
Improved key recovery on the Legendre PRF

Novak Kaluđerović, Thorsten Kleinjung, Dušan Kostić

École polytechnique fédérale de Lausanne
Faculté Informatique et Communications

Station 14
Laboratory for cryptologic algorithms

CH-1015 Lausanne
Switzerland

Abstract. We give an algorithm for key recovery of the Legendre pseudorandom function that
supersedes the best known algorithms so far. The expected number of operations is O(

√
p log log p)

on a Θ(log p)-bit word machine, under reasonable heuristic assumptions, and requires only
4
√
p log2 p log log p oracle queries. If the number of queries M is smaller, the expected number of

operations is p log p log log p
M2 . We further show that the algorithm works in many different generali-

sations – using a different character instead of the Legendre symbol, using the Jacobi symbol, or
using a degree r polynomial in the Legendre symbol numerator. In the latter case we show how
to use Möbius transforms to lower the complexity to O(pmax{r−3,r/2}r2 log p) Legendre symbol
computations, and O(pmax{r−4,r/2}r2 log p) in the case of a reducible polynomial. We also give an
O(3
√
p) quantum algorithm that does not require a quantum oracle, and comments on the action

of the Möbius group in the linear PRF case. On the practical side we give implementational details
of our algorithm. We give the solutions of the 64, 74 and 84-bit prime challenges for key recovery
with M = 220 queries posed by Ethereum, out of which only the 64 and 74-bit were solved earlier.

1 Introduction

The usage of Legendre symbols in a pseudorandom function is an idea originally proposed by Damgård
[5]. We model the Legendre PRF as an oracle O that on input x outputs the Legendre symbol

(
k+x
p

)
,

where the shift – k – is a secret key. Damgård conjectured that given a sequence of Legendre symbols
of consecutive elements it is hard to predict the next one. Similar problems conjectured to be hard were
also proposed [8], such as finding the secret key k while being given access to O and distinguishing O
from a random function. So far no polynomial time algorithms were found for either of these problems
and it is believed that they are hard. Until recently practical applications have been limited, primarily
due to availability of much faster alternatives.

A recent result by Grassi et al. [8] sparked an interest in the Legendre PRF because it was found
suitable as a multi-party computation friendly pseudorandom generator. This is mainly due to the
homomorphic property of the Legendre symbol and the possibility of evaluating it with only three
modular multiplications in arithmetic circuit multi-party computations, which makes it a very efficient
MPC friendly PRF candidate.

There are plans to use this construction as a PRF for a proof of custody scheme in the Ethereum
blockchain [7]. The proof of custody scheme requires a “mix ” function i.e., a pseudorandom function
that produces one bit of output. For this purpose the Legendre PRF was shown to be a great candidate
because of its efficiency. In comparison, SHA256 requires tens of thousands of multiplications while AES
needs 290 in the MPC setting.

In order to raise interest for this construction, Ethereum research [7] posted a number of challenges
online. The goal was to recover the secret key given M = 220 consecutive Legendre symbols, for primes
of size varying from 64 to 148 bits.

1.1 Contribution

In this paper we give an algorithm that recovers the secret key of the Legendre PRF in O(
√
p log log p)

operations on a Θ(log p)-bit architecture and by using only 4
√
p log2 p log log p queries of the PRF. The

main advantages of our algorithm with respect to the previous best algorithm (cf. Khovratovich [10]
and [2] that was independently published while this paper was being written) are multiple. Firstly, in
[10] and [2] the run time depends linearly in the cost of Legendre symbol evaluations and queries, while
for us this cost can be ignored. If t is the number of operations needed to compute a Legendre symbol or
query an oracle, then the key extraction effort is lowered from O(

√
p t log p) in [10] and O(

√
p t log2 p)

in [2] to O(
√
p log log p). Secondly, if the number of oracle calls is bounded by M , we lower the number

of operations from O(p t log pM) [10] and O(p t log
2 p

M2)[2] to O(p log p log log p
M2). Furthermore we require access

only to sequential oracle queries, while [10] asks for short sequential queries in random positions.
An important contribution is the algorithm for solving the higher degree Legendre PRF. We consid-

ered the action of the group of Möbius transformations on the set of degree r polynomials which allowed
us to lower the complexity of key extraction fromO(pmax {r−1,r/2}r log p)[10] andO(pmax {r−2,r/2}r2 log2 p)[2]
down toO(pmax {r−3,r/2}r2 log p) Legendre symbol computations with further improvements on reducible
polynomials. In the linear case, however, we only consider the action of a subgroup of the full Möbius
group allowing only a quadratic instead of a cubic increase in the number of sequences extracted from
the oracle queries.

We give a rigorous analysis of the run time of our algorithm. The main bottleneck is the number of
simple operations on log p-bit words, such as word comparisons, shifts, ANDs, ORs and XORs. Therefore
we analyse the total number of such operations and ignore the cost of Legendre symbol computations
as the amount of work spent on computing them is negligible compared to the rest of the algorithm.

We further add a quantum attack without a quantum oracle, improving some bounds on questions
asked in [12]. We also show how the attack applies to different generalisations of the Legendre symbol
and finally we give a few ideas that so far we did not manage to exploit, but which might be useful for
future research.

We also give the solutions to challenges 0, 1 and 2 of Ethereum research Legendre PRF for 64, 74 and
84-bit primes, the last of which we were the only to solve. In all cases we were given access to M = 220

Legendre symbols.
During the computation of the 84-bit challenge, another, independently written paper on the same

subject, was published on e-print [2]. Both ideas are similar, however, with some crucial differences. Our
run time is lower and does not depend on the cost of Legendre symbol computation. Because of this
property our analysis is in-depth, does not contain any hidden logarithmic factors in big O’s and carefully
analyses the cost of sequence extraction. We argue further on the sequence correlation properties and
act on multiplicative correlation. Implementation-wise, even though in theory the authors note that one
can make a table of size M2/L, their argumentation regarding sequence correlation led to reducing the
table size to M2/L2 which further led to a loss of a factor of L in the run time. Regarding the higher
degree Legendre PRF we go deeper into the theory by studying the Möbius group which fully expands
the properties from the linear case. This makes our algorithm better by a factor of p log p, and in the
case of a reducible polynomial a factor of p3 log p.

1.2 Structure

In Section 2 we introduce some notation regarding pseudorandom functions, Legendre symbols and
sequences. We then define some hard problems on which the security of the Legendre PRF is based.

In Section 3 we give our algorithm. We define the main algebraic properties of the Legendre symbols
and show how they extend to Legendre sequences. The algorithm is divided in two parts - the precom-
putation stage and the search stage. The algorithm is a birthday attack – we precompute a table and
then we choose random elements until we find a hit in the table. The similarity of the precomputation
and the search stage can lead to some problems which we address and show how to fix.

In Section 4 we analyse the complexity of the algorithm. The complexity is given in the number of
operations on a Θ(log p)-bit word machine. The costs of Legendre symbols and queries are ignored as
they are negligible with respect to the rest of the algorithm. The precomputation and search stage are
treated separately and the optimal run time is given under reasonable heuristic assumptions. We also
show how the run time changes if a limited number of queries is available.

Section 5 treats the implementation of the algorithm. We show how it differs from the theoretical
algorithm, and we explain the implementational details of the precomputation and the search. We also
give some implementational tricks that gave very valuable constant time improvements.

In Section 6 we give the results of the experiments done. We give the keys of the 64, 74 and 84-bit
prime challenges posted on the Ethereum website [7]. We discuss the difference between the expected
and the run time we observed.

In Section 7 we treat some generalisations of the Legendre PRF. Mainly we show that the same
algorithm applies to alternative definitions of the Legendre symbol, to the Jacobi symbol and to different
characters of the finite field. We also give a quantum attack that does not require a quantum oracle. In
the end we treat the higher degree Legendre PRF by showing how to exploit the action of the group of
Möbius transformations on the set of monic polynomials.

We give some remarks on using the Möbius group in the standard Legendre PRF, and show why it
does not give an improvement with respect to the first algorithm. We also show how the main algorithm
can be modelled in the Möbius group scenario.

2 Background

Let p be a prime. Throughout the paper we suppose that the prime is public and everyone has access
to it. 1 We denote with Z/p the ring of integers modulo p.

2.1 Notation

Pseudorandom Functions A pseudorandom function family {Fk}k is a set of functions with the same
domain and codomain indexed by the set of keys k such that a function Fk chosen randomly over the
set of k-values cannot be distinguished from a random function.

Legendre symbol We define the Legendre symbol by setting

(
x

p

)
= x

p−1
2 =

 1 if x ∈ (Z/p)∗ is a square mod p
0 if x = 0 mod p
−1 if x ∈ (Z/p)∗ is not a square mod p.

Some authors prefer to set
(
0
p

)
= 1, which makes the Legendre symbol a binary function but breaks the

multiplicative property. As this occurs for only one out of p elements, we show that by sticking to our
definition and ignoring the case x = 0, we can cover both definitions and our algorithm still works with
high probability.

Legendre PRF The Legendre pseudorandom functions are functions Fk from Z/p to {−1, 0, 1} indexed
by k ∈ Z/p and defined as

Fk(x) =

(
k + x

p

)
.

Throughout the paper we assume to be given access to a pseudorandom function denoted by O with
unknown key k, and the goal is to find k.

1 Originally, as proposed by Damgård, the prime was considered secret. We chose only to pursue the case of a
public prime, as in the MPC use case.

Legendre sequence We define a Legendre sequence with starting point a and length L to be the
sequence of Legendre symbols evaluated at consecutive elements starting from a. We denote it with
{a}L.

{a}L ..=

(
a

p

)
,

(
a+ 1

p

)
,

(
a+ 2

p

)
, . . . ,

(
a+ L− 1

p

)
Every a fully determines its sequence of length L, but not vice versa – that property depends on L. For
example the sequences with L = 1 just gives us information on quadratic residuosity of a, but nothing
more. In general, these sequences are as well distributed as one can hope them to be. We know already
that when L = 1 “half” of the elements give 1, and the other “half” give −1. Similar properties are true
for larger L, and in general, following a theorem of Davenport around one in 2L elements of Z/p is a
starting point of a given sequence of length L.

Theorem 1 (Davenport, 1933). Let S be a finite sequence of ±1’s of length L. Then the number of
elements of Z/p whose sequence is equal to S satisfies

#
{
a ∈ Z/p

∣∣∣{a}L = S
}
=

p

2L
+O(pε)

where 0 < ε < 1 is a constant depending only on L.

Throughout the paper we assume that L is such that {a}L uniquely defines a, i.e., that the following
holds

{a}L = {b}L if and only if a = b. (1)

It is easy to see that if we want this property to hold, we need L = Ω(log2 p). Unfortunately the
only provable upper bound we have comes from the Weil bound [14] and is L = O(

√
p log p) which is

exponential.
On the other side, a result of Bach [1] tells us that if L = log2 p and p = 3 mod 4, then at most√

p log2 p elements can share the same sequence of length L. Russell and Shparlinski [12] show that for
L = (log2 p)

2, at most O(
√
p log p) different elements can have the same sequence of length L, for all p.

Furthermore our computational results, together with other statistical data on the distribution of
Legendre sequences [5], indicate that on average over all sequences S, there are p

2L
+ O(1) elements

whose Legendre sequences are equal to S. In other words for a random S and a random j, we have
{j}L = S with probability 1

2L
.

The complexity of our algorithm is given as a function of L such that it satisfies property (1). A
good estimate of L in terms of p is L = 2 log2 p.

Complete Legendre sequence We define the complete Legendre sequence to be the sequence of p
Legendre symbols of all ordered elements of Z/p up to rotation, i.e. {0}p where the tail connects to the
head (

0

p

)
,

(
1

p

)
,

(
2

p

)
, . . . ,

(
p− 1

p

)/
∼ .

The Legendre sequences {a}L for all a ∈ Z/p and L ≥ 0 are subsequences of the complete Legendre
sequence.

2.2 Hard Problems

There are three main problems conjectured to be hard, and on which the security of the Legendre PRF
is based.

Definition 1 (Shifted Legendre Symbol Problem - SLSP). Let k be a uniformly random value
in Z/p. Given access to an oracle O that on input x ∈ Z/p computes O(x) =

(
k+x
p

)
, find k.

Definition 2 (Decisional Shifted Legendre Symbol Problem - DSLSP). Let k be a uniformly
random value in Z/p. Let O0 be an oracle that on input x ∈ Z/p computes O0(x) =

(
k+x
p

)
, and let O1

be an oracle that on input x outputs a random value in {−1,+1}. Given access to Ob where b is an
unknown random bit, find b.

Definition 3 (Next Symbol Problem - NSP). Given a Legendre sequence {a}M of M = polylog(p)
symbols, find

(
a+M
p

)
, or equivalently find {a}M+1.

It is easy to see that the SLSP and NSP are at least as hard as DSLSP. In the other direction, following
a theorem of Yao [11] on general pseudorandom functions, predicting the next bit of a pseudorandom
function is as hard as distinguishing it from a truly random one. Therefore NSP = DSLSP ≤ SLSP ,
under polynomial time reductions. We give an O(

√
p log log p) attack on SLSP and DSLSP , while for

NSP the run time depends on M and varies from O(
√
p log log p) to O(pL log log p

M2).

3 Algorithm

We give our algorithm in the scenario of attacking a Shifted Legendre Symbol Problem. The reader
can easily generalise it to DSLSP and NSP. We assume that we are given access to an oracle O that
computes

(
k+x
p

)
on input x, and we want to find k. Let M be the number of oracle calls. It is assumed

that M is larger than L.
The general idea is the following - we call the oracle multiple times in order to obtain many Legendre

sequences {ki}L with the property that from ki we can find k. We store these sequences in a table and
then we compute Legendre sequences of random elements j until {j}L = {ki}L for some ki. By property
(1) j = ki, and from this we can find k.

This simple birthday algorithm is optimal when the table contains √p sequences. However one needs
to take into account the cost of creating the table – which depends on the number of oracle calls, the
cost of computing {j}L – which depends on the cost of Legendre symbol computations, and the cost of
table lookups – which is a couple of operations on an L-bit word machine.

A simple way to proceed is to compute a sequence from the table with L oracle calls, and to compute
{j}L with L Legendre symbol computations. However we show that one can do much better, and reduce
this cost to o(1) oracle calls per sequence and o(1) Legendre symbol computations per sequence. This
transfers the bottleneck to bit operations such as sequence comparisons which are much cheaper than
Legendre symbol computations.

By doing this we decrease the number of oracle calls necessary to create a table of a certain size.
This is of interest in the cases where we are being given limited access to the oracle. In the Legendre
PRF challenge we only have the first 220 symbols following

(
k
p

)
. We will show how to create a table of

size O(M2/L) with M oracle calls.
The algorithm is divided in two parts - the precomputation stage and the random guess stage. They

both rely on some fundamental properties of Legendre sequences, so we start by explaining those first.

3.1 Sequence properties

Given a Legendre sequence {a}M of length M ≥ L, we can extract {a}L from it. The main question is
- how many other Legendre sequences can we find in {a}M? How do they relate to a? There are three
main properties that allow us to extract more Legendre sequences from {a}M .

Shifting property Each subsequence of {a}M of L consecutive symbols corresponds to the Legendre
sequence of a+ i for some shift i. As long as 0 ≤ i ≤M − L, then {a+ i}L is a subsequence of {a}M .

{a+ i}L = {a}M from i’th to L− 1 + i’th element
or

{a+ i}L = {a}L+i from i’th to last element

This allows us to obtain the sequences {a+ i}L for i = 0, 1, . . . ,M − L.

Multiplicative property It is well known that the Legendre symbol is a totally multiplicative function,
in other words

(
a
p

)(
d
p

)
=
(
ad
p

)
. This relates to Legendre sequences of a and d in the following way: the

sequence of Legendre symbols with starting point ad, common difference d ≥ 1 and length L, i.e.,(
ad

p

)
,

(
ad+ d

p

)
,

(
ad+ 2d

p

)
, . . . ,

(
ad+ (L− 1)d

p

)
is equal to the Legendre sequence of a of length L multiplied by

(
d
p

)
, i.e.,(

d

p

)
{a}L ..=

(
d

p

)(
a

p

)
,

(
d

p

)(
a+ 1

p

)
,

(
d

p

)(
a+ 2

p

)
, . . . ,

(
d

p

)(
a+ (L− 1)

p

)
.

We may also denote this in a dual manner – a sequence of L Legendre symbols starting from a with
common difference d is equal to the Legendre sequence of a/d where every element is multiplied by

(
d
p

)
.(

d

p

)
{a/d}L =

(
a

p

)
,

(
a+ d

p

)
,

(
a+ 2d

p

)
, . . . ,

(
a+ (L− 1)d

p

)
.

The sequence
(
d
p

)
{a/d}L is a subsequence of {a}M as long as (L − 1)d ≤ M − 1, in other words

d ≤ DM
..=
⌊
M−1
L−1

⌋
. This allows us to obtain {a/d}L for d = 1, 2 . . . , DM by computing

(
d
p

)
for all d’s,

and extracting symbols from {a}M at indices 0, d, 2d, . . . , (L− 1)d.

Reverse sequence property Suppose that we have a Legendre sequence

{a}L =

(
a

p

)
,

(
a+ 1

p

)
,

(
a+ 2

p

)
, . . . ,

(
a+ L− 1

p

)
.

Then, the reverse sequence, after multiplying it element-wise by
(−1
p

)
, is the Legendre sequence of

−(a+ L− 1) = −a− (L− 1)

{−a− (L− 1)}L =

(
−a− L+ 1

p

)
,

(
−a− L+ 2

p

)
, . . . ,

(
−a− 1

p

)
,

(
−a
p

)
We may think of this as of a generalisation of the homomorphic property to negative denominators.
This property allows us to obtain one extra sequence gratis for each sequence that we have.

Combining all properties The three properties can be combined to vastly increase the number of
Legendre sequences obtainable from {a}M . Consider an arithmetic sequence of length L starting from
a+ i and of common difference d. Legendre symbols of this sequence are(

a+ i

p

)
,

(
a+ i+ d

p

)
,

(
a+ i+ 2d

p

)
, . . . ,

(
a+ i+ (L− 1)d

p

)
.

They can all be obtained from {a}M if 0 ≤ i and i + (L − 1)d ≤ M − 1. Furthermore, this sequence,
multiplied (divided) by

(
d
p

)
is equal to

{
a+ i

d

}
L

=

(a+i
d

p

)
,

(a+i
d + 1

p

)
,

(a+i
d + 2

p

)
, . . . ,

(a+i
d + L− 1

p

)
.

Therefore, from {a}M we can obtain the Legendre sequences of a+i
d for d = 1, 2, . . . , DM =

⌊
M−1
L−1

⌋
and i = 0, 1, . . . ,M − 1 − (L − 1)d. Furthermore we can also obtain the sequence of −a+id − (L − 1),
by reversing this one and multiplying by

(−1
p

)
. This increases the total number of Legendre sequences

obtainable from {a}M up to

DM∑
d=1

M−(L−1)d∑
i=0

2 = 2MDM − (L− 1)DM (DM + 1) =
M2

(L− 1)
−M +O(L)

where the constant in O(L) is at most 2. For all these sequences, if we know their starting points, a+id
or −a+id − (L− 1), together with i and d, then we can find a.

3.2 Precomputation stage

The first part of the algorithm is the precomputation stage. It is done in two steps. Firstly we query O(x)
for x = 0, 1, . . . ,M − 1 in order to obtain {k}M . Then we use the above mentioned sequence properties
to extract M2

(L−1) + O(M) Legendre sequences out of {k}M . These sequences are of the following two
types: {

k + i

d

}
L

and
{
−k + i

d
− (L− 1)

}
L

.

They are saved in a hash table, together with the corresponding i, d, and one extra bit to differentiate
k+i
d from −k+id − (L− 1). This finishes the precomputation stage.

3.3 Search stage

During the search stage we compute {j}L for many random j’s, until we find a hit in the hash table. In
that case we have {j}L = {k+id }L, and by property 1, it follows that j = k+i

d , which allows us to find
k = dj − i. The scenario is the same in the case of −k+id − (L− 1).

As the table contains M2

L−1 + O(M) sequences, we expect to find a hit after pL−1M2 trials. However
every trial costs L Legendre symbol computations. We can improve this by using the same sequence
properties as before, allowing us to lower the number of Legendre sequence computations per trial from
L to o(1).

After choosing a random j ∈ Z/p, we compute the Legendre sequence of length N with starting
point j. Given {j}N we can extract N2

L−1 + O(N) sequences of type j+a
b and − j+ab − (L − 1) from it,

with a and b satisfying similar constrains as i and d in the precomputation stage. However one needs
to be more careful. The sequences that we extract are highly correlated with the sequences extracted
from {k}M , and they may not be considered as sequences obtained from uniformly random elements in
Z/p when we do hash table checks. There are three main types of correlation.

Reverse sequence correlation If j+ab = k+i
d then − j+ab − (L− 1) = −k+id − (L− 1) and vice-versa.

Therefore we do not compute the reverse sequences for the j’s.

Shifting correlation If j+a
b = k+i

d then j+a+b
b = k+i+d

d . In other words if j+a
b 6=

k+i
d then there is

a lower chance for a hash collision for j+a+b
b . To combat this we reduce the number of sequences we

extract from {j}N by only considering sequences for j+a
b with 0 ≤ a < b. This way j+a+b

b is never
tested. However this reduces the number of sequences to

DN∑
b=1

b−1∑
i=0

1 =
N2

2(L− 1)2
+O(

N

L− 1
).

Multiplicative correlation If j+ab = k+i
d then j+a

b/f = k+i
d/f for each divisor f of lcm(d, b). We combat

this by not allowing any nontrivial common divisors between the denominators d and b. This is done by
changing the range of b’s from 1, 2, . . . , DN = bN−1L−1 c to

b ∈ {DM + 1, DM + 2, . . . , DN} ∩ P

where P is the set of prime numbers, giving in total O(N−ML / log (NL)) different b-values.

By putting everything together we obtain the following - out of {j}N , we extract all sequences of type
{ j+ab }L with b ∈ {DM + 1, DM + 2, . . . , DN} ∩ P and 0 ≤ a < b. This gives rise to a total of

DN∑
b=DM+1
b prime

b = O

(
N2

L3

)

Legendre sequences where we consider N > 2M and L = O(logN), which is our use case. Therefore by
computing N Legendre symbols we obtain O(N

2

L3) sequences, implying that we compute O(L
3

N) Legendre
symbols per sequence. As N is exponential in L, this cost becomes negligible and the lion’s share of the
work comes from extracting the sequences out of {j}N and look ups in the hash table.

4 Complexity of the algorithm

In order to give a precise estimate we will measure the run time in number of operations on an L-bit
word architecture. The results are the same for any Θ(L)-bit architecture. The following is assumed:

– Accessing a memory location costs O(1);
– Comparing strings costs O(1);
– Copying, shifting or writing a bit in an L-bit string costs O(1);
– Building a hash table of size n costs O(n);
– Hash table look up costs O(1).

4.1 Precomputation stage

In the precomputation stage the following operations are performed:

– O is queried M times.
One may assume that every query takes the time of a Legendre symbol computation, or that they
are given for free. In either case this cost is negligible with respect to the rest of the algorithm.

– O(M/L) Legendre symbols are computed.
This is the cost of computing

(
d
p

)
for all denominators d = 1, . . . , DM . Again, this will be negligible.

– O(M2/L) sequences are extracted.
With each sequence of length L, we can extract all of them in O(M2) L-bit word operations. However
one can do better. For each d we can extract {k+id }L for 0 ≤ i < d in L operations each. For sequential
values of i, we need only extract one extra bit per sequence because {k+i+dd }L = {k+id + 1}L, and
this can be obtained from {k+id }L by one shift and one extra symbol extraction. Therefore the cost
is O((M2/L2)L+M2/L) = O(M2/L).

– The hash table is made on the fly as the sequences are extracted, so this cost is O(M2/L).

This finishes the precomputation stage for a total run time of O(M) Legendre symbol computations
and O(M2/L) L-bit word operations.

4.2 Search stage

In the search stage the following operations are done
– A random element j ∈ Z/p is selected until we find a collision.

The number of j-values is referred to as c.
– N Legendre symbols are computed.

We obtain {j}N in N Legendre symbol computations.
– The range {DM + 1, . . . , DN} is sieved in order to extract the prime denominators b.

A rough estimate of the cost is O(N logN log logN) L-bit word operations, which stays negligible
with respect to the last step of the algorithm.

– Legendre symbols
(
b
p

)
are computed for the resulting prime b values.

There are in total O(N/(L logN/L)) = O(N/L2) Legendre symbol computations to be done.
– O(N2/L3) sequences are extracted and for each sequence one hash table look up is done.

These sequences can be extracted in O((N2/L3)L logL
w) = O((N2/L3) logL) operations where w is

the word size. For more information on this procedure see Appendix A.
– In the case of a hit we have j+a

b = k+i
d or j+a

b = −k+id − (L− 1) from which we extract k in O(1)
modular operations.

Summing everything together, the search stage takes O(c(N2/L3) logL) operations on an L-bit word
machine.

4.3 Run time hypothesis

We conjecture that each sequence extracted from {j}N has probability of (M2/L)/p of being inside the
hash table, in other words we assume that the sequences extracted from {j}N behave as if they were
Legendre sequences of uniformly random elements of Z/p. The heuristic results seem to show that this
is indeed the case. Therefore, the number of trials required until a hit is found is p/(M2/L), and so if
the following formula is satisfied

M2

L

cN2

L3
= p

we will find a hit with constant probability.

4.4 Optimal run time

The total run time is the sum of run times for both stages of the algorithm

M2

L
+
cN2

L3
logL

under the hypothesis that
M2

L

cN2

L3
= p.

This run time is optimised for the following values of M and N :

M = 4
√
p
√
L 4
√
logL,

N = 4
√
p

L
√
L√

c 4
√
logL

,

Run time =
√
p logL.

In this scenario we additionally determine O(M +M/L + cN + N/(logN)2) Legendre symbols using
oracle calls or by directly computing them. This is negligible with the above choices of M and N .

The variable c can be chosen freely as long as c < L2/logL.

4.5 Run time with a fixed M

In the case where we are given the possibility of only doing M queries, for some fixed M , the run time
becomes a function of M . As seen above, if M ≥ 4

√
p
√
L 4
√
logL, then it is enough to do 4

√
p
√
L 4
√
logL

queries, discard the rest and achieve a
√
p logL run time. Otherwise, if M < 4

√
p
√
L 4
√
logL the run time

is dominated by the search stage, and it is

O

(
cN2

L3
logL

)
= O

(
pL

M2
logL

)
= O

(
p log plog log p

M2

)
assuming L = O(log p), therefore the run time is

O

(
min

{
4
√
p
√
log log p ,

p log plog log p

M2

})
.

5 Implementation details

In this section we explain the concrete implementation and some subtle optimisations of the presented
algorithm which we used to break the Legendre PRF challenges [7]. For each challenge, a sequence {k}M
of M = 220 bits of output from the Legendre PRF was given. The challenge was to find the correct key
k.

The proposed algorithm works in two stages, the precomputation and the search stage. During the
precomputation stage a big hash table is generated, containing the short subsequences extracted from
the given sequence of M bits. Later in the search stage many random short sequences are produced
and checked against the entries in the hash table. Every obtained collision gives the correct key with a
certain probability. The code can be found at

https://github.com/nKolja/LegendrePRF .

5.1 Precomputation stage

Since we are given the same number M of Legendre PRF oracle calls for every challenge, the precom-
putation stage is exactly the same for each instance of the challenge. In all the cases we set the length
L of the short subsequences to be L = 64. We note that the primes in the challenges we solve have bit
length larger than 64, and theoretically L should be set to approximately the bit length of the prime
(as explained in Section 2.1), but for practical reasons we opt for L = 64 even for larger primes. The
advantage of this decision is that we are working with 64-bit processor architectures so naturally all the
operations as well as memory storage of the subsequences are much faster if their size is limited to the
word size of the architecture. On the other hand, the proportion of false-positive hits is increased for
larger p. However, the additional cost of validating the fake hits is negligible and heavily outweighed by
the memory and run time savings obtained by choosing this trade-off.

From the given M bits we extract ≈ M2

L = 234 subsequences of length L as explained in Section 3.2.
We define the hash table with 32-bit keys (i.e., a hash table key is an integer between 0 and 232 − 1).
The table is then generated by taking the 32 least significant bits of each subsequence as the hash key
and storing only the other 32 bits (the most significant bits) in the hash entry with address determined
by the key (e.g., table[seq & (232 − 1)] = seq » 32). By storing not the full sequence, but only the
last 32 bits we halve the space required for the hash table. Obviously, since the number of sequences
we have is larger than the number of keys in the hash table, some of the entries in the table should
hold more than one subsequence. In order to minimise the memory usage we generate the table in two
passes. In the first one, we extract all the subsequences and only count and store the number of different
values for each hash key. After this, we get an array denoted by positions where for each key it holds its
starting position in the table. Then in the second pass we allocate the required memory for the table,
extract the subsequences again and populate the table based on the positions array. Each entry in the

table contains one or more values that is compared with many random values later in the search stage.
Therefore, we have to either sort the values in each individual entry and do a binary search among the
sorted values in the search stage, or leave the values as is in the table and perform a linear search with
the guessed value in the search stage. We decided to sort the values. We note that either way does not
affect the performance of the algorithm because in the concrete instances of the challenge we have that
the average number of values sharing the same hash key is 4, which is small enough that all the values
get stored in the CPU cache memory so both linear and binary search run in approximately the same
number of operations.

The positions array stores 232 pointers each pointing to a number in [0, 234 − 1]. The i’th pointer
points to roughly 4 · i since each hash key holds 4 values on average. In order to save space we only
store the last 32 bits of the pointer, and then we choose the full 34 bit value that is closest to 4 ∗ i and
has the last 32 bit equal to the ones saved. This allows us to fit the positions array in 16GB instead of
32GB if we use 64 bit values for pointers.

For the given parameter M = 220 and the chosen L = 64, the 234 extracted sequences are stored in
the hash table of size about 65GB, while the positions array occupies another 16GB. We also note that
contrary to the theoretical algorithm given in Section 3.2 where the i and d of an extracted subsequence
are stored in the hash table alongside the actual hash value, in practice we do not store i and d
to minimise the memory required for the program to run. In the next section we explain how this is
handled in the search stage. Additionally, if the amount of available memory permits we generate another
data structure during the precomputation to further optimise memory accesses, namely a bitmap, as
explained in the next section.

5.2 Search stage

In the search stage we generate random sequences of length L and query the hash table for collisions.
As already explained in Section 3.3, computation of a single short sequence of L Legendre symbols is
computationally expensive, see Table 1. Therefore, we apply the same technique for sequence extraction
as in the precomputation stage with some rather important differences, vastly lowering the number of
clock cycles per Legendre symbol.

Firstly, a random j ∈ Z/p is selected and the Legendre symbols of N consecutive values starting
from j are computed. The number N of symbols to be computed is such that N > 2 ·M as explained
in Section 3.3. We proceed by extracting subsequences from the obtained {j}N sequence. Recall that
subsequences extracted from {k}M and {j}N are of the form:{

k + i

d

}
L

and
{
j + a

b

}
L

respectively, where d ∈ {1, 2, . . . , DM} for DM = bM−1L−1 c. On the j side the denominators b are chosen
from the range [DM + 1, DN] such that b is prime and DN = bN−1L−1 c. To select prime numbers in the
relevant range we implemented a simple sieve. There is no need for a more sophisticated algorithm
because the sieving range determined by M is rather small and the the sieving is done only once.

Given the {j}N list as an array of N8 bytes and an (a, b) pair, the subsequence
{
j+a
b

}
L
is extracted as

shown in Algorithm 1, where we use 0 for quadratic residues, and 1 for non-residues. The same algorithm
is used for extracting the subsequences in the precomputation stage. However, in the precomputation
stage the extraction of multiple subsequences can be further optimised. Recall from Section 3 that
the i and a parameters used for computing the

{
k+i
d

}
L

and
{
j+a
b

}
L

sequences are such that i =

0, . . . ,M − 1 − (L − 1) · d and a = 0, . . . , b − 1. Hence, when computing for example the
{
k+i
d

}
L
and{

k+i+d
d

}
L
, we note that those two sequences share L− 1 Legendre symbols. This allows us to amortise

the cost of extraction of “consecutive” sequences by basically extracting only one bit per sequence for
each string of such “consecutive” sequences.

We did not choose to further improve Algorithm 1 by implementing the algorithm from Appendix-A.
This is due to the fact that at this point the time spent on producing sequences is dwarfed by the time
spent on random memory access.

Table 1. Number of clock cycles required to obtain a Legendre symbol by computation and extraction, amortised.

Prime size [bits] 64 74 84 100 148

computing 460 650 780 950 2700
extracting from {k}M 0.25 0.25 0.25 0.25 0.25
extracting from {j}N 5.95 5.95 5.95 5.95 5.95

Algorithm 1
Input: Byte array j_list, pair (a, b), length L
Output: Sequence

{
j+a
b

}
L

1: procedure extract_seq(j_seq, a, b, L)
2: seq = 0
3: for k = 0 to L− 1 do
4: idx = a+ k ∗ b
5: byte_idx = idx >> 3
6: bit_idx = 7− (idx&7)
7: bit = (j_list[byte_idx] >> bit_idx)&1
8: seq = seq|(bit << j)
9: end for
10: if legendre(b) equals 1 then
11: seq = ∼seq
12: end if
13: return seq
14: end procedure

Each obtained subsequence is checked against the hash table for a potential collision. The check is
performed in the following three steps:

1. Compute the hash key of the sequence by taking only the 32 least-significant bits, and the hash
value by taking the 32 most-significant bits of the sequence.

2. Read two values from the positions array (generated in the precomputation stage): value correspond-
ing to the computed hash key and the next value. Recall that these two values are the address of
the hash table entry corresponding to the key and the address of the next entry.

3. If the two addresses are different, it means that the table entry of the computed key is not empty.
This happens with probability 1− 1/e4. In that case we perform a binary search for the hash value
in the range specified by the starting address of the entry and address of the next one.

4. In case of a collision, the subsequence and the variables that determine it (j, a, b) are stored for
later validation.

Bitmap For each hash table lookup we do two random memory accesses – to the positions array and
to the hash table. In order to decrease the number of random memory accesses we generate a bitmap
during the precomputation. Each bit in the bitmap denotes if a sequence with a certain property appears
in the hash table. More precisely, the m least significant bits of the sequence form an address, and the
bit at this address in the bitmap signifies the existence of such a sequence in the table. So after the
first step from above, we first read the appropriate bit in the bitmap and only when this bit is set we
proceed with reading the positions array. If we suppose that the size of the bitmap is 2m and the size of
the hash table 2h, the probability that a sequence produces a hit in the bitmap is 2h−m. Consequently,
instead of accessing the memory twice per trial we access the bitmap once per trial and with probability
2h−m continue to access the positions array twice more. As a result the number of accesses per trial is
reduced from 2 to 1 + 2

2m−h . The size of the bitmap is determined based on the available memory, for
example in the solution for the 84-bit prime challenge, we have used a bitmap consisting of 237 bits so
in particular we had m = 37 and h = 34.

After all the subsequences produced by the randomly selected j are checked against the hash table
and all the collisions are saved, we proceed to the last step where the collisions are validated. As already
noted above, the hash table holds only the actual sequences

{
k+i
d

}
L
and not the (i, d) values. On the

other hand, for each collision we have saved the sequence, the j and (a, b), which are furthermore sorted
by the sequence value. Then again, as in the precomputation stage, we sequentially produce the

{
k+i
d

}
L

and
{
−k+id − (L− 1)

}
L

subsequences and compare them to the sorted colliding sequences. Once a
collision is obtained we can compute the guessed key with:

k =
(j + a) · d

b
− i or k = − (j + a) · d

b
− d · (L− 1)− i

and check if it is indeed the correct key by computing {k}192 and comparing to the first 192 symbols
given in the challenge. If the key is not found, the algorithm simply chooses the next random j and
repeats all the steps above.

6 Results

In this section we present the results of our attempt to break the Legendre PRF challenges posed
by the Ethereum foundation [7]. In each challenge we are given a prime p and M = 220 bits of the
sequence {k}M as defined in Section 2. The challenge is to recover the key k. The five challenges and
their corresponding security levels are shown in Table 2. We note that security levels in the table are
computed based on the complexity of the attack by Khovratovich [10], and that the algorithm proposed
in this paper lowers those bounds. We have successfully solved the challenges #0, #1 and #2.

Table 2. Legendre PRF challenges with security levels estimated based on [10] and the new security estimates.

Challenge Prime size Security old Security new
[bits] [bits] [bits]

0 64 44 32
1 74 54 40
2 84 64 50
3 100 80 66
4 148 128 114

The algorithm was implemented in C and compiled with the gcc compiler. All the parallelisation
was done with OpenMP primitives. Testing and experiments were conducted on a desktop PC equipped
with an Intel Xeon E5-1650 processor with 6 cores running at 3.5GHz, and 128GB of RAM. The first
two challenges (#0 and #1) were solved on this PC, while for the third challenge (#2) we used 16
nodes of the EPFL IC cluster. Each node has two Intel Xeon E5-2680 v3 processors with 12 cores each
running at 2.5GHz, and 192GB of RAM.

The precomputation stage in all three cases took about 18 minutes on the desktop PC. During the
precomputation we produce three files for each challenge:

– 65GB file containing the hash table,
– 16GB file containing the positions array,
– 16GB file containing the bitmap which we set at 237 bits.

In the search stage, all three files are loaded in RAM so the program requires in total almost 100GB of
memory.

In Table 3 we show the results of the experiment. The complexity of the search stage of our attack
expressed as the expected number of trials that need to be done before the solution is found is p·L

M2 ,
where by trial we denote a single hash table collision check with a random subsequence generated as

explained in 5.1. We show the expected number of trials for each challenge in the second column of
Table 3, while the third column shows the actual number of trials performed by the algorithm before
the solutions are found. For the first two challenges we run the algorithm several times with different
seeds in order to record the required number of trials and validate the expected numbers given in the
complexity analysis in Section 4. The numbers shown in the third column are the average of all the
conducted experiments (230.78 and 239.81 for challenges #0 and #1 respectively). We note that the
observed variance is considerable, as expected. The expected number of trials for a prime p is pL/M2

and the variance is ∼ p2L2/M4.

Table 3. Results and estimates for solving the Legendre PRF challenges. The expected and actual number
of core-hours for challenges #0 and #1 is based on measuring the performance of the implementation on our
desktop PC with Intel Xeon E5-1650 at 3.5GHZ, while the numbers for the other three challenges are based on
performance of the cluster with Intel Xeon E5-2680 v3 at 2.5GHz.

Challenge Expected Observed Expected Observed k
trials # trials core-hours core-hours

0 230 230.78 290 sec 490 sec 650282827113560997

1 240 239.53 82 59 16619470924565960259133
2 250 246.97 1.4e5 1.72e4 187320452088744099523844
3 266 - 9.1e9 - -
4 2114 - 2.5e24 - -

The most interesting is of course challenge #2 since no other solutions have been published. As
shown in Table 3, the actual number of trials that were done before the key was found is 246.97 = 1.38e14
which is far less than expected. This can be explained by the large variance and by sheer luck. The
implementation version that was used for challenge #2 can perform 2.2e6 trials per second on a single
core of a processor in the EPFL IC cluster. The number of trials per second is slightly higher on the
desktop PC since its CPU is working at a higher frequency. In Table 3 we also give estimates for the
two most difficult challenges (#3 and #4), which are out of reach with the proposed attack and its
implementation.

7 Generalizations

There are multiple ways in which the Legendre PRF can be generalised. We will show how the algorithm
adapts to these use cases.

7.1 Alternative definition of the Legendre symbol

In the definition of the Legendre symbol we noted that some authors define it differently, by setting(
x

p

)
=

{
1 if x is a square mod p
−1 if x is not a square mod p.

The only difference being that instead of our
(
0
p

)
= 0 some use

(
0
p

)
= 1. This makes the Legendre symbol

a binary mapping at the cost of breaking the multiplicative property. Our algorithm works identically
in both cases as long as we never compute

(
0
p

)
.

For every denominator d = 1, 2, . . . , DM in all the {k+id }L sequences with 0 ≤ i ≤ M − (L − 1)d
there can be at most L sequences that contain

(
0
p

)
. By using the original definition, if we find

(
0
p

)
= 0 in

the precomputed table, we immediately find k. With the alternative definition however, every sequence
that contains

(
0
p

)
could be incorrect. Furthermore we cannot be aware of that in the precomputed stage.

We call such sequences bad. In the case of a table hit with such sequence, the key that we find will be
wrong, but we can confirm that by checking if the first L symbols following that key correspond to the
first L symbols of {k}M . In total there are O(ML L) = O(M) bad sequences. For every j there is at most
one bad sequence per denominator. In total the number of bad sequences is negligible with respect to
the total number of sequences. Therefore, the algorithm terminates in the same expected number of
steps.

7.2 Bad keys

If the key k is small, then an alternative algorithm can find the solution faster. We only precompute
the sequences with denominator d = 1

{k}L, {k + 1}L, . . . , {k +M − L}L

and then compare {j}L for j = 0, s, 2s, 3s . . . where s =M −L+1 = O(M). We will find a hit in O(kM)

steps, i.e., after O(kML) Legendre symbol computations.
If we know a bound on k, for example k+M < K, then by trying random j ∈ [0,K] we can lower the

run time to expected O(K
M log (M/L)L) = O(KM) Legendre symbol computations. This is because in that

case M log(M/L) of all precomputed elements are smaller than K. One can see this by noticing that
for each d, the number of k+id ’s that are contained in [0, bkdc+

M
d] ⊆ [0,K] is M

d − L+O(1). Summing
over all the d’s gives the above mentioned result.

Some keys can be extracted from the hash table during the precomputation stage. If there is a
collision in the hash table, we have

k + i

d
=
k + a

b

and therefore

k =
b · i− d · a
d− b

.

Therefore for some bad keys – at most O(M3/L2) of them – the key k will be found during the
precomputation stage. These keys that are inside intervals of size O(M2/L) containing i

d mod p where
0 ≤ i < d, and almost all such elements will be found in the precomputation stage.

7.3 Different roots of unity

We can generalise the Legendre symbol by setting, for some c | p− 1 and ξ ∈ Z/p a primitive c’th root
of unity

χ(x) ..= x
p−1
c =

{
ξi for some i ∈ Z/c if x ∈ (Z/p)∗

0 if x = 0 mod p.

In this case the oracle is modelled as O(x) = χ(k+x). Computing χ(x) gives log2 c bits of information
on x. For example, if c = p−1 we get the whole value of x by computing χ(x), making this construction
a pretty bad PRF, and there are straightforward attacks if p−1c small.

In order to expect some resistance from subexponential attacks the minimum we have to ask is that
p−1
c is exponential in log p.
For any value of c our algorithm works as before, as the sequences of χ-symbols satisfy all the

required sequence properties. The complexity changes since we need L = Ω(logc p), and with the same
heuristic assumptions, which we did not test, one expects that L = 2 logc p is enough.

7.4 Jacobi symbol

The Jacobi symbol is defined, for n =
∏
i pi and x ∈ Z/n as(

x

n

)
=
∏
i

(
x

pi

)
=

{
±1 if x ∈ (Z/n)∗

0 if x 6∈ (Z/n)∗.

However computing it does not require the factorisation of n, and the evaluation of the symbol can be
done in polynomial time with a gcd-like algorithm. The pseudo-random function is defined as in the
Legendre symbol case O(x) =

(
k+x
n

)
. Furthermore we may suppose that there are no small divisors of

n since this would break the pseudo-randomness of O.
As in the Legendre case, the Jacobi symbol is multiplicative, and sequences obtained from it satisfy

the sequence properties from 3.1, therefore our algorithm works as intended. Further improvements in
the case of a factorable n are given in [2] where the authors show how to extract the key modulo each
factor and glue it with the Chinese remainder theorem.

7.5 Quantum

The problem of key extraction of the Legendre PRF with a quantum computer was studied by many
authors [3] [9] [4] [12] and polynomial time quantum algorithms are given. However they all rely on the
oracle being queried on state in superposition, i.e., a quantum oracle. We answer one of the questions
asked - find a better algorithm without a quantum oracle.

In our algorithm we do not rely on the oracle to obtain Legendre sequences. We use it to gather a large
number of Legendre symbols, from which we extract sequences. If the symbol extraction and birthday
collision search is done on a quantum computer, complexity improvements can be achieved. Using Tani’s
claw finding algorithm [13], the precompute and search stage can be done in O(3

√
p) quantum operations

instead of O(
√
p) classical operations. We have the following results:

If M ≥ 6
√
p
√
L then key extraction complexity is

O(3
√
p) quantum operations and O

(
3
√
pL
√
L
)

Legendre symbol computations.

If M ≤ 6
√
p
√
L then key extraction complexity is

O

(√
pL

M2

)
quantum operations and O

(√
pL4

M2

)
Legendre symbol computations.

7.6 Higher degree Legendre PRF

Another way to generalise the Legendre PRF is to consider oracles where the polynomial in the numer-
ator of the Legendre symbol is not a linear polynomial but a general polynomial of degree r, so instead
of the secret key being an element k of Z/p, it is sampled from the space of polynomials of degree r.
Querying the oracle gives

Of (x) =
(
f(x)

p

)
where f(x) = k0 + k1x+ . . .+ kr−1x

r−1 + krx
r.

It should be noted that we can consider f(x) to be monic, as Of (x) and Of/kr (x) are the same up
to multiplication by

(
kr
p

)
. The case of linear f(x) reduces to the standard Legendre PRF.

Secondly, the polynomial f(x) is considered up to multiplication by a square since the Legendre
symbol kills the square factors of f(x). This does not apply in the linear case as a degree one polynomial
cannot have a square factor.

This means that the secret key space, i.e., the space from which we choose f(x) is the space of monic
polynomials modulo squares. The number of such polynomials equals pr − pr−1 for r > 1.

We suppose that the polynomial f(x) is uniquely determined by

{f}L ..=

(
f(0)

p

)
,

(
f(1)

p

)
,

(
f(2)

p

)
, . . . ,

(
f(L− 1)

p

)
,

and in this case we have L = Ω(r log p). We will assume that {f}L determines f(x) uniquely for
L = O(r log p).

LetM be the rational Möbius group, i.e., the group of rational automorphisms of P1 which is iso-
morphic to PGL2(Fp). Given a matrix m =

(
a b
c d

)
∈ PGL2(Fp) there is a unique Möbius transformation

ϕm given by

ϕm : P1 −→ P1

x 7−→ ax+b
cx+d .

Furthermore function composition respects matrix multiplication, in other words ϕm1m2 = ϕm1 ◦ ϕm2 .
Consider the elements of the function field of P1 – these are rational morphisms H from P1 to P1

defined as

H : P1 −→ P1

[x : y] 7−→ [F (x, y) : G(x, y)]

where F and G are two homogeneous polynomials in F[x, y] of the same degree.
Given that Möbius transforms are automorphisms, they give rise to automorphisms of function fields.

In this case there is a right (contravariant) action ofM to rational maps H = [F (x, y) : G(x, y)] given
by ϕmH = H ◦ ϕm = [F (ϕm[x : y]) : G(ϕm[x : y])] and therefore ϕm(ϕnH) = (ϕnϕm)H = ϕnmH.

Going back to higher degree Legendre PRF, one may think of the keyspace of polynomials of degree
r as rational morphisms of P1 where

f : P1 −→ P1

[x : y] 7−→ [F (x, y) : yr]

where F (x, y) = f(x/y)yr is the homogenisation of f . Möbius transforms act on this space by sending
polynomials f to f̃m ..= f ◦ϕm. In the affine plane y = 1 we have f̃m : x 7→ f(ax+bcx+d). Therefore, given an
oracle that on input x ∈ Fp gives O(x) =

(f(x)
p

)
, we can obtain an oracle associated to f̃m that outputs

Õ(x) =
(f̃m(x)

p

)
=
(f((ax+b)/(cx+d))

p

)
. However f̃m is not a monic polynomial. As such it is not in our

primary interest as it is not an element of the keyspace. We can easily fix this by analysing f̃m further:

f̃m(x) = f

(
ax+ b

cx+ d

)
=

f̂m(x)

(cx+ d)r

where f̂m(x) is a polynomial of degree r. However f̂m(x) is not in the keyspace again as in general it is
not monic. The leading coefficient of f̂m is f(a/c)cr which can be obtained from one query to the oracle
O(a/c) and one Legendre symbol computation

(
c
p

)
. Therefore

fm(x) ..= f

(
ax+ b

cx+ d

)
(cx+ d)r

f(ac)c
r

is a monic polynomial, and we can compute Legendre symbols of fm(x) because(
fm(x)

p

)
= O

(
ax+ b

cx+ d

)(
cx+ d

p

)r
O
(a
c

)(c
p

)r
.

We can obtain {fm}L by computing L+1 Legendre symbols and querying the oracle L+1 times. Both
the Legendre symbols and oracle queries may be precomputed and saved in two tables of size p each,
from which we just extract the symbols that we need. The cases of fm such that cx + d = 0 for some
x = 0, . . . , L − 1 may be ignored as their number is negligible with respect to the total number of m’s
that we consider. The case c = 0 is not problematic as in that case f(ac)c

r = ar 6= 0.
Note further that fm satisfies the following property - if f factors as f(x) =

∏r
i=1(x− αi) then

fm(x) =

r∏
i=1

(x−m−1αi) =
r∏
i=1

(x− dαi − b
−cαi + a

) (2)

where m−1 is the inverse of the Möbius transform m given by m−1 =
(
a b
c d

)−1 ≡ (d −b
−c a

)
. Therefore the

groupM of Möbius transformations has left (covariant) action on the roots of polynomials in Fp[x].
The algorithm for finding f(x) now works as follows. We precompute {fm}L for all fm in the orbit

M · f . Then we try random monic polynomials g of degree r until {g}L is in the precomputed set. In
that case we have g = fm for some m ∈ M, and so we can find f = gm−1 . The expected number of
trials depends on the size of the orbitM · f which we can bound by the following lemma.

Lemma 1. LetM = PGL2(Fp) and f ∈ Fp[x] an irreducible polynomial of degree r ≥ 3. Then the size
of the orbit of f is p3−p

r′ for some r′ | r.

Proof. By the orbit-stabiliser theorem, the size of the orbit is equal to #M
#Mf

whereMf = {m ∈M|f =

fm} is the stabiliser of f . Therefore it is enough to find the stabiliser of f . Let m ∈ Mf . By property
(2) the roots of fm are m−1αi meaning that m permutes the roots of f . Let Gal(f) = Z/r = {φi ..= x 7→
xp

i |i ∈ Z/r} be the Galois group of f , and let α be any root of f . Then mα = φi(α) for some i ∈ Z/r.
Furthermore m(φj(α)) = φj(mα) = φj(φi(α)) = φi(φj(α)) since m is rational and it commutes with
the Frobenius. Therefore each element of the stabiliser acts on the roots as an element of Gal(f). This
gives rise to a homomorphism from Mf to Gal(f). Furthermore this homomorphism is injective since
two Möbius transformations with the same action on a set of r ≥ 3 points have to be equal. This means
that r′ ..= #Mf | #Gal(f), and therefore the orbit size is

#M
#Mf

=
p3 − p
r′

for some r′ | r = #Gal(f). In particular the order of the orbit is at least p3−p
r . ut

It follows that the number of expected trials until we find f is

O

(
pr

(p3 − p)/r

)
= O(pr−3r).

For each trial we need to compute L Legendre symbols. Unlike in the linear case, here it does not help
us to compute additional “free” polynomials from a random g, i.e., the gm’s. They are highly correlated,
and in fact g will give us a solution if and only if gm gives one. Therefore it is necessary to compute L
Legendre symbols at every trial, giving rise to a

O(pmax{r−3,r/2}r2 log p)

algorithm. Since the precomputed table is of size O(p3) and we do O(pr−3) trials, we cannot do better
than O(pr/2) which is the reason for the max{r − 3, r/2} in the exponent of p.

If the secret polynomial is reducible one can do better. Let f(x) = l(x)h(x) be a factorisation of f(x)
with rl and rh the degrees of l(x) and h(x) respectively and rh the lowest number such that rl ≤ rh. Note
that the action of M is multiplicative on polynomials, i.e. fm(x) = lm(x)hm(x). Then we can achieve
an O(pmax{rh−3,r/2}rL) run time in the following manner. First we precompute at random O(pr−3r)
polynomials of degree rh and make a table containing the length L Legendre sequence for each of them.
This set will contain {hn(x)}L for some n ∈ M with constant probability. Then we compute all the
O(p3+rl) sequences of type {fm(x)g(x)}L where m ∈ M and g(x) ∈ Fp[x] of degree rl, and look up
each of them in the precomputed table. Eventually we will find {fm(x)g(x)}L = {hn}L meaning that
f(x) = gm−1(x)hnm−1(x). With a bit more care O(pr/2rL) is achievable with constant probability even
if 3 + rl > r/2. Note that we can go through all the reducible polynomials in time

O

 r−1∑
rh=r/2

pmax{rh−3,r/2}rL

 = O(pmax{r−4,r/2}rL)

implying that reducible polynomials provide less security than irreducible ones.

7.7 Remarks

We give a couple of remarks regarding the structure of the Möbius group and its use the the linear
Legendre PRF case.

The Möbius group in the linear case In the higher degree Legendre PRF we make full use of the
group of Möbius transformationsM∼= PGL2(Fp) by obtaining from one polynomial f(x) the full orbit
of f that is

M · f = f

(
ax+ b

cx+ d

)
which is of size Ω(p

3−p
r). Doing this however requires querying f or the associated oracle on the full

field Fp. Since the Möbius group allows us to obtain ∼ p3 Legendre sequences from p queries in the high
degree case, one would hope to be able to obtain ∼ M3 sequences from M queries in the linear case
which, in theory, would reduce the number of queries necessary to reach a √p attack from 4

√
p down to

6
√
p. However, in the linear case we have to be more careful with respect to which queries we do as we

are allowed to do at most 4
√
p of them, otherwise we may as well use the algorithm given above.

In our algorithm we query O(x) =
(
x+k
p

)
at points i + xd such that 0 ≤ i + xd ≤ M for i =

0, 1, . . . , L− 1. A natural way to extend this to the full Möbius group is to query

O
(
ax+ b

cx+ d

)
with

{
0 ≤ ax+ b ≤M
0 < cx+ d ≤ N

for x = 0, 1, . . . , L− 1.

For eachm =
(
a b
c d

)
we can obtain { dk+bck+a}L from the above queries. Since we haveM2/L choices for (a, b)

and N2/L choices for (c, d) this gives rise to a total of M2N2

L2 matrices, and thus Legendre sequences.
However matrices are defined up to multiplication by a nonzero scalar. This reduces the number of
sequences, but arguably their number stays O(M

2N2

L2) for small enough values of M,N .
The number of queries that we need to do in order to obtain these Legendre sequences depends on

the number of different values of ax+bcx+d for the above constraints on a, b, c, d. We essentially have numbers
of type m̃

ñ with 0 ≤ m̃ ≤M and 0 ≤ ñ ≤ N . One can write this as m′

n +m′′ with m′ ∈ {0, 1, . . . , n− 1}
and m′′ ∈ {0, 1, . . . , Mn }. Therefore we need query

O
(
m′

n
+m′′

)
for m′ ∈ {0, 1, . . . , n− 1} and m′′ ∈ {0, 1, . . . , M

n
} .

Due to possible common factors in m′ and n some of these points repeat. We only need to count the m′
and n such that gcd (m′, n) = 1. This gives rise to M

n queries for each m′, n, the total being

N∑
n=1

ϕ(n)
M

n
=M

N∑
n=1

ϕ(n)

n
= Θ(MN).

Therefore we can obtain M2N2

L2 different Legendre sequences fromMN queries, which is worse than M2N2

L
which can be obtained by the original algorithm that considers only linear transformations. Choosing
different bounds for a, b, c, d might allow better sequence extraction, however we did not pursue the
search for better bounds further as it seems highly improbable that they exist.

The Möbius group structure It should be noted that the algorithms for the linear and higher
degree Legendre PRF do not fully exploit the group properties ofM = PGL2(Fp). We use the fact that
inverses exist when we find a hit in the table fm(x) = g(x) and we use that to compute the polynomial
f(x) = gm−1(x). However that is the only place where we use group operations. It would be interesting
to see if composing group actions on polynomials can lead to improvements elsewhere. It is known that
the generators of PGL2(Fp) are (

g 0
0 1

)
,

(
1 1
0 1

)
and

(
0 1
1 0

)
where g is a generator of Fp∗. We can write every matrix as a product of the generators easily by following
the LU decomposition. The generating set can be reduced to just(

g 0
0 1

)
and

(
−1 1
−1 0

)
.

For the linear case we do not use the full Möbius group, but a subgroup. This subgroup can be charac-
terised in the following way

G = Z/po (Z/p)∗ with

identity (0, 1),

group operation (i, d)(j, b) = (i+ dj, db),

inverse (i, d)−1 = (− i
d , d
−1).

The group has right (contravariant) action on polynomials of degree r by (i, d) · f(x) = f(i+dx)
dr or left

(covariant) action on the roots by sending α to α−i
d . In the linear Legendre PRF case this corresponds to

sending k to k+i
d . The group elements can be represented in matrix form as

(
d i
0 1

)
∈ PGL2(Fp). Another

important property is that the group has two generators,
(
g 0
0 1

)
and

(
1 1
0 1

)
where g is a generator of Fp∗.

In fact

(i, d) =

(
d i
0 1

)
=

(
g 0
0 1

)logg d
(
1 1
0 1

)i/d
.

However these properties are not exploited by the algorithm.

8 Conclusion

In this paper we give an improved algorithm for solving the Shifted Legendre Symbol Problem. Our
algorithm is an improvement with respect to the previous best known algorithm [10] and the recently
published [2] in four ways. Firstly our algorithm solves SLSP in O(

√
p log log p) operations on a log p-bit

machine, while Khovratovich requires O(
√
p log p) Legendre symbol computations, which are more costly

than simple bit-operations such as sequence comparisons and bit manipulations. Secondly we achieve
the optimal run time with only M = 4

√
p
√
log p 4

√
log log p queries to the oracle, while [10] requires

M =
√
p log p queries. Thirdly, in our algorithm queries are sequential, while [10] needs access to short

sequences in random positions. Lastly, if the number of queries is limited to M , we achieve a run time
of O(p log p log log p

M2) while the algorithm in [10] achieves O(p log
2 p

M). For the comparison with respect to
the algorithm in [2] the reader can refer to Table 4.

On the practical side we explain our implementation, which varies slightly from the theoretical
algorithm due to the fact that the bottleneck in practice is the cost of memory access. We give the
solutions of the 64, 74 and 84-bit challenges posed by the Ethereum foundation.

We showed that our algorithm extends naturally to all generalisations of the Legendre symbol because
they all satisfy the necessary algebraic properties such as the shifting and multiplicative property. We
furthermore show that there is an improved quantum algorithm that does not require access to a
quantum oracle – this is a natural extension as the bottleneck of our algorithm is the number of L-bit
word operations done in a birthday attack, and which can be done more efficiently with a quantum
claw algorithm. In the higher degree Legendre PRF we explain how the attack generalises and how the
Legendre sequences and the oracle can be acted on by the group of Möbius transformations. This gives
an improved attack in the higher degree PRF, which in some cases can reach the birthday bound. We
also show that reducible polynomials are less secure than irreducible ones. In the linear case we cannot
exploit the full Möbius group, but we only use the subgroup consisting of linear transformations.

Table 4. Comparisons of best known algorithms for solving the Legendre PRF challenge. We denote with t the
time to compute a Legendre symbol.

Algorithm Optimal run time Queries required Memory run time with M ≤optimal Memory
Khovratovich O(

√
pt log p) O(

√
p log p) O(1) O(pt log

2 p
M

) O(M log p)

Beullens et al. O(
√
pt log2 p) O(4

√
p) O(

√
p) O(pt log

2 p
M2) O(M2)

Our algorithm O(
√
p log log p) O(4

√
p log2(p) log log(p)) O(

√
p log log p log p) O(p log p log log p

M2) O(M2)

Table 5. Comparisons of best known algorithms for solving the degree r ≥ 2 Legendre PRF challenge in the
irreducible and composite case with a factor of degree rh ≥ r/2. Complexity is given in number of Legendre
symbols computed. In all cases we need p queries and the run time cannot go below O(pr/2r log p).

Algorithm Irreducible run time Memory Composite run time Memory
Khovratovich O(pr−1r log p) O(r log p) O(pr−1r log p) O(r log p)

Beullens et al. O(pr−2r2 log2 p) O(p2) O(prhr log p) O(pr−rhr log p)

Our algorithm O(pr−3r2 log p) O(p3r log p) O(prh−3r2 log p) O(pr−rhr log p)

References

1. Bach, E.: Realistic analysis of some randomized algorithms. J. Comput. Syst. Sci. 42(1), 30–53 (Jan 1991).
https://doi.org/10.1016/0022-0000(91)90038-7, http://dx.doi.org/10.1016/0022-0000(91)90038-7

2. Beullens, W., Beyne, T., Udovenko, A., Vitto, G.: Cryptanalysis of the legendre prf and generalizations.
Cryptology ePrint Archive, Report 2019/1357 (2019), https://eprint.iacr.org/2019/1357

3. van Dam, W., Hallgren, S.: Efficient quantum algorithms for shifted quadratic character problems (2000)
4. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift problems (2002)
5. Damgård, I.: On the randomness of Legendre and Jacobi sequences. In: Proceedings of the 8th Annual

International Cryptology Conference on Advances in Cryptology. pp. 163–172. CRYPTO ’88, Springer-
Verlag, London, UK, UK (1990), http://dl.acm.org/citation.cfm?id=646753.704912

6. Davenport, H.: On the distribution of quadratic residues (mod p). Journal of the London Mathematical Soci-
ety s1-8(1), 46–52 (1933). https://doi.org/10.1112/jlms/s1-8.1.46, https://londmathsoc.onlinelibrary.
wiley.com/doi/abs/10.1112/jlms/s1-8.1.46

7. Feist, D.: Legendre pseudo-random function (2019), https://legendreprf.org/
8. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly symmetric key primitives.

In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp.
430–443. CCS ’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978332, http:
//doi.acm.org/10.1145/2976749.2978332

9. Ip, L.: Solving shift problems and hidden coset problem using the Fourier transform (2002)
10. Khovratovich, D.: Key recovery attacks on the Legendre PRFs within the birthday bound. Cryptology ePrint

Archive, Report 2019/862 (2019), https://eprint.iacr.org/2019/862
11. Kranakis, E.: Primality and Cryptography. John Wiley & Sons, Inc., New York, NY, USA (1986)
12. Russell, A., Shparlinski, I.: Classical and quantum function reconstruction via character evaluation. Journal

of Complexity 20(2-3), 404–422 (4 2004). https://doi.org/10.1016/j.jco.2003.08.019
13. Tani, S.: Claw finding algorithms using quantum walk. Theoretical Computer Science 410(50), 5285–5297

(Nov 2009). https://doi.org/10.1016/j.tcs.2009.08.030, http://dx.doi.org/10.1016/j.tcs.2009.08.030
14. Weil, A.: On some exponential sums. Proceedings of the National Academy of Sciences 34(5), 204–207

(1948). https://doi.org/10.1073/pnas.34.5.204, https://www.pnas.org/content/34/5/204

novak.kaluderovic@epfl.ch
thorsten.kleinjung@epfl.ch
dusan.kostic@epfl.ch

A Extracting sequences in the search stage

We show how to extract sequences in logarithmic amortised time. The goal is to obtain { j+ab }L from
{j}N for a, b as in Section 3.3. The straightforward manner is to extract the elements of {j}N at indices
a, a+b, a+2b, . . . , a+(L−1)b, and multiply everything by

(
b
p

)
. This would take a total of O(L) operations

on an L-bit word machine. However one can lower this number to O(logL) by extracting elements in
batches. We show how to do this for any denominator b of { j+ab }L. Given a fixed b we need to extract
{ j+ab }L for a = 0, 1, . . . , b− 1. The required Legendre symbols are represented as red dots:

0 N − 1a b
a+ b

2b 3b
a+ 2b . . .

{j}N

{ j+ab }L

If we look at {j}N from a different angle by dividing it into chunks of size b and placing them into
rows of a matrix, then the sequences { j+ab }L are exactly the columns of the obtained matrix, up to
multiplying everything by the symbol of b. This matrix is written into memory as L consecutive chunks
of b

L words of length L. By computing the transpose of this matrix we obtain b consecutive words of
length L, each one corresponding to a sequence { j+ab }L.

{j}N

L

L L

b
L

. . .
0 a b− 1

{ j+ab }L

transpose

L

L

L

...

0

a

b− 1

{ j+ab }L

The transposition is done by transposing b
L submatrices of size L × L. It is known that an L × L

transpose can be done in O(L logL) operations on an L-bit word machine. This is done in log2 L steps,
where in step i = 0, . . . , log2(L)− 1 we swap 2 · 4i submatrices. The swaps are done in L/2 substeps. A
substep is a swap of two substrings between two machine words of length L. As a function of two L-bit
words, it depends only on the index of step i. All log2 L of these functions can be precomputed once
and then executed at a cost of O(1) operations on L-bit words per substep. One substep is represented
with a swap of consecutive blue dots in the following diagram:

A

A′

sw
ap

substeps

...

A

A′

B

B′

C

C ′

D

D′
substeps

Step 0 Step 1

. . .

In total there are b/L transposes of L× L matrices, each of them in O(L logL) operations. That is
O(b logL) operations to extract b Legendre sequences, therefore O(logL) operations per sequence.

In the case of a w-bit word machine, we can transpose w/L matrices in parallel in O(L logL)
operations – just think of their rows being parts of the same word and apply the same operations in
parallel. This lowers the complexity to L logL

w operations per sequence. However at least one additional
operation is needed to isolate a sequence of L bits from an w-bit word, therefore the complexity in this
case is O(max {L logL

w , 1}) operations per sequence.

