y, c). The oracle outputs c.

6. On an evaluation query (Eval, x, i) for an honest server i ∈ QUAL \ C, compute H1(x)ski and
run PrEqH2

to generate a proof πi, and return (H1(x)ski , πi). Otherwise return ⊥.
7. On the challenge query (Challenge, x?, {(i, v?i , πi)}i∈U , V ) with |V | > t and V ⊆ QUAL and
U ⊆ V ∩ C,
(a) If A has made at least t+ 1− |C| queries of the form (Eval, x?, ∗), then output 0 and stop.
(b) Otherwise do as follows:

i. Run VerifyEqH1
to check the proofs πi for i ∈ U . If any check fails, output 0 and stop.

ii. Set v?i = H1(x?)ski for i ∈ V \ U .
iii. Compute v? =

∏
i∈V v

?
i
λ0,i,V .

iv. If v? = ⊥ then return ⊥. Otherwise depending on b do as follows:
A. If b = 0 then return v?;
B. Else return a uniform random.

8. Continue answering evaluation queries as before, but if A makes queries of the form (Eval, x?, i)
for some i ∈ QUAL \C and i is the (t+ 1− |C|)-th honest server that A contacted then output
0 and stop.

9. Receive a guess b′ from A and output b′.

First hybrid - HybzkA (b) Define a hybrid HybzkA (b) which is similar to PseudoRandA(b) except that
real proofs πi in Step 6 and 8 are replaced with simulated proofs. HybzkA (b) is indistinguishable from
PseudoRandA(b) for any PPT A and b ∈ {0, 1} due to the zero-knowledge property of NIZKs.

Second hybrid - HybsimA (b) Define a hybrid HybsimA (b) which is similar to HybzkA (b) except that the
running of the secure DKG protocol DistKG(1k, t, `) in Step 3 is replaced with a simulator described
in [GJKR07] which sets the public key pk to a given element Y = gα with α unknown. We give a
brief description of the construction of the simulator below:
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1. Generating phase: The simulator runs on behalf of all the honest servers. It performs the gener-
ating phase exactly as in the secure DKG protocol. The simulator chooses random polynomials
fi(z) = ai,0 + ai,1z + · · · + ai,tz

t and f ′i(z) = bi,0 + bi,1z + · · · + bi,tz
t for each honest server

i ∈ S \C. At the end of the generating phase of the secure DKG protocol, the simulator obtains
a well-defined set of non-disqualified servers QUAL which contains all the honest servers and
some corrupted servers. The simulator receives all the shares si,j , s

′
i,j from the corrupted servers

and thus can recover all the polynomials fi(z), f
′
i(z) for i ∈ QUAL ∩ C.

2. Extracting phase:
– For the honest servers i ∈ QUAL \ (C ∪ {`}), compute Ai,j = gai,j for 0 ≤ j ≤ t.
– For the `-th honest server, the simulator replaces f` with a new polynomial f?` which is de-

termined by the values: α −
∑
j∈QUAL\{`} fj(0), f`(1), . . . , f`(t). The simulator can compute

A?`,j for 0 ≤ j ≤ t based on the new polynomial f?` (x) without knowing the value of α:

• A?`,0 = Y ·
∏
i∈QUAL\{`}A

−1
i,0

• A?`,j = (A?`,0)δ0,j
∏t
i=1 g

f`(i)·δi,j where δi,j is the coefficient of xj in the lagrange basis poly-
nomial λi,T (x) with T = {0, 1, . . . , t}.

Broadcast Ai,j , A
?
`,j for i ∈ QUAL \ {`} and 0 ≤ j ≤ t.

Therefore, the final polynomial f? takes the values f?(0) = α, f?(1) = f(1), . . . , f?(t) = f(t). The
global public key pk = A?`,0

∏
i∈QUAL\{`}Ai,0 = gα.

For each honest server j ∈ QUAL \ C and j ≤ t, the simulator can compute j’s secret key
skj = f?(j) as well as the corresponding verification key vkj . For each honest server j ∈ QUAL \C
and j > t, the simulator is not able to computer j’s secret key because f?(0) = α is unknown. This
means the simulator cannot compute f?(j) for j > t. However, the simulator can still compute the

corresponding verification keys vkj = pkλj,0,T ·
∏t
i=1 vk

λj,i,T
i for j > t where T = {0, 1, . . . , t} and

λj,i,T are the lagrange coefficients.
Although the simulator does not have ski for i ∈ QUAL \ C and i > t, with the value of

vki = gski it is sufficient to answer all the evaluation queries in Step 6, 7 and 8 defined in the
game PseudoRandA(b). In the game HybsimA (b), we modify all the computation of vi = H1(x)ski for
i ∈ QUAL \ C and i > t as follows: assume (x, r, h) ∈ LH1

, compute vi = vkri . The corresponding
NIZK that shows vi is correctly formed can be simulated using random oracle H2 without knowing
ski. Finally HybsimA (b) is indistinguishable from HybzkA (b) for any PPT A and b ∈ {0, 1} because
the probability distribution of the output of the simulator is identical to the original secure DKG
protocol [GJKR07].

k-hybrids - HybkA(b) For any adversary A that asks evaluation/challenge queries on qE distinct x,
we define hybrid games HybkA(b). The hybrid games HybkA(b) are exactly the same as HybsimA (b)
except how the evaluation/challenge queries are answered on the first k distinct plaintext x. The
simulator runs the secure DKG protocol to set up the system and assume the final polynomial is
f?. The simulator in addition chooses k t-degree random polynomials f1, f2, · · · , fk such as for all
corrupted servers i ∈ C, f j(i) = f?(i), for 1 ≤ j ≤ k. That is, the random polynomials match on
the shares of the corrupted servers.

Now an evaluation query (Eval, x, i) for an honest i is answered as follows: if x is the j-th distinct
plaintext in the evaluation/challenge queries, then return pc(x, j, i) defined as follows:

pc(x, j, i) =

{
(H1(x)f

j(i), πi) if j ≤ k
(H1(x)ski , πi) otherwise

where πi is a simulated proof generated by calling the random oracle H2 and H1(x)ski is obtained
in the same way as described in HybsimA (b).

The challenge query (Challenge, x?, {(i, z?i , πi)}i∈U , V ) with |V | > t and V ⊆ QUAL and U ⊆
V ∩ C and z?i a set of evaluation shares from the corrupted servers, is answered as follows:
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1. if x? was queried in the evaluation phase and it was the j-th distinct value, then let j? = j. Else,
assume there are so far j′ distinct evaluation queries and let j? = j′ + 1.

2. If A has made at least t+ 1− |C| queries of the form (Eval, x?, ·), then output 0 and stop.
3. Otherwise do as follows:

(a) Run VerifyEqH2
to check the proofs πi for i ∈ U . If any check fails, output 0 and stop.

(b) Set (z?i , ·) = pc(x?, j?, i) for i ∈ V \ C.
(c) Compute v? =

∏
i∈V z

?
i
λ0,i,V .

(d) If v? = ⊥ then return ⊥. Otherwise depending on b do as follows:
i. If b = 0 then return v?;

ii. Else return a uniform random.

Obviously, Hyb0
A(b) is identical to HybsimA (b). Hybk−1A (b) and HybkA(b) only differs in the evaluation

queries for the k-th distinct x. Below we shall prove that Hybk−1A (b) and HybkA(b) are indistinguishable
from the attacker’s point of view.

Lemma 1. For any b ∈ {0, 1} and 1 ≤ k ≤ qE, the outputs of hybrids Hybk−1A (b) and HybkA(b) are
computationally indistinguishable under DDH assumption.

Proof. We show that if there exists a PPT adversary A that can distinguish between the hybrids
Hybk−1A (b) and HybkA(b) with non-negligible probability then we can construct a PPT adversary B
to break an extended version of the DDH assumption using A as a subroutine.

The extended DDH problem [AMMR18] is given by

(G, q, g, gα0 , gα1 , · · · , gαw , gβ , y0, y1, · · · , yw)

where yi = gαiβ for all i ∈ {0, 1, . . . , w} or randoms. The extended DDH problem can be easily
derived from the original DDH problem. We now construct B using A as follows:

1. Give the public parameters (G, q, g) and a list of servers S = {1, 2, . . . , `} to A
2. A chooses a set C of servers with |C| ≤ t to corrupt and send C to B. W.l.o.g., assume C =
{1, 2, · · · ,m}.

3. The random oracle H1 is answered as follows: initialise LH1
= ∅. Let qH1

be the total number

of distinct random oracle queries asked in this game. Choose an index η?
R← [qH1

] uniformly at
random.
– If there exists a tuple (x, r, h) ∈ LH1 , output h.
– Otherwise,
• if this is the η?-th distinct call, set r = ⊥ and h = gβ where gβ is from the DDH problem.

• else choose a random r
R← Zq and set h = gr.

Update LH1 = LH1 ∪ (x, r, h)
Give the random oracle access to A.

4. The random oracle H2 is programmed as follows: Define a list LH2 = ∅. For a query on y, choose

a random c
R← Zq and update the list LH2 = LH2 ∪ (y, c). The oracle outputs c. Give the random

oracle access to A.
5. Run the simulator of the secure DKG protocol to interact with the corrupted servers. B acts

on behalf of all the honest servers {m+ 1, . . . , `}, while the adversary controls all the corrupted
servers {1, . . . ,m}. The generating phase is run exactly the same as described in Figure 1. The
generating phase determines a set of non-disqualified servers QUAL which contains all the honest
servers and some of the corrupted servers. Since B runs all the honest servers, B obtains all the
shares from the corrupted servers and can recover all the polynomials fi with i ∈ QUAL ∩ C
chosen by the adversary. Assume the combined polynomial after the generating phase is f . In
the extracting phase, the last polynomial, i.e., the `-th polynomial f?` , is constructed to take
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the values: α0 −
∑
j∈QUAL\{`} fj(0), f`(1), . . . , f`(m), αm+1 −

∑
j∈QUAL\{`} fj(m + 1), . . . ,

αt −
∑
j∈QUAL\{`} fj(t). For 0 ≤ j ≤ t, we show how to compute Ai,j for i ∈ QUAL \ {`} and

A?`,j :
– For i ∈ QUAL \ {`}, the simulator has all the coefficients ai,j for 0 ≤ j ≤ t, thus Ai,j = gai,j

can be easily computed.
– For the `-th polynomial f?` , the simulator sets A?`,0 = gα0

∏
i∈QUAL\{`}A

−1
i,0 and A?`,j =

(A?`,0)δ0,j
∏m
i=1 g

f`(i)·δi,j
∏t
i=m+1(gαi

∏
k∈QUAL\{`} g

−fk(i))δi,j where δi,j is the coefficient of

xj in the lagrange basis polynomial λi,T (x) with T = {0, 1, . . . , t}.
Let the final combined polynomial be f?. We can see that f?(0) = α0, f?(1) = f(1), . . . , f?(m) =
f(m), f?(m + 1) = αm+1, . . . , f

?(t) = αt. This means the shares of the honest servers m + 1 ≤
i ≤ t are set to be ski = αi and the corresponding verification keys are vki = gαi despite
α0, αm+1, . . . , αt are unknown. For the honest servers t + 1 ≤ i ≤ `, we also cannot compute
their shares ski because α0, αm+1, . . . , αt are unknown, but we can compute their verification
keys as vki = gα0λ0,0,T

∏
j∈T,j 6=0 g

f?(j)λi,j,T with T = {0, . . . , t}. It is not difficult to verify that
the outputs of the simulator have the same probability distribution as the outputs of the secure
DKG protocol using a similar argument as in [GJKR07].

6. Choose k − 1 t-degree random polynomials, f1, f2, . . . , fk−1 such that for all i ∈ C and 1 ≤ j ≤
k − 1, f j(i) = f?(i).

7. Compute z̄i = (gβ)f(i) for i ∈ C. Set z̄0 = y0 and z̄i = yi for m+1 ≤ i ≤ t where y0, ym+1, . . . , yt
are from the DDH problem. Then for all m + 1 ≤ i ≤ `, compute z̄i =

∏
j∈T z̄

λi,j,T
j with

T = {0, 1, . . . , t}.
8. Define a function pc(x, j, i) as follows: invoke random oracle H1 to get (x, r, h) ∈ LH1 and return

– (hf
j(i), πi) if j < k

– (z̄i, πi) if j = k
– (vkri , πi) if j > k (if r = ⊥, return ⊥)

where πi is a simulated proof generated by calling the random oracle H2.
9. On an evaluation query (Eval, x, i) for an honest i ∈ QUAL \ C, if x is the j-th distinct value,

then return pc(x, j, i).
10. On the challenge query (Challenge, x?, {(i, z?i , πi)}i∈U , V ), where |V | > t and V ⊆ QUAL and

U ⊆ V ∩ C and z?i a set of evaluation shares from the corrupted servers, is answered as follows:
(a) if x? was queried in the evaluation phase and it was the j-th distinct value, then let j? = j.

Else, assume there are so far j′ distinct evaluation queries and let j? = j′ + 1.
(b) If A has made at least t+ 1−m queries of the form (Eval, x?, ·), then output 0 and stop.
(c) Otherwise do as follows:

i. Run VerifyEqH2
to check the proofs πi for i ∈ U . If any check fails, output 0 and stop.

ii. Set (z?i , ·) = pc(x?, j?, i) for i ∈ V \ C.
iii. Compute v? =

∏
i∈V z

?
i
λ0,i,V .

iv. If v? = ⊥ then return ⊥. Otherwise depending on b do as follows:
A. If b = 0 then return v?;
B. Else return a uniform random.

11. Continue answering evaluation queries as before, but if A makes queries of the form (Eval, x?, i)
for some i ∈ QUAL \ C and i is the (t+ 1−m)-th honest server that A contacted then output
0 and stop.

12. Receive a guess b′ from A and output b′.

Suppose the k-th distinct evaluation query xk is the η-th query for random oracle H1. Let’s
consider the case when η? = η. pc in Step 8 never returns ⊥ because r is set to ⊥ only for the η?-th
call and we have assumed that this call is for xk.

– If y0 = gα0β , ym+1 = gαm+1β , . . . , y` = gα`β , pc returns z̄i on xk which is equal to H1(xk)ski . In
this case, B simulates Hybk−1(b) perfectly.
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– If y0, ym+1, · · · , y` are chosen randomly, then z̄0, z̄1, · · · , z̄t defines a random polynomial f̂ with
constraint that for all i ∈ C, f̂(i) = f?(i). Therefore, in this case, B simulates Hybk(b) perfectly.

Since η? = η happens with probability 1/qH1
, if A distinguishes hybrids Hybk−1(b) and Hybk(b)

with a non-negligible probability δ, then B can break the (extended) DDH assumption with a non-
negligible probability δ/qH1

.

Now we are left to show that HybqEA (0) is indistinguishable from HybqEA (1). For a j-th distinct x,
pc(x, ·, ·) is defined using a unique random t-degree polynomial f j(x) which only matches with f(x)
on C. Since an adversary is allowed to make at most t− |C| evaluation queries on x?, the adversary
can learn the value of f j(x) on at most t points. As a result, the product

∏
i∈V z

?
i
λ0,i,V with |V | > t

when b = 0 has at least one z?i for which adversary has no information. Thus, the product appears
random to the adversary, which means HybqEA (0) and HybqEA (1) are indistinguishable.

C Security proofs for Dfinity-DVRF

Theorem 4. VDfinity-DVRF satisfies standard pseudorandomness under co-CDH assumption in the
random oracle model.

Proof. Recall that standard pseudorandomness does not allow the adversary to query partial eval-
uations on the challenge plaintext x?.

Similar to Theorem 2, we construct Hybsim(b) to simulate the DKG protocol and the original
standard pseudorandomness game is indistinguishable with Hybsim(b) because of the secrecy of
the simulator. Below we shall prove Hybsim(0) and Hybsim(1) are indistinguishable under co-CDH
assumption. Suppose there exists an adversary A that distinguishes Hybsim(0) and Hybsim(1), then
we can construct an adversary B breaks the co-CDH assumption using A as a subroutine.

Given a co-CDH problem (e,G1,G2,GT , q, g1, g2, gα1 , g
β
1 , g

α
2 ) with g1 ∈ G1, g2 ∈ G2, α, β

R← Zq.
B’s goal is to output gαβ1 :

1. Give the public parameters (e,G1,G2,GT , q, g1, g2) and a list of servers S = {1, 2, . . . , `} to A.
2. A chooses a set C of servers with |C| ≤ t to corrupt and send C to B. W.l.o.g., assume C =
{1, 2, . . . ,m}.

3. The random oracle H1 is answered as follows: initialise LH1
= ∅. Let qH1

be the total number

of distinct random oracle queries asked in this game. Choose an index η?
R← [qH1

] uniformly at
random.
– If there exists a tuple (x, r, h) ∈ LH1

, output h.
– Otherwise,
• if this is the η?-th distinct call, set r = ⊥ and h = gβ1 where gβ1 is from the co-CDH problem.

• else choose a random r
R← Zq and set h = gr1.

• Update LH1
= LH1

∪ (x, r, h) and output h.
Give random oracle access to A.

4. The random oracle H2 is programmed as follows: Define a list LH2
= ∅. For a query on y,

– If there exists a tuple (y, c, ∗), then output c.

– Else verify if e(y, g2) = e(gβ1 , g
α
2 ):

• If true, check if there exists a tuple (⊥, c, true) (set by the challenge query) and update the

list by changing the ⊥ to y. If such a tuple does not exist, then choose a random c
R← Zq

and update the list LH2
= LH2

∪ (y, c, true). The oracle outputs c.

• If false, choose a random c
R← Zq and update the list LH2

= LH2
∪ (y, c, false). The oracle

outputs c.
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– Generating phase:
1. Each server Si performs a Pedersen-VSS of a random value ai,0:

(a) Si chooses two random t-degree polynomials fi, f
′
i over Zq:

fi(z) = ai,0 + ai,1z + · · ·+ ai,tz
t f ′

i(z) = bi,0 + bi,1z + · · ·+ bi,tz
t

Si broadcasts Ci,k = g
ai,k
2 h

bi,k
2 for 0 ≤ k ≤ t. Si computes the shares si,j = fi(j), s

′
i,j = f ′

i(j) for
1 ≤ j ≤ ` and sends si,j , s

′
i,j to server Sj .

(b) Each server Sj verifies the shares he received from the other servers. Sj checks if

g
si,j
2 h

s′i,j
2 =

t∏
k=0

(Ci,k)j
k

(3)

for 1 ≤ i ≤ `. If the check fails for an index i, Sj broadcasts a complaint against Si.
(c) Each server Si who received a complaint from server Sj broadcasts the values si,j , s

′
i,j that satisfy

Equation 5.
(d) Each server marks as disqualified any server that either

• Received more than t complaints in Step 1b, or
• Answered to a complaint in Step 1c with values that falsify Equation 5.

2. Each server then builds the set of non-disqualified players QUAL.
3. Each server Si sets his share of the secret as ski =

∑
j∈QUAL sj,i, the verification key vki = gski

2 and

the value ri =
∑

j∈QUAL s′j,i.
– Extracting phase:

4. Each server i ∈ QUAL exposes Ai,0 = g
ai,0
2 via Feldman-VSS

(a) Each server Si with i ∈ QUAL, broadcasts Ai,k = g
ai,k
2 for 0 ≤ k ≤ t.

(b) Each server Sj verifies the values broadcast by the other servers in QUAL, formally, for each
i ∈ QUAL, Sj checks if

g
si,j
2 =

t∏
k=0

(Ai,k)j
k

(4)

If the check fails for some index i, Sj complains against Si by broadcasting the values si,j , s
′
i,j

that satisfy Equation 5 but not Equation 6.
(c) For server Si who receives at least one valid complaint, i.e., values which satisfy Equation 5 but

not Equation 6, the other servers run the re-construction phase of Pedersen-VSS to compute
ai,0, fi, Ai,k for 0 ≤ k ≤ t. Compute the global public key as pk =

∏
i∈QUAL Ai,0. The distributed

secret value sk =
∑

i∈QUAL ai,0 is not explicitly computed by any party.
(d) Each server Si can reconstruct the verification keys of other servers:

• Compute vk =
∏

i∈QUAL Ai,k for 0 ≤ k ≤ t.

• For each j ∈ QUAL such that j 6= i, compute vkj =
∏t

k=0 v
jk

k .

Fig. 2: Adaptation of the DKG protocol [GJKR07] to pairing groups for Dfinity-DVRF.

28



Give random oracle access to A. Note that, when the pairing verification is successful, we can
derive that y = gαβ1 .

5. Run the simulator of the secure DKG protocol to interact with the corrupted servers. The protocol
constructs Ci,k using g2, h2 from G2. Let QUAL be the non-disqualified servers. Assume the com-
bined polynomial after the generating phase is f . In the extracting phase, when constructing the
`-th polynomial f?` to replace f`, the simulator sets f?` to have the values α−

∑
j∈QUAL\{`} fj(0),

f`(1), . . . , f`(t). The computation of Ai,j , A
?
`,j for i ∈ QUAL \ {`} and 0 ≤ j ≤ t are similar to

HybsimA (b) in Theorem 2 except they are constructed on G2. The global public key is pk = gα2 .

The corrupted servers that are included in QUAL have the shares ski = f(i) and vki = g
f(i)
2 .

The shares of the honest servers i ∈ [t+ 1, `] are set to be ski = f(i) and vki = g
f(i)
2 . Note that,

the simulator cannot compute ski for the honest servers i ∈ [t + 1, `] because it does not know

the value of α, but can compute vki as g
αλi,0,T
2

∏
j∈T,j 6=0 g

f(j)λi,j,T
2 with T = {0, 1, . . . , t}.

6. On an evaluation query (Eval, x, i) for an honest i, invoke random oracle H1 to get H1(x) =
(x, r, h) and

(a) return vkri if r 6= ⊥
(b) return ⊥ if r = ⊥

7. On the challenge query (Challenge, x?, {(i, z?i )}i∈U , V ), where |V | > t and V ⊆ QUAL and
U ⊆ V ∩ C and z?i a set of evaluation shares from the corrupted servers, is answered as follows:

(a) If x? was not the η?-the query to H1, then B aborts.
(b) Otherwise do as follows:

i. Check if e(vi, g2) = e(H1(x), vki) for i ∈ U . If any check fails, output 0 and stop.

ii. If there exists a tuple (y, c, true) in H2, then set v? = c. Otherwise choose v?
R← Zq and

update LH2 = LH2 ∪ {⊥, v?, true}. Depending on b do as follows:
A. If b = 0 then return v?;
B. Else return a uniform random.

8. Continue answering evaluation queries as before, but if A makes queries of the form (Eval, x?, ·)
then output 0 and stop.

9. Receive a guess b′ from A.
10. If there exists a tuple (y, c, true) with y 6= ⊥ in H2, B outputs y as a solution to the co-CDH

problem.

The probability that B does not abort is 1/qH1
since η? is uniformly and randomly chosen. Let’s

consider the case when abort does not happen. In this case, the challenge plaintext x? is also the
η?-th distinct query to H1 and H1(x?) = gβ1 . The adversary is not allowed to query (Eval, x?, ·) due
to the definition of standard pseudorandomness. In other words, the Step 6b will never be executed.
In this case B simulates the standard pseudorandomness game perfectly from A’s point of view.

We define an event C as when the adversary queries y? to H2 such that e(y?, g2) = e(gβ1 , g
α
2 ),

i.e., y? = gαβ1 . We shall argue that the probability that C does not happen is the same for b = 0 and
b = 1, i.e., Pr[¬C|b = 0] = Pr[¬C|b = 1]. Before the challenge query, there is no information about
b, the adversary A sees exactly the same probability distribution on B’s outputs no matter b = 0 or
b = 1. Thus the probability that C does not happen before the challenge query is the same. After the
challenge query, because we assume C has not occurred so far, the challenge query returns a uniform
random that has never been used before in both b = 0 and b = 1. Thus, before the adversary queries
the random oracle H2 on y?, the adversary sees the same probability distribution of B’s outputs
after the challenge query. This gives us Pr[¬C|b = 0] = Pr[¬C|b = 1]. We can also derive that
Pr[C|b = 0] = Pr[C|b = 1] and Pr[C] = Pr[C|b = 0] Pr[b = 0] + Pr[C|b = 1] Pr[b = 1] = Pr[C|b = 0].
Moreover, when C does not happen, the adversary sees the same probability distribution on B’s
outputs, and thus the probability that A outputs 1 is also the same for b = 0 and b = 1, i.e., Pr[b′ =
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1|b = 0,¬C] = Pr[b′ = 1|b = 1,¬C]. Therefore we can compute A’s advantage of distinguishing
b = 0 and b = 1 as

Adv = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|
= |Pr[b′ = 1|b = 0, C] Pr[C|b = 0] + (Pr[b′ = 1|b = 0,¬C] Pr[¬C|b = 0]

− Pr[b′ = 1|b = 1, C] Pr[C|b = 1]− Pr[b′ = 1|b = 1,¬C] Pr[¬C|b = 1]|
= |Pr[b′ = 1|b = 0, C] Pr[C|b = 0]− Pr[b′ = 1|b = 1, C] Pr[C|b = 1]|
= |Pr[b′ = 1|b = 0, C]− Pr[b′ = 1|b = 1, C]| · Pr[C|b = 0]

≤ Pr[C|b = 0] = Pr[C]

Since we assume A distinguishes b = 0 and b = 1 with non-negligible advantage Adv, C happens
with non-negligible probability Pr[C]. Therefore B outputs y? as a solution to the co-CDH problem
with non-negligible probability Pr[C]/qH1 .

D Security proofs for GLOW-DVRF

Theorem 6. VGLOW-DVRF is strongly pseudorandom under the XDH assumption and co-CDH as-
sumption in the random oracle model.

Proof. Similar to Theorem 2, we construct Hybzk(b) to simulate all the NIZKs using random
oracle H3 and construct Hybsim(b) to simulate the DKG protocol. We have that the original strong
pseudorandomness game and Hybzk(b) are indistinguishable due to the zero-knowledge property
of NIZKs, and Hybzk(b) and Hybsim(b) are indistinguishable due to the secrecy of the simulator.
Assume m is the total number of corrupted servers, we consider two cases m = t and m < t.

The case when m = t: this is the simplest case and the proof is similar to Theorem 4. This
is because m = t means an adversary has already compromised t servers and cannot issue any
evaluation query on the challenge plaintext x?. Given an adversary A that distinguishes Hybsim(0)
and Hybsim(1), the construction of an adversary B breaks the co-CDH assumption using A as a
subroutine is exactly the same as the proof of Theorem 4 except that:

– An additional random oracle H3 is programmed as follows: Define a list LH3 = ∅. For a query

on y, if there exists a tuple (y, c), then output c. Otherwise choose a random c
R← Zq and update

the list LH3
= LH3

∪ (y, c). The oracle outputs c. Give random oracle access to A.
– Step 5 is replaced as follows: Run the simulator of the secure DKG protocol to interact with the

corrupted servers. Let QUAL be the non-disqualified servers. Assume the combined polynomial
after the generating phase is f . In the extracting phase, when constructing the `-th polynomial
f?` to replace f`, the simulator sets up the points α−

∑
j∈QUAL\{`} fj(0), f`(1), . . . , f`(t) for f?` .

The Ai,j , A
?
`,j and B?i,0 for i ∈ QUAL \ {`} and 0 ≤ j ≤ t can be easily computed as Ai,j , A

?
`,j

for i ∈ QUAL \ {`} and 0 ≤ j ≤ t can be computed similarly as in HybsimA (b) in Theorem 2. B?i,0
for i ∈ QUAL \ {`} and B?`,0 are computed as:
• For i ∈ QUAL \ {`}, Bi,0 = g

ai,0
2 since B has the coefficients of all the polynomials except

the `-th polynomial.
• B`,0 = gα2

∏
i∈QUAL\{`}B

−1
i,0 .

The global public key pk =
∏
i∈QUALBi,0 = gα2 . The corrupted servers that are included in

QUAL have the shares ski = f(i) and vki = g
f(i)
1 for i ∈ QUAL ∩ C. The shares of the honest

servers are set to be ski = f(i) and vki = g
f(i)
1 for i ∈ [m+ 1, `]. Note that, the simulator cannot

compute ski for the honest servers i ∈ [t+ 1, `] because it does not know the value of α, but can

compute vki = g
αλi,0,T
1

∏
j∈T,j 6=0 g

f(j)λi,j,T
1 with T = {0, 1, . . . , t}.
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– Generating phase:
1. Each server Si performs a Pedersen-VSS of a random value ai,0:

(a) Si chooses two random t-degree polynomials fi, f
′
i over Zq:

fi(z) = ai,0 + ai,1z + · · ·+ ai,tz
t f ′

i(z) = bi,0 + bi,1z + · · ·+ bi,tz
t

Si broadcasts Ci,k = g
ai,k
1 h

bi,k
1 for 0 ≤ k ≤ t. Si computes the shares si,j = fi(j), s

′
i,j = f ′

i(j) for
1 ≤ j ≤ ` and sends si,j , s

′
i,j to server Sj .

(b) Each server Sj verifies the shares he received from the other servers. Sj checks if

g
si,j
1 h

s′i,j
1 =

t∏
k=0

(Ci,k)j
k

(5)

for 1 ≤ i ≤ `. If the check fails for an index i, Sj broadcasts a complaint against Si.
(c) Each server Si who received a complaint from server Sj broadcasts the values si,j , s

′
i,j that satisfy

Equation 5.
(d) Each server marks as disqualified any server that either

• Received more than t complaints in Step 1b, or
• Answered to a complaint in Step 1c with values that falsify Equation 5.

2. Each server then builds the set of non-disqualified players QUAL.
3. Each server Si sets his share of the secret as ski =

∑
j∈QUAL sj,i, the verification key vki = gski

1 and

the value ri =
∑

j∈QUAL s′j,i.
– Extracting phase:

4. Each server i ∈ QUAL exposes exposes Ai,0 = g
ai,0
1 via Feldman-VSS and Bi,0 = g

ai,0
2

(a) Each server Si with i ∈ QUAL, broadcasts broadcasts Ai,k = g
ai,k
1 for 0 ≤ k ≤ t and Bi,0 = g

ai,0
2 .

(b) Each server Sj verifies the values broadcast by the other servers in QUAL, formally, for each
i ∈ QUAL, Sj checks if

g
si,j
1 =

t∏
k=0

(Ai,k)j
k

and e(Ai,0, g2) = e(g1, Bi,0) (6)

If any of the checks fails for some index i, Sj complains against Si by broadcasting the values
si,j , s

′
i,j or Bi,0 that satisfy Equation 5 but not Equation 6.

(c) For server Si who receives at least one valid complaint, i.e., values which satisfy Equation 5 but
not Equation 6, the other servers run the re-construction phase of Pedersen-VSS to compute
ai,0, fi, Ai,k for 0 ≤ k ≤ t. Compute the global public key as pk =

∏
i∈QUAL Bi,0. The distributed

secret value sk =
∑

i∈QUAL ai,0 is not explicitly computed by any party.
(d) Each server Si can reconstruct the verification keys of other servers:

• Compute vk =
∏

i∈QUAL Ai,k for 0 ≤ k ≤ t.

• For each j ∈ QUAL such that j 6= i, compute vkj =
∏t

k=0 v
jk

k .

Fig. 3: DKG protocol for GLOW-DVRF.
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– Step 6 is replaced as follows: On an evaluation query (Eval, x, i) for an honest i, invoke random
oracle H1 to get (x, r, h) ∈ LH1

and
1. return (vkri , πi) if r 6= ⊥, where πi is a simulated proof generated by calling the random

oracle H3

2. return ⊥ if r = ⊥
– Step 7 is replaced as follows: On the challenge query (Challenge, x?, {(i, z?i , πi)}i∈U , V ), where
|V | > t and V ⊆ QUAL and U ⊆ V ∩ C and z?i a set of evaluation shares from the corrupted
servers, is answered as follows:
1. if x? was not the η?-th query to H1, then B aborts.
2. Otherwise do as follows:

(a) Run VerifyEqH3
to check the proofs πi for i ∈ U . If any check fails, output 0 and stop.

(b) If there exists a tuple (y, c, true) in H2, then set v? = c. Otherwise choose v?
R← Zq and

update LH2 = LH2 ∪ {⊥, v?, true}. Depending on b do as follows:
i. If b = 0 then return v?;
ii. Else return a uniform random.

The rest of the analysis is similar to Theorem 4. The probability that B does not abort is 1/qH1

since η? is uniformly and randomly chosen. Let’s assume abort does not happen. We define an
event C as when the adversary queries y? to H2 such that e(y?, g2) = e(gβ1 , g

α
2 ), i.e., y? = gαβ1 . We

can prove that A’s advantage Adv of distinguishing b = 0 and b = 1 is not bigger than Pr[C], i.e.,
Adv ≤ Pr[C]. Since we assume A distinguishes b = 0 and b = 1 with non-negligible advantage
Adv, C happens with non-negligible probability Pr[C]. Therefore B outputs y? as a solution to the
co-CDH problem with non-negligible probability Pr[C]/qH1

.

The case when m < t: in this case, the adversary is allowed to make up to t−m(≥ 1) evaluation
queries on the challenge plaintext x?. To prove the strong pseudorandomness, we shall construct k-
hybrids HybkA(b) with 0 ≤ k ≤ qE and qE the total number of distinct x in the evaluation/challenge
queries. We will show that

– Hybk−1A (b) and HybkA(b) for 1 ≤ k ≤ qE are indistinguishable under XDH assumption
– HybqEA (0) and HybqEA (1) are indistinguishable under co-CDH assumption

Definition of the k-hybrids. The hybrid games HybkA(b) are exactly the same as HybsimA (b) except
how the evaluation/challenge queries are answered on the first k distinct x:

– After the simulator runs the secure DKG protocol to set up the system, the simulator in addition
chooses k t-degree random polynomials f1, f2, · · · , fk such that f j(0) = sk and for all i ∈ C,
f j(i) = ski. The reason f j(0) = sk is because the adversary has the global public key pk = gsk

2

and can test if z = sk in an evaluation H(x)z for any x by checking the equality of pairings
e(H(x)z, g2) = e(H(x), pk).

– The evaluation queries (Eval, x, i) are answered similar to Theorem 2 by calling the function
pc(x, j, i).

– The challenge query (Challenge, x?, {(i, z?i , πi)}i∈U , V ) is answered the same as Theorem 2 except
Step 3c is replaced by: Compute z =

∏
i∈V z

?
i
λ0,i,V , query the random oracle H2 on z and set

v? = H2(z).

Obviously, Hyb0
A(b) is identical to HybsimA (b). Hybk−1A (b) and HybkA(b) only differs in the evaluation

queries for the k-th distinct x. Below we shall prove that Hybk−1A (b) and HybkA(b) are indistinguishable
from the attacker’s point of view.

Lemma 2. For 1 ≤ k ≤ qE, Hybk−1A (b) and HybkA(b) are indistinguishable under XDH assumption
in the random oracle model.
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Proof. We show that if there exists a PPT adversary A that can distinguish between the hybrids
Hybk−1A (b) and HybkA(b) with non-negligible probability then we can construct a PPT adversary B
to break an extended version of the DDH assumption [AMMR18] using A as a subroutine.

The extended XDH problem is given by

(G, q, g1, g2, gα1
1 , · · · , gαw1 , gβ1 , y1, · · · , yw)

where yi = gαiβ1 for all i ∈ {1, . . . , w} or randoms. We now construct B using A as follows:

1. Give the public parameters (e,G1,G2,GT , q, g1, g2) and a list of servers S = {1, 2, . . . , `} to A.
2. A chooses a set C = {1, 2, . . . ,m} of servers with m < t to corrupt and send C to B.
3. The random oracle H1 is answered as follows: initialise LH1 = ∅. Let qH1 be the total number

of distinct random oracle queries asked in this game. Choose an index η?
R← [qH1 ] uniformly at

random.
– If there exists a tuple (x, r, h) ∈ LH1

, output h.
– Otherwise,
• if this is the η?-th distinct call, set r = ⊥ and h = gβ1 where gβ1 is from the co-CDH

problem.

• else choose a random r
R← Zq and set h = gr1.

– Update LH1 = LH1 ∪ (x, r, h) and output h.
Give random oracle access to A.

4. The random oracle H2 is programmed as follows: Define a list LH2 = ∅. For a query on y, if

there exists a tuple (y, c), then output c. Otherwise choose a random c
R← Zq and update the list

LH2
= LH2

∪ (y, c). The oracle outputs c. Give random oracle access to A.
5. The random oracle H3 is programmed as follows: Define a list LH3

= ∅. For a query on y, if

there exists a tuple (y, c), then output c. Otherwise choose a random c
R← Zq and update the list

LH3
= LH3

∪ (y, c). The oracle outputs c. Give random oracle access to A.
6. Run the simulator of the secure DKG protocol to interact with the corrupted servers. Let QUAL

be the non-disqualified servers. Assume the combined polynomial after the generating phase is

f . The simulator chooses γ
R← Zq. In the extracting phase, the `-th polynomial f?` is constructed

using the points γ −
∑
j∈QUAL\{`} fj(0), f`(1), . . . , f`(m), αm+1 −

∑
j∈QUAL\{`} fj(m + 1),

. . . , αt −
∑
j∈QUAL\{`} fj(t) where αm+1, . . . , αt are from the XDH problem. Ai,j , A

?
`,j for i ∈

QUAL \ {`} and 0 ≤ j ≤ t can be computed similar to Lemma 1. B?i,0 for i ∈ QUAL \ {`} and
B?`,0 are computed as:

– For i ∈ QUAL \ {`}, Bi,0 = g
ai,0
2 since B has the coefficients of all the polynomials except

the `-th polynomial.
– B?`,0 = gγ2

∏
i∈QUAL\{`}B

−1
i,0 .

Let the final combined polynomial be f?. We know that f?(0) = γ, f?(1) = f(1), . . . , f?(m) =
f(m), f?(m + 1) = αm+1, . . . , f

?(t) = αt. The global public key is pk = gγ2 . The shares of
the honest servers are set to be ski = αi and the corresponding verification keys are vki = gαi1

for i ∈ [m + 1, t] despite αm+1, . . . , αt are unknown. For the honest servers i ∈ [t + 1, `], we
cannot compute their shares ski because αm+1, . . . , αt are unknown, but we can compute their

verification keys as vki = g
γλi,0,T
1

∏
j∈T,j 6=0 g

f?(j)λi,j,T
1 with T = {0, . . . , t}.

7. Choose k−1 t-degree random polynomials, f1, f2, . . . , fk−1 such that f j(0) = γ and for all i ∈ C
and 1 ≤ j ≤ k − 1, f j(i) = f?(i).

8. Compute z̄0 = gβγ1 and z̄i = (gβ1 )f
?(i) for i ∈ C. Set z̄i = yi for m+ 1 ≤ i ≤ t where ym+1, . . . , yt

are from the XDH problem. Then for all m + 1 ≤ i ≤ `, compute z̄i =
∏
j∈T z̄

λi,j,T
j with

T = {0, 1, . . . , t}.
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9. Define a function pc(x, i, j) as follows: invoke random oracle H1 to get (x, r, h) ∈ LH1
and

– return (g
fj(i)·r
1 , πi) if j < k

– return (z̄i, πi) if j = k
– return (vkri , πi) if j > k (if r = ⊥, return ⊥)

where πi is a simulated proof generated by calling the random oracle H3.
10. On an evaluation query (Eval, x, i) for an honest i, if x is the j-th distinct value, then return

pc(x, j, i).
11. On the challenge query (Challenge, x?, {(i, z?i , πi)}i∈U , V ), where |V | > t and V ⊆ QUAL and

U ⊆ V ∩ C and z?i a set of evaluation shares from the corrupted servers, is answered as follows:
(a) if x? was queried in the evaluation phase and it was the j-th distinct value, then let j? = j.

Else, assume there are so far j′ distinct evaluation queries and let j? = j′ + 1.
(b) If A has made at least t+ 1−m queries of the form (Eval, x?, ·), then output 0 and stop.
(c) Otherwise do as follows:

i. Run VerifyEqH3
to check the proofs πi for i ∈ U . If any check fails, output 0 and stop.

ii. Set (z?i , ·) = pc(x?, j?, i) for i ∈ V \ C.
iii. Compute z =

∏
i∈V z

?
i
λ0,i,V and query random oracle H2 on z. Let v? = H2(z). Depend-

ing on b do as follows:
A. If b = 0 then return v?;
B. Else return a uniform random.

12. Continue answering evaluation queries as before, but if A makes queries of the form (Eval, x?, i)
for some i ∈ QUAL \ C and i is the (t+ 1−m)-th honest server that A contacted then output
0 and stop.

13. Receive a guess b′ from A and output b′.

Suppose the k-th distinct evaluation query xk is the η-th query for random oracle H1. Let’s
consider the case when η? = η. pc in Step 9 never returns ⊥ because r is set to ⊥ only for the η?-th
call and we have assumed that this call is for xk.

– If ym+1 = gαm+1β , . . . , y` = gα`β , pc returns z̄i on xk which is equal to H1(xk)f
?(i). In this case,

B simulates Hybk−1(b) perfectly.

– If ym+1, · · · , y` are chosen randomly, then z̄1, · · · , z̄t defines a random polynomial f̂ with con-
straint that f̂(0) = γ and for all i ∈ C, f̂(i) = f?(i). Therefore, in this case, B simulates Hybk(b)
perfectly.

Since η? = η happens with probability 1/qH1 , if A distinguishes hybrids Hybk−1(b) and Hybk(b)
with a non-negligible probability δ, then B can break the (extended) XDH assumption with a non-
negligible probability δ/qH1

.

Now we are left to show that HybqEA (0) is indistinguishable from HybqEA (1). In HybqEA (b), for j-th
distinct x, pc(x, j, ·) is computed using a unique random t-degree polynomial f j which only matches
with f? on C ∪ {0}.

Lemma 3. HybqEA (0) and HybqEA (1) are indistinguishable under co-CDH assumption in the random
oracle model.

Proof. Suppose there exists an adversary A that distinguishes HybqEA (0) and HybqEA (1), then we can
construct an adversary B breaks the co-CDH assumption using A as a subroutine.

Given a co-CDH problem (e,G1,G2,GT , q, g1, g2, gα1 , g
β
1 , g

α
2 ) with g1 ∈ G1, g2 ∈ G2, α, β

R← Zq.
B’s goal is to output gαβ1 :

1. Give the public parameters (e,G1,G2,GT , q, g1, g2) and a list of servers S = {1, 2, . . . , `} to A.
2. A chooses a set C = {1, 2, . . . ,m} of servers with m < t to corrupt and send C to B.
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3. The random oracle H1 is answered as follows: initialise LH1
= ∅. Let qH1

be the total number

of distinct random oracle queries asked in this game. Choose an index η?
R← [qH1

] uniformly at
random.
– If there exists a tuple (x, r, h) ∈ LH1

, output h.
– Otherwise,
• If this is the η?-th distinct call, set r = ⊥ and h = gβ1 where gβ1 is from the co-CDH

problem.

• Else choose a random r
R← Zq and set h = gr1.

– Update LH1
= LH1

∪ {(x, r, h)} and output h.
Give random oracle access to A.

4. The random oracle H2 is programmed as follows: Define a list LH2
= ∅. For a query on y,

– If there exists a tuple (y, c, ·), then output c.

– Else verify if e(y, g2) = e(gβ1 , g
α
2 ):

• If true, check if there exists a tuple (⊥, c, true) (set by the challenge query) and update the

list by changing the ⊥ to y. If such a tuple does not exist, then choose a random c
R← Zq

and update the list LH2
= LH2

∪ (y, c, true). The oracle outputs c.

• If false, choose a random c
R← Zq and update the list LH2

= LH2
∪{(y, c, false)}. The oracle

outputs c.
Give random oracle access to A. Note that, when the verification is successful, we can derive
that y = gαβ1 .

5. The random oracle H3 is programmed as follows: Define a list LH3 = ∅. For a query on y, if

there exists a tuple (y, c), then output c. Otherwise choose a random c
R← Zq and update the list

LH3
= LH3

∪ (y, c). The oracle outputs c. Give random oracle access to A.
6. Run the simulator of the secure DKG protocol to interact with the corrupted servers. Let QUAL

be the non-disqualified servers determined after the generating phase. Assume the combined
polynomial after the generating phase is f . In the extracting phase, for the `-th polynomial, B
constructs f?` to replace f`: f

?
` has the values α−

∑
j∈QUAL\{`} fj(0), f`(1), . . . , f`(t). Ai,j , A

?
`,j

for i ∈ QUAL\{`} and 0 ≤ j ≤ t can be computed similar to [GJKR07]. B?i,0 for i ∈ QUAL\{`}
and B?`,0 are computed as:

– For i ∈ QUAL \ {`}, Bi,0 = g
ai,0
2 since B has the coefficients of all the polynomials except

the `-th polynomial.
– B?`,0 = gα2

∏
i∈QUAL\{`}B

−1
i,0 .

The global public key is pk = B?`,0
∏
i∈QUAL\{`}Bi,0 = gα2 . Let the final combined polynomial

be f?. We know that f?(0) = α, f?(1) = f(1), . . . , f?(t) = f(t). The corrupted servers that are

included in QUAL have the shares ski = f?(i) and vki = g
f?(i)
1 for i ∈ QUAL ∩ C. The shares

of the honest servers are set to be ski = f?(i) and vki = g
f?(i)
1 for m+ 1 ≤ i ≤ `. Note that, for

the honest servers t+ 1 ≤ i ≤ `, the simulator cannot compute ski because it does not know the

value of α, but can compute vki = g
αλi,0,T
1

∏
j∈T,j 6=0 g

f?(j)λi,j,T
1 with T = {0, 1, . . . , t}.

7. Choose qE t-degree random polynomials, f1, f2, . . . , fqE−1 such that for 1 ≤ j ≤ qE−1, f j(0) = α
and for all i ∈ C f j(i) = f?(i). Note that, we cannot compute f j(i) for i ≥ m+ 1 because α is

unknown, but we can compute g
fj(i)
1 in the way similar to vki.

8. On an evaluation query (Eval, x, i) for an honest i, invoke random oracle H1 to get (x, r, h) ∈ LH1

and
(a) return (g

fj(i)·r
1 , πi) if r 6= ⊥, where πi is a simulated proof generated by calling the random

oracle H3

(b) if r = ⊥, choose zi
R← G1 and generate a simulated proof πi using random oracle H3 and

return (zi, πi).
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9. On the challenge query (Challenge, x?, {(i, z?i , πi)}i∈U , V ), where |V | > t and V ⊆ QUAL and
U ⊆ V ∩ C and z?i a set of evaluation shares from the corrupted servers, is answered as follows:
(a) if x? was not the η?-the query to H1, then B aborts.
(b) Otherwise do as follows:

i. Run VerifyEqH3
to check the proofs πi for i ∈ U . If any check fails, output 0 and stop.

ii. If there exists a tuple (y, c, true) in H2, then set v? = c. Otherwise choose v?
R← Zq and

update LH2
= LH2

∪ {⊥, v?, true}. Depending on b do as follows:
A. If b = 0 then return v?;
B. Else return a uniform random.

10. Continue answering evaluation queries as before, but if A makes queries of the form (Eval, x?, i)
for some i ∈ QUAL \ C and i is the (t+ 1−m)-th honest server that A contacted then output
0 and stop.

11. Receive a guess b′ from A.
12. If there exists a tuple (y, c, true) with y 6= ⊥ in H2, B outputs y as a solution to the co-CDH

problem.

The probability that B does not abort is 1/qH1
since η? is uniformly and randomly chosen.

Let’s consider the case when abort does not happen. In this case, the challenge plaintext x? is also
the η?-th distinct query to H1 and H1(x?) = gβ1 . In Step 8b, to answer the evaluation queries on
x?, we choose a random zi. The adversary is allowed to make at most t − m evaluation queries
on x?. Let these evaluation queries be (Eval, x?, i1), . . . , (Eval, x?, it−m) and the returned randoms
be zi1 , . . . , zit−m . These values (i1, zi1), . . . , (it−m, zit−m) together with (0, αβ) and (1, f?(1)β), . . . ,

(m, f?(m)β) implicitly defines an unique random polynomial f̂ with f̂(0) = α, f̂(1) = f?(1), . . . ,

f̂(m) = f?(m) and f̂ is only used for computing evaluations on x?. Note that, it does not matter

when the adversary makes less than t−m evaluation queries on x? since the polynomial f̂ will never
be explicitly computed. Therefore, B simulates HybqEA (b) perfectly when aborts does not occur.

The rest of the analysis is similar to the one in the case m = t. We define an event C as when
the adversary queries y? to H2 such that e(y?, g2) = e(gβ1 , g

α
2 ), i.e., y? = gαβ1 . We can prove that

A’s advantage Adv of distinguishing b = 0 and b = 1 is not bigger than Pr[C], i.e., Adv ≤ Pr[C].
Since we assume A distinguishes b = 0 and b = 1 with non-negligible advantage Adv, C happens
with non-negligible probability Pr[C]. Therefore B outputs y as a solution to the co-CDH problem
with non-negligible probability Pr[C]/qH1 .
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