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Abstract. CSIDH is an isogeny-based post-quantum key establishment
protocol proposed in 2018. In this work, we analyze attacking imple-
mentations of CSIDH which use dummy isogeny operations using fault
injections from a mathematical perspective. We detail an attack by which
the private key can be learned by the attacker up to sign with absolute
certainty using

∑
dlog2(bi) + 1e fault attacks on pairwise distinct group

action evaluations under the same private key under ideal conditions
using a binary search approach, where b is the bound vector defining
the keyspace. As a countermeasure to this attack, we propose randomly
mixing the real degree `j isogenies together with the dummy ones by
means of a binary decision vector. To evaluate the efficiacy of this coun-
termeasure, we formulate a probability-based attack on this randomized
scheme using a maximum likelihood approach and simulate the attack
using 6 bound vectors used in previous CSIDH implementations. We
found that the number of attacks required under our model to reach
just 1% certainty about the key increased by a factor between 8–12 over
the standard approach in the setting of signed private keys and a fac-
tor between 28–45 using non-negative private keys, depending on b. We
derive theoretical bounds on the number of attacks required to reach a
specified certainty threshold about the key under our model. Based on
our data and the minimal additional overhead required, we recommend
all future implementations of CSIDH to employ a randomized decision
vector approach. Finally since our model assumes fault attacks provide
no information on the sign of the key, we use a technique based on Gray
codes to optimize the standard meet-in-the-middle attack for learning the
sign of the key values once their magnitudes have been learned through
fault attacks. We estimate that, on average, this optimized technique
uses approximately 88% fewer field-multiplication-equivalent operations
over the standard approach.

Keywords: isogeny-based cryptography, CSIDH, fault attacks, key establish-
ment

1 Introduction

Commutative Supersingular Isogeny-based Diffie-Hellman (CSIDH) is a post-
quantum key establishment protocol from 2018 proposed by Wouter Castryck,



Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes in [2]. As the
name suggests, CSIDH uses isogenies between supersingular elliptic curves to
perform a key establishment analogous to the Diffie-Hellman protocol. Specifi-
cally, let p = 4`1 · · · `n− 1 be a prime number, with `1, . . . , `n small odd primes.
The primes `1, . . . , `n−1 are typically taken to be the first n − 1 odd primes,
and `n is chosen as the next smallest prime which makes p prime. The value
n depends on the targeted security level. The supersingular Montgomery curve
E0 : y2 = x3 + x defined over Fp has the property that the ideal generated
by [`j ] in the endomorphism ring of E0 splits into the product of the ideals
lj := ([`j ], π− 1) and lj := ([`j ], π+ 1), where π is the Frobenius endomorphism
of E0. In the ideal class group, we have [lj ]

−1 = [lj ]. Let b = (b1, . . . , bn) be
a vector of small positive integers. The vector b is called a bound vector and
must be carefully chosen to ensure the security of the scheme. For a vector of
integers e = (e1, . . . , en) and an elliptic curve E with Fp-endomorphism ring
isomorphic to that of E0, we define e ∗ E := [l1]e1 · · · [ln]en ∗ E, where ∗ in the
latter expression denotes the class group action.

The CSIDH key establishment is performed as follows. Alice and Bob choose
their private keys eA and eB from the set

∏n
j=1[−bj , bj ] ∩ Z, respectively. More

recent works [10,7] on CSIDH choose private keys from the non-negative intervals∏n
j=1[0, bj ] ∩ Z; we distinguish these two scenarios as the signed and unsigned

settings, respectively. With the private keys chosen, Alice computes her public
key as EA := eA ∗ E0 and similarly Bob computes his as EB := eB ∗ E0. Alice
then sends EA to Bob, and Bob sends EB to Alice. Each party then evaluates
the action of their private key on the curve they received from the other party:
Alice computes EBA := eA ∗ EB , while Bob computes EAB := eB ∗ EA. By the
commutativity of the ideal class group, we have EBA ∼= EAB ; the shared key is
then (derived from) the Fp isomorphism class of this final curve.

Since CSIDH’s initial submission in 2018, there have already been many
optimizations toward improving it [13,7,12,11,10,1]. Michael Meyer and Steffen
Reith in [11] first remarked on making CSIDH constant time by constructing a
constant number of isogenies during execution of the algorithm. In a follow up
work [10] with Fabio Campos, they implemented such a constant time algorithm
using dummy isogeny constructions. That is, for each 1 ≤ j ≤ n exactly bj
many isogenies of degree `j are constructed regardless of the key ej , with |ej |
many being real and bj − |ej | being dummy. As far as we are aware at the
time of this writing, nearly all constant time implementations of CSIDH so far
have used dummy isogeny constructions in this manner, with the exception of
the computationally slower “no-dummy” algorithm presented in [3]. Dummy
operations often leave cryptosystems vulnerable to attack by means of fault
injections, and these constant time implementations of CSIDH which use dummy
isogenies are no exception.

Our contributions in this work can be summarized as follows:

1. We demonstrate that current implementations of CSIDH which use a “real-
then-dummy” approach are vulnerable to fault injection attacks, in which an
attacker can achieve a complete break of the system under ideal conditions
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by recovering the private key using
∑n
j=1dlog2(bj) + 1e many faults via a

binary search attack in a static key setting.

2. As a countermeasure to the above attack, for a fixed key e we propose
randomly mixing the constructions of the |ej | many degree `j real isogenies
with the dummy isogenies. At the time of evaluation of the group action, we
choose a binary-valued decision vector xj = (xj1, . . . , x

j
bj

) with weight |ej |
uniformly at random; we then construct the ith isogeny of degree `j as real

if xji = 1 and dummy otherwise.

3. We analyze a näıve attack on the randomized protocol described above using
an oracle O, in which O(j, i) reveals xji . We derive formulas for the distribu-
tion on the magnitude |ej | of the key given a string of outputs from O(j,−)
from pairwise different instances of xj under the same key e. We derive an
upper bound on the number of faults required to achieve any desired error
threshold ε for any given bound vector in this setting. We also give some
results in the direction of lower bounds for a particular class of attacks.

4. In the setting of signed keys, we discuss an optimization of the standard
meet-in-the-middle attack to determine the signs of the key entries once
their magnitudes have been determined using fault attacks. We introduce
an approach based on Gray codes which we estimate based on numerical
experiments to be, on average, 88.5% more efficient in populating collision
tables than the näıve approach under the state-of-the-art bound vector of
[7], even when optimized permutations and strategies are employed.

5. We simulated attacking this randomized version of CSIDH under ideal con-
ditions with 6 different bound vectors b used in previous implementations of
CSIDH-512. We found that an attacker can learn the key up to sign with ab-
solute certainty in the real-then-dummy setting using between 260–300 fault
attacks in the signed setting and between 340–370 attacks in the unsigned
setting depending on the bound vector. In contrast, by using a uniformly
random decision vector the number of attacks needed to learn the key up to
sign with only 1% certainty on average increases to a range of 2 400–3 600
in the signed setting and 10 500–16 000 in the unsigned setting. To achieve
99% certainty, the number of attacks increases to 7 600–12 700 in the signed
setting and 30 700–45 600 for the unsigned setting. Based on our data and
the minimal overhead required for this modification, we recommend that
future implementations of CSIDH utilizing dummy isogeny constructions
randomize the constructed isogenies in this manner.

This paper is organized as follows. Section 2 introduces decision vectors, de-
tails the fault attacks we consider, and derives oracles based on these attacks. In
Section 3 we derive a probability distribution on the magnitude of the private
key given a sequence of oracle outputs from each index j, and detail an algo-
rithm which most effectively attacks CSIDH using this distribution. Furthermore
Section 3 derives theoretical bounds on the number of attacks needed to reach
a desired certainty threshold about the value of the key, and shows how Gray
codes can be used to efficiently learn the sign of the key given its magnitude. Fi-
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nally Section 4 reports the results of simulating these ideas on 6 different bound
vectors.

2 Preliminaries

Let p = 4`1 · · · `n−1 be prime with `1, . . . , `n pairwise distinct small odd primes.
For each prime `j , we encode the choice of constructing the ith degree `j isogeny

ϕi,j as either a real or dummy into a binary decision vector xj = (xj1, . . . , x
j
bj

),

in which xji = 1 denotes that the ith degree `j isogeny shall be constructed as

real, and xji = 0 denotes that the ith degree `j isogeny shall be constructed as
a dummy. For correctness of the algorithm, the Hamming weight H(xj) of xj

must be equal to |ej |. This vector xj represents only the choice of the type of
isogeny constructed and may be explicitly or implicitly stored in memory for a
given implementation of the group action, and it is this vector which our attacks
target. As an example, Algorithm 1 depicts the constant time algorithm given by
Onuki et al. in [13]. Line 12 of Algorithm 1 computes the boolean value “ei 6= 0”,
which is used as a mask bit to determine the type of isogeny to be constructed.
We consider this boolean as one of the values in the decision vector xi. The
decision vector for other dummy-based constant time algorithms for CSIDH,
such as those given in [7,10], are defined similarly.

Algorithm 1 can be converted to an unsigned version by using an input
consisting of non-negative key values ei. The sign bit computed in line 8 is then
always 0, and all references to P1 can be removed.

2.1 General Structure of the Attack

We target our attacks on the second round of the key establishment when one
party is computing the action of their private key on the curve they received
from the other party. Through most of this work we consider only the scenario
that an attacker targets only a single isogeny constructed for a specific prime and
iteration; i.e., the attacker carries out a bit-flip fault attack which changes the
value of xji for one particular i and j. We assume an ideal setting in which the
attacker can precisely target this decision vector using the methods described
in the next two sections for their choice of any single pair (j, i). If an adversary
performs multiple attacks on pairs (j1, i1), . . . , (jm, im), we assume that each
pair references a distinct evaluation of (e, E) 7→ e ∗ E, with the private key e
static and E allowed to vary. This would be the case for example when a static
key is used over multiple sessions.

2.2 Fault Attack Method and Oracle: Unsigned Setting

We now define an oracle which models fault attacks in the setting of unsigned
private keys (that is, ej ∈ [0, bj ] ∩ Z). An intuitive attack to consider is flipping
the value of xij . In Algorithm 1, this can be accomplished by influencing the value
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Algorithm 1: Constant time version of CSIDH group action evaluation.

Input : A ∈ Fp, b ∈ N, a list of integers (e1, . . . , en) s.t. −b ≤ ei ≤ b for
i = 1, . . . , n, and distinct odd primes `1, . . . , `n s.t. p = 4

∏
i `i − 1.

Output: B ∈ Fp s.t. EB = (le11 · · · lenn ) ∗ EA, where li = (`i, π − 1) for
i = 1, . . . , n, and π is the p-th power Frobenius endomorphism of EA.

1 Set e′i = b− |ei|.
2 while some ei 6= 0 or some e′i 6= 0 do
3 Set S = {i | ei 6= 0 or e′i 6= 0}.
4 Set k =

∏
i∈S `i.

5 Generate points P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator.
6 Let P0 = [(p+ 1)/k]P0 and P1 = [(p+ 1)/k]P1.
7 for i ∈ S do
8 Set s be the sign bit of ei.
9 Set Q = [k/`i]Ps.

10 Let P1−s = [`i]P1−s.
11 if Q 6=∞ then
12 if ei 6= 0 then
13 Compute an isogeny ϕ : EA → EB with ker(ϕ) = 〈Q〉.
14 Let A← B, P0 ← ϕ(P0), P1 ← ϕ(P1), and ei ← ei − 1 + 2s.

15 else
16 Dummy computation.
17 Let A← A, Ps ← [`i]Ps, and e′i ← e′i − 1.

18 end

19 end

20 end
21 Let k ← k/`i.

22 end
23 Return A

of the boolean computed in line 12 on a particular iteration. If xji is changed
from 0 (dummy construction) to 1 (real construction), then the output curve
will likely have an extra factor of [lj ] applied compared to the correct shared key
because keys here are unsigned. In the event the construction is skipped due to
the point lacking the proper order, the correct output curve will be computed.
If xji is modified from 1 to 0, then the output curve will be lacking a factor of
[lj ]. Upon a key reveal query the attack can determine which situation they are

in and learn the true value of xji .

Other implementations of CSIDH, such as that of [7], use non-multiplication
based strategies for evaluating the group action, and in such an implementation
the point multiplication performed in line 17 of Algorithm 1 is moved for effi-
ciency to be included in line 6 (in a constant time fashion) for any indices for
which a dummy computation is performed. As a consequence, if the attacker at-
tempts to change the value of xji from 0 to 1 at the time of isogeny construction,
the construction will automatically be skipped because the point to be used as
the kernel generator is actually trivial and the correct shared key will be com-
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puted. On the other hand if xji is changed from 1 to 0 in such a generalized
algorithm, the point to be used to normally construct the isogeny will retain a
factor of `j in its order (assuming it was present to begin with) throughout the
remainder of the algorithm until a fresh point is chosen. Therefore all further
isogeny constructions derived from this point will be corrupted and the final out-
put of the algorithm will be incorrect. One option for the attacker is to change
both xji and the decision on multiplying the point by `j , but this may or may
not be practical to achieve.

In both settings above, the attacker can target xji and subsequently learn its
value. We therefore define an oracle O which reveals the value of x at the desired
pair of indices: O(j, i) = xji for 1 ≤ j ≤ n and 0 ≤ i ≤ bj .

2.3 Fault Attack Method and Oracle: Signed Setting

Here we describe an attack and an oracle for the setting of signed private keys
(so ej ∈ [−bj , bj ] ∩ Z). As in the previous subsection, we formulate an attack

which reveals the value of xji .
For Algorithm 1, changing the value of the boolean in line 12 will produce an

output curve that is off by either a factor of [lj ] or [lj ]
−1 depending on both xji

and the sign of ej . To get an outcome with more information, we instead target
the sign bit s computed in line 8. Let E be the curve determined at the end of
the algorithm when no attack is performed and let Êi,j be the final resulting

curve when the sign bit s used for constructing isogeny (j, i) is flipped. If xji is 0,
then a dummy construction is performed regardless of how s is modified and we
have E = Êi,j . If xji is 1, we will have Êi,j = [lj ]

2 ∗E if ej > 0 or Êi,j = [lj ]
−2 ∗E

if ej < 0. After a key reveal query, the attacker can check which equality holds,

learn the value of xji , and additionally learn the sign of ej when xji = 1.
In the context of a generalized algorithm using a non-multiplication based

strategy such as the algorithm of [7], the attack described in the previous sub-
section still applies here and one may formulate the same oracle as shown there.
The attack described above which modifies s will only work if the attacker mod-
ifies both s and prevents `j from being multiplied to the points after they are
randomly generated, for otherwise the resulting kernel generator will be trivial
and the isogeny construction skipped.

Based on this discussion, the attacker has the ability to learn the value of
xji using a fault attack, but not necessarily the sign of ej . To address the most
general case, we assume the oracle does not reveal the sign of the key and define
O(j, i) = xji as before.

3 Attack Analysis

In this section, we analyze how individual attacks from Section 2 which target
particular isogenies ϕi,j can be performed together for varying i and j to gain
information about the private key vector e. Going forward, we will use O to
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refer to the proper oracle from Section 2. The analysis is quite similar for the
unsigned and signed settings.

We consider cases on how x is generated. Section 3.1 examines the setting in
which all real degree `j isogenies are constructed first, followed by any remaining
degree `j dummy isogenies. The remainder of the section analyzes when each xj

is chosen uniformly at random at the time of the group action evaluation with
the correct Hamming weight.

3.1 “Real-then-dummy” Decision Vector

Here we briefly consider the “real-then-dummy” method, which every instantia-
tion of CSIDH in the literature has used so far at the time of this writing. Here,
xj has exactly the form

xj = (1, 1, . . . , 1︸ ︷︷ ︸
|ej |

, 0, 0 . . . , 0).

For this scenario the attack is extremely simple: the magnitude of the private
key |ej | corresponds exactly with the position in which the last 1 appears, and
so a simple binary search can determine |ej | with absolute certainty in exactly
dlog2(bj)e+ 1 many queries to the oracle O(j,−). It follows that the entire key

e can be determined exactly up to sign using
n∑
j=1

(dlog2(bj)e+ 1) calls to O.

As the above shows, the real-then-dummy case is susceptible to a very simple
attack. The most obvious change to make to attempt to counter the binary
search attack is to randomize the value of each xj . In the following subsections,
we consider the case when xj is drawn from the set Xj := {xj ∈ {0, 1}bj :
H(xj) = |ej |} uniformly at random, where H denotes Hamming weight.

3.2 Fixed Uniformly Random Decision Vector

We briefly remark on the approach of generating xj randomly from the set Xj

at the time of key generation, and using this same xj for every evaluation of the
action e ∗ E. Effectively xj becomes part of the key in this scenario. The most
straight forward attack to learn |ej | would query O at (j, i) for i = 1, 2, . . . , bj to
find each value of xj , which is possible since the value of xj never changes among
subsequent group actions. Therefore in this setting |ej | can be learned using bj
calls toO(j,−), and the total key e can be learned up to sign using

∑n
j=1 bj many

calls to O. Asymptotically this is better than the real-then-dummy approach,
but in practice offers little extra security for actual values of b. See Section 4 for
a comparison.

3.3 Dynamic Uniformly Random Decision Vector

We now consider the primary focus of this work, which is when the decision
vector xj is chosen from Xj = {xj ∈ {0, 1}bj : H(xj) = |ej |} uniformly at
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random during every evaluation (e, E) 7→ e ∗ E of the group action. We refer
to this setting as having a dynamic decision vector. If one views the decision
vector xj as a means of permuting the constructions of the real and dummy
isogenies, then the oracle calls O(j, i1) and O(j, i2) for i1 6= i2 on different
computations of the group action may actually correspond to the construction
of the “same” isogeny, and so multiple calls to O(j,−) yield less information
than in the previous settings.

In the following subsections, we compute probability formulas for the key
being a given value based on the outputs of the oracle O. We examine the setting
of unsigned and signed exponents separately, though they are quite similar.

Unsigned Setting Fix an index 1 ≤ j ≤ n to analyze. For ` ∈ N, let β(`) =

(β
(`)
1 , . . . , β

(`)
` ) (depending on j) denote the string of outputs of the first ` queries

of O(j,−), and let q
(β(`))
j denote the adversary’s a posteriori distribution on ej ,

having seen β(`). That is,

q
(β(`))
j,k := P[ej = k|β(`)]

for 0 ≤ k ≤ bj . We compute the value of this probability explicitly below:

Theorem 1. In the setting of unsigned exponents and dynamic decision vectors,
for every 1 ≤ j ≤ n, 0 ≤ k ≤ bj, and binary string β(`) of length ` ≥ 1 we have

q
(β(`))
j,k =

P[xji = β
(`)
` |ej = k] · q(β

(`−1))
j,k∑bj

t=0 P[xjj = β
(`)
` |ej = t] · q(β

(`−1))
j,t

, (1)

where β(0) is the empty string and q
(0)
j,k := P[ej = k] = 1/(bj + 1) for every k. A

non-recursive form of q
(β(`))
j,k for any β(`) with ` ≥ 0 is

q
(β(`))
j,k =

(bj − k)`−H(β(`))kH(β(`))∑bj
t=0(bj − t)`−H(β(`))tH(β(`))

, (2)

where H denotes Hamming weight.

Equation 1 can be proved using Bayes’ Theorem, the Law of Total Proba-
bility, and the fact that the ej are chosen uniformly at random. Equation 2 is
proved using induction on ` and Equation 1.

Signed Setting In this section we consider signed exponents ej ∈ [−bj , bj ] ∩ Z
rather than unsigned exponents. Let each variable be defined as in the previous
section so that

q
(β`)
j,k = P[ej = k|β(`)],

except that −bj ≤ k ≤ bj .
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Theorem 2. In the setting of signed exponents and dynamic decision vectors,
for every 1 ≤ j ≤ n, −bj ≤ k ≤ bj, and binary string β(`) of length ` ≥ 1 we
have

q
(β(`))
j,k =

P[xji = β
(`)
` |ej = k] · q(β

(`−1))
j,k∑bj

t=−bj P[xjj = β
(`)
` |ej = t] · q(β

(`−1))
j,t

, (3)

where β(0) is the empty string and q
(0)
j,k := P[ej = k] = 1/(2bj + 1) for every k.

A non-recursive form of q
(β(`))
j,k for any β(`) with ` ≥ 0 is

q
(β(`))
j,k =

(bj − |k|)`−H(β(`))|k|H(β(`))∑bj
t=−bj (bj − |t|)

`−H(β(`))|t|H(β(`))
, (4)

where H denotes Hamming weight.

The proof is nearly identical to that of Theorem 1, with the sum being taken
over all −bj ≤ k ≤ bj . Note that the sign of ej does not affect the decision vector
xj , and so P[xij = 0|ej = k] = P[xij = 0|ej = −k] = |k|/bj and P[xij = 1|ej =

k] = P[xij = 1|ej = −k] = (bj − |k|)/bj .

Attack Model Here we detail an attack on CSIDH in the setting of dynamic
decision vectors in both the signed and unsigned settings which makes use of the
probabilities previously computed in this section. In the attack, referred to as
least certainty, the attacker chooses a key index 1 ≤ j∗ ≤ n in which to inject a
fault on each iteration, where in the unsigned setting the index is chosen through
the formula

j∗ = arg min
1≤j≤n

(
max

0≤k≤bj
q
β

(`)
j

j,k

)
. (5)

where β
(`)
j is the string of oracle outputs for the index j (with ` also depending on

j). That is, the attacker targets the index for which they are least certain about
the value of the key. The variables qj are initialized as the uniform distribution
on bj + 1 elements.

For the signed setting, our oracle O(j,−) only gives information on ej up to
sign, and so our attack attempts only to learn the key up to sign. For 1 ≤ k ≤ bj
we therefore define

r
β

(`)
j

j,k = q
β

(`)
j

j,k + q
β

(`)
j

j,−k = 2q
β

(`)
j

j,k

and r
β

(`)
j

j,0 = q
β

(`)
j

j,0 , and the attacker chooses the index to attack as in Equation
5 but replacing q with r. Here we initialize qj as the uniform distribution on
2bj + 1 elements.
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In both settings the index i for which to call O(j,−) on is chosen uniformly
at random, but the index may be selected in any other manner without affecting
the overall efficiency of the attack.

In both the signed and unsigned setting, the attacker performs some desired
number of iterations, with each iteration choosing the index j∗ to attack based
on the above formulas. Once these iterations are complete, the attacker is left
with a probability distribution on the (absolute value of the) key, in which the

most likely value for |ej | is given by arg max
0≤k≤bj

r
β

(`)
j

j,k , with r
β

(`)
j

j,k = q
β

(`)
j

j,k in the

unsigned setting.
These attacks are detailed in Algorithms 2 and 3 in the unsigned and signed

settings, respectively. Both algorithms keep variables `[j] and w[j] tracking the
number of attacks on index j and number of 1’s seen from the oracle O(j,−),

respectively (so, the information contained in β
(`)
j above). Variables q[j][k] store

the probabilities r
β

(`)
j

j,k for 1 ≤ j ≤ n and 0 ≤ k ≤ bj and the current value of

`. In the signed context of Algorithm 3, the probability qβ
(`)

j,0 = P[ej = 0|β(`)]

is computed as a special case since all other qβ
(`)

j,k have their values doubled as
discussed previously.

Both Algorithms 2 and 3 perform attacks until some desired certainty thresh-
old on the total key is obtained. The certainty on the key is given by the quantity

n∏
j=1

max
0≤k≤bj

q[j][k],

which represents the probability that the key e (up to sign) is equal to(
arg max
0≤k≤bj

q[1][k], . . . , arg max
0≤k≤bj

q[n][k]

)
.

Bounds on Naiv̈e Attacks In this section we seek to determine an upper
bound on the number of faults required to guarantee a given success rate 1− ε
in a fault attack. To that end, we consider a particular kind of attack—which we
call the “näıve” method—which is simultaneously intuitive, effective, and easy
enough to analyze. Throughout this section we implicitly assume that we are
working in the setting of unsigned keys; the techniques in this section extend
in a very straightforward fashion to determining the magnitude of a given key
entry in the signed setting. We consider the problem of determining the sign of
the key given its magnitude in Section 3.4.

Our näıve attack in this setting is as follows: choose a vector m ∈ Nn in
advance3, and for 1 ≤ j ≤ n, apply mj fault attacks on isogenies of degree

3 This is in contrast with Algorithms 2 and 3, where the number of attacks is not
determined in advance, and instead we stop once we are sufficiently certain about
the key.
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Algorithm 2: Least Certainty Attack (Unsigned Dynamic)

Parameters: Bound vector b = (b1, . . . , bn) from which keys ej ∈ [0, bj ] are
drawn.

Input : Certainty bound ε ∈ (0, 1), unknown private key
e = (e1, . . . , en) accessed through oracle O.

Output : Probability distribution qj,k on key e.
1 `← [0 : j = 1, 2, . . . , n].
2 w ← [0 : j = 1, 2, . . . , n].
3 q ← [ [1/(bj + 1) : k = 0, 1, . . . , bj ] : j = 1, 2, . . . , n].
4 certainty← 0.
5 while certainty < ε do

/* Choose index and attack. */

6 j∗ ← arg min
1≤j≤n

(
max

0≤k≤bj
q[j][k]

)
.

7 w[j∗]← w[j∗] +O(j∗,Random(1, 2, . . . , bj)).
8 `[j∗]← `[j∗] + 1.

/* Update probabilities for index j∗. */

9 den←
bj∗∑
k=0

(bj∗ − k)`[j
∗]−w[j∗] · kw[j∗].

10 q[j∗]←
[
(bj∗ − k)`[j

∗]−w[j∗] · kw[j∗]/den : k = 0, 1, . . . , bj∗
]
.

11 certainty←
n∏

j=1

max
0≤k≤bj

q[j][k].

12 end
13 Return q

`j . Then, suppose that you observe a sequence β(mj) of outputs in which wj

such isogenies are revealed to be real; you then guess that ej = e∗j :=
⌈
bj
wj
mj

⌋
;

that is, you guess the ej which minimizes
∣∣∣ ejbj − wj

mj

∣∣∣. This value of ej is what

you would obtain by rounding the maximum likelihood estimate for ej , if the
a priori distribution of ej were uniform on [0, bj ] rather than [0, bj ] ∩ Z—note
that this is not always the same as the maximum likelihood estimate of ej for
our a priori distribution; this is most easily seen by considering the case when
0 < wj <

mj
2bj

, in which the näıve method recommends guessing ej = 0, while

the maximum likelihood method knows that ej = 0 is impossible. Your guess at
the entire key e is then

e = (e∗1, e
∗
2, . . . , e

∗
n)T .

How large should each mj be chosen to ensure that you have a reasonable
probability (say, 1 − ε) of guessing the final key correctly? In particular, we
address the problem of how large mi must be to have a sufficiently large guaran-
teed success probability in the worst case (i.e., for all keys). In order to develop
these arguments, we must first determine a more convenient expression for when
the näıve guess is correct. To begin, the näıve guess is correct exactly when

11



Algorithm 3: Least Certainty Attack (Signed Dynamic)

Parameters: Bound vector b = (b1, . . . , bn) from which keys ej ∈ [−bj , bj ] are
drawn.

Input : Certainty bound ε ∈ (0, 1), unknown private key
e = (e1, . . . , en) accessed through oracle O.

Output : Probability distribution qj,k on key e.
1 `← [0 : j = 1, 2, . . . , n].
2 w ← [0 : j = 1, 2, . . . , n].
3 q ← [ [1/(2bj + 1)] cat [2/(2bj + 1) : k = 1, 2, . . . , bj ] : j = 1, 2, . . . , n].
4 for certainty < ε do

/* Choose index and attack. */

5 j∗ ← arg min
1≤j≤n

(
max

0≤k≤bj
q[j][k]

)
.

6 w[j∗]← w[j∗] +O(j∗,Random(1, 2, . . . , bj)).
7 `[j∗]← `[j∗] + 1.

/* Update probabilities for index j∗. */

8 den← b
`[j∗]−w[j∗]
j∗ · 0w[j∗] +

bj∗∑
k=1

2(bj∗ − k)`[j
∗]−w[j∗] · kw[j∗].

9 q[j∗][0]← b
`[j∗]−w[j∗]
j∗ · 0w[j∗]/den

10 q[j∗][k]← 2(bj∗ − k)`[j
∗]−w[j∗] · kw[j∗]/den for k = 1, 2, . . . , bj∗ .

11 certainty←
n∏

j=1

max
0≤k≤bj

q[j][k].

12 end
13 Return q

ej =
⌈
bj
wj
mj

⌋
. Written more explicitly, we require

ej −
1

2
≤ bj

wj
mj

< ej +
1

2
or, equivalently

ej
bj
− 1

2bj
≤ wj
mj

<
ej
bj

+
1

2bj
;

that is, we guess ej correctly if the empirical probability of detecting a real
isogeny (which is

wj
mj

) differs from the true probability (which is
ej
bj

) by at most
1

2bj
(on the left) or by strictly less than 1

2bj
on the right. We can loosen this

bound slightly to obtain the following convenient inequalities:

P
[∣∣∣∣ejbj − wj

mj

∣∣∣∣ < 1

2bj

]
≤ P

[
ej =

⌈
bj
wj
mj

⌋]
≤ P

[∣∣∣∣ejbj − wj
mj

∣∣∣∣ ≤ 1

2bj

]
(6)

These sandwiching probabilities are of convenient forms for applying generic
probability theoretic results.

Guaranteeing sufficient success probability. We are now prepared to de-
termine an upper bound on the number of attacks required in order to guarantee

12



success probability 1 − ε. We have the following theorem which uppers bounds
the number of attacks required.

Theorem 3. Let b be a bound vector. For any ε ∈ (0, 1), in order to guarantee
success probability at least 1 − ε in a näıve attack on a key chosen from the
keyspace defined by b, it suffices to inject

min


n∑
j=1

⌈
2b2j loge

2

1− n
√

1− ε

⌉
,

n∑
j=1

⌈
2b2j loge

(
2 +

2
ε ‖b‖

2 − 2 mink{bk}2

b2j

)⌉
individual faults.

Proof. We note that in order for the attack on the full key e to succeed with this
probability it suffices that the attack on each individual key entry ej succeeds
with probability n

√
1− ε, and so we proceed to determine the number of fault

attacks required on ej to have this success probability.
When performing fault attacks on ej , the outcome of the ith attack is mod-

elled by a Bernoulli random variable ζi ∼ B(
ej
bj

). For mj ∈ N, let Zmj =
1
mj

∑mj
i=1 ζi. Note first that E[Zmj ] =

ej
bj

; then, by Equation (6), we have

P
[∣∣Zmj − E[Zmj ]

∣∣ < 1

2bj

]
= P

[∣∣∣∣ejbj − wj
mj

∣∣∣∣ < 1

2bj

]
≤ P

[
ej =

⌈
bj
wj
mj

⌋]
We will apply a Hoeffding bound [6] to the lefthand side; in particular, for any
t ≥ 0 we have

P
[∣∣Zmj − E[Zmj ]

∣∣ < t
]
≥ 1− 2e−2mjt

2

.

Substituting E[Zmj ] =
ej
bj

and t = 1
2bj

we find that

P
[∣∣∣∣Zmj − ej

bj

∣∣∣∣ < 1

2bj

]
≥ 1− 2e

−
mj

2b2
j .

Thus to ensure sufficient success probability, it suffices to ensure that for each j

we have 1 − 2e
−
mj

2b2
j ≥ n

√
1− ε; that is, that mj ≥ 2b2j loge

2
1− n
√
1−ε . Noting that

we must inject an integer number of faults, we round this quantity up for all j
to obtain the first bound of the Theorem.

Of course, there is no reason that the probability of success of each key entry
be equal; indeed, it may be possible to achieve the required success probability
using fewer total fault injections to achieve higher certainty on some key entries
and lower certainty on others. We can formulate an integer convex program
which minimizes the total number of fault attacks required to ensure probability
1 − ε of guessing the key correctly, using the Hoeffding bound to lower bound
the success probability of guessing each key entry. Note that

P [e = (e∗1, . . . , e
∗
n)] =

n∏
j=1

P[ej = e∗j ] ≥
n∏
j=1

(
1− 2e

−
mj

2b2
j

)

13



and so to guarantee success probability 1− ε it suffices to have

n∏
j=1

(
1− 2e

−
mj

2b2
j

)
≥ 1− ε, or, equivalently,

n∑
j=1

loge

(
1− 2e

−
mj

2b2
j

)
≥ loge(1− ε).

This constraint is convex; our final integer convex program is

Minimize
∑n
j=1mj

Subject to
∑n
j=1 loge

(
1− 2e

−
mj

2b2
j

)
≥ loge(1− ε)

m ∈ Zn
(P)

This program is difficult to solve in general, but we can use duality to find an
upper bound on its optimal value.

The Lagrangian for the convex relaxation of (P) is

L(m;λ) = λ loge(1− ε) +

n∑
i=1

(
mi − λ loge

(
1− 2e

−
mj

2b2
j

))
.

We know from the KKT conditions that at the optimal m = m∗, there will
exist a corresponding multiplier λ∗ ≥ 0 which satisfies ∇mL(m∗;λ∗) = 0. We
compute

∂

∂mj
L(m∗;λ∗) = 1 +

λ∗

b2j

e

m∗
j

2b2
j − 2

so that

∇mL(m∗;λ∗) = 0 ⇐⇒ m∗j = 2b2j loge

(
2 +

λ∗

b2j

)
for all j.

We have thus reduced the problem to determining λ∗. Moreover, noting that if
m ≥m∗ then m is also feasible for (P), in fact it suffices to find a lower bound
on λ∗.

Substituting the form of m∗j into the constraint, we find that λ∗ must satisfy

n∑
j=1

loge

1− 2e
−

2b2j loge

2+λ
∗
b2
j


2b2
j

 =

n∑
j=1

loge

(
1−

2b2j
λ∗ + 2b2j

)
≥ loge(1− ε).

(7)

(indeed, it is the smallest solution to the above). Exponentiating both sides of
the inequality above, we find that λ∗ satisfies

n∏
j=1

(
1−

2b2j
λ∗ + 2b2j

)
≥ 1− ε

From here we must bound the quantity on the left from below in order to find
a lower bound for λ∗. We apply the following straightforward lemma:
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Lemma 1. Let n ≥ 2 and α1, α2, . . . , αn ∈ [0, 1]. Then we have 1−
∑n
j=1 αj ≤∏n

j=1(1− αj).
We use Lemma 1 to complete the proof of Theorem 3. Now for λ ≥ 0 we

have
2b2j

λ+2b2j
∈ [0, 1] for all bj ∈ R, and so we can write

n∏
j=1

(
1−

2b2j
λ+ 2b2j

)
≥ 1−

n∑
j=1

2b2j
λ+ 2b2j

≥ 1−
n∑
j=1

2b2j
λ+ 2 mink{bk}2

= 1− 2‖b‖2

λ+ 2 mink{bk}2

Thus to guarantee sufficient success probability it suffices to enforce

1− 2‖b‖2

λ+ 2 mink{bk}2
≥ 1− ε

for which we can take λ = 2
ε ‖b‖

2 − 2 mink{bk}2 and hence

mj = 2b2j loge

(
2 +

2
ε ‖b‖

2 − 2 mink{bk}2

b2j

)
∀ j.

Again, we round these terms up to account for the fact that we must inject
an integer number of faults. Taking the smaller of the two upper bounds we have
derived yields the result of Theorem 3. ut

Remark 1. In numerical experiments the second of the two bounds we derived
tends to yield a smaller upper bound at higher certainty levels and when the
bound vector has a few large entries and many small entries; in contrast, the first
bound performs better at smaller certainty levels and when the bound vector is
more uniform.

Guaranteeing sufficient failure probability. We now move on to the follow-
ing question: how many fault attacks are provably not enough to allow a desired
success probability? We first consider the “worst case” variant of this question;
in particular, for any desired success probability 1

2 ≤ 1− ε ≤ 1, we determine a
key e and a number of fault attacks m for which the success probability of the
näıve attack is less than 1− ε for key e.

We first consider the special case when each entry of the bound vector b is
even, since this case allows us to apply tighter estimates, leading to stronger
overall results. We first state a theorem regarding fault attacks on a single key
entry, which we later extend to full keys.

Theorem 4. Let 1 ≤ j ≤ n, and let b be a bound vector with bj even. Consider
a key e whose jth key entry is ej = 1

2bj. Suppose that the näıve attack is launched,
and that mj faults are targeted at the jth entry of the key. Suppose further that

mj <
1

2
b2j

(
1−
√

2ε
)2

for some ε ≤ 1
2 . Then the attack will return the incorrect value for the jth key

entry with probability at least ε.
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Proof. Let {ξi}∞i=1 be a sequence of iid random variables following the B±( 1
2 )

distribution; that is, for all i ∈ N

P[ξi = 1] = P[ξi = −1] =
1

2
.

For each m ∈ N, define the random variable Ξm =
∣∣ 1
m

∑m
i=1 ξi

∣∣. In particular,
Ξmj is the quantity by which the fraction of real isogenies or dummy isogenies
detected (whichever is greater) exceeds the fraction of dummy isogenies or real
isogenies (whichever is smaller) after m fault attacks are performed; equivalently,
it is twice the quantity by which fraction of real isogenies or dummy isogenies
(whichever is greater) exceeds the expected fraction, 1

2 . We know that after m
fault attacks, the probability of failure is at least the probability that Ξmj differs
from 0 by more than 1

bj
; we will bound this probability from below.

We first require bounds on E[Ξm]. Applying Khintchine’s Inequality [8] with
optimal constants [5], we find that

1√
2mj

≤ E[Ξmj ] ≤
1
√
mj

.

We are now in a position to apply the Paley-Zygmund inequality [14]. In partic-
ular, for any ϑ ∈ [0, 1] we have

(1− ϑ)2
E[Ξmj ]

2

E[Ξ2
mj ]

≤ P
[
Ξmj > ϑE[Ξmj ]

]
≤ P

[
Ξmj >

ϑ√
2mj

]
.

Taking ϑ =

√
2mj

bj
(which is valid for the Paley-Zygmund inequality as long as

mj ≤
b2j
2 , which is guaranteed from the hypotheses of the theorem) yields

P[We guess incorrectly] ≥ P
[
Ξmj >

1

bj

]
≥

(
1−

√
2mj

bj

)2
E[Ξmj ]

2

E[Ξ2
mj ]

. (8)

Since we know 1
2mj

≤ E[Ξmj ]
2 ≤ 1

mj
, to obtain a lower bound on our failure

probability, it suffices to determine E[Ξ2
mj ]. We have

Ξ2
mj =

1

mj

(
mj∑
i=1

ξi

)2

=
1

m2
j

mj∑
i=1

ξ2i +
1

m2
j

mj∑
i=1

mj∑
i′=i+1

ξiξi′

so that

E[Ξ2
mj ] =

1

mj
+

1

m2
j

E

mj∑
i=1

mj∑
j=i+1

ξiξj

 =
1

mj
.

since the ξi are independent with mean 0 and satisfy ξ2i = 1. Substituting this
into Equation (8) we obtain the following lower bound on the failure probability
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of the näıve attack on the jth entry of the given key:

P
[
Ξmj >

1

bj

]
≥ 1

2

(
1−

√
2mj

bj

)2

. (9)

Thus to ensure that the failure probability is sufficiently high for this particular

key entry, it suffices to solve 1
2

(
1−
√

2mj

bj

)2

> ε, whose solution is readily seen

to be

mj <
1

2
b2j

(
1−
√

2ε
)2

provided that ε ≤ 1
2 , as required.

Theorem 4 has the following immediate corollary:

Corollary 1. Let b be a bound vector in which the entries labelled by Ieven are
even, and let T ⊆ Ieven with |T | = t. Then for any näıve attack which targets
mj fault attacks at the jth key entry for each j ∈ T and succeeds in recovering
the full key with probability at least 1− ε for some ε ≤ 1− 2−t when the true key
e satisfies ej = 1

2bj ∀j ∈ T , we must have

∃j ∈ T such that mj ≥
1

2
b2j

(
1−

√
2
(
1− t
√

1− ε
))2

.

Proof. Suppose for contradiction that

mj <
1

2
b2j

(
1−

√
2
(
1− t
√

1− ε
))2

∀j ∈ T.

Applying Theorem 4 (noting that ε ≤ 1− 2−t implies 1− t
√

1− ε ≤ 1
2 ), for each

j ∈ T , the probability that the jth key entry is not guessed correctly is strictly
greater than 1 − t

√
1− ε. Noting that in order to recover the full key correctly

we must recover the key entries from T correctly, we find that the probability of
recovering the full key correctly is at most

P[The attack recovers e] <
∏
j∈T

(
1− (1− t

√
1− ε)

)
= 1− ε

as required.

Taking sets of the form T = {j} in Corollary 1, we obtain the following
result:

Corollary 2. Let b be a bound vector in which the entries labelled by Ieven are
even. Then in any näıve attack which targets mj fault attacks at the jth key
entry for each j ∈ Ieven and succeeds in recovering the full key with probability
at least 1− ε for some ε ≤ 1

2 when the true key e satisfies ej = 1
2bj ∀j ∈ Ieven,

we must have

mj ≥
1

2
b2j

(
1−
√

2ε
)2
∀j ∈ Ieven.
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Corollary 2 yields the following straightforward lower bound on the number
of faults required to ensure success probability 1 − ε, for any ε ≤ 1

2 , when the
key satisfies ej = 1

2bj ∀j ∈ Ieven:

∑
j∈Ieven

mj ≥
1

2

(
1−
√

2ε
)2 ∑

j∈Ieven

b2j .

However, with more care, Corollary 1 can also be used to obtain the following,
stronger result:

Corollary 3. Let b be a bound vector in which the entries labelled by Ieven =
{1, 2, . . . , t} are even. Then in any näıve attack which targets mj fault attacks
at the jth key entry for each j ∈ Ieven and succeeds in recovering the full key
with probability at least 1 − ε for some ε ≤ 1

2 when the true key e satisfies
ej = 1

2bj ∀j ∈ Ieven, we must have

∑
j∈Ieven

mj ≥
1

2

t∑
j=1

b2j

(
1−

√
2
(
1− j
√

1− ε
))2

where b is ordered such that b1 ≥ b2 ≥ · · · ≥ bt.

Proof. To begin, consider the following mathematical program:

Minimize
∑

j∈Ieven
mj

Subject to max
j∈T

{
mj − 1

2b
2
j

(
1−

√
2
(
1− |T |

√
1− ε

))2}
≥ 0 ∀T ⊆ Ieven

(10)

By Corollary 1, for any fault attack which targets mj faults at the jth key
entry for each j ∈ Ieven and which satisfies the assumptions of Corollary 3, the
tuple (mj)j∈Ieven is feasible for (10). We will prove Corollary 3 by solving (10) and

demonstrating that its optimal value is precisely 1
2

∑t
j=1 b

2
j

(
1−

√
2
(
1− j
√

1− ε
))2

.

First, this objective value is clearly achievable: simply take

mj =
1

2
b2j

(
1−

√
2
(
1− j
√

1− ε
))2

. (11)

This is feasible for (10) since for each 1 ≤ k ≤ t, each subset T of Ieven of size k
contains at least one element of {t, t− 1, . . . , k}, say j∗. Then,

mj∗ =
1

2
b2j∗

(
1−

√
2
(
1− j∗

√
1− ε

))2

≥ 1

2
b2j∗

(
1−

√
2
(
1− k
√

1− ε
))2

since j∗ ≥ k, establishing the feasibility of (11).
To demonstrate that (11) is optimal for (10), we first have the following

claim.
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Claim. Let m̂ be feasible for (10). Then there exists m̃ which:

– Is feasible for (10);
– Has objective value no larger than m̂, and;
– Satisfies

m̃k′j
=

1

2
b2kj

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . t, where (k1, k2, . . . , kt) is a permutation of {1, 2, . . . , t} such
that

2m̂k1

b2k1
≤ 2m̂k2

b2k2
≤ · · · ≤ 2m̂kt

b2kt

Proof. Let (k1, k2, . . . , kt) be a permutation of {1, 2, . . . , t} such that

2m̂k1

b2k1
≤ 2m̂k2

b2k2
≤ · · · ≤ 2m̂kt

b2kt
.

Let αj =
2m̂kj
b2kj

for each j ∈ {1, 2, . . . , t}. If αj =
(

1−
√

2
(
1− j
√

1− ε
))2

for all

j, we are done; if not, let

J =

{
j∗ : αj∗ 6=

(
1−

√
2
(
1− j∗

√
1− ε

))2
}
6= ∅.

There are then two cases:

Case 1: ∃j∗ ∈ J such that αj∗ <
(

1−
√

2
(
1− j∗

√
1− ε

))2
.

Choose the smallest such j∗ and let T ∗ = {k1, k2, . . . , kj∗}. By our choice of

j∗, we have αj <
(

1−
√

2
(
1− j∗

√
1− ε

))2
for all j ≤ j∗; that is,

m̂kj <
1

2
b2kj

(
1−

√
2
(
1− j∗

√
1− ε

))2

for all j ∈ {1, 2, . . . , j∗}. Thus m̂ violates the constraint

max
j∈T∗

{
mj −

1

2
b2j

(
1−

√
2
(
1− |T∗|

√
1− ε

))2
}
≥ 0

so that m̂ was not feasible to begin with.

Case 2: αj >
(

1−
√

2
(
1− j
√

1− ε
))2

∀j ∈ J .

In this case, consider the new vector m̃ defined by

m̃kj =

 1
2b

2
kj

(
1−

√
2
(
1− j
√

1− ε
))2

if j ∈ J
m̂j otherwise

.

It is clear that m̃ ≤ m̂ and so m̃ achieves a better objective value, and so it
only remains to show that m̃ is feasible. Let T ⊆ {1, 2, . . . , n}, and consider
the constraint of (10) indexed by T . We consider three cases:
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Case a: T ∩ J = ∅.
In this case the constraint is clearly satisfied since m̃kj = m̂kj as long as
j 6∈ J .

Case b: T ∩ J 6= ∅ and |T | ≤ maxj∈T∩J{j}.
Let j∗ = maxj∈T∩J{j}. In this case the constraint is satisfied because
j∗ ∈ T and

m̃j∗ =
1

2
b2kj∗

(
1−

√
2
(
1− j∗

√
1− ε

))2

≥ 1

2
b2kj∗

(
1−

√
2
(
1− |T |

√
1− ε

))2

since |T | ≤ j∗.
Case c: kj∗ ∈ T and |T | > maxj∈T∩J{j}.

Again, let j∗ = maxj∈T∩J{j}. There are two possibilities:

Case i: αj∗ <

(
1−

√
2(1− |T |

√
1− ε)

)2

.

Since m̂ was feasible for (10), we know that ∃kjT ∈ T such that

m̂kjT
≥ 1

2
b2kjT

(
1−

√
2(1− |T |

√
1− ε)

)2

.

Since this inequality is not satisfied when jT = j∗ (by the assump-
tion of the case), we have jT 6= j∗. Then, since m̃kjT

= m̂kjT
, the

constraint indexed by T is indeed satisfied.

Case ii: αj∗ ≥
(

1−
√

2(1− |T |
√

1− ε)
)2

.

Since |T | > j∗, ∃jT > j∗ with kjT ∈ T . By the ordering of the αj ,
this implies that

m̂kjT
≥ 1

2
b2kjT

(
1−

√
2(1− |T |

√
1− ε)

)2

so that the constraint indexed by T is indeed satisfied.

The m̃ constructed in case 2 is precisely what is hypothesized.

In light of Claim 13, it suffices to demonstrate that our proposed solution m
has the smallest objective value among all vectors of the form m̃. We use the
following claim:

Claim. Let m̃ satisfy

m̃kj =
1

2
b2kj

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . t, where (k1, k2, . . . , kt) is a permutation of {1, 2, . . . , t} such that

2m̂k1

b2k1
≤ 2m̂k2

b2k2
≤ · · · ≤ 2m̂kt

b2kt
.

Suppose that (k1, k2, . . . , kt) has at least one inversion (that is, there exists
j1 < j2 with kj1 > kj2). Then there exists m′ which
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– Has objective value no greater than that of m̃, and;

– Satisfies the above condition, with a new permutation (k′1, k
′
2, . . . , k

′
t) which

has fewer inversions than (k1, k2, . . . , kt).

Proof. Let j1, j2 be an inversion in (k1, k2, . . . , kt). Define

k′j =


kj2 if j = j1

kj1 if j = j2

kj otherwise

.

andm′k′j
= 1

2bk′j

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . , t. Clearly (k′1, k
′
2, . . . , k

′
t)

has fewer inversions than (k1, k2, . . . , kt), since we have swapped two entries of
an inversion and left the other entries alone. As for their objective values, we
have∑
j∈Ieven

m̃j −
∑

j∈Ieven

m′j

=
1

2
(b2kj1 − b

2
kj2

)︸ ︷︷ ︸
≥0

((
1−

√
2(1− (1− ε)1/kj1 )

)2

−
(

1−
√

2(1− (1− ε)1/kj2 )

)2
)

︸ ︷︷ ︸
≥0

≥ 0

so that m′ has objective value at most that of m̃, as required.

Thus the optimal solution m to (10) must satisfy

mkj =
1

2
b2kj

(
1−

√
2
(
1− j
√

1− ε
))2

for j = 1, 2, . . . t, where (k1, k2, . . . , kt) is a permutation of {1, 2, . . . , t} such that

2m̂k1

b2k1
≤ 2m̂k2

b2k2
≤ · · · ≤ 2m̂kt

b2kt
;

moreover, there exists such an optimal solution for which (k1, k2, . . . , kt) has no
inversions; that is, it is the identity permutation. This is precisely our proposed
solution, and hence the proof is complete.

The hypothesis that the error probability ε satisfies ε ≤ 1
2 is required for

Corollary 3 in order for the lower bound of Corollary 2 to be valid. When ε > 1
2 ,

however, we can still obtain a lower bound on the number of faults required in
the worst case by considering the inequalities of Corollary 1 which remain valid.
In particular, we have the following result.
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Corollary 4. Let b be a bound vector in which the entries labelled by Ieven =
{1, 2, . . . , t} are even. Then in any näıve attack which targets mj fault attacks at
the jth key entry for each j ∈ Ieven and succeeds in recovering the full key with
probability at least 1 − ε for some ε ≤ 1 − 2−s for some integer 1 ≤ s ≤ t when
the true key e satisfies ej = 1

2bj ∀j ∈ Ieven, we must have

t∑
j=s

mj ≥
1

2

t∑
j=s

b2j

(
1−

√
2
(
1− j
√

1− ε
))2

where b is ordered such that b1 ≥ b2 ≥ · · · ≥ bt.

Proof. By Corollary 1, for each subset T of Ieven of size at least s, we must have

∃j ∈ T such that mj ≥
1

2
b2j

(
1−

√
2
(
1− |T |

√
1− ε

))2

.

For sets T of size less than s we cannot apply Corollary 1 because ε may be
too large; the lower bound of this corollary compared with Corollary 3 is a
consequence of this fact.

From here, the result follows by applying the technique of the proof of Corol-
lary 3 to the candidate solution m defined by

mj =

0 if j < s

1
2b

2
j

(
1−

√
2
(
1− j
√

1− ε
))2

if j ≥ s
.

From here, we continue our “worst-case” analysis by extending to bound
vectors whose entries may be even or odd, and arbitrary key values. In particular,
we have the following result:

Theorem 5. Let b be a bound vector entry and let ej ∈ {1, 2, . . . , bj − 1} be a

possible value of jth key entry. Let êj = min{ej , bj − ej}, and 0 ≤ ε ≤ êj
8(bj−êj) .

Then for a näıve attack which targets mj faults at the jth key entry and which
correctly recovers its value with probability at least 1 − ε when it is equal to ej,
we have

mj ≥
1

2
ê2j

(
1− 2

√
2(bj − êj)

êj
ε

)2

,

Proof. Let Ξmj = |
∑mj
i=1 ξi| for ξi ∼ B±(p) independent and identically dis-

tributed; that is,

P [ξi = b] =

{
1− p if b = −1

2(1−p)
p if b = 1

2p

.

Note that each E[ξi] = 0, so we are able to apply the Marcinkiewicz-Zygmund
inequality [9] with optimal constants [4, Theorem 10.3.2], which states that

1

2
√

2
E


√√√√mj∑

i=1

ξ2i

 ≤ E[Ξmj ] ≤ 2E


√√√√mj∑

i=1

ξ2i
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for all mj ≥ 1. We note that these constants are precisely half (on the left) and
twice (on the right) the corresponding constants from the Khintchine inequality;

this will lead us to looser bounds, which is why we considered the case of ej =
bj
2

separately. We have that

E


√√√√mj∑

i=1

ξ2i

 =

mj∑
k=0

(
mj

k

)
pk(1− p)mj−k

√
k

4p2
+

mj − k
4(1− p)2

.

For simplicity, assume that p ≤ 1
2 (the p > 1

2 case can be treated similarly); then
from the above we can write

√
mj

2(1− p)
≤ E


√√√√mj∑

i=1

ξ2i

 ≤ √mj

2p

from which it follows by the Marcinkiewicz-Zygmund inequality that

√
mj

4
√

2(1− p)
≤ E[Ξmj ] ≤

√
mj

p
.

Now, we would like to apply the Paley-Zygmund inequality again; to do so, we
must compute E[Ξ2

mj ]. We have

Ξ2
mj =

mj∑
i=1

ξ2i +

mj∑
i=1

mj∑
k=i+1

ξiξk

=⇒ E[Ξ2
mj ] =

mj∑
i=1

E[ξ2i ] +

mj∑
i=1

mj∑
k=i+1

E[ξi]E[ξk]

= mj ·
(

p

4p2
+

1− p
4(1− p)2

)
+

(
mj

2

)
· 02 =

mj

4p(1− p)
.

Thus for any ϑ ∈ [0, 1] we have

P
[
Ξmj > ϑ

√
mj

4
√

2(1− p)

]
≥ P

[
Ξmj > ϑE[Ξmj ]

]
≥ (1− ϑ)2

E[Ξmj ]
2

E[Ξ2
mj ]

≥ (1− ϑ)2
mj

32(1−p)2
mj

4p(1−p)
= (1− ϑ)2

p

8(1− p)
. (12)

How does this connect to fault attacks on CSIDH? Suppose that the jth key
entry is ej ∈ [1,

bj
2 ]; letting p =

ej
bj

, we can think of ξi as reporting the result

of the ith fault attack on ej , returning the positive result if the corresponding
isogeny is real, and the negative result if the isogeny is dummy.
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Let wj be the number of real isogenies detected; if we can express P[| wjmj −
ej
bj
| > 1

2bj
] in terms of the behaviour of Ξmj , we can lower bound our failure

probability. Note that

Ξmj =

∣∣∣∣wj2p
− mj − wj

2(1− p)

∣∣∣∣ =

∣∣∣∣ wj
2p(1− p)

− mj

2(1− p)

∣∣∣∣ =
mj

2p(1− p)

∣∣∣∣wjmj
− p
∣∣∣∣

and so ∣∣∣∣wjmj
− ej
bj

∣∣∣∣ > 1

2bj
⇐⇒ Ξm >

mj

4p(1− p)bj
=

mjbj
4ej(bj − ej)

.

Now, taking ϑ =

√
2mj

ej
in Equation (12) we obtain

P
[∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj

]
= P

[
Ξmj >

mjbj
4(bj − ej)ej

]
≥

(
1−

√
2mj

ej

)2
ej

8(bj − ej)

whenever ej ≤ bj
2 and 1 ≤ mj ≤ 1

2e
2
j . Similarly we find that when ej >

bj
2 we

have

P
[∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj

]
= P

[
Ξmj >

mjbj
4ej(bj − ej)

]
≥

(
1−

√
2mj

bj − ej

)2
bj − ej

8ej

whenever 1 ≤ mj ≤ 1
2 (bj − ej)2. We can unify these statements as

P
[∣∣∣∣wjmj

− ej
bj

∣∣∣∣ > 1

2bj

]
≥

(
1−

√
2mj

min{ej , bj − ej}

)2
min{ej , bj − ej}

8 max{ej , bj − ej}

for all ej ∈ {1, . . . , bj − 1}, provided that 1 ≤ mj ≤ 1
2 min{e2j , (bj − ej)

2}. Thus,
if

1 ≤ mj <
1

2
min{e2j , (bj − ej)

2}

(
1− 2

√
2 max{ej , bj − ej}
min{ej , bj − ej}

ε

)2

we are guaranteed that the attack will fail to correctly recover the jth key entry
with probability greater than ε, as required.

We can extend these results to the “average-case” (over uniformly random
key entries) by noting that the a priori probability that the jth key entry is any
particular value e∗j ∈ {1, 2, . . . , bj − 1} is 1

bj+1 ; then, we have the lower bound

P[We guess ej incorrectly] ≥ P
[
ej = e∗j

]
· P
[
We guess ej incorrectly

∣∣ ej = e∗j
]

≥


1

2(bj+1)

(
1−
√

2mj

bj

)2

if e∗j =
bj
2

min{e∗j ,bj−e
∗
j }

8(bj+1)max{e∗j ,bj−e∗j }

(
1−

√
2mj

min{e∗j ,bj−e∗j }

)2

otherwise

whenever mj ≤ 1
2min{e∗j , bj − e∗j}

2
. From there, one could perform an analogous

analysis to the worst-case case.
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3.4 Determining the Signs of the Key

In Section 2 we formulated the oracle O so that only information on the magni-
tude |ej | of the key can be gained, but remarked that some settings may allow
learning the sign of the key as well. In this section we introduce a modification
of the standard meet-in-the-middle attack based on Gray codes which can be
used to determine the sign of the key values when O has no ability to do so.

Let |e∗1|, . . . , |e∗n| be the magnitudes of the key values, learned through fault
attacks as in the previous sections, so that the true key ej satisfies ej ∈ {|e∗j |,−|e∗j |}
with some degree of probability. The standard meet-in-the-middle approach
would split the primes making up p into two batches; for the moment, say these
batches are BL = {`1, `2, . . . , `k} and BR = {`k+1, `k+2, . . . , `n} where k =

⌈
n
2

⌉
.

The following two sets of curves are considered based on BL and BR:

TL =
{

[`
(−1)s1 |e∗1 |
1 · · · `(−1)

sk |e∗k|
k ] ∗ E0 : si ∈ {0, 1}

}
,

TR =
{

[`
(−1)sk+1 |e∗k+1|
k+1 · · · `(−1)

sn |e∗n|
n ] ∗ EA : si ∈ {0, 1}

}
,

where E0 is the initial curve and EA is the public key. All curves in TL are
computed and stored in a table, and curves in TR are iterated through (but not
stored) until a collision with TL is found. When a match between the sets is
found at s∗1, s

∗
2, . . . , s

∗
n, the correct key is

e∗ = ((−1)s
∗
1 |e∗1|, . . . , (−1)s

∗
k |e∗k|,−(−1)s

∗
k+1 |e∗k+1|, . . . ,−(−1)s

∗
n |e∗n|).

Näıvely, computing all curves in the above sets TL and TR requires evaluating
the class group action 2k+2n−k times, using ideals whose product decomposition
contains

∑k
i=1 |e∗i | terms (for TL) or

∑n
i=k+1 |e∗i | terms (for TR). However, this

can be made more efficient by constructing the curves in a particular order. In
the following we optimize computing all curves in TL, and iteration through TR
can be optimized analogously.

Note that iterating through TL corresponds with iterating through {0, 1}k. If
the tuples (s1, . . . , sk) are ordered according to a length-k binary Gray code C,

we need only apply the class group element l
±2|e∗j |
j to the previously computed

curve, where j is the index which changes between the previous tuple and the
current one. This reduces the cost to

k∑
i=1

2τi|e∗i |κi (13)

where τ are the transition numbers of C—that is, τi is the number of times that
the ith bit flips in C—and κi is the cost of evaluating (E, `i) 7→ li ∗ E.

To get a better performing partition of the `j , we define the permutation σ
which satisfies

|e∗σ(1)|κσ(1) ≤ |e
∗
σ(2)|κσ(2) ≤ · · · ≤ |e

∗
σ(n)|κσ(n),
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order the `j according to σ, and then alternately assign the `σ(j) to BL and BR
so that

BL = {`σ(j) : j ≡ 1 (mod 2) and 1 ≤ j ≤ n},
BR = {`σ(j) : j ≡ 0 (mod 2) and 1 ≤ j ≤ n}.

Then, to iterate through TL and TR, we order the sign vectors s according to the
binary reflected Gray code, whose transition numbers are τ = (2k−1, 2k−2, . . . , 1).
It can be shown that iterating via σ and the reflected binary Gray code is op-
timal over all binary Gray codes. In the case of TL when all curves are stored,
one may optionally use any curve already computed to determine the next curve
rather than being limited to only the previously computed curve; such a method
of iteration would correspond to a spanning tree within the graph whose ver-
tex set is {0, 1}k and whose edges connect any two vertices which have a unit
basis vector difference. Even when allowing such algorithms to be used, it can
be shown that the above method using the reflected binary Gray code is still
optimal.

This gives a complete picture of our optimized version of the meet-in-the-
middle attack to determine the signs of the key given its magnitude. The question
now becomes how much more efficient is this method over the näıve meet-in-the-
middle approach, which is addressed in Section 4.

4 Simulation Results and Data for Parameters

4.1 Simulation Results

We simulated fault injection attacks on CSIDH-512 using Algorithms 2 and 3 and
various values for the bound vector b. For the unsigned dynamic setting, we used
three bound vectors from previous works: (1) the uniform vector (10, 10, . . . , 10)
given by Castryck et al. in [2], referred to as UD-Uniform; (2) the vector given
by Meyer, Campos, and Reith in [10], labeled UD-MCR; (3) the vector given
by Hutchinson, LeGrow, Koziel, and Azarderakhsh in [7], labeled UD-HLKA. In
the signed dynamic setting, we also used three different vectors: (1) the uniform
vector (5, 5, . . . , 5) given by Castryck et al. in [2], labeled SD-Uniform; (2) the
vector of Onuki, Aikawa, Yamazaki, and Takagi in [13], labeled SD-OAYT; (3)
the vector given by Hutchinson, LeGrow, Koziel, and Azarderakhsh in [7], labeled
SD-HLKA.

We implemented Algorithms 2 and 3 in Python and tested each of the above
vectors over 1000 randomly chosen secret keys, with each simulation using a
certainty level of 0.999. In each simulation we recorded the number of attacks
used to achieve certainty y for each y ∈ {0.001x+ 0.1 : x ∈ [0, 990] ∩ Z}.

Table 1 reports on the mean number of attacks used in our simulations for
each vector to reach a certainty level of 1%, 50%, 99%, and 99.9%. In particular,
for the unsigned setting we found that the mean number of faults required for the
attacker to reach 1% certainty was 15921 for HLKA, 12067 for MCR, and 10584
for Uniform, while reaching 99.9% certainty required a mean of 52092 attacks
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for HLKA, 39738 for MCR, and 35129 for Uniform. In contrast, this is a drastic
improvement over the attacks needed in the real-then-dummy setting (exactly∑
dlog(bj)+1e; see Section 3.1), in which the number of attacks required to reach

99.9% certainty increased by a factor of about 146 for HLKA, 116 for MCR, and
95 for Uniform. Reaching the same certainty levels in the signed setting requires
fewer attacks since the key is only learned up to sign and the bound vector entries
are typically smaller. Reaching a certainty level of 1% in the signed setting used
3039 faults for HLKA, 3552 for OAYT, and 2484 for Uniform, while a certainty
level of 99.9% needed 10734 faults on average for HLKA, 12447 for OAYT, and
8890 for Uniform. In the signed setting, the number of attacks used to learn the
key up to sign with 99.9% certainty increased by a factor of 40 for HLKA when
using a dynamic decision vector, a factor of 46 for OAYT, and of 30 for Uniform.

Appendix B gives plots on the means of the number of attacks used at each
threshold value for each bound vector, as well as corresponding histograms and
box plots.

Certainty: 1% 50% 99% 99.9%
∑
dlog(bj) + 1e

∑
bj

Unsigned
Setting

HLKA 15921 28865 45561 52062 356 815
MCR 12067 21872 34855 39738 342 763

Uniform 10584 19387 30760 35129 370 740

Signed
Setting

HLKA 3039 5708 9272 10734 263 388
OAYT 3552 6574 10741 12447 266 404

Uniform 2484 4667 7686 8890 296 370

Table 1. Mean number of attacks used to reach specified certainty thresholds for
various bound vectors over 1000 randomly generated private keys. For each bound
vector b = (b1, . . . , bn) the sums

∑n
j=1dlog(bj) + 1e (a sufficient number of attacks

to learn the key with 100% certainty in the real-then-dummy setting) and
∑n

j=1 bj (a
sufficient number of attacks to learn the key with 100% certainty when the decision
vector x is fixed) are also reported.

4.2 Upper Bounds

Table 2 contains the upper bounds on the number of faults required from Theo-
rem 3 at the four certainty levels 1%, 50%, 99%, 99.9% for the six bound vectors
listed here. At each certainty level these upper bounds are on the order of 3 to
5 times as large as the number of faults required in our simulations.

4.3 Performance of Gray Code Method

Here we compare the standard meet-in-the-middle approach to determining the
signs of the private key to the Gray code approach of Section 3.4. It is difficult to
analytically estimate the cost of the näıve method for iterating through the sets
TL and TR of Section 3.4 since the adversary is not obligated to use constant-time
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Certainty: 1% 50% 99% 99.9%

Unsigned
Setting

HLKA 76058 116125 200531 250326
MCR 58808 90067 158754 197264

Uniform 52022 79698 142154 176194

Signed
Setting

HLKA 15679 23981 42043 52270
OAYT 18177 27812 48157 60024

Uniform 13024 19980 35594 44104
Table 2. Upper bounds on the number of required faults to achieve certainty 1%, 50%,
99%, and 99.9% for six bound vectors, obtained using Theorem 3.

algorithms to construct the curves, and thus can use a permutation and strategy
which is optimized for the computed key magnitudes (see [7] for a discussion of
permutations and strategies); hence, we were not able to analytically compare
the cost of the Gray code method to the näıve method.

Instead, we estimated the cost of the näıve method as follows. Since for a
fixed key e the curves in TL each require roughly the same amount of work
to compute under the näıve method, the cost for computing all curves in TL
is approximately 2k times the cost of computing a single curve, and the latter

cost is that of performing the action (e, E) 7→
[∏k

i=1 l
ei
i

]
∗ E in non-constant

time. A similar statement holds for TR. To approximate this, we sampled 1000
random keys from the keyspace defined by the HLKA signed setting bound
vector from [7]. For each key, we found an optimal non-constant time strategy
(i.e., a strategy not employing dummy isogenies) and permutation using the
code publicly provided in [7], and estimated the cost of executing the optimal
strategy under the optimal permutation using the cost model of [7, Table 1].

Over the 1000 keys, the average cost of computing (e, E) 7→
[∏k

i=1 l
ei
i

]
∗ E was

about 150 000 many Fp multiplications, where we’ve assumed 1M = 0.8S and
ignored additions. The total cost of computing both TL and TR for HLKA is
then (237 + 236) · 1.5× 105 ≈ 254.87, assuming on average only half of TR needs
to be computed before a collision is found.

For particular values of b and κ, we can estimate the cost of method based on
Gray codes as follows. As before, let k =

⌈
n
2

⌉
. First note that since the ordering

based on Gray codes is optimal, we can upper bound the expected cost by instead
computing the expected cost when the ordering is such that BL = {`1, . . . , `k}
and BR = {`k+1, . . . , `n} and

b1(b1 + 1)

2b1 + 1
κ1 ≤

b2(b2 + 1)

2b2 + 1
κ2 ≤ · · · ≤

bk(bk + 1)

2bk + 1
κk, and

bk+1(bk+1 + 1)

2bk+1 + 1
κk+1 ≤

bk+2(bk+2 + 1)

2bk+2 + 1
κk+2 ≤ · · · ≤

bn(bn + 1)

2bn + 1
κn.
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Then, noting that in expectation only half of the right table will need to be
computed, we have

E[Gray code cost] ≤ Ee

 k∑
j=1

2 · 2k−j · |ej |κj +
1

2

n−k∑
j=1

2 · 2(n−k)−j · |ej+k|κj+k


=

k∑
j=1

2 · 2k−j · Ee[|ej |]κj +
1

2

n−k∑
j=1

2 · 2(n−k)−j · Ee[|ej+k|]κj+k

=

k∑
j=1

2 · 2k−j · bj(bj + 1)

2bj + 1
κj +

1

2

n−k∑
j=1

2 · 2(n−k)−j · bj+k(bj+k + 1)

2bj+k + 1
κj+k.

This cost only accounts for the “transition costs;” that is, the total costs of
moving from each element to the next within each table. To account for finding
the first curve in the table (which is done by using the näıve technique starting
from the base curve E), we would add the expected cost of evaluating the action

of [
∏k
i=1 l

|e∗i |
i ] and the expected cost of evaluating the action of [

∏n
i=k+1 l

|e∗i |
i ].

Again, because we cannot analytically determine these costs, we instead use
the experimentally-determined mean cost. Substituting the values of the κi and
bi using the cost model and bound vector of [7] (noting that these κi are not
the same as those from [7]) we arrive at an upper bound of 1.725 × 104 field-
multiplication-equivalent operations per table entry, with an average-case cost of
approximately 251.66 Fp multiplication-equivalent operations for computing TL
and TR. The bound on the expected cost of the Gray code method is approxi-
mately 88% less than the estimated expected cost of the näıve technique using
per-key optimized permutations and strategies.

5 Conclusions

Based on our analysis and the results of our simulations, it seems that using a
randomized decision vector severely reduces the amount of information an at-
tacker can gain by using fault attacks under the model we considered in this work.
Since using a dynamic decision vector over a real-then-dummy vector introduces
negligible overhead in the implementation of CSIDH and provides additional re-
sistance against fault injection attacks, it is our recommendation that all future
implementations of the CSIDH key establishment adopt a randomized decision
vector.
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A Bound Vectors

The bound vectors used in our simulations are given below for convenience.
SD-Uniform originates from the original CSIDH proposal [2]. SD-OAYT is the
SIMBA-3-8 vector given in [13]. Both UD-MCR and UD-Uniform originate from
[10], with UD-MCR being the vector B2 reported in [10]. The HLKA vectors are
those used in [7] (taken from the publicly available code).

UD-HLKA = [8, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,

18, 18, 17, 16, 15, 13, 13, 13, 13, 13, 12, 12, 11, 11, 11, 10, 11, 10,

10, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 6, 7, 7, 6, 6, 6, 6, 6, 6,

6, 5, 5, 5, 6, 5, 5, 5, 6, 4]

UD-MCR = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

UD-Uniform = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,

10]

SD-HLKA = [3, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6,

6, 7, 6, 6, 6, 6, 6, 5, 6, 5, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2]

SD-OAYT = [5, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 10, 10, 10, 10, 9, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1]

SD-Uniform = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
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B Box Plots, Histograms, and Graphs
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Fig. 1. Box plots depicting the distribution of the number of faults required to achieve
four certainty levels for three bound vectors in the unsigned setting and three bound
vectors in the signed setting, over 1000 trials.
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Fig. 2. Histograms depicting the distribution of the number of faults required to achieve
four certainty levels for three bound vectors in the unsigned setting and three bound
vectors in the signed setting, over 1000 trials.
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Fig. 3. Mean number of attacks required for each certainty threshold value for three
different bound vectors in both the unsigned (top) and signed (bottom) settings over
1000 trials. The shaded regions indicate standard deviation for each vector.
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