
Robust distributed symmetric-key encryption

Xunhua Wang and Ben Huson
wangxx@jmu.edu,husonjb@dukes.jmu.edu

August 18, 2020

Abstract

In distributed symmetric-key encryption (DiSE), a set of n distributed servers share a
key (or key set) and any t, t ≤ n, servers can collectively use the shared key (or key set) in
a DiSE transaction to encrypt a message or decrypt a ciphertext without reconstructing the
shared key (or key set). Each participating server contributes one or more partial results and
one participating server called the initiator combines all partial results into a final result. An
adversary who has compromised up to (t − 1) DiSE servers will not be able to access the
shared key (or key set).

Due to the distributed nature of DiSE, a DiSE server that has been compromised by an
adversary may return wrong partial results to the initiator. Worse, multiple DiSE servers
compromised by the same adversary may collude to send back wrong partial results. In this
article we developed a robust DiSE that allows an honest initiator to detect wrong partial
results by an adversary. The robustness of our DiSE is built through redundant computation.
Our robust DiSE can detect wrong partial results by an adversary who has compromised up
to min(t−1, n− t) servers. Next, the honest-initiator assumption is removed by rotating the
initiator role among active servers across multiple DiSE transactions. A scalable, industry-
level implementation for the robust DiSE has been developed and two cases, (t = 3, n = 5)
and (t = 16, n = 24), have been tested to show the feasibility of robust DiSE. Our robust
DiSE can be used to build intrusion-tolerant applications, such as intrusion-tolerant database
encryption.

Keywords: Intrusion tolerance, robust computing, distributed symmetric-key encryption (DiSE),
robust DiSE, threshold cryptography, distributed pseudo-random function

1 Introduction

Long-term secrets that must stay online for use over an extended period of time always deserve
extra protection, as such secrets may attract persistent attacks from remote adversaries and thus
have a high chance to be compromised. Such online secret could be one column of a database
table, the private key of a long-term public/private key pair (such as RSA [35]), or a long-term
symmetric key (such as an AES key [32]). When the database table column in the first case is
encrypted with a cryptographic key, the security problem is reduced one of the latter cases.

1

Several security measures have been developed to mitigate the risks of online long-term crypto-
graphic keys and each has its appropriate applications. In one approach, the private key of a
public/private key pair is stored on a tamper-resistant smart card or a secure coprocessor [41].
It is used on the hardware and never leaves the hardware. It is believed to be very hard for an
adversary to retrieve the private key without physically breaking the hardware. Since the compu-
tational power of such hardware is often limited compared to a general PC, this approach has its
limits in the number of decryptions per second it can handle. For applications that require quick
and frequent decryption, this approach might not be appropriate.

Another approach to protect a long-term online secret is to share the secret among multiple (say
n; for example n = 5) powerful servers, which are also called parties and each party is assigned one
or more shares of the secret. A threshold number (say t, t ≤ n; for example, t = 3) of these servers
can collectively use the shared secret in a function without actually reconstructing the shared
secret. In such a collective effort, each participating party uses its share to calculate a partial
result and any of them can combine all partial results into a final result. Since not all parties
are needed in the shared function evaluation, this approach tolerates attacks and can still work
even some parties have been compromised. Such shared function can be a decryption or digital
signing and they are called threshold decryption and threshold signing respectively. Together they
are called threshold cryptography [13, 15, 16, 14, 12].

Threshold cryptography differs from threshold secret sharing [36, 5] in that the shared secret
is never reconstructed in its use. Several public-key functions, such as RSA decryption, RSA
digital signing, and DSA digital signing, naturally lend themselves to the threshold structure
very well. Multiple threshold cryptographic schemes based on public-key cryptography have been
developed, including threshold RSA [22, 24, 33, 37] and threshold DSA [23, 25]. In threshold
public-key cryptography, some additional desirable properties can also be achieved. For example,
in threshold RSA and threshold DSA, each participant is able to provide an auxiliary value along
with its partial result; other participants can use the auxiliary value to check the correctness
of the corresponding partial result and thus can detect the malicious behavior by a participant
[34, 24, 10].

In contrast, symmetric-key encryption schemes such as AES do not support function sharing nat-
urally and the research on threshold symmetric-key encryption started much later. Probably due
to this status, in many cases, the term of threshold cryptography often implicitly refers to thresh-
old public-key cryptography only. Naor et al. [31] developed distributed pseudo-random functions
(PRF), which allow a threshold number of distributed parties to collectively evaluate a function
without reconstructing the shared secret. Three types of threshold pseudo-random functions are
developed in [31], including bivariate polynomials, weak pseudo-random functions based on the
decisional Diffie-Hellman (DDH) assumption [6, 17], and any pseudo-random function. The first
only works for bivariate polynomials, the second type can be used with AES (the shared function
itself must be DDH but the output can be used as an AES key), while in the last type the shared
function can be instantiated with any pseudo-random functions, including AES. Since AES-128 is
roughly 1000 times faster than DH-3072, the third distributed PRF has performance advantages
and can be used for distributed/threshold symmetric-key encryption (DiSE).

In this distributed PRF, for n parties/servers with identities i, 1 ≤ i ≤ n and threshold t, t ≤ n,

the shared secret is not just one key but a set of u =
(

n

t−1

)

different symmetric keys

(k1, k2, . . . , ku), which are randomly generated by a trusted dealer;
(

n

t−1

)

is the binomial coefficient.

2

ki, i ≤ i ≤ u, will then be assigned to all members of each distinct (n−(t−1))-subset/combination
of {1, 2, . . . , n} [27, page 8] and the dealer will then forget all ki. As a result, each party will be
assigned

(

n−1

t−1

)

keys. This secret sharing scheme will be called the t-n combinatorial secret sharing
hereafter. Let the shared PRF function be f (for example, f can be AES). For a given input x, any
t parties will be able to collectively calculate F (x) = w = (w1 ⊕ w2 ⊕ . . .⊕ wu), where ⊕ denotes
exclusive-OR. In this collective computing each party j calculates a partial result wj = fkj(x) and
any of them can act as the combiner to combine all wj into w. Throughout this paper, F will be
used to denote this distributed PRF scheme.

Agrawal et al. [1, 2] observed that for applications of distributed symmetric-key encryption, such
as key distribution center (KDC) for enterprise network authentication, encryption with a block
cipher in a distributed manner alone does not offer enough security, as an adversary may mount
data integrity-related attacks. One such insecure example is the direct application of the dis-
tributed PRF F in the following way, which is called F -DiSE-0 hereafter: to encrypt message m,

an entity first generates a random key w and uses w to encryptm into c1 = Ew(m), where E is AES
encryption; next, the entity asks t distributed parties to collectively calculate y = F (j||c1), where
j is the identity of one participating server who acts as an initiator; next, the entity calculates
c2 = y⊕w, and then uses (j, c1, c2) as the ultimate ciphertext. Note that c1 is the encryption of m
by w while c2 is the encryption of w by the shared key set. An active adversary who has obtained
access to the ciphertext can modify c2 to a different value c′

2
. Accordingly, in the later decryption

of (j, c1, c
′

2
), the same value y will be collectively calculated first; however, a different w will be

recovered as w′ = c′
2
⊕ y and as a result, a different plaintext will be recovered m′ = Dw′(c1),

where D is AES decryption. This modification attack will not be detected in decryption.

Agrawal et al. [1, 2] argued that a better building block for distributed symmetric-key encryption
is authenticated encryption such as CCM and GCM [4, 18, 19], which provides both data confi-
dentiality and integrity simultaneously. Agrawal et al. [1, 2] developed the following DiSE scheme
based on F [31], which is called F -DiSE-1 hereafter: There are n distributed parties/servers with
identity i, 1 ≤ i ≤ n, and all pairwise communication between them is performed over secure
channels (such as TLS with mutual authentication through pre-configured public keys or digital
certificates). As described earlier about F , with the t-n combinatorial secret sharing scheme, in
the setup stage, u =

(

n

t−1

)

random symmetric keys (k1, k2, . . . , ku) will be generated and assigned
to these n servers.

Let h be a cryptographic hash function and || denote string concatenation. Upon receiving a
request from a DiSE client, any one of these DiSE servers (say server j) can act as an initiator,
called encryptor in [1], to invite other (t − 1) server to distributively encrypt a message m into
c, as follows. Server j first generates a long random number ρ and calculates α = h(m||ρ). Next,
server j chooses (t− 1) other active servers, sends j||α to them securely, and asks them to return
partial results so that j can combine then into w = F (j||α). Server j assembles the final ciphertext
c as c = (c1, j, α), where c1 = PRG(w) ⊕ (m||ρ) and PRG is a pseudo-random number generator
such as Hash DRBG and HMAC DRBG [3].

Later, server i may agree to act as an initiator to decrypt a received or stored ciphertext c′ =
(c′

1
, j′, α′), which may or may not be c due to possible modification attacks. Server i will choose

(t− 1) other active servers and together they will collectively calculate w′ = F (j′||α′). In the end,
server i will compute c′

1
⊕PRG(w′) and parse the result into (m′||ρ′). Server i will check the validity

of the plaintext by checking whether α′
?
= h(m′||ρ′). If they do not match, ciphertext c′ has been

3

tampered with and will be rejected. (Both the collective encryption and collective decryption are
called a DiSE transaction.)

It is worth noting that in this DiSE scheme, authenticated encryption is not achieved through
existing authenticated encryption schemes such as CCM or GCM, but through a combination of
stream encryption (as PRG(w) ⊕ (m||ρ)) and a commitment through cryptographic hashing (in
α = h(m||ρ)). In this design, the computing of partial results wi is highly parallelizable among
participating servers.

Also, the collective computing in DiSE is essentially a distributed stream cipher, where the same
keystream w is used to encrypt (m||ρ) and to decrypt c1 later. Consequently, when f is instan-
tiated with AES, only AES encryption will be used and AES decryption is not needed. In a
DiSE transaction, a participating server receives (j||α) and returns one or more partial results
wi. A participating server may not even know whether it is participating in an encryption or
decryption.

ADDITIONAL DISTRIBUTED ATTACKS: In a distributed environment like DiSE, several attacks be-
yond message privacy and ciphertext integrity are likely to happen. In DiSE, a server that has
been compromised by an adversary may misbehave and send back wrong partial results wi. Due
to the nature of F, this malicious behavior will not be detected by the initiator server j until
when c is decrypted. For applications where decryption may happen at a much later time than
encryption, such misbehavior will not be detected over an extended period of time and may cause
severe consequences.

Also, in DiSE, a participating server can verify the identity of the initiator but has to blindly
trust an authenticated initiator. Consequently, a DiSE server that has been compromised by an
adversary may steal all stored ciphertext and act as an initiator to use other unwitting servers as
a decryption oracle to decrypt all ciphertext.

OUR CONTRIBUTION: In this research, we developed a robust DiSE scheme, called F-DiSE-R, which
allows an honest initiator to detect wrong partial results from DiSE servers that have been com-
promised and controlled by an adversary. Our robustness construction is based on redundant
computation from additional honest participating servers and the redundant values allow an ini-
tiator to detect wrong partial results from malicious servers. Our robust DiSE works even in the
presence of an adversary that controls multiple DiSE servers. A δ-adversary is an attacker that has
controlled δ, δ < t, DiSE servers and these servers may collude in an attack. A DiSE is δ-robust
if an initiator can detect malicious behaviors of a δ-adversary.

We observed that when t = n, there is no redundancy-based robust DiSE. When t < n, for any
δ ≤ min(t−1, n−t), there is a δ-robust DiSE and we developed algorithms for an initiator to select
robust subset of servers for robust collective computing, in which any malicious behaviors of servers
controlled by a δ-adversary will be detected. When more active servers are available, an honest
initiator in a robust DiSE scheme can even correct wrong partial results from a δ-adversary.

Next, in our robust DiSE, the honest-initiator assumption is removed by rotating the roles of
initiator among all active DiSE servers across multiple DiSE transactions. Any attempt to overly
use a compromised server as initiator will be statistically detected by other DiSE servers and that
server can be blacklisted.

In this research, we also developed an industry-level robust DiSE implementation that is very

4

scalable and explored methods to speed up distributed computing in robust DiSE.

The remainder of this article is organized as follows. In Section 2, we review priori work related
to this research. Section 3 gives the details of our robust DiSE scheme, including methods to
detect and correct a δ-adversary. In Section 4 we give the details of an implementation for our
robust DiSE scheme and some methods to speed up computations. Section 5 discusses several
applications of our DiSE constructions. A summary of this research is given in Section 6.

2 Related work

Threshold cryptography has been studied, much more extensively and much earlier in the public-
key setting [13, 11, 7] than in the symmetric-key setting [31, 8, 29].

In the public-key setting, additional threshold cryptography properties have been developed, in-
cluding robust decryption and digital signing [22, 24, 37, 23, 25], proactive update of existing
shares without changing the shared secret [26, 9], and threshold key generation without a trusted
dealer [20, 28, 21]. These properties have not been well studied in the symmetric-key setting
and methods in the public-key setting cannot be directly extended to the symmetric-key setting,
due to the different nature of symmetric ciphers. Moreover, distributed symmetric-key cryptog-
raphy faces new problems that are not much an issue for its public-key counterpart, due to its
nature and the speed gap, roughly 1000 times, between public-key operations and symmetric-key
operations.

2.1 Block cipher sharing through composition

An approach different from [31] to share a symmetric-key block cipher among multiple parties
was proposed by Brickell et al. [8], where the composition of a block cipher with a sequence of
symmetric keys k1, k2, . . . , ku, is shared. This approach uses the same t-n combinatorial secret
sharing scheme [27], in which a subset of

(

n−1

t−1

)

keys will be assigned to each party. If the shared
PRF function is f , for a given input x, any t parties will be able to collectively calculate w =
G(x) = fku(fku−1

(. . . (fk2(fk1(x))))). This cascading way of composition of a block cipher requires
computations to be distributively performed in a sequential mode and thus may be less efficient
than w = F (x) = ⊕u

j=1
(fkj(x)) [31, 29].

Both Brickell et al. [8] and Martin et al. [29] focused on message confidentiality through encryption
only and they used symmetric-key encryption, not authenticated encryption, as building blocks.
As a result, their DiSE schemes may be vulnerable to the ciphertext modification attack described
in Section 1.

3 Robust DiSE

In this section, we shall investigate how to develop a robust DiSE in the sense that an honest
initiator is capable of detecting wrong partial results returned from δ compromised/malicious
servers controlled by a δ-adversary. These δ compromised servers may collude in returning incorrect

5

partial results to the initiator, causing the final result to be incorrect. This attack is more severe
for DiSE encryption than decryption, as in DiSE encryption the initiator has no effective ways to
check whether the resulting ciphertext is correct or not. In contrast, in an F -DiSE-1 decryption,
the initiator can indirectly check the partial results from participating servers by checking the
integrity of the decrypted plaintext.

Public-key decryption and digital signing algorithms such as RSA and DSA often have nice alge-
braic structures, which allow each non-initiator participating server to provide auxiliary data that
can be used to check its partial result. In contrast, symmetric-key encryption algorithms such
as AES do not have this kind of algebraic property and thus the auxiliary-data for robustness
approach does not apply.

3.1 The role of the initiator in robustness

In F -DiSE-1 [1] described in Section 1, when a DiSE client wants to use the distributed symmetric
encryption, it picks one DiSE server as the initiator, which will create a DiSE transaction request
on behalf of the client and to combine all partial results into a final result. In this process, the
initiator generates a random value ρ, calculates α, and sends it to selected servers for partial
results. Such an initiator is naturally trusted more than other servers, as it generates and knows
ρ, combines wi into w, and may even encrypt m int c for the client.

The very existence of an initiator may pose a threat for robustness, as a malicious initiator may
simply use a wrong w in a DiSE encryption. A DiSE client can choose to remove an initiator
from a DiSE computation by assuming all initiator’s responsibilities itself, including monitoring
the online/offline status of servers, choosing participating servers for a transaction, sending re-
quests to all participating servers, receiving and checking the correctness of partial results from
participating servers, and combining partial results into a final result. Some of these responsi-
bilities (such as monitoring the status of servers and establishing persistent connections to active
ones) are infrastructure-oriented and require non-trivial resources. A DiSE client assuming these
responsibilities will not be lightweight.

In this article, our robust DiSE construction still assumes an honest, but not a fixed initiator.
That is, a client will randomly pick a DiSE server for the initiator role and this initiator role only
lasts for that DiSE transaction or a specific period. The initiator is assumed to be honest on
the said message(s)/period. This choice allows a DiSE client to be lightweight and free of heavy
communications.

3.2 Robust DiSE through redundant computation

Our following robust DiSE is based on F -DiSE-1 [1] described in Section 1. The share generation
and distribution steps (by the dealer) remain the same and the servers receive the same number
of keys. Our constructions for robustness are on how multiple servers are chosen for a collective
computation and on how partial results wi are checked, which is missing in F -DiSE-1. When no
malicious/incorrect wi values are received by the initiator, the ultimate value of w will actually
not change from F -DiSE-1.

6

In a robust DiSE, when an initiator selects other participating servers for a DiSE transaction,
instead of picking just (t− 1) other servers, the initiator will choose more servers so that each wi

not by the initiator must be computed by at least two different participating servers and these
values of the same wi will be compared against each other to detect adversaries. For example, to
detect an adversary who has compromised just one DiSE server, the participating servers must be
chosen in a way that every partial result wi = AESki(x) not by the initiator is calculated exactly
twice by two different participating servers. By comparing the two inbound values wi, the initiator
can detect a fake wi value from the 1-adversary.

This idea of redundant computation for robustness actually works very well with the t-n combi-
natorial secret sharing [27] used in F -DiSE-1 [1], as in this secret sharing each key ki is assigned
to (n− (t− 1)) servers, which are more than one server when t ≤ (n− 1).

We have the following results about robustness through redundancy.

Observation 1 When t = n, there is no robust DiSE through redundancy.

In the (t = n) case of F -DiSE-1, every server is needed in a collective computation and no
key/server is redundant. As a result, no server’s partial result can be verified through redundant
computing. This conclusion is very different from public-key-based threshold decryption/signing,
where robustness is achievable even for t = n through auxiliary data.

Observation 2 When t ≤ (n− 1), there is a robust DiSE scheme against 1-adversary and (t+1)
servers, including the initiator, are needed to participate.

The above observation can be proved by contradiction. For any subset of (t + 1) servers, in the
t-n combinatorial secret sharing scheme [27], every ki must be assigned to at least two different
servers in this subset. If otherwise is true, that is if a ki is actually assigned to just one (or less)
server in this subset, by removing that server from the (t + 1) subset, the remaining t servers in
the subset will not be able to reconstruct the whole key set {k1, k2, . . . , kn}. This contradicts the
very threshold property of the t-n secret sharing: any t participants should be able to reconstruct
the shared key set.

Thus, for any such subset of (t+ 1) servers, in our robust DiSE, for each ki, two such servers will
be designated to calculate partial result wi, which allows the initiator to check against 1-adversary
for robustness.

This result can be further generalized as follows.

Observation 3 Let γ = min(t − 1, n − t). For any δ, 1 ≤ δ ≤ γ, there is a robust DiSE scheme
against δ-adversary and (t+ δ) servers are needed to participate in this robust DiSE.

The proof will be similar: for any (t + δ) servers in the t-n combinatorial secret sharing scheme,
any key ki must have been assigned to at least (δ + 1) different servers. In the robust DiSE, such
(δ + 1) servers will be chosen to compute partial result wi and through comparing the (δ + 1) wi

values, the initiator will be able to detect a δ-adversary.

γ must be smaller than t as any t servers can reconstruct the shared key set. γ must be smaller
than (n− t + 1) because in the t-n combinatorial secret sharing, each key is assigned (n− t + 1)
times (to (n− t+ 1) different servers respectively).

7

3.3 Robust subset and the assignment of wi

A subset of servers that allow an honest initiator to do robust computing is called a robust subset.
In the above observations, any set of (t+ δ) servers is a robust subset. This makes it easy for an
initiator as it can pick any other (t+ δ − 1) servers. Still, the initiator needs an algorithm to tell
a participating server what keys to use to calculate what partial results.

Several factors may impact how the initiator should decide which servers calculate which partial
results wi, including the relative computational speed of the servers, the network bandwidth among
the servers, and the values of (t, n). When (t, n) are small such as when (t = 3, n = 5), such choice
will be less significant. However, since the (t, n)-combinatorial secret sharing scheme is not very
scalable, when (t, n) are big such as when (t = 16, n = 24), the differences in the initiator’s choices
will be big. In the case of (t = 16, n = 24), there will be

(

24

16−1

)

= 1, 307, 504 keys in the key

set; the initiator, just like other servers, is assigned
(

n−1

t−1

)

=
(

24−1

16−1

)

= 490, 314 keys. To reduce
delay in communicating with other servers, the initiator may choose to calculate as many partial
results as it can, from all of its assigned keys. To finish a DiSE transaction in a robust manner
against 1-adversary, the initiator will need

(

24−1

16−2

)

= 817, 190 wi, each in duplicate, calculated from
keys assigned to other t = 16 servers. On average, each of these non-initiator server will calculate
817,190×2

16
≈ 102, 149 wi.

All the t-combinations out of n servers can be generated in the dictionary order. All members of
the first t-combination will be assigned key k1; the second t-combination will get k2; . . . the last
t-combination will get key ku, where u =

(

n

t−1

)

. The ordered t-combination is called Γ hereafter.
From Γ, a data structure Ω can be derived to show the list of keys assigned to each server.

Algorithm for initiator For an initiator, the following algorithm can be used to find a robust
subset, inform them to use which ki to calculate wi, receive wi, check their correctness, and combine
all partial results into final result w.

Within a DiSE transaction, to split the wi load as evenly as possible among the participating
servers, for each key that the initiator does not have (found from Ω), the initiator generates a
random permutation of the key’s owners (found from Γ) and assign that wi to the first (δ + 1)
participating owners in the random permutation.

3.4 Correcting a δ-adversary

The algorithm in the last section allows a DiSE initiator to detect wrong partial results by a
δ-adversary. However, it does not correct a wrong partial result value.

To correct an incorrect partial result by a malicious δ-adversary, more honest participating servers
will be needed. More specifically, (t + 2δ) participating servers will be needed. In such a robust
DiSE with correcting capability, when the initiator checks partial result wi from the participating
servers, instead of simply comparing them, the initiator will pick the value with most votes and
use it as the correct partial result.

The proof that (t + 2δ) guarantees correcting goes as follows: in the t-n combinatorial secret
sharing scheme, for any subset of (t+ 2δ) servers, each key ki of the shared key set is assigned to

8

Algorithm 1 RobustDiSE (t, n, u =
(

n

t−1

)

, δ,Ω)

1: if (δ > min(t− 1, n− t)) then
2: Return failure;
3: end if

4: Get the identities of a list of active servers (including itself), Λ
5: if (Λ has fewer than (t+ δ) elements) then
6: Return failure;
7: end if

8: Generate a random (t+ δ)-subset of Λ, which is a robust subset.
9: Use (Λ,Ω) to decide which wi should be calculated by which participating server in a load-

balancing manner (see more details below) and send the corresponding key IDs to the partic-
ipating servers respectively.

10: (Each participating server uses the designated key IDs, received from the initiator, to calculate
the corresponding partial results and send them back to the initiator.)

11: The initiator calculates local partial results wi from its local keys
12: for all remote partial results wi received from other servers do
13: Compare the (δ + 1) copies of wi received. If not equal, return “δ-adversary detected”
14: end for

15: Combine all partial results (local and remote) into w as w = w1 ⊕ w2 ⊕ . . .⊕ wu

16: Return w

(2δ+1) servers. As a result, incorrect partial result value(s) by a δ-adversary based on key ki will
be outnumbered by the correct partial result value on ki from those (2δ + 1) − δ = δ + 1 honest
participating servers.

We thus have the following result on robust DiSE with correcting capability.

Observation 4 Let λ = min(t − 1, n−t
2
). For any δ, 1 ≤ δ ≤ λ, there is a robust DiSE scheme

with correcting capability against δ-adversary and (t+2δ) servers are needed to participate in this
robust DiSE.

3.5 A small example

In this section, we use a small example to explain how our robust DiSE works. Let (t = 3, n = 5). In
the t-n combinatorial secret sharing scheme, there are 10 symmetric keys (k1, k2, . . . , k10) in the key
set to be shared. The t-combinations in the dictionary order are Γ = {ABC,ABD,ABE,ACD,ACE,ADE,

BCD,BCE, BDE,CDE}. Table 1 described how these keys are assigned to each server.

Correspondingly, the Ω variable is given in Table 2.

If B is chosen as the initiator, when (C,D,E) are chosen as the other participating servers and
the random permutation (E,D,C) is used in the algorithm, Table 3 gives the IDs of the partial
results by each participating server in the robust DiSE for (t = 3, n = 5, δ = 1).

In Table 3, the computing load is almost but not exactly evenly distributed among the non-initiator
servers: servers C and D calculate one more partial result than partial result than server E.

9

Table 1: Symmetric key assigned for (t =
3, n = 5)
Server Assigned keys

A k1 k2 k3 k4 k5 k6
B k1 k2 k3 k7 k8 k9
C k1 k4 k5 k7 k8 k10
D k2 k4 k6 k7 k9 k10
E k3 k5 k6 k8 k9 k10

Table 2: Ω for (t = 3, n = 5)
Server IDs of assigned keys

A 1 2 3 4 5 6
B 1 2 3 7 8 9
C 1 4 5 7 8 10
D 2 4 6 7 9 10
E 3 5 6 8 9 10

Table 3: Robust DiSE for (t = 3, n = 5, δ = 1)
Participating servers Partial results contributed

B (initiator) w1 w2 w3 w7 w8 w9

C w4 w5

D w4 w6 w10

E w5 w6 w10

When server B is chosen as the initiator, Table 4 gives the IDs of the partial results by each
participating server in the robust DiSE for (t = 3, n = 5, δ = 1), with correcting capability. In
this case, all servers will be needed in this DiSE transaction.

Table 4: Robust DiSE with correcting capability for (t = 3, n = 5, δ = 1)
Participating servers Partial results contributed

A w4 w5 w6

B (initiator) w1 w2 w3 w7 w8 w9

C w4 w5 w10

D w4 w6 w10

E w5 w6 w10

3.6 Rotating initiators and abuse resistance

Assuming an honest initiator all the time is essentially against the very idea of robust computing.
For a DiSE transaction, a DiSE client can pick an active server randomly and use it as an initiator
for that transaction. This random choice allows the DiSE client to distribute its trust among all
the active DiSE servers, not just on any single DiSE server.

This randomness strategy has additional security benefits: it allows DiSE servers to statistically
detect a compromised server that has been used abnormally often as initiator to decrypt stolen
ciphertexts. Under this randomness strategy, over an extended period of time, each active server
should have acted as an initiator over roughly the same number of transactions. As a result, a
compromised server that has been overly used as an initiator will be detected by other servers and
may be disabled afterwards.

10

4 Implementation and optimization

For the robust DiSE scheme F -DiSE-R in Section 3, we developed an industry-level implementation
in Java. This implementation uses Netty [39, 30], an asynchronous (i.e. non-blocking) and event-
driven client/server application framework. As a result, our robust DiSE implementation has
good scalability on concurrent network connections, supports code reuse, and is extensible for
other distributed cryptography schemes.

In our implementation of F -DiSE-R, the pseudorandom function is instantiated as AES-256 and
the cryptographic hash function in α = h(m||ρ) uses SHA-256.

This implementation consists of three components: dealer, client, and server. The dealer package
is responsible for generating key sets and assigning them to DiSE servers. The client package
implements the role of DiSE clients and the server package implements the functionality of DiSE
servers, including those for an initiator. Once started, a DiSE server polls all other servers to
build a list of active servers. It also periodically polls these servers for changes of server status.
All the communications among DiSE servers and the communications between a DiSE client and
DiSE servers are protected by transport layer security (TLS) with mutual authentication and with
cipher suite
TLS ECDHE RSA WITH AES 128 CBC SHA256. All RSA-3072-based TLS certificates are is-
sued by one certification authority (CA) and only this CA is trusted by the DiSE servers and
clients. As a result, any adversary that does not have a valid certificate or the corresponding
private key will not be able to communicate with DiSE servers; nor can it eavesdrop on, modify,
forge, or replay DiSE communications.

All DiSE servers are connected in a local area network, with an actual end-to-end plain commu-
nication speed of 500 M bits per second. This speed was reported by iPerf 3.1 [38], a network
performance measurement tool.

The CPUs of all these DiSE servers are 3.60GHz Intel Core i7-7700 with eight logic cores. On
these cores, over 41-byte messages where each message is encrypted by a different key, the speed
of AES-256 in a pure Java software implementation reaches 0.5G bits per second (bps), which
forms a performance base line for our implementation. It is worth noting that this benchmark
speed is very different from and thus not comparable to benchmark speeds by popular tools such
as OpenSSL on bigger (say 16 kilobyte) messages or using hardware AES New Instructions (AES-
NI). Encrypting bigger messages allows the cost of AES key scheduling to be amortized over many
128-bit data blocks and thus leads to better speeds; Using hardware AES-NI can also significantly
improve AES-256 encryption speed.

In the remainder of this section, we shall first give important details of our implementation and
then show our performance data.

4.1 Non-robust DiSE vs. robust DiSE

As described in Section 3.3, compared to non-robust DiSE, the major costs of robust DiSE are
twofold. First, in δ-robust DiSE transaction (e.g., δ = 1), δ additional servers are required to
participate and the initiator will need to send bigger messages (twice as big when δ = 1) to
participating servers and receive bigger response messages from them. Second, the initiator needs

11

Table 5: Communication overhead, in bytes, of 1-robust DiSE for (t = 16, n = 24)
Size of a request Size of a response Size of all requests Size of all responses

Non-robust DiSE 408, 673 3, 064, 472 6, 130, 095 45, 967, 080
Robust DiSE 817, 273 6, 128, 972 13, 076, 368 98, 063, 552

to check non-local partial results for errors. Checking received partial results for robustness can be
measured pretty accurately by the number of CPU cycles and its computing cost turns out to be
negligible. The task of sending requests to and receives responses from other participating servers,
however, involves network latency and its efficiency cannot be accurately predicted by the number
of CPU cycles alone. In our environment, the communication latency is significant compared to
the number of CPU cycles used by AES and has become a performance factor. This network
latency factor is true for both non-robust DiSE and robust DiSE, but to a different degree. When
(t, n) have small values, for example (t = 3, n = 5), the additional communication cost of robust
DiSE is relatively small.

However, when (t, n) have big values such as (t = 16, n = 24), the size increases in the request
messages from the initiator and the responses will be significant, due to the increase of number of
keys in the shared key set. For 1-robust DiSE and non-robust DiSE, Table 5 gives the average size,
in bytes, of one request that the initiator needs to send to a participating server, the average size
of one response, the total size of all requests, and the total size of all responses. These messages
include a 32-byte message header and a message body. In this case, the sizes of the requests and
responses double. As a result, the throughput of DiSE transactions will be halved.

4.2 AES pre-key scheduling

The AES-256 encryptions in a DiSE transaction differ from AES-256 encryptions in other applica-
tions in two ways. First, DiSE AES-256 encryptions are performed on relatively small messages,
which in our implementation have only 41 bytes. Encrypting small messages does not allow the
cost of AES key scheduling to be amortized into many data block encryptions. Second, in one
DiSE transaction, many AES-256 encryptions with different keys are performed. For example, in
Table 3 where (t = 3, n = 5), participating server D needs to encrypt (j||α) with key k4, k6, k10 in-
dividually to generate three partial results w4 = Ek4(j||α), w6 = Ek6(j||α), w10 = Ek10(j||α).

Fortunately, these AES-256 keys are long-term keys and as a result, their key scheduling can be
pre-computed when a DiSE server starts. In this way, no key scheduling is needed in any new
DiSE transaction. This pre-computation can at least double the speed of DiSE computation.

4.3 Timing data of F -DiSE-R

Table 6 gives the time in seconds for one DiSE transaction in F -DiSE-R for the cases of (t = 3, n =
5) and (t = 16, n = 24). The latter case offers a much higher level of security, as an adversary will
still not be able to access the shared key set even after successfully compromising 15 servers.

In the case of (t = 3, n = 5), among the 0.007 seconds in a robust DiSE transaction, 0.0049
seconds (70% of the time) are for inter-server communications and the remaining time is for

12

Table 6: Performance data
Time for one robust DiSE transaction

(t = 3, n = 5) 0.007 seconds
(t = 16, n = 24) 252.668 seconds

computation.

In the case of (t = 16, n = 24), among the 252.668 seconds in a robust DiSE transaction, 249.749
seconds (98.8% of the time) are for inter-server communications and the remaining time is for
computation. In both cases, the performance data is sensitive to communication costs and thus
it makes sense to use fast communication links among the DiSE servers.

5 Discussions and applications of robust DiSE

Several factors in the applications of robust DiSE shall be discussed in this section.

5.1 Robust DiSE vs. robust threshold decryption

When a given a piece of data m needs to be protected by distributed cryptography, one can pick
either AES-based robust DiSE or RSA-based robust threshold decryption [40]. In both solutions,
the decryption of the ciphertext needs the collective efforts of t or more servers and the shared
confidential key(s) is not reconstructed anywhere in the decryption. In other words, both solutions
are intrusion-tolerant. Which of them is a more appropriate solution?

The data m in question is either application-specific data, a data-encrypting key for encrypting
a sizeable chunk of application data such as a whole database table, or a data-encrypting key for
encrypting a small piece of application data such as one row of a database table.

These cases may require different performances on the underlying distributed cryptographic scheme.
For example, in the third case, a database table may have millions of rows/records and each row
is encrypted by a different data-encrypting key for fine-grained security control. When these
data-encrypting keys are protected by a robust threshold cryptography or DiSE scheme, to en-
crypt/decrypt the whole table, millions of calls to the robust threshold cryptography or DiSE
scheme will be made in a very short period of time. This in turns demands the distributed
cryptography scheme to be fast.

Symmetric-key encryption schemes such as AES-128 are often 1000 times faster than public-key
encryption schemes such as RSA-3072 that achieve roughly the same level of security. As a result,
when t is relatively small (say t = 3), F -DiSE-1 is much faster than threshold RSA [40] and
F -DiSE-R is much faster than robust threshold RSA.

However, F -DiSE-1 and F -DiSE-R do not scale as well as existing threshold RSA schemes and
they lose their performance advantages over threshold RSA when t becomes large, for two reasons.
First, in F -DiSE-1 and F -DiSE-R, a set of symmetric keys are shared and are needed to be used
in a DiSE transaction, while in a threshold RSA decryption [40], each participating server needs

13

to perform only one or two modular exponentiations and the combiner needs to perform t modular
exponentiations. Second, as shown in Table 6, due to bigger message sizes, robust DiSE is more
susceptible to communication cost. Roughly speaking,F -DiSE-R will be caught up by threshold
RSA in performance when (t, n) grow to (t = 11, n = 17).

5.2 Trade computation for less communication in F -DiSE-R

In F -DiSE-R, in a (t = 16, n = 24) DiSE transaction, the initiator needs to send out (817, 190×2)
requests to participating servers, which is a non-trivial task for applications with slow communi-
cation links. Fortunately, this communication cost can be reduced by asking each participating
server to calculate, in a consistent manner, what partial results that it should calculate. In this
computation-communication trade-off, all servers agree on both the IDs of the keys in the key set
and the algorithm to select a server for each key.

From public information Ω (check Section 3.3), any server, including the initiator, can find the
IDs of the keys assigned to each server. The initiator will calculate partial results from all of its
assigned keys. Each non-initiator participating server receives Θ, a random permutation of the
participating servers’ IDs, from the initiator. For each non-initiator participating server, for each
key that it is assigned, it can find out the t-combination for that key and this is the list of servers
who have been assigned the key. If the participating server is among the first two participating
servers in Θ, it will calculate a partial result for this key and send it to the initiator.

6 Summary

Long-term secrets that must be stored online for use over an extended period of time, such as
a data-encrypting key for a database table, are attractive targets for attacks. In distributed
symmetric-key encryption (DiSE), a set of symmetric keys are shared among n servers in a way that
any t, t ≤ n, of these servers can collectively encrypt a given message and decrypt a ciphertext with
the key set without reconstructing it. As a result, any adversary who has successfully compromised
up to (t− 1) DiSE servers will still not be able to access the shared key set.

In a DiSE encryption/decryption transaction, each participating server contributes some partial
results, which are combined into the final result by a participating server called the initiator. A
DiSE is robust if an honest initiator is able to detect wrong partial results from participating
servers that have been compromised and controlled by an adversary. In this article, we developed
F -DiSE-R, a robust DiSE. Our robustness construction is through redundant computation. Next,
the honest-initiator assumption was removed through rotating the initiator role among all DiSE
servers across multiple DiSE transactions. Algorithms to select a robust subset and assign par-
tial results to participating servers were given. We also developed a scalable and industry-level
implementation for this robust DiSE, investigated methods to speed up computations, and ob-
tained performance data for the cases of (t = 3, n = 5) and (t = 16, n = 24). Robust DiSE can
be deployed to build intrusion-tolerant applications and will significantly enhance computer and
applications security.

14

References

[1] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal. DiSE: Dis-
tributed symmetric-key encryption. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS’18), pages 1993–2010, Toronto, ON, Canada,
October 15-19 2018.

[2] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal. DiSE: Dis-
tributed symmetric-key encryption. Cryptology ePrint Archive, Sep 19 2018. URL https://

eprint.iacr.org/2018/727.pdf.

[3] Elaine Barker and John Kelsey. Recommendation for random number generation using de-
terministic random bit generators. NIST Special Publication 800-90A Revision 1, June 2015.
URL https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.

pdf.

[4] John Black. Encyclopedia of Cryptography and Security, chapter Authenticated Encryption.
Springer, 2005.

[5] G. R. Blakley. Safeguarding cryptographic keys. In Proc. Nat. Computer Conf. AFIPS Conf.
Proc, pages 313–317, 1979.

[6] Dan Boneh. The decision Diffie-Hellman problem. In Proceedings of the Third Algorithmic
Number Theory Symposium, volume 1423 of Lecture Notes in Computer Science, pages 48–63.
Springer-Verlag, 1998.

[7] C. Boyd. Digital multisignatures. In H. Beker and F. Piper, editors, Cryptography and
coding, pages 241–246. Clarendon Press, Royal Agricultural College, Cirencester, December
15–17 1989.

[8] E. Brickell, G. Di Crescenzo, and Y. Frankel. Sharing block ciphers. In E. Dawson, A. Clark,
and C. Boyd, editors, ACISP 2000, volume 1841 of Lecture Notes in Computer Science, pages
457–470. Springer–Verlag, April 2000.

[9] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term protection
against break-ins. CryptoBytes, 1(3):1–8, 1997.

[10] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
Advances in Cryptology - Crypto ’92, volume 740 of Lecture Notes in Computer Science, pages
89–105, Berlin, 1992. Springer-Verlag.

[11] R. A. Croft and S. P. Harris. Public-key cryptography and re-usable shared secrets. In
H. Beker and F. Piper, editors, Cryptography and coding, pages 189–201. Clarendon Press,
Royal Agricultural College, Cirencester, December 15–17 1989.

[12] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function securely. In
Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, pages
522–533, Montréal, Québec, Canada, May 23–25 1994. Clarendon Press.

[13] Y. Desmedt. Society and group oriented cryptography: a new concept. In Advances in
Cryptology, Proc. of Crypto ’87, pages 120–127, August 16–20 1988.

15

https://eprint.iacr.org/2018/727.pdf
https://eprint.iacr.org/2018/727.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

[14] Y. Desmedt. Threshold cryptography. In W. Wolfowicz, editor, Proceedings of the 3rd Sym-
posium on State and Progress of Research in Cryptography, pages 110–122, Rome, Italy,
February 15–16 1993. invited paper.

[15] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor, Advances in
Cryptology — Crypto ’89, pages 307–315, Berlin, August 20–24 1990.

[16] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In Advances
in Cryptology — Crypto ’91, pages 457–469, August 12–15 1992.

[17] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, November 1976.

[18] Morris Dworkin. Recommendation for block cipher modes of operation: The CCM mode for
authentication and confidentiality. NIST Special Publication 800-38C, July 20 2007. URL
https://csrc.nist.gov/publications/detail/sp/800-38c/final.

[19] Morris Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode
(GCM) and GMAC. NIST Special Publication 800-38D, November 2007. URL https://

nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.

[20] Y. Frankel, P. D. MacKenzie, and M. Yung. Robust efficient distributed RSA-key generation.
In Proceedings of the 30th Annual ACM symposium on Theory of Computing, pages 663–672,
Dallas, TX, U.S.A., May 24 - 26 1998.

[21] Rosario Gennario, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. In J. Stern, editor, Advanced in Cryptology -
EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 295–310, 1999.

[22] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and efficient sharing of RSA
functions. In Advances in Cryptology — Crypto ’96, pages 157–172, August 18–22 1996.

[23] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. In
Advances in Cryptology — Eurocrypt ’96, pages 354–371, May 12–16 1996.

[24] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing of RSA
functions. Journal of Cryptology, 13(2):273–300, 2000.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures.
Information and Computation, 164(1):54–84, 2001.

[26] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing. In D. Cop-
persmith, editor, Advances in Cryptology — Crypto ’95, volume 963 of Lecture Notes in
Computer Science, pages 339–352, Santa Barbara, California, U.S.A., August 27–31 1995.
Springer-Verlag.

[27] Chung L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill College, 1968. ISBN
0070381240.

[28] M. Malkin, T. Wu, and D. Boneh. Experimenting with shared generation of RSA keys. In
Proceedings of the Internet Society’s 1999 Symposium on Network and Distributed System
Security (SNDSS), pages 43–56, 1999.

16

https://csrc.nist.gov/publications/detail/sp/800-38c/final
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

[29] Keith M. Martin, Rei Safavi-Naini, Huaxiong Wang, and Peter R. Wild. Distributing the
encryption and decryption of a block cipher. Cryptology ePrint Archive: Report 2003/005,
2003. URL https://eprint.iacr.org/2003/005.pdf.

[30] Norman Maurer and Marvin Allen Wolfthal. Netty in Action. Manning Publications, 2015.
ISBN 9781617291470.

[31] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and
KDCs. In J. Stern, editor, EUROCRYPT’99, volume 1592 of Lecture Notes in Computer
Science, pages 327–346, 1999.

[32] National Institute of Standards and Technology. Specification for the Advanced Encryption
Standard (AES). Federal Information Processing Standards Publication 197, 2001. URL
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[33] T. Rabin. A simplified approach to threshold and proactive RSA. In Advances in Cryptology,
Proc. of Crypto’98, pages 89–104, August 23-27 1998.

[34] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest ma-
jority. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing,
page 73, Seattle, WA, USA, May 14 – 17 1989.

[35] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signature and public
key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[36] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

[37] V. Shoup. Practical threshold signatures. In Advance in Cryptology – EUROCRYPT 2000,
pages 207–220, May 2000.

[38] The iPerf3 Team. iperf - the ultimate speed test tool for tcp, udp and sctp, 2019. URL
https://iperf.fr/iperf-download.php.

[39] The Netty Project Community. The netty project, May 13 2020. URL https://netty.io/.

[40] T. Wu, M. Malkin, and D. Boneh. Building intrusion tolerant applications. In Proceedings of
the 8th USENIX Security Symposium, pages 79–91, 1999.

[41] Bennet Yee. Using Secure Coprocessors. CMU-CS-94-149, Carnegie Mellon University, May
1994.

17

https://eprint.iacr.org/2003/005.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://iperf.fr/iperf-download.php
https://netty.io/

	Introduction
	Related work
	Block cipher sharing through composition

	Robust DiSE
	The role of the initiator in robustness
	Robust DiSE through redundant computation
	Robust subset and the assignment of wi
	Correcting a -adversary
	A small example
	Rotating initiators and abuse resistance

	Implementation and optimization
	Non-robust DiSE vs. robust DiSE
	AES pre-key scheduling
	Timing data of F-DiSE-R

	Discussions and applications of robust DiSE
	Robust DiSE vs. robust threshold decryption
	Trade computation for less communication in F-DiSE-R

	Summary

