
Differential Power Analysis Attacks on Different
Implementations of AES with the ChipWhisperer Nano

Leah Lathrop
Technical University of Applied Sciences OTH Amberg-Weiden, Amberg, Germany,

Email: l.lathrop@oth-aw.de

Abstract—Side-channel attacks exploit information that is leaked
from hardware. The differential power analysis (DPA) attack
aims at extracting sensitive information that is processed by
the operations in a cryptographic primitive. Power traces are
collected and subsequently processed using statistical methods.
The ChipWhisperer Nano is a low-cost, open-source device that
can be used to implement and study side-channel attacks. This
paper describes how the DPA attack with the difference of
means method can be used to extract the secret key from
both an 8-bit and a 32-bit implementation of AES using the
ChipWhisperer Nano. The results show that although it is possible
to carry out the attack on both implementations, the attack on
the 32-bit implementation requires more traces than the 8-bit
implementation.

Keywords–Side-channel Analysis; Differential Power Analysis;
ChipWhisperer; Hardware Security.

I. INTRODUCTION
Cryptographic primitives are only as secure as the hardware

on which they are carried out. Hardware security has become
an essential part of cybersecurity. A hardware vulnerability can
allow an attacker to impair the security of a device severly. A
recent study showed that hardware attacks are a growing threat
for many companies. Of the 307 companies surveyed between
March 2019 and May 2019, 63 % experienced a breach due to
an exploited vulnerability in hardware in the last 12 months
[1]. Although hardware attacks have to be carried out in close
proximity to a device, there are many scenarios in which an
attacker can gain access. For example, Industrial Internet of
Things (IIoT) devices are frequently employed in remote areas
without supervision, providing the attacker with unhampered
access to the device [2]. Finding new hardware vulnerabilities
that can be exploited is paramount to increasing security. They
can thereby be mitigated before attackers find them.

Hardware attacks can be categorized as invasive or non-
invasive based on whether the device is damaged in the attack
process or not. Side-channel attacks (SCA) are non-invasive
attacks that exploit physical information leaking from various
indirect sources or channels. Sensitive information about a
cryptographic algorithm, e.g., the key or the implementation,
can be gained from the power consumed by the device,
electromagnetic radiation, or the time taken to complete a
computation [3]. Power analysis attacks are used to gain
sensitive information by monitoring the power consumption
of the device. There are three types of power analysis attacks
— simple power analysis (SPA) attacks, differential power
analysis attacks (DPA), and correlation power analysis (CPA)
attacks.

NewAE is a company founded by Colin O’Flynn, that aims
to raise awareness of SCA power analysis attacks by making

open-source tools for performing embedded hardware security
research widely available at low cost. The ChipWhisperer is an
open-source project which provides a standardized capture tool
for testing new power analysis algorithms. The ChipWhisperer
hardware consists of a target board and a capture board to
record power traces. Although a ChipWhisperer can be built
by anyone from scratch, NewAE technology sell their finished
products ready to use [4]. There are several models of the
ChipWhisperer. The most basic and low-cost model is the
ChipWhisperer Nano (CWN) [5]. Hardware attacks are often
assumed to be less accessible than software attacks because
they require more knowledge and monetary resources. The
CWN is a good counterexample to this myth.

The Advanced Encryption Standard (AES) is a widespread
block cipher. This paper will focus on carrying out DPA attacks
with the CWN on different implementations of the block
cipher AES. A detailed introduction to power analysis attacks
will be given in Section II. An explanation of the different
power analysis attacks will be given, so that the context of
DPA attacks can be better understood. An introduction to the
CWN will be given in Section III. The AES algorithm and the
different implementations will be outlined in Section IV. The
DPA attack on AES and the distinctions in the behavior of the
attack on the different implementations will be described in
Section V. This paper will be concluded in Section VI.

II. POWER ANALYSIS ATTACKS
Modern cryptography can be implemented as software or

hardware. Whichever form of implementation is chosen, inte-
grated circuits are used to carry out the individual operations.
Integrated circuits consist of semiconductor logic gates which
are constructed using transistors. The power consumption in
an integrated circuit is dynamic and dependent upon the oper-
ations that are taking place inside of the circuit. This can be
better understood when looking at a single gate. Figure 1 shows
an inverter circuit with a bypass capacitor. The table shows the
possible transitions that can occur between two clock cycles.
Depending on the transition, the power consumption can take
on one of four states. Power is only consumed when the states
change; the corresponding states are represented in the table
by P10 and P01 and represented by the violet and green arrows
in the diagram. There is obviously more than one gate in an
integrated circuit, but the basic principle remains the same.
These transitions are determined by the operations taking place
in the device and values that are being processed. Therefore,
the power consumption can be used to make deductions about
the algorithms and values that are being processed.

A trace is a series of power consumption measurements
taken during a cryptographic operation [6]. Patterns that result

1



Vin Vout

Vin

0→0

0→1

1→0

1→1

Vout

1→1

1→0

0→1

0→0

P

P11

P10

P01

P00

Vcc

P10 P01

Figure 1. Example of a CMOS inverter circuit [3].

0 100 200 300 400 500 600 700

−0.4

−0.2

0

0.2

0.4

0.6

Sample Number

A
D

C
M

ea
su

re
m

en
t

V
al

ue
(a

.u
.)

12 10
...

Figure 2. Power trace of an empty for-loop with 10 iterations followed by
several iterations of an endless while-loop.

from the operations in a program can clearly be seen in power
traces, an example is shown in Figure 2. Measurement values
are reported in arbitrary unit (a. u.), as the CWN capture
section does not report any unit for the measured power.
The main components of the program from which this trace
was taken were an empty for-loop with 10 iterations and an
endless while-loop after it. The iterations of the for-loop at the
beginning of the program are clearly visible and can even be
counted, as shown by the green arrows. The right half of the
image clearly shows the rhythmic spikes from the iterations of
the while-loop.

As mentioned in the introduction, there are three main
types of power analysis attacks — SPA, DPA, and CPA.
An SPA attack is carried out by “directly interpreting power
consumption measurements collected during cryptographic op-
erations” [6]. A single power trace can reveal information
about timing, device attributes, algorithm structure, or other
properties of computation [7].

DPA and CPA attacks can be used to extract cryptographic
keys. Beside the large power differences that are exploited in
an SPA attack, there are effects correlated to the data values
that are being manipulated. These are frequently overshadowed
by measurement errors and other noise. However, it is still

possible to extract the key or other sensitive information using
statistical processing methods [6]. The DPA and CPA attacks
both take advantage of these correlations but the methods that
are used for statistical processing are different.

There is an additional subcategory of power analysis
attacks called template attacks. They are categorized as a
subcategory of DPA attacks by Kocher in [7] and a more
advanced type of SPA attack by Tehranipoor in [3]. The
attacker needs an exemplar of the target device to carry out the
attack. A profile of the target device is created. This enables
the attacker to extract the victim’s secret key with only a few
traces or even a single trace. The pre-processing margin for this
type of attack is very large and may require tens of thousands
of power traces [8].

The attacks are suited for different purposes. SPA can be
used to deduce general information about an algorithm. It
could, e.g., be used to surmise implementation details about a
primitive in a cryptographic library that is not open-source. The
DPA, CPA, and template attacks are used to retrieve sensitive
information including cryptographic keys from the device. The
template attack only needs very few or only a single trace,
but attackers need an instance of the device they are attacking
and an abundance of pre-processing is required. DPA and CPA
attacks can be used to extract cryptographic keys from devices
when there is an opportunity to gain many power traces during
the attack.

III. THE CHIPWHISPERER NANO
The CWN board is shown in Figure 3. It consists of a

section that contains the target, shown in the red rectangle and
a compartment that carries out the measurement for the traces,
shown in the blue rectangle. The target is a STM32F030F4P6
microcontroller unit (MCU) referred to as MCUtar and pointed
to by the magenta arrow. The red arrow in the target section
is pointing to a shunt resistor which is needed to measure the
current going into the target. The blue arrow is pointing to
an operational amplifier which is part of an inverting amplifier
circuit for the voltage measurement from the shunt resistor. The
green arrow is pointing to an 8-bit analog to digital converter
(ADC) [9]. The output of the operational amplifier is the input
of the ADC. The orange arrow in the measurement section
is pointing to another MCU referred to as MCUmeas. The
processed values from the ADC are input to MCUmeas which is
used as the USB interface and for sample memory storage [10].
The white arrow is pointing to a positive edge triggered flip-
flop. This is needed so that the user can configure the number
of samples needed for a trace. The ADC starts sampling in the
first clock cycle after the rising edge of the flip-flop output.

MCUmeas is supplied with a clock signal from a 12 MHz
crystal oscillator. The teal arrow is pointing to a low fanout
buffer which can be used to replicate a clock signal to supply
other components with it. The fanout buffer has an internal
2-to-1 multiplexer. The inputs of the multiplexer are two
potential clock signals. The clock signal to be used can be
selected via the selection input of the multiplexer. The 12 MHz
crystal oscillator clock is at one of the inputs, and the other
input can potentially be used for an external clock signal. The
fanout buffer can replicate the clock signal up to eight times,
but only three of the outputs are used in this circuit. One of
the outputs goes to MCUtar, the other goes to the ADC, and
the third goes to a pin that is configured as the clock input for
USART communication in MCUmeas. All the measurements

2



taken in this paper were carried out with the 12 MHz MCUmeas
clock. Considering the ADC and MCUtar have the same clock
cycle, only one sample per clock cycle is needed.

The CWN uses a technique called synchronous sampling
that only requires very few samples. The operations in a target
device, during which the power is examined, occur relative to
a clock cycle. When using a sample clock perfectly locked to
the device clock, the alignment of time between the operations
and sampling is perfect. This allows the necessary information
to be gathered with less samples. When the clock cycles are
not locked they are asynchronous. Asynchronous sampling
requires more samples to be taken because there is a changing
delay between the device clock and the next sample point
[11]. When a power analysis attack is carried out with an
oscilloscope, asynchronous sampling is used; the oscilloscope
has an internal time-base, which defines when samples of the
power trace are taken. The CWN was intentionally designed
for the measurement ADC and the target device to share
a clock signal. Some devices have a clock signal readily
available and an attacker can easily tap into it to carry out
the attack. If this is not the case, there are algorithms with
which the clock cycle can be reconstructed as described by
O’Flynn in [11].

Glitching is another type of SCA that involves disrupting
the supply power to the target device. An example of a
disruption could be the removal of power for a very short
period of time. Among other purposes, this can be used to skip
instructions, e.g., to bypass authentication or the initialization
of security features [12]. The violet arrow in Figure 3 is
pointing to a transistor that is part of a circuit that can be
used for crowbar glitching with approximately 10 ns resolution
on width and offset. Crowbar glitching “aggresively shorts the
power supply to the device to generate faults” [13]. This causes
a ringing that propagates into the on-chip power distribution
[13]. This paper will not focus on glitching attacks and they
will not be elaborated further. However, it is important to
mention that these attacks can be carried out with the CWN
to show its full potential and to emphasize how powerful it is
at such a low price. The CWN can be acquired at the official
European distributor Mouser for just under ¤ 50 [14].

Finally, it is important to mention that the CWN can also
be connected to other external targets. This can be done by
removing the target section of the CWN along the perforated
line which is pointed to by the yellow arrow. Alternatively,
another target can be attacked without damaging the CWN by
carrying out certain configurations [15].

IV. ADVANCED ENCRYPTION STANDARD
Rijndael is a symmetric block cipher developed by Vincent

Rijmen and Joan Daemen. It was chosen as the successor of
the Data Encryption Standard (DES) and named AES by the
National Institute of Standards and Technology (NIST). AES
is a subset of the Rijndael block cipher [16]. NIST selected
three members of the Rijndael family each having a 128-
bit block size but with an optional 128-bit, 192-bit, or 256-
bit key size. AES-128 has a 128-bit key length. The steps
involved in AES are shown in the flow chart in the left half
of Figure 4. Internally, the AES operations are carried out on
a two dimensional array of bytes called the state. The input
to the algorithm is the plaintext, arranged into the 4x4 state
matrix. The 128-bit key can also be arranged into a 4x4 matrix
of bytes.

Measurement Target

MCUmeas MCUtar

Figure 3. ChipWhisperer Nano board, adapted from [15].

Four different types of steps are involved in AES. During
the AddRoundKey step the elements of the state matrix are
combined with the elements of the round key using bitwise
XOR. The round key is derived from the key using Rijndael
key scheduling algorithm and is different for each round. The
very first round key is simply the key. There are 9, 11, and
13 rounds corresponding to the 128-bit, 192-bit, and 256-bit
key sizes respectively, adding up to 10, 12, or 14 rounds when
adding the final round. During the SubBytes operation, the
multiplicative inverse of a byte is calculated in the Galois Field
GF(28). A byte that has the value 0 is simply mapped to 0. This
step is followed by an affine transformation [17]. Computation
time can be saved in the SubBytes step by precomputing all
256 possible values of the byte to create a substitution box
(SBOX) and looking up the values each time they are needed.
During the ShiftRows step, each row is shifted cyclically to
the left by a specified offset as shown in Figure 5. The offsets
are 0, 1, 2, and 3 for rows 0, 1, 2, and 3 respectively. The
rows are shifted so that each column is composed of bytes of
each row. MixColumns is a transformation that operates on
each column of the state matrix. Equation (1) shows that the
columns are considered polynomials over GF(8) and multiplied
modulo x4+1 with a polynomial [17]. Equation (2) shows that
this can be rewritten as a matrix multiplication [17].

d(x) = k(x) · c(x)(modx4 + 1)

k(x) = 3 · x3 + 1 · x2 + 1 · x+ 2
(1)

d0,0d1,0
d2,0
d3,0

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·
c0,0c1,0
c2,0
c3,0

 (2)

There are different modes of AES to combine blocks of
data when the it is longer than 128 bits. The most well-
known modes of operation include the electronic codebook
mode (ECB) and counter mode (CTR). In the ECB mode the
plaintext is divided into blocks which are encrypted separately.
The resulting ciphertexts are simply concatenated. This mode
of operation does not hide patterns very well. In the CTR
mode a nonce is generated that is incremented by one with
the encryption of every block. The nonce is encrypted with
AES and the XOR operator is used to combine the encrypted
number with the block. All attacks that are described in this

3



AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

SubBytes

AddRoundKey

plaintext

ciphertext

key

9,
11

,1
3

ro
un

ds

round
key

final
round
key

p0,0 k0,0

SBOX

...
Figure 4. Flow chart of encryption in the AES algorithm, with emphasis on

the steps needed for the DPA attack.

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

c0,0 c0,1 c0,2 c0,3

c1,0 c1,1 c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

c3,0 c3,1 c3,2 c3,3

ShiftRows

no shift

shift 1

shift 2

shift 3

Figure 5. ShiftRows step in AES encryption.

paper will be carried out with plaintexts that are precisely 16
bytes long, so no mode of operation is necessary.

Varying implementations can be used to optimize the use
of the resources of different architectures. During the design
of AES, Rijmen and Daemen considered the performance of
the primitive on an 8-bit processor, on which AES encryption
can simply be programmed by implementing the different
steps as described above. The different steps of the round
transformation can be combined into lookup tables called T-
tables. Equation (3) shows the combination of the individual
steps into one equation. In the equation b is the output of the
step SubBytes, c is the output of the step ShiftRows and d
is the output of the step MixColumns. The variables i and j
refer to the index of the rows and columns respectively. A
table can be generated for each of the resulting parts of the
equation T0 to T3 by precomputing the values for all possible
input values 0 to 255. In total there will then be four T-tables
that together occupy a total of 4 kB. The implementation is
then reduced to 16 table lookups and 16 XOR operations. 12
XOR operations are needed to combine the lookup values,
and 4 XOR operations are needed for the AddRoundKey step.
This allows the full use of the resources offered by a 32-bit
architecture and accelerates the computation [17].

bi,j = SBOX[ai,j ]c0,jc1,j
c2,j
c3,j

 =

b0,j+0

b1,j+1

b2,j+2

b3,j+3


d0,jd1,j
d2,j
d3,j

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·
c0,jc1,j
c2,j
c3,j


T0 =

211
3

 · SBOX[a0,j+0]

T1 =

321
1

 · SBOX[a1,j+1]

T2 =

132
1

 · SBOX[a2,j+2]

T3 =

113
2

 · SBOX[a3,j+3]

d0,jd1,j
d2,j
d3,j

 = T0 + T1 + T2 + T3

(3)

V. DPA ATTACKS ON AES 128
A tutorial for a DPA attack on an 8-bit implementation

of AES is provided by NewAE technology [18]. The 8-bit
implementation of AES that is used for the tutorial is called
TinyAES [19].

A DPA attack requires an element of a cryptographic prim-
itive to correlate with the power consumption. Attackers must
be able to make a hypothesis about the sensitive information
they want to extract, e.g., the secret key, based on that element.
The element of AES that correlates to the power consumption
is the Hamming weight of the output of the SBOX operation
after the very first SubBytes step. The first two steps that
are interesting for this are emphasized in lilac and green in
Figure 4. In these steps, the individual bytes of the plaintext are
combined with the bytes of the key using an XOR operation.
The input is our plaintext, which is known, and the key is the
sensitive information that is to be extracted.

The correlation of the Hamming weight of the SBOX out-
put and the power consumption can be shown. The correlation
will be present at the sample points at which operations are
taking place for the specific bytes that are being processed. A
group of k traces with n samples is collected by encrypting
random plaintexts. The plaintexts and the key are both known
during this investigation. The Hamming weight of the output
of the SubBytes step is computed for each trace using the
plaintext that was encrypted when generating the trace. Each
trace is sorted into one of nine groups based on the resulting
Hamming weight of the SBOX operation. The average of
the samples between the traces within each group can be

4



0 1,000 2,000 3,000 4,000 5,000

−0.4

−0.3

−0.2

−0.1

0

Sample Number

A
D

C
M

ea
su

re
m

en
t

V
al

ue
(a

.u
.)

Figure 6. Example of a power trace of an encryption carried out with
TinyAES.

calculated. Let b be the number of traces in one group and
si,j be a sample where i is the trace number in a group
i ∈ {0, 1, ..., b − 1} and j is the sample number within a
trace j ∈ {0, 1, ..., n − 1}. In each group, the average trace
A = {a0, ..., an−1} is calculated where each element can be
calculated using Equation (4). Pearson’s correlation coefficient
is used to evaluate the linearity between the Hamming weight
and the average power traces of each Hamming weight group.
The correlation coefficient with the highest absolute value is
the sample point which has the best linear relationship between
the Hamming weight and the power consumption.

aj =
1

b

b−1∑
i=0

si,j (4)

The investigation to find the correlation between the Ham-
ming weight and power consumption was carried out with
the CWN using 1,000 traces with 5,000 samples each. An
example of a trace is shown in Figure 6. The best correlation
was found at sample 373 with a near perfect positive cor-
relation of 0.9976. Figure 7 shows all of the traces plotted
between samples 350 and 400 in different shades of gray that
correspond to different Hamming weights. The traces with
the lowest Hamming weight of zero are shown in the darkest
shade of gray and the shades become lighter as the Hamming
weight increases. Figure 8 shows point 373 more closely. The
correlation is clearly shown as the colors start at their lightest
shades of gray at the top and get darker as the power decreases.
Figure 9 shows a clear linear relationship between the mean
of the samples at point 373 in each Hamming weight group
and the Hamming weights [20].

The ingredients of this DPA attack will be the plaintexts
and the power traces and the goal is to extract the key. A
scenario in which the key and the varying plaintexts are known
will be described first to show how the correct key can be
identified during the attack. Random plaintexts are generated.
If the first bit in byte 0 of the plaintext is 1, then the byte
will be set to 0xFF and it will otherwise be set to 0x00. These
plaintexts are encrypted and traces are recorded. The traces are

360 365 370 375 380
Sample Number

−0.2

−0.1

0.0

0.1

0.2

0.3

A
D

C
M

ea
su

re
m

en
tV

al
ue

(a
.u

.)

Figure 7. Power traces of TinyAES encryptions colored shades of black by
their Hamming weight .

373
Sample Number

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

A
D

C
M

ea
su

re
m

en
tV

al
ue

(a
.u

.)

Figure 8. Power traces of TinyAES encryptions colored shades of black by
their Hamming weight.

then sorted into two groups based on the value of byte 0 of the
plaintext. The Hamming weight of the output of byte 0 of the
SBOX operation will be different for the two groups but the
same within each group. The mean of the individual points
is calculated between the traces, in the same way as it was
carried out to find the point of best correlation. This generates
two average traces, one trace for each group. The individual
sample points in the two average traces are subtracted from
each other. There will be spikes where the Hamming weight
correlates with byte 0. This experiment was carried out with
the CWN and the resulting diagram is shown in Figure 10.
The large spike is likely to be the very first SubBytes step in
the AES algorithm as highlighted in Figure 4 for byte 0. The
smaller spikes are other steps in the AES algorithm where

5



0 2 4 6 8

−4

−3

−2

−1

0

·10−2

Hamming Weight

A
ve

ra
ge

A
D

C
M

ea
su

re
m

en
t

(a
.u

.)

Figure 9. Hamming weight vs. average ADC measurement at point 373 of
1,000 power traces of encryptions with TinyAES.

0 1,000 2,000 3,000 4,000 5,000

−2

0

2

4

6
·10−2

Sample Number

D
iff

er
en

ce
of

M
ea

ns
(a

.u
.)

Figure 10. Difference of means of two average traces that were calculated
from two groups of traces with different Hamming weights of byte 0.

the Hamming weight and the power consumption of byte 0
correlate such as later times the AddRoundKey and SubBytes
steps are carried out on byte 0 [21].

The two groups do not need to be formed by the Hamming
weight of a whole byte. A single bit of the SBOX output is
sufficient for the sorting process. This can be understood best
by considering the Hamming weights of all 4-bit numbers as
shown in Table I. The numbers can be sorted into groups
based on the value of a single bit, the most significant bit
(MSB) is used in the table. Any bit can be used. If a bitwise
rotation of each of the numbers is performed by the index
of the bit that is to be used and the numbers are reordered,
this would result in the original sequence. Therefore, the same
groups would be formed. The table shows that the average

Hamming weight for group 0 is lower than group 1. This
principle can be scaled to the 8-bit numbers that result from the
SBOX operation resulting from the step SubBytes. Considering
the linear correlation between the power consumption and the
Hamming weight, this means the average power consumption
of the traces in group 0 is lower than group 1 if there is a
positive correlation at a sample point. If there is a negative
correlation, there is still a difference. However, the power of
group 0 would be higher than group 1.

number10 number2 Hamming
weight

group

0 0000 0 0
1 0001 1
2 0010 1
3 0011 2 average Hamming
4 0100 1 weight = 1.5
5 0101 2
6 0110 2
7 0111 3

8 1000 1 1
9 1001 2
10 1010 2
11 1011 3 average Hamming
12 1100 2 weight = 2.5
13 1101 3
14 1110 3
15 1111 4

TABLE I. Explanation of differences in average Hamming weights when
4-bit values are sorted into two groups by the MSB.

The characteristic described above can be used to verify
whether a hypothesized key byte is correct. A key can be
guessed and combined with the known plaintext using the
XOR operation and looking up the SBOX value as shown in
green and lilac in Figure 4. The traces will then be sorted
into two groups based on one chosen bit of the SBOX output,
e.g., the MSB. If a key byte is guessed incorrectly, the traces
will be categorized into the incorrect groups and the average
power consumption will approximately be the same for both
groups. Therefore, there will be no large differences when
subtracting them. For each of the 16 bytes of the key there
are 256 possible values. One key byte will be attacked at a
time. All 256 possible values will be guessed for each key
byte. The maximum value of each of the 256 differences will
be recorded. The largest maximum difference value is the most
probable value of the key byte. These steps are carried out for
all bytes to evaluate the entire key. The attack was carried out
successfully on the CWN for the TinyAES implementation
using 2,500 traces with 5,000 samples each. Figure 11 shows
the differences of the averages for the first three correct byte
guesses of the key [22]. The method of subtracting the averages
to verify a key guess is known as the difference of means
method.

The tutorial was extended by a function to evaluate how
many traces are necessary to carry out the attack successfully.
2,500 power traces were collected for the attack on TinyAES
on the CWN. The attack was then carried out multiple times,
starting with only 100 traces and increasing the number of
traces in intervals of 100. The guessed key was saved for
every attack. After all the attacks were carried out, the keys
were compared to the correct key to see how many bytes
were guessed correctly. The green line in Figure 12 shows
the number of correct key bytes as a function of traces used

6



0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5
·10−2

Sample Number

D
iff

er
en

ce
of

M
ea

ns
(a

.u
.)

Key Byte 0
Key Byte 1
Key Byte 2

Figure 11. Difference of means for correct key bytes from the DPA attack
on TinyAES.

0 500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

Number of Traces

C
or

re
ct

K
ey

B
yt

es

TinyAES
MbedTLS

Figure 12. Number of traces vs. correctly guessed key bytes.

during the attacks for TinyAES. The diagram shows that all
of the 16 bytes in the key were guessed correctly using 1,000
traces. Therefore, the CWN only needs approximately 1,000
traces for the attack.

In addition to the tutorial, a 32-bit implementation was
also attacked. The AES implementation that is part of the
MbedTLS library of cryptographic primitives was used for the
32-bit implementation. MbedTLS is a cryptographic library
frequently used for embedded applications [23].

As described in Section IV, the resources are used more
efficiently using T-tables resulting in an acceleration of the
algorithm in comparison to the 8-bit implementation. This
is reflected in the trace of an AES Encryption, shown in
Figure 13. The trace shows 5,000 samples. However, it is
clearly visible that the encryption is finished after only about
2,000 samples and then it runs into a while-loop and stays

0 1,000 2,000 3,000 4,000 5,000

−0.4

−0.2

0

0.2

0.4

Sample Number

A
D

C
M

ea
su

re
m

en
t

V
al

ue
(a

.u
.)

Figure 13. Example of a trace of an AES encryption using MbedTLS.

there waiting for the next plaintext. Therefore, all of the traces
needed to understand the behavior of the power consumption
of the implementation and carry out the attack were generated
using only 2,000 samples.

The first step in analyzing the 32-bit implementation of
AES was to check the correlation because this shows if the
attack is even possible. The same number of traces was used
for the evaluation of the correlation for TinyAES and AES
in MbedTLS to achieve results that can be compared. As
explained above only 2,000 samples per trace were used for the
evaluation of AES from MbedTLS. The power consumption
correlated with the Hamming weight best at point 180 with
a correlation coefficient of -0.9748. The absolute value of
this correlation coefficient is lower than that of TinyAES. In
contrast to the attack on TinyAES, the correlation is negative.
However, this does not affect the attack because the groups of
traces will still have different average power consumption. At
that sample point, the group with the lower average Hamming
weight will have the higher average power consumption.
Figure 14 depicts all of the traces sorted into groups and
plotted into the same plot using a different shade of gray
for each Hamming weight. The darkest and lightest shades
of gray represent the lowest and highest Hamming weights
respectively. The colors become lighter as the power decreases,
showing a negative correlation. This has no impact on the
attack. The change in colors is clearly visible. However, the
differences between the darker colors and the lighter colors
are not as distinct as in Figure 8. Figure 15 shows the means
of the power consumption at point 180 of the power trace as
a function of Hamming weight. It is clear that the line is not
as linear as the line in Figure 9.

The attack was carried out successfully on the 32-bit
implementation of AES, but more traces were needed than for
the attack on TinyAES. The number of traces was increased
to 5,000 traces after the attack was not completely successful
with only 2,500 traces. The violet line in Figure 12 shows that
more traces were needed to attack MbedTLS than TinyAES.
The diagram shows that 2,800 traces were required before
all of the key bytes were guessed correctly. It can also be

7



180
Sample Number

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

A
D

C
M

ea
su

re
m

en
tV

al
ue

(a
.u

.)

Figure 14. Power traces of MbedTLS AES encryptions colored in shades of
black by their Hamming weight.

0 2 4 6 8

0.2

0.205

0.21

0.215

Hamming Weight

A
ve

ra
ge

A
D

C
M

ea
su

re
m

en
t

(a
.u

.)

Figure 15. Hamming weight vs. average ADC measurement at sample point
180 of power traces of encryptions with MbedTLS AES.

observed that the number of guessed key bytes sometimes
decreased after a greater number of bytes were guessed in
the previous interval with less traces. The number of correctly
guessed key bytes decreased from 11 when using 600 traces
to 10 when using 700 traces. This behavior and the increased
number of traces that were needed can be attributed to the
poor correlation compared to TinyAES. Considering the poor
correlation, the average power between the groups is not as
distinct as a perfect correlation. Therefore, different power
traces make different contributions to the average that causes
disruption. The inferior correlation in comparison to TinyAES
comes from the difference in the implementation. The bytes
are not processed individually but instead are looked up in the
T-tables along with other values.

VI. CONCLUSION AND FURTHER WORK
Hardware security is an increasing concern. The security

of cryptographic primitives is limited by the hardware on
which they are carried out. It is essential to identify hardware
vulnerabilities and mitigate these accordingly to prevent an
attacker from exploiting them. SCA attacks exploit physical
information that leaks from hardware to gain information
about cryptographic operations that are taking place inside
of a device. The power consumption of the device is one
source of information leakage. DPA attacks can be used to
extract sensitive information, e.g., secret cryptographic keys.
As shown in this paper, these can be carried out and studied
at low cost using the CWN. DPA attacks can be carried out
on both 8-bit and 32-bit implementations, but an attack on the
latter requires more traces due to poor correlation.

There are many more attacks that can be studied. The
investigation carried out in this paper on AES implementations
can be extended by attempting the attack on more crypto-
graphic libraries for example wolfSSL [24]. An attack on
a cryptographic library that is not open source such as X-
CUBE-CRYPTOLIB by STM would be even more interesting
considering the information about the implementation is not
provided to the public [25]. Information about the implementa-
tion could be gained by comparing the traces of the non-public
implementation to that of an open-source library.

SHA-256 HMACs are widely used, e.g., for authentica-
tion purposes in cryptographic protocols. A DPA attack on
SHA-256 HMACs is introduced by Belaı̈d et al. [26]. The
cryptographic secret is extracted by using several partial DPA
attacks and subsequentially gathering the information needed
to extract the whole secret. It would be interesting to see how
far this attack can be implemented and carried out on the
CWN.

REFERENCES

[1] “BIOS Security – The Next Frontier for Endpoint Protection,” 2019,
URL: https://www.dellemc.com/ja-jp/collaterals/unauth/analyst-reports/
solutions/dell-bios-security-the-next-frontier-for-endpoint-protection.
pdf [accessed: 2020-07-27].

[2] M. Jakubowski, P. Falcarin, C. Collberg, and M. Atallah, “Software
protection,” IEEE Software, vol. 28, pp. 24–27, 03 2011.

[3] M. Tehranipoor and S. Bhunia, Hardware Security A Hands-On Learn-
ing Approach. Elsevier, 2019.

[4] “About,” newAE Website URL: https://www.newae.com/about [ac-
cessed: 2020-06-16].

[5] “Cw1101: Chipwhisperer-nano product datasheet,” URL: https://media.
newae.com/datasheets/NAE-CW1101 datasheet.pdf [accessed: 2020-
06-16].

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Ad-
vances in Cryptology — CRYPTO’ 99, ser. Lecture Notes in Computer
Science. Springer, August 1999, pp. 388–397.

[7] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential
power analysis,” J. Cryptographic Engineering, vol. 1, pp. 5–27, 04
2011.

[8] “Template attacks,” URL: https://wiki.newae.com/Template Attacks
[accessed: 2020-06-20].

[9] “Adc1173 8-bit, 3-volt, 15msps, 33mw a/d converter,” URL: https://
www.ti.com/lit/ds/symlink/adc1173.pdf [accessed: 2020-06-20].

[10] “Nae-cw1101-04 cwnanosch,” URL: https://github.com/newaetech/
chipwhisperer/blob/master/hardware/capture/chipwhisperer-nano/
NAE-CW1101-04\ CWNANOSCH.pdf [accessed: 2020-06-20].

[11] C. O’Flynn and Z. Chen, “Synchronous sampling and clock recovery of
internal oscillators for side channel analysis and fault injection,” Journal
of Cryptographic Engineering, vol. 5, pp. 53–69, 2014.

8



[12] T. Roth, “Trustzone-m(eh): Breaking armv8-m’s security,” Decem-
ber 2019, URL: https://media.ccc.de/v/36c3-10859-trustzone-m eh
breaking armv8-m s security#t=0 [accessed: 2020-06-20].

[13] C. O’Flynn, “Fault injection using crowbars on embedded systems,”
IACR Cryptol. ePrint Arch., vol. 2016, p. 810, 2016.

[14] “Nae-cwnano,” URL: https://www.mouser.de/ProductDetail/NewAE/
NAE-CWNANO?qs=PzGy0jfpSMvY70QksxQLsA%3D%3D
[accessed: 2020-07-03].

[15] “Cw1101 chipwhisperer-nano,” URL: https://wiki.newae.com/
CW1101 ChipWhisperer-Nano [accessed: 2020-06-16].

[16] “Advanced encryption standard (aes),” November 2001, URL: https://
nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf [accessed: 2020-06-
20].

[17] J. Daemen and V. Rijmen, The Design of Rijndael, 2nd ed. Springer-
Verlag Berlin Heidelberg, 2020.

[18] “Differential power analysis,” documentation of the DPA Attack Tuto-
rials URL: https://chipwhisperer.readthedocs.io/en/latest/tutorials.html#
differential-power-analysis [accessed: 2020-06-20].

[19] “Tiny aes in c,” URL: https://github.com/kokke/tiny-AES-c [accessed:
2020-06-20].

[20] “Introduction to dpa & hw assumption,” URL: https://chipwhisperer.
readthedocs.io/en/latest/tutorials/pa dpa 1-openadc-cwlitearm.html#
tutorial-pa-dpa-1-openadc-cwlitearm [accessed: 2020-06-20].

[21] “Large hw swings,” URL: https://chipwhisperer.readthedocs.
io/en/latest/tutorials/pa dpa 2-cwnano-cwnano.html#
tutorial-pa-dpa-2-cwnano-cwnano [accessed: 2020-06-20].

[22] “Advanced encryption standard differential power analysis attack,”
URL: https://chipwhisperer.readthedocs.io/en/latest/tutorials/pa dpa
3-cwnano-cwnano.html#tutorial-pa-dpa-3-cwnano-cwnano [accessed:
2020-06-20].

[23] “Mbed os reference book,” URL: https://os.mbed.com/docs/mbed-os/
v5.15/reference/index.html [accessed: 2020-07-03].

[24] “wolfssl,” URL: https://www.wolfssl.com/ [accessed: 2020-07-03].
[25] “Stm32 cryptographic firmware library software expansion for

stm32cube,” URL: https://www.st.com/en/embedded-software/
x-cube-cryptolib.html [accessed: 2020-07-03].

[26] S. Belaı̈d, L. Bettale, E. Dottax, L. Genelle, and F. Rondepierre, “Dif-
ferential power analysis of hmac sha-2 in the hamming weight model,”
in International Conference on E-Business and Telecommunications, 07
2013.

9


