
Indistinguishability Obfuscation from Circular Security

Romain Gay*

IBM Zurich
romain.rgay@gmail.com

Rafael Pass�

Cornell Tech
rafael@cs.cornell.edu

September 8, 2020

Abstract

We show the existence of indistinguishability obfuscators (iO) for general circuits assuming
subexponential security of:

� the Learning with Error (LWE) assumption (with subexponential modulus-to-noise ratio);

� a circular security conjecture regarding the Gentry-Sahai-Water’s (GSW) encryption scheme.

More precisely, the circular security conjecture states that a notion of leakage-resilient security
(that we prove is satisfied by GSW assuming LWE) is retained in the presence of an encryption
of the secret key.

Our work thus places iO on qualitatively similar assumptions as (unlevelled) FHE, for which
known constructions also rely on a circular security conjecture.

*Work done in part while at Cornell Tech
�Supported in part by NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267,

DARPA SIEVE award HR00110C0086, and a JP Morgan Faculty Award. This research is based upon work supported
in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2019-19-020700006. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

1

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding its implementation
details (making it hard to “reverse-engineer”), while preserving its functionality (i.e, its input/output
behavior). In recent years, the notion of indistinguishability obfuscation (iO) [BGI+01, GGH+13b]
has emerged as the central notion of obfuscation in the cryptographic literature: roughly speaking,
this notion requires that obfuscations iO(Π1), iO(Π2) of any two functionally equivalent circuits Π1

and Π2 (i.e., whose outputs agree on all inputs) from some class C (of circuits of some bounded size)
are computationally indistinguishable.

On the one hand, this notion of obfuscation is strong enough for a plethora of amazing applications
(see e.g., [SW14, BCP14, BZ14, GGHR14, KNY14, KMN+14, BGL+15, CHJV14, KLW15, CLP15,
BPR15, BPW16, BP15].) On the other hand, it may also plausibly exist, whereas stronger notion of
obfuscations have run into strong impossibility results, even in idealized models (see e.g., [BGI+01,
GK05, CKP15, Ps16, MMN15, LPST16]) Since the original breakthrough candidate constuction
of an iO due to Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13b], there has been
an intensive effort toward obtaining a construction of iO based on some form of well-studied/nice
assumptions. The original work [GGH+13b] provided a candidate construction based on high-degree
multilinear maps (MLMs) [GGH13a, CLT13, GGH15, CLT15]; there was no proof of security based
on an intractability assumption. [PST14] provided the first construction with a reduction-based proof
of security, based on a strong notion of security for MLMs, similar to a sort of “Uber assumption”.
[GLSW14] provided a construction based on a more concrete assumption relying on composite-order
MLMs. Unfortunately, both assumptions have been broken for specific candidate constructions of
MLMs [CHL+15, MF15].

iO from FE or XiO. Subsequently, several works have been constructing iO from seemingly
weaker primitives, such as Functional Encryption (FE) [AJ15, BV15] or XiO [LPST16], while only
using standard assumptions, such as Learning with Error (LWE). For both constructions, we actually
need to rely on subexponentially-secure constructions of either FE or XiO, as well as subexponential
security of LWE. Let us recall the notion of XiO as it will be useful to us: roughly speaking, an XiO
is an iO with a very weak “exponential” efficiency requirement: the obfuscator is allowed to run in
polynomial time in the size of the truth table of the function to be obfuscated, and it is only required
that its outputs a program that “slightly” compresses the truth table (technically, it is sublinear in
its size).

A breakthrough result by Lin [Lin16] showed how to obtain iO from just constant-degree MLMs
(plus standard assumptions), overcoming the black-box barriers in [Ps16, MMN15]. Her construction
relies on the connection between FE and iO. Following this result, a sequence of works (see e.g.,
[LV16, Lin17, LT17, Agr19, AJKS18, JS18, JLMS19, AJL+19, AP20]) reduced the assumptions and
the degree of the MLM, relying on certain types of low-degree pseudorandom generators (PRGs)
to instantiate either FE or XiO. This culminated in the recent work of [GJLS20], which (other
than standard assumptions) relies on an LWE assumption with binary noise in the presence of
leakage of the LWE noise: the leakage is a constant-degree PRG applied to the LWE noise. Many
of the earlier low-degree PRG assumptions used to obtain iO have been broken using semi-definite
programming/sum-of-square algorithms [BBKK18, BHJ+18]. The latest result in this line of works,
[GJLS20], avoids these attacks since it relies on higher-degree PRG, but the new LWE-with-leakage
assumption it introduced, despite being quite elegant, has not been significantly crypt-analyzed.

A very recent work beautiful work by Brakerski et al [BDGM20a] presents a new type of candidate
construction of XiO by combining a fully-homomorphic encryption (FHE) and a linear-hommorphic
encryption (LHE) with certain nice properties (which can be instantiated by the Damg̊ard-Jurik

2

(DJ) [DJ01] encryption scheme whose security can be based on the Decisional Composite Residuosity
(DCR) assumption), and relying on a random oracle. More precisely, they define a new primitive
called “split-FHE” and provide a candidate construction of it based on the above primitives and a
random oracle, and next show how split-FHE implies XiO (which by earlier work implies iO under
standard assumptions). We highlight that [BDGM20a] does not provide any proof of security of
the split-FHE construction (even in the random oracle model), but rather informally argue some
intuitions, which include a) circular security (more on this below) of the FHE and the LHE, and
b) a “correlations conjecture” that the FHE randomness (after FHE evaluations) does not correlate
“too much” with the messages being encrypted. The correlation conjecture is not formalized, as
the FHE randomness in known construction actually does depend on the message, so the authors
simply conjecture that this correlation cannot be exploited by an attacker to break security of the iO
(they also provide heuristic methods to weaken the correlations); as such they only get a heuristic
construction.

Summarizing the above, while there have been enormous progress on realizing iO, known con-
structions are either based on assumptions on primitives that are not well understood (high-degree
MLMs, or various low-degree PRGs assumptions), or the construction candidates simply do not have
proofs of security.

1.1 Our Results

In this work, we provide a new iO construction assuming subexponential security of (a) the LWE
assumption (with subexponential modulus-to-noise ratio), and (b) a natural circular security as-
sumption w.r.t the Gentry-Sahai-Water’s (GSW) [GSW13] FHE scheme.

On a high-level, our approach follows that in [BDGM20a], but we show how to remove the
heuristic arguments while instead relying on a concrete circular security assumption. We believe this
constitutes strong evidence for the existence of iO, and places iO on a similar footing as unlevelled
FHE (i.e., an FHE that support an a-priori unbounded polyonomial number of operations), for which
known constructions also rely on a circular security conjecture [Gen09].

Circular security. Circular security of encryption schemes [CL01, BRS02] considers a scenario
where the attacker gets to see not only encryptions of messages, but also encrypted key cycles. The
simplest form of circular security, referred to as 1-circular security, requires that security holds even
if the attacker gets to see not only the public key pk, an encryption, Encpk(m) of a message m (to be
secured), but also an encryption Encpk(sk) of the secret key sk. A slighly more complex type of circular
security, referred to as 2-circular security considers an encrypted key cycle of size 2—the attacker
gets to see public keys pk1, pk2, a length 2 encrypted secret key cycle, Enc1

pk1
(sk2),Enc2

pk2
(sk1), and

we require that security of Enc1
pk1

still holds (i.e., for any m0,m1, Enc1
pk1

(m0) is indistinguishable

from Enc1
pk1

(m0)). Such encrypted key cycles commonly arise in applications of encryption scheme
such as storage systems (e.g. BitLocker disk encryption utility), anonymous credentials [CL01] and
most recently to construct (unlevelled) FHE [Gen09].

Note that, while in general 2-circular security w.r.t Enc1 and Enc2 is incomparable to 1-circular
security of Enc1, if Enc1 is an FHE (which is the case for the schemes that we will be interested in),
then 2-circular security w.r.t. Enc1 and any encryption scheme Enc2 (that can be homomorphically
decrypted under Enc1) implies 1-circular security of Enc1.

At first sight, one may be tempted to hope that 1-circular, or 2-circular security holds w.r.t. all
secure encryption schemes— after all, the attacker never actually gets to see the secret key, but rather
encryptions of it, which intuitively should hide it by semantical security of the encryption schemes.
Yet, in recent years, counter examples to both 1-circular security and 2-circular security have been

3

found [ABBC10, GH10, CGH12, MO14, KRW15, BHW15, KW16, GKW17]. However, all the counter
examples are highly artificial, and require carefully embedding some trapdoor mechanism in the
encryption scheme that enable decrypting the cirphertext once you see an encryption of the secret
key. As far as we are aware, no “natural” counterexamples are known. Indeed, a common heuristic
consists of simply assuming that circular security holds for all “natural” encryption schemes that are
secure—i.e., that security of the encryption scheme is preserved in the presence of an encrypted key
cylce. We note that this heuristics is very similar to the Random Oracle Heuristic [BR93]—while
“contrived” counterexamples are known (see e.g., [CGH98, MRH04]), it is still a commonly used
heuristic for the design on practical protocols.

In this work, we will consider whether stronger forms of security of Enc are preserved in the
presence of a key cycle. More precisely, we will consider a notion of O-leakage resilient security
for Enc where O is some particular randomness leakage oracle; this notion enhances the standard
semantic security notion by providing the attacker with some leakage O(m, r) on the randomness r
used to encrypt the message m. We say that the 1CIRCO conjecture holds w.r.t Enc if the following
holds:

If Enc is O-leakage resilient secure, then O-leakage resilient security also holds in the
presence of an encrypted secret key.

We will also consider a subexponential 1CIRCO conjecture, which is identically defined except it
considers subexponential (as opposed to polynomial) security of the encryption schemes.

Our main theorem shows that for a natural notion of randomness leakage OSRL—which will be
referred to as “shielded randomness leakage (SRL)”—1CIRCOSRL w.r.t. the GSW encryption scheme
together with the LWE assumption implies the existence of iO.

Theorem 1.1 (Informally stated). Assume subexponential security of the LWE (with subexponential
modulus-to-noise ratio) assumption holds, and assume that the subexponential 1CIRCOSRL conjecture
holds w.r.t. GSW. Then, iO exists for the class of polynomial-size circuits.

Or, informally, assuming the “subexponential 1CIRCOSRL heuristic”, subexponential security of
LWE implies the existence of iO.

We highlight that whereas our final result only relies on the (weaker) notion of 1-circular security
w.r.t. GSW, the notion of 2-circular security w.r.t. GSW and other encryption schemes will be
instrumental towards proving our main theorem.

1.2 Shielded Randomness Leakage (SRL) Security

As mentionned above, we consider a notion of shielded randomness leakage (SRL) security for FHE.
Roughly speaking, the attacker gets to see an FHE encryption c = FHE(m; r), and next gets access
to a “leakage oracle” OSRL(m, r) which upon every invocation sends the attacker an “extra noisy”
encryption c? = FHE(0; r?) of 0—we will refer to the random string r? as the “shield”. Next, the
attacker can select some functions f and value α such that f(m) = α (i.e., we restrict the attacker to
picking functions for which it knows the output when applying the function to the message m; this
restriction will soon become clear). Finally, the oracle homomorphically evaluates f on the ciphertext
c, letting cf = FHE(f(m); rf) denote the evaluated ciphertext, and returns r? − rf . That is, the
attacker gets back the randomness rf of the evaluated ciphertext masked by the “shield” r?. The
reason why the attacker is restricted to picking functions f for which it knows the output α is that
for the FHE we consider, given c? and cf , the attacker can compute c?−cf = FHE(0−f(m); r?−rf)
and thus knowing r?− rf reveals f(m). So, by restricting to attackers that already know α = f(m),
intuitively, r? − rf does not reveal anything else. Indeed, we formally prove that under the LWE
assumption, the GSW encryption scheme is SRL-secure—that is, OSRL-leakage resilient secure.

4

Theorem 1.2 (Informally stated). Assume the LWE (with subexponential modulus-to-noise ratio)
assumption holds. Then, the GSW scheme is SRL-secure.

On a very high-level, the idea behind the proof is that the encryption c? is a projection, hA(r?) =
Ar? ∈ ZN , where the randomness r? used to produce c? is a vector in ZmN and A is a matrix in Zn×mN

where m � n, that is, the map hA that describes the encryption is compressing. Therefore, some
“components” of the “shield” r? remain information-theoretically hidden. And this enables hiding
the same component of rf ; furthemore, the component that is not hidden by r? is actually already
revealed by f(m), which the attacker knows (as we require it to output α = f(m)). The formal
proof of this proceeds by considering a (simplified) variant of the Micciancio-Peikert lattice trapdoor
method [MP12] for generating the matrix A (which is part of the public key for GSW) together with
a trapdoor that enables sampling short preimages to hA (i.e. solving the ISIS problem). Whereas
traditional trapdoor preimage sampling methods require the preimage to be sampled according to
some specific distribution (typically discrete Gaussian) over preimages, we will consider a somewhat
different notion: we require that given a target vector t, the distribution of randomly sampled
preimages of t is statistically close to the distribution obtained by starting with any “short” preimage
w of t and next adding a randomly sampled preimage of 0. Our proof relies on the fact that randomly
sampled preimages can be sufficiently longer than w to ensure that they “smudge” w—we here rely
on the fact that modulus-to-noise ratio is subexponential (to enable the smudging).1

1.3 Overview of the XiO Construction

We proceed to explain our construction of an XiO relying on 2-circular SRL-security w.r.t. GSW and
any LHE with certain nice properties; to obtain a subexponentially-secure XiO (which is required
to obtain iO by [LPST16]), we need to strengthen the assumptions to also require subexponential
security. We next note that the DJ LHE satisfies the desired “nice” properties, and additionally show
how a packed version of Regev’s encryption scheme does so as well. We finally remark that for the
instatiation using the packed version of Regev, we can actually show that 1-circular SRL security of
GSW implies 2-circular SRL-security w.r.t. GSW and Packed Regev;2 intuitively, this follows from
the fact that circular security provably holds w.r.t. Packed Regev (for the same reasons as it holds
for Regev’s encryption scheme, as is well known).3

As mentionned above, on a high-level, our construction follows similar intuitions as the BDGM
construction. We combine an FHE (in our case the GSW FHE) with a (special-purpose) LHE to
implement an XiO. In fact, in our approach, we do not directly construct an XiO, but rather
construct an XiO with preprocessing—this notion, which relaxes XiO by allowing the obfuscator to
have access to some long public parameter pp, was actually already considered in [LPST16] and it
was noted there that subexponentially-secure XiO with preprocessing also suffices to get iO.

Towards explaining our approach, let us first recall the approach of BDGM using a somewhat
different langauge that will be useful for us. As in BDGM, we focus on an instantiation of the LHE
using the DJ encryption scheme.

The BDGM construction. The high-level idea is quite simple and very elegant. Recall that an
XiO is only required to work for programs Π with polynomially many inputs n = poly(λ) where λ is

1As we can use smudging, our lattice trapdoor sampling construction and proof also becomes easier than the one
one [MP12].

2Formally, we need to slightly tweak the Packed Regev scheme to prove this.
3Also, as mentionned, 2-circular (SRL) security w.r.t. GSW and DJ (or Packed Regev) implies 1-circular (SRL)

security w.r.t. GSW since given an encrypted 2-cycles, we can always recover a GSW encryption of a GSW secret key
by decrypting the LHE ciphertext using homomorphic operations.

5

the security parameter, and the obfuscators running time is allowed to be polynomial in n; the only
restriction is that the obfuscated code should be sublinear in n—we require a “slight” compression of
the truth table. More precisely, the obfuscator is allowed to run in time poly(n, λ) (i.e., polynomial
time in the size of the truth table), but must output a circuit of size poly(λ)n1−ε where ε > 0. Assume
that we have access to a special “batched” FHE which enables encrypting (and computing on) long
messages of length, say m using a short randomness of length poly(λ) logm; and furthermore that
1) given the secret key, and a ciphertext c, we can efficiently recover the ciphertext randomness,
and 2) given a ciphertext c and its randomness—which will also be referred to as a “hint”—one
can efficiently decrypt. Given such a special FHE, it is easy to construct an XiO: simply cut the
truth table into “chunks” of length nε, FHE encrypt the program Π, then, homomorphically evalute
circuits Ci for indices i ∈ [n1−ε] such that given the program Π as input, Ci outputs the i’th “chunk”
of the truth table, which we denote by Πi; finally, release the randomness ri (i.e., the “hint”) of the
evaluated ciphertexts. These hints enable compressing nε bits into poly(λ) log(nε) bits and thus the
XiO is compressing.4

Unfortunately, none of the known FHE constructions have short randomness. BDGM, however,
observes that there are linear homomorphic encryptions schemes (LHE), notably the DJ encryption
scheme, that satisfy the above requirements. Now, note that many FHEs are batcheable (with
“long” randomness), and have “essentially” linear decryption: decryption is a linear operation on the
ciphertext and secret key, and next rounding. So, if we start off with such an FHE, and additionally
release an LHE encryption of the FHE secret key, we can get an FHE with the desired “batcheable
with short randomness” requirement: we first (linear) homomorphically evaluate the decryption of
the FHE ciphertext, and simply release the randomness for the evaluated LHE ciphertext (which
now is short).

But there are problems with this approach: (1) since FHE decryption requires performing both
a linear operation and rounding, we are leaking not only Πi but also the FHE noises of the evaluated
ciphertexts, and (2) the LHE randomness may actually leak more than just the decrypted message
(i.e., something about how the ciphertext was obtained). As BDGM shows, both of these problems
can be easily overcome if we have access to many fresh LHE encryptions of some “smudging” noise
(which is large enough to smudge the FHE noise).5 So the only remaining problem is to generate these
LHE encryptions of smudging noises. It is here that the construction in BDGM becomes heuristic:
(1) they propose to use a random oracle to generate a long sequence of randomness; (2) this sequence
of randomness can be interpreted as a sequence of LHE encryptions of uniformly random strings ui
for i = 1, . . . , n1−ε, since the DJ LHE has dense ciphertext; (3) next, if we additionally provide an
FHE encryption of the LHE secret key sk (note that we now have a circular security issue), we can
FHE-homomorphically evaluate a function fi that decrypts the i’th LHE ciphertext produced by
the random oracle, and computes the most significant bits of ui; and, (4) we finally LHE-evaluate
the (partial) decryption of the evaluated FHE ciphertexts (of the most significant bits of ui); the
obtained LHE ciphertexts can now be subtracted to the LHE ciphertexts from the random oracle to
get an LHE encryption of noise ui−MSB(ui) of the appropriate size, i.e. smudging but not uniform.

One problem with this approach, however, is that while we do obtain an LHE encryption of
appropriate smudging noise, it is not not actually a fresh ciphertext (with fresh randomness). The
issue is that the randomness rfi of the evaluated ciphertext of the most significant bits may (and
actually will) depend on the randomness of the original LHE ciphertext obtained by the RO. Another

4The reason we need to cut the truth table into chunks and don’t just directly compute the whole output is that
the FHE may have a public key that depends polynomially on the length of the messages to be encrypted, so the final
obfuscation is only compressing when we have a large number of chunks.

5They formally prove the security of their scheme in an idealized model where we have access to an oracle that
generates fresh LHE encryptions of smudging noise.

6

problem is that LHE can only compute the first step of an FHE decryption (namely, the linear
operations), the LHE encryption obtained actually encrypts a message of the form: ui −MSB(ui) +
noisei. As we know, revealing the extra noise is detrimental for security (this is why we are generating
LHE encryptions of smudging noises in the first place). Unfortunately, the extra noise that results
from partially decrypting the FHE ciphertext depends on ui, so the lower-order bits of the latter
cannot smudge the former. BDGM here simply assumes that the attacker cannot exploit these
correlations, and thus only obtain a heuristic construction.

We shall now see how to obtain the appropriate LHE encryption of smudging noises in a prov-
ably secure way, relying on 2-circular SRL-security of GSW and DJ—that is, OSRL-leakage resilient
circular security holds w.r.t. GSW and DJ.

Removing the RO. Our first task will be to remove the use of the RO. That will actually be
very easy: as we have already observed, it suffices to get an XiO with preprocessing to obtain iO,
so instead of using a random oracle, we will simply use a long random string as a public parameter,
and interpret it as LHE encryptions of random strings.

Re-encrypting the FHE. The trickier problem will be to deal with the issue of correlations. We
will here rely on the fact that we are considering a particular instantiation of the FHE: namely,
using (a batched version of) the GSW encryption scheme. On a high-level, the idea for breaking
the correlation is to ”refresh” or re-encrypt the evaluated FHE ciphertext (of the most significant
bits of the random LHE plaintext) to ensure that the randomness is fresh and independent of the
evaluations. That also gives a decryption noise than itself is also independent of the evaluated circuit.
If we had access to a fresh extra noisy FHE encryption of 0, then it would be easy to re-randomize
a GSW ciphertext: simply add the encryption of 0. So, how do we get an encryption of 0? GSW
ciphertexts are not dense, so we cannot put them in the public parameters, and even if they were, we
still wouldn’t be able to get an encryption of 0 (we would have an encryption of a uniformly random
plaintext). The public key of the GSW encryption scheme actually contains a bunch of encryptions of
0, but fewer than the amount we need (or else we wouldn’t get a compressing XiO). Instead, we use
the public key of the GSW encryption to generate extra noisy encryptions of 0, and we include the
(many) random coins (r?i)i∈[n1−ε] used to generate these ciphertexts as part of the public parameters
of the XiO (recall that the public parameters can be as long as we want). This method does indeed
enable us to get a fresh FHE encryption of the most significant bits, and thus the correlation has be
broken and intuitively, we should be able to get a provably secure construction. But two obstacles
remain: (1) we are revealing the randomness used to re-randomize the ciphertexts, and this could
hurt security, or render the re-randomization useless and (2) we still have a circular security issue
(as we FHE-encrypt the LHE secret key, and LHE-encrypt the FHE secret key). Roughly speaking,
the first issue will be solved by relying on SRL-security of GSW, and the second issue will be solved
by our circular security conjecture.

In more detail, we note that the re-randomized evaluated FHE ciphertext of MSB(ui) and the pub-
lic parameters r?i are statistically close to freshly generated extra noisy FHE encryption of MSB(ui)
using randomness r?i , and setting the public parameter to r?i −rfi , where rfi is the randomness of the
evaluated ciphertext, before re-randomization. In other words, the re-randomization achieves a no-
tion which we refer to as “weak circuit privacy”, where the re-randomized ciphertext is independent
of the evaluated function fi. Furthermore, noisy GSW encryptions of MSB(ui) essentially have the
form of a noisy GSW encryption of 0, to which MSB(ui) is added. So, other than MSB(ui), which
is truly random, r?i − rfi is simply an SRL leakage on a GSW encryption of the LHE secret key sk!
Thus, intuitively, security should now follow from circular SRL security of GSW and DJ.

7

The final construction. We summarize the final construction of an XiO with preprocessing. The
public parameter pp is a long random string that consists of two parts:

� The first part FHE.PubCoin will interpreted as a sequence of rerandomization vectors r?;

� The second part LHE.PubCoin will be interpreted as sequence of LHE encryptions;

The obfuscator, given a security parameter λ and a circuit Π : {0, 1}logn → {0, 1}, where n = poly(λ)
proceeds as follows:

� Output the public keys of the FHE and LHE: The obfuscator generates a fresh key-pair
(pk, sk) for the DJ LHE, and next generate a key-pair (pk, sk) for the GSW FHE. (To make
it easier for the reader to remember which key refers to which encryption scheme, we place
a line over all keys, ciphertext and algorithms, that correspond to the linear homomorphic
encryption.) The modulus N of the GSW encryption is set to be the same that the modulus
that defines the message space ZN of the LHE scheme. Additionally, it chooses N large enough
to enable encrypting messages of size nε. Finally, it outputs the public keys (pk, pk).

� Output an FHE encryption of the circuit: It outputs an FHE encryption (w.r.t. pk) of
the program Π, which we denote by ct1.

� Output encrypted key cycle: It computes ct2, an FHE encryption of sk, and ct, an LHE
encrytion of sk. It outputs the key cycle ct2, ct.

� Output hints: For every i ∈ [n1−ε], it outputs a short “hint” ri computed as follows:

– Evaluate the circuit: Homomorphically evaluate the circuit Ci (recall that Ci takes a
input a program Π and outputs the output of Π on i’th chunk of its truth table, denoted
by Π) on ct1 (recall that ct1 encrypts Π), and let cti denote the resulting evaluated FHE
ciphertext.

– Compute an FHE encryption ctMSB,i of MSB(ui): Consider the function fi(Π, sk)
that ignores the input Π but uses the input sk to decrypt the i’th LHE ciphertext from
LHE.PubCoin into a plaintext ui and outputs MSB(ui). The obfuscator homomorphically
evaluates fi on the ciphertexts ct1, ct2 (where, recall, ct2 is an encryption of sk). Let
ctMSB,i = FHE(MSB(ui); rfi) denote the resulting evaluated FHE ciphertext.

– Rerandomize ctMSB,i into ct′MSB,i: It uses the i’th chunk of FHE.PubCoin to get the ran-
domness r?i ; generates an extra noisy FHE encryption of 0 using r?i and homomorphically
adds it to ctMSB,i. Let ct′MSB,i = FHE(MSB(ui); r

?
i + rfi) denote the new (re-randomized)

ciphertext.

– Proxy re-encrypt cti as an LHE ciphertext cti: It uses ct (which, recall, is an LHE
encryption of sk) to homomorphically computing the linear part of the FHE decryption
of cti, which yields an LHE encryption of the value ω · Πi + noisei where noisei is an
partial FHE decryption noise, and ω is taken large enough so that the plaintext Πi can
be recovered by rounding.

Similarly, it homomorphically computes the partial FHE decryption of ct′MSB,i, which
yields an LHE encryption of the value ω′ ·MSB(ui)+noiseMSB,i, where once again noiseMSB,i

denotes a partial FHE decryption noise, and ω′ = 1 for reasons that will become clear later.
We rely on the fact that GSW FHE (and many others) admits a flexible “scaled” evaluation
algorithm, that can choose which integer ω to use when performing the homomorphic
evaluation (this was used also in prior works, including [BDGM20a]). The resulting LHE

8

ciphertext is subtracted to LHE(ω ·Πi + noisei), and therefore yields LHE(ω ·Πi + noisei−
MSB(ui)− noiseMSB,i).

Finally, it homomorphically adds the LHE encryption of ui that is part of the LHE public
coins, to obtain cti = LHE(mi), where mi = ω ·Πi + noisei −MSB(ui)− noiseMSB,i + ui =
ω ·Πi + noisei + noiseMSB,i + LSB(ui).

The integer ω′ is chosen to be equal to 1 so that the smudging noise LSB(ui) is directly
added to the FHE noises noisei − noiseMSB,i. As opposed to the value Πi that we place in
the higher-order bits of the plaintext, we need the smudging noise to be at the same level
that the FHE noises, so they ”blend” together.

– Release hint ri for LHE ciphertext cti: It uses sk to recover the randomness ri of cti
(recall that the LHE we use has a randomness recoverability property), and outputs ri.

To evaluate the obfuscated program on an input x ∈ {0, 1}n, that pertains to the i’th chunk of the
truth table of Π for some i ∈ [n1−ε], we compute cti just like the obfuscator did (note that this does
not require knowing the secret key, but only information contained in the obfuscated code). Finally,
decrypt cti using the hint ri to recover the message mi described above (recall that the LHE we use
has the property that ciphertexts can be decrypted if you know the randomness). Finally, perform
the rounding step of FHE decryption on mi to obtain Πi, which contains Π(x).

Outline of the security proof. We provide a very brief outline of the security proof. We will
rely on the fact that LHE cirphertexts (of random messages) are dense (in the set of bit strings), and
additionally on the fact that both the LHE and the FHE we rely on (i.e., DJ and GSW) satisfy what
we refer to as a weak circuit privacy notion. This notion, roughly speaking, says that any encryption
of a message x can be rerandomized into fresh (perhaps extra noisy) encryption of x+ y, by adding
a fresh (perhaps extra noisy) encryption of y.

As usual, the proof proceeds via a hybrid argument. We start from an XiO obfuscation of
a program Π0 and transition until we get an XiO obfuscation of Π1, where Π0 and Π1 are two
functionally equivalent circuits of the same size.

� Hybrid 0: Honest XiO(Π0): The first hybrid is just the honest obfuscation of the circuit
Π0.

� Hybrid 1: Switch to freshly encrypted ct′MSB,i: Hybrid 1 proceeds exactly as Hybrid 0
up until the point that the ciphertexts ctMSB,i get re-encrypted into ct′MSB,i, with the exception
that FHE.PubCoin are not sampled yet. Next, instead of performing the re-encryption, we
sample ct′MSB,i as a fresh extra noisy encryption of MSB(ui) using randomness r?i , and setting
FHE.PubCoin to be r?i − rfi). We finally continue the experiment in exactly the same way as
in Hybrid 0.

It follows from the “weak circuit privacy” property of the FHE that Hybrid 0 and Hybrid 1
are statistically close. (Note that the advantage of Hybrid 1 is that for each i ∈ [n1−ε], the
i’th chunk of FHE.PubCoin can be thought of as SRL leakage on the fresh encryption ct′MSB,i

computed w.r.t. function fi.

� Hybrid 2: Switch LHE.PubCoin to encryptions of random strings: Hybrid 2 proceeds
exactly as Hybrid 1 except that instead of sampling LHE.PubCoin as a random string, we sample
it as fresh LHE encryptions of random strings ui, for i = 1, . . . , n1−ε. It follows by the density
property of the LHE that Hybrid 2 is statistically close to Hybrid 1.

9

� Hybrid 3: Generate cti as a fresh encryption: Hybrid 3 proceeds exactly as Hybrid
2 except that cty is generated as a fresh encryption of mi using fresh randomness ri, and
the i’th chunk of LHE.PubCoin is instead computed homomorphically by subtracting the LHE
encryption of sk>(cti − ctMSB,i) (obtained after homomorphically decrypting cti and ct′MSB,i

using ct) from the LHE ciphertext cti. (Recall that mi = sk>(cti − ctMSB,i) + ui so the above
way of computing the i’th chunk of LHE.PubCoin ensures that it is valid encryption of ui as in
Hybrid 2, but this time with non-fresh, homomorphically evaluated randomness).

It follows from the weak circuit privacy property of the LHE that Hybrid 3 and 2 are statistically
close.

Note that it was possible to define this hybrid since ct′MSB,i remains exactly the same no matter
what the LHE.PubCoin are. This was not true in Hybrid 0, and we introduced Hybrid 1 to
break this dependency.

Note further that in Hybrid 3, we no longer use sk (i.e., the secret key for LHE); previously it
was used to recover ri.

� Hybrid 4: Generate cti without FHE noises: Hybrid 4 proceeds exactly as Hybrid 3
except that cti is generated as a fresh encryption of mi = ω ·Π0

i + LSB(ui), whereas in Hybrid
3, it was generated as fresh encryption of mi = ω ·Π0

i + LSB(ui) + noisei − noiseMSB,i. That is,
we use LSB(ui) as a smudging noise to hide the extra noise noisei − noiseMSB,i. We can do so
since (1) the extra FHE noise is small and independent of LSB(ui) (2) the rest of the obfuscated
code can be generated from the value LSB(ui) + noisei − noiseMSB,i only (in particular it does
not require to know LSB(ui) itself). It follows that Hybrid 4 is statistically close to Hybrid 3.

� Hybrid 5: Switch to encryption of Π1: Hybrid 5 proceeds exactly as Hybrid 4 except that
we let ct1 be an encryption of Π1 (instead of Π0 in prior hybrids).

Note that other than the encrypted key cycle, we never use the FHE secret key, and due
to Hybrid 3, we no longer use the LHE secret key. So, at first sight, Hybrid 5 ought to be
indistinguishable from Hybrid 4 by circular security of the FHE and the LHE. Recall that
FHE.PubCoin leaks something about the randomness used by the FHE encryption ct′MSB,i,
but the leakage is exactly an SRL leakage (and note that in the experiment we do know the
output αi of the function fi that is applied to the plaintexts encrypted in ct1, ct2—namely,
it is MSB(ui) where ui is a random string selected in the experiment, see Hybrid 2). Thus,
indistinguishability of Hybrid 5 and Hybrid 4 follows from 2-circular SRL-security of the FHE
and the LHE.

� Hybrids 6-10: For i ∈ [5], Hybrid 5 + i is defined exactly as 5 − i, except that ct1 be an
encryption of Π1. Statistical closeness of intermediary hybrids follows just as before.

The above sequence of hybrid allows us to conclude the following theorem.

Theorem 1.3 (Informally stated). Assume 2-circular SRL-security of the GSW and DJ encryption
schemes holds. Then, there exists an XiO for polynomial-size circuits taking inputs of length log(λ)
where λ is the security parameter.

An alternative LHE based on Packed Regev. We remark that we can obtain an alternative
construction of an LHE with the desired properties by considering an packed version of the Regev
encryption scheme. Our construction is slightly different, but similar in spirit, to the Packed Regev
from [PVW08]). Recall that a (plain) Regev public key consist of a pair A, s>A + e>, where
A ←R Zm×nq with m ≥ n log(q), the vector s ←R Znq is the secret key, and e ∈ Zmq is some small

10

“noise” vector. An encryption of a message µ has the form Ar, (s>A+e>)r+B·µ where r←R {0, 1}m
is the encryption randomness and B is a bound on the size of noise (so as to enable decryption).
This scheme is linearly homomorphic, but for security, the size of the randomness |r| needs to be
greater than |n log(q)|, which is more than that size of the message: the randomness is too long for
our purposes.

To get succinct decryption hints, we simply reuse the same randomness r for many encryptions
using different secret keys s1, s2, . . . s` and different noises e1, e2, . . . , e`. The secret key is now a
matrix S ∈ Z`×nq , and the public key becomes (A,SA + E) where E ∈ Zq`×m is a noise matrix.
The encryption of a vector of messages µ = (µ1, . . . , µ`) is then (Ar, (SA + E)r +Bµ). This is the
scheme from [PVW08]. Despite the fact that this encryption is still linearly homomorphic, and has
the advantage of having rate-1 ciphertext size, its randomness is not short: to carry on the proof of
security, we need to rely on the fact that r contains enough bits of entropy even when the information
Ar (which is short) and Er (that is long) is leaked. The can only be true with the dimension of r,
m, grows with the number of bits that are batched, `.

Thus, we depart from the scheme in [PVW08] by adding a smudging noise6 in the ciphertext,
to hide the information Er. The ciphertext is of the form: (Ar, (SA + E)r + e′ +B · µ), where e′

is the extra smudging noise that hides the error term Er, ensuring that we only have the short Ar
leakage and the usual proof can again be applied.

This scheme is still linearly homomorphic, but the encryption randomness is still large, as even
though we reuse r, the added noise terms e′ are large. However, we rely on the fact that knowing e′

is not needed for decrypting. Indeed, to decrypt, we just need to know a small vector r̃ ∈ Zmq such
that Ar̃ = Ar. That can be used to remove the term SAr from the ciphertext, and recover B · ν
plus some small noise. To sample such vector, we use standard trapdoor sampling mechanism as in
prior works [Ajt96, GPV08, AP09, MP12]. This makes the scheme hintable with succinct hints.

We still have two (minor) obstacles, though. This scheme (as well as Regev’s original scheme
or the scheme from [PVW08]) does not satisfy two of the other properties needed for our XiO
construction: (1) density, and (2) weak circuit privacy. But it almost does. Extra noisy ciphertexts,
where the noise reaches the bound B are actually dense, and for us extra noisy ciphertext, weak
circuit privacy also holds (just as it did for GSW). So we can directly instantiate the LHE in our
XiO construction with this Packed Regev construction, as long as we slightly relax the notion of an
LHE to just require density when considering extra noisy ciphertexts.

Thus we can conclude:

Theorem 1.4 (Informally stated). Assume 2-circular SRL-security of the GSW and Packed Regev
encryption schemes holds. Then, there exists an XiO for polynomial-size circuits taking inputs of
length log(λ) where λ is the security parameter.

Relying only on 1CIRCOSRL w.r.t. GSW. We finally explain how to base security solely on
1-circular SRL security w.r.t. GSW—i.e, the assumption that SRL security of GSW is preserved in
the presence of an encryption of the GSW secret key under its own public key. We proceed in two
simple steps. First, we remark that in our XiO construction, security still holds if both the FHE
and LHE use the same secret key (as long as 2-circular SRL security of the two schemes hold in this
setting). Next, we present a slight modification of Packed Regev, called Packed-Regev’, where the
secret key s is just a vector like in GSW, which it then expanded into a Packed Regev secret key
(which is a matrix) by tensoring with the identify matrix. We finally remark that (as is well known

6Note that using a carefully crafted noise that needs not be of smudging size, as done in [MP12], we can ”unskew”
the noise Er and hide the information of r. We favor clarify of the exposition over efficiency and resort to using
smudging noises.

11

for the Regev scheme), 1-circular security directly holds also of Packed Regev’—more precisely, given
LWE samples (obtained from the GSW public key), we can simulate a Packed Regev’ public key,
and a Packed Regev’ encryption of the secret key. Thus, “same-key” 2-circular SRL security of GSW
and Packed-Regev’ is implied just by 1-circular security of GSW! We conclude:

Theorem 1.5 (Informally stated). Assume 1-circular SRL-security of the GSW encryption scheme
holds. Then, there exists an XiO for polynomial-size circuits taking inputs of length log(λ) where λ
is the security parameter.

Concluding the proofs of the main theorem. The proof of Theorems 1.1 is finally concluded by
upgrading Theorems 1.2 and 1.5 to apply also in the subexponential regime, relying on the subexpo-
nential 1CIRCOSRL conjecture, and finally relying on the transformation from subexponentially-secure
XiO with pre-processing (and subexponential LWE) to iO [LPST16].

1.4 Concurrent and Subsequent Work

A concurrent and independent breakthrough result by Jain, Lin and Sahai [JLS20] presents a con-
struction of iO based on subexponential security of well-founded assumptions: (1) the SXDH assump-
tion on asymmetric bilinear groups, (2) the LWE assumption with subexponential modulus-to-noise
ration, (3) a Boolean PRG in NC0, and (4) an LPN assumption over a large field and with a
small error rate 1

`δ
where δ > 0 and ` is the dimension of the LPN secret. Assumptions (1)-(2)

have widespread use and are considered by now standard, (3) is also well-understood, whereas LPN
with the range of parameters used in (4) is rather new, since most prior works in the cryptographic
literature focus on a less sparse error rate (typically a constant) and/or use the field F2.

A concurrent and independent work by Wee and Wichs [WW20] presents a different heuristic
instantiation of the BDGM paradigm based only on lattice-based primitives. Similarly to us, their
construction proceeds by implementing XiO with pre-processing. They also state a new security
assumption (involving a PRF and LWE samples) on which security of their construction can be
based.

The initial version of our paper did not contain the LWE-based instantiation of the LHE using
Packed Regev (we just had the DJ based instantiation). Following up on the initial posting of our
paper, but concurrently and independently from the current version which includes our LWE-based
LHE, a preprint by Brakerski et al [BDGM20b] also provides an LWE-based way to instantiate the
LHE within our framework. Differently from our construction, however, they rely on a variant of
the “Dual Regev” encryption scheme, whereas we rely on regular Regev (and they only provide a
very rough proof sketch). They assume 2-circular SRL security holds w.r.t. GSW and their new
encryption scheme, whereas we show that for our instantiation of the LHE, it suffices to assume
just assume 1-circular SRL security of GSW. We plan to provide a more thorough comparison with
[BDGM20b, WW20] once we have gone over their constructions in more detail.

2 Preliminaries and Definitions

In this section, we recall some standard definitions and results. Additionally, we include a formal-
ization of the circular security assumption that we consider.

Notations. For all n,m ∈ N, we write [−n,m] = {−n,−n+1, . . . ,m}, [n] = [1, n]. For all α, β ∈ R
such that β > α, we denote by (α, β) = {x ∈ R, α < x < β}. For all v1, . . . , vn ∈ Z, we denote
by v = (v1, . . . , vn) the column vector in Zn. For all PPT A, we denote by y ← A(x) the random

12

process of running A on input x and obtaining the output y. For all set S, we denote by x ←R S
the process of sampling a random element x uniformly over S.

Attackers, negligible functions, and subexponential security. Below, for simplicity of ex-
position, we provide definitions for polynomial security of all the primitives we consider. As usual,
we model attackers as non-uniform probabilistic polynomial-time algorithms, denoted nuPPT. We
say that a function µ(·) is negligible if for every polynomial p(·), there exists some λ0 such that
µ(λ) ≤ 1

p(λ) for all λ > λ0. The security definitions we consider will require that for every nuPPT A,
there exists some negligible function µ such that for all λ, A succeeds in “breaking security” w.r.t.
the security parameter λ with probability at most µ(λ).

All the definitions that we consider can be extend to consider subexponential security ; this is done
by requiring the existence of some constant ε such that for all non-uniform probabilistic algorithms
A with running time poly(λ)×2λ

ε
(as opposed to all nuPPT), there exists some negligible function µ

such that for all λ, A succeeds in “breaking security” w.r.t. the security parameter λ with probability
at most µ(λ)× 2λ

ε
(as opposed to it being just µ(λ)).

2.1 Some Standard Lemmas

We recall some standard definitions and lemmas.

Definition 2.1 (bounded ensemble). Let f(·) be a function that outputs in N. An ensemble of
distributions that outputs in Z, denoted by {Dλ}λ∈N, is said to be f -bounded if there exists a negligible
function µ(·) such that for all λ ∈ N, Pr[|x| > f(λ), x← Dλ] < µ(λ).

We will make use of a special case of the left over hash lemma from [ILL89].

Lemma 2.1 (Left Over Hash lemma). For all λ, q, d,m ∈ N such that m ≥ ddlog(q)e + 2λ, the
statistical distance between the following distributions is upper bounded by 2−λ:{

A←R Zd×mq , r←R [−1, 1]m : (A,Ar)
}

{
A←R Zd×mq ,u←R Zdq : (A,u)

}
.

We will also make use of the following standard “smudging” lemma.

Lemma 2.2 (Smudging). For all B,B′ ∈ N such that B < B′, all x ∈ [−B,B], the statistical
distance between the following distributions is upper bounded by B

B′ :{
u←R [−B′, B′] : u

}{
u←R [−B′, B′] : u+ x

}
.

2.2 Indistinguishability

We start by recalling the standard definition of computational indistinguishability [GM84].

Definition 2.2 (Computational indistinguishability). Two ensembles {D0
λ}λ∈N and {D1

λ}λ∈N are
said to be computationally indistinguishable w.r.t. a class C of attacker if for every algorithm A ∈ C,
there exists a negligible function µ such that for every λ ∈ N,∣∣∣Pr[A(1λ,D0

λ) = 1]− Pr[A(1λ,D1
λ) = 1]

∣∣∣ ≤ µ(λ)

We simply say that {D0
λ}λ∈N and {D1

λ}λ∈N are computationally indistinguishable if they are compu-
tationally indistinguishable w.r.t. the class of non-uniform Probabilistic Polynomial Time (nuPPT)
attackers.

13

2.3 Definition of iO

We recall the definition of iO [BGI+01, GGH+13b]. Given polynomials n(·), s(·), d(·), let Cn,s,d =
{Cλ}λ∈N denote the class of circuits such that for all λ ∈ N, Cλ is the set of circuits with input size
n(λ), size at most s(λ) and depth at most d(λ). We say that a sequence of circuits {Πλ}λ∈N is
contained in {Cλ}λ∈N (denoted by {Πλ}λ∈N ∈ {Cλ}λ∈N) if for all λ ∈ N, Πλ ∈ Cλ.

Definition 2.3 (iO for P/poly). We say that iO exists for P/poly if for all polynomials n(·), s(·), d(·),
there exists a tuple of PPT algorithms (Obf,Eval) such that the following holds:

� Correctness: For all {Πλ}λ∈N ∈ Cn,s,d, there exists a negligible function µ such that for all
λ ∈ N, all x ∈ {0, 1}n(λ),

Pr[Π̃← Obf(1λ,Πλ) : Eval(1λ, Π̃,x) = Π(x)] ≥ 1− µ(n)

� IND-security: For all sequences {Πλ
0}λ∈N, {Πλ

1}λ∈N ∈ Cn,s,d such that for all λ ∈ N, Πλ
0 and

Πλ
1 are functionally equivalent circuits, the following ensembles are computationally indistin-

guishable: {
Π̃← Obf(1λ,Π0

λ) : Π̃)
}
λ∈N{

Π̃← Obf(1λ,Π1
λ) : Π̃)

}
λ∈N

2.4 Definition of XiO

We recall the definition of XiO with pre-processing [LPST16]. We restrict our attention to circuits
with input length O(log λ): Given polynomials n(·), s(·), d(·), let Clog(n),s,d = {Cλ}λ∈N denote the
class of circuits such that for all λ ∈ N, Cλ is the set of circuits with input size log(n(λ)), size at
most s(λ) and depth at most d(λ).

Definition 2.4 (XiO for Plog/poly). We say XiO exists for Plog/poly if there exists a polynomial p(·)
and a constant ε, such that for all polynomials n(·), s(·), d(·), there exists a tuple of PPT algorithms
(GenObf ,Obf,Eval) such that the following holds:

� Correctness: For all {Πλ}λ∈N ∈ Clog(n),s,d, there exists a negligible function µ such that for

all λ ∈ N, all x ∈ {0, 1}n(λ),

Pr[pp← GenObf(1
λ), Π̃← Obf(pp,Πλ) : Eval(pp, Π̃,x) = Π(x)] ≥ 1− µ(n)

� Succinctness: For all {Πλ}λ∈N ∈ Clog(n),s,d, all λ ∈ N, all pp in the support of GenObf(1
λ), all

Π̃ in the support of Obf(pp,Πλ), we have that
∣∣∣Π̃∣∣∣ ≤ n(λ)1−ε · p(λ, s(λ), d(λ))

� IND-security: For all sequences {Πλ
0}λ∈N, {Πλ

1}λ∈N ∈ Clog(n),s,d such that for all λ ∈ N,

Πλ
0 and Πλ

1 are functionally equivalent circuit, the following ensembles are computationally
indistinguishable: {

pp← GenObf(1
λ), Π̃← Obf(pp,Π0

λ) : (pp, Π̃)
}
λ∈N{

pp← GenObf(1
λ), Π̃← Obf(pp,Π1

λ) : (pp, Π̃)
}
λ∈N

The following theorem from [LPST16] connects XiO (with pre-processing) with iO assuming the
LWE assumption (we formally define the LWE assumption in Definition 3.4).

Theorem 2.5. Assume the existence of a subexponentially secure XiO for Plog/poly, and assume
subexponential security of the LWE assumption. Then there exists an iO for P/poly.

14

2.5 Definition of Public-Key Encryption

We start by recalling the definition of public key encryption (PKE). For our purposes, we will consider
PKE in a Common Reference String (CRS) model, where we first generate a CRS, and next, the
key generation algorithm will take the CRS as input. This added generality will be useful to capture
scenarios where multiple encryption schemes will be operating over the same field Z∗N—this field can
be specified in the CRS.

Definition 2.6 (Public-Key Encryption). A Public-Key Encryption (PKE) scheme is a tuple of
PPT algorithms (CRSgen,Gen,Enc,Dec) where:

� CRSgen(1λ): given as input the security parameter λ ∈ N, it outputs a common reference string
crs.

� Gen(crs): given as input crs, it outputs the pair (pk, sk).

� Encpk(m; r): given as input the public key pk, a message m ∈ {0, 1}∗ and some randomness
r ←R {0, 1}∞7, it outputs a ciphertext ct.

� Decsk(ct): given as input the secret key sk and a ciphertext ct, it deterministically outputs a
plaintext.

We furthermore require these algorithms to satisfy the following correctness condition: for all λ ∈ N,
all crs in the support of CRSgen(1λ), all pairs (pk, sk) in the support Gen(crs), all messages m ∈
{0, 1}∗, all ciphertexts ct in the support of Encpk(m), we have:

Decsk(ct) = m.

2.6 Definition of Linearly-Homomorphic Encryption

Definition 2.7 (Linearly-Homomorphic Encryption). For any polynomial `(·), a PKE scheme (CRSgen,
Gen,Enc,Dec) is said to be a Linearly-Homomorphic Encryption (LHE) with plaintext size `(·), if
there exists a PPT algorithm Add such that the following holds:

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs), the
public key pk contains a message space (Apk,+), which is an Abelian group of size |A| > 2`(λ).

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs),
all messages m1,m2 ∈ Apk, all ciphertexts ct1, ct2 in the support of Encpk(m1),Encpk(m2)
respectively, the algorithm Add(pk, ct1, ct2) determinsitically outputs a ciphertext in the support
of Encpk(m1 +m2), where the addition is performed in Apk.

2.7 Definition of Fully Homomorphic Encryption

Definition 2.8 (Fully-Homomorphic Encryption). A PKE scheme (CRSgen,Gen,Enc,Dec) is said to
be a Fully-Homomorphic Encryption (FHE) scheme if there exists a PPT algorithm Eval such that for
all λ ∈ N, all crs in the support of CRSgen(1λ), all pairs (pk, sk) in the support of Gen, all n ∈ N, all
messages m1, . . . ,mn ∈ {0, 1}, all ciphertexts ct1, . . . , ctn in the support of Encpk(m1), . . . ,Encpk(mn)
respectively, all circuits f : {0, 1}n → {0, 1}, Eval(pk, f, ct1, . . . , ctn) deterministically outputs an
evaluated ciphertext ctf such that Decsk(ctf) = f(m1, . . . ,mn).

7As usual, since all algorithms are PPT we really only need to consider a finite prefix of {0, 1}∞ to define the
uniform distribution.

15

Note that neither the arity nor the depth of the circuit that is homomorphically evaluated is a
priori bounded (that is, we are considering unlevelled FHE). The FHE we will be using — namely,
from [GSW13] — natively supports arithmetic circuits (with addition and multiplication gates),
which capture Boolean circuits.

2.8 Leakage-resilient and Circular Security

We recall the standard notion of (indistinguishability-based) security for encryption schemes; we
also consider a stronger form of O-leakage resilient security, where the attacker also gets access to a
leakage oracle O that has access to the message m? being encrypted, and the randomness r under
which it is encrypted.

Definition 2.9 (Multi-message security). We say that a public-key encryption scheme PKE =
(CRSgen,Gen,Enc,Dec) is secure if for all polynomials s(·), all sequences of pairs of messages
{m0

λ,m
1
λ}λ∈N such that for all λ ∈ N: |m0

λ| = |m1
λ| = s(λ), the ensembles {D0

λ}λ∈N and {D1
λ}λ∈N are

computationally indistinguishable, where Dbλ is defined as follows:{
crs← CRSgen(1λ), (pk, sk)← Gen(crs),m? = mb

λ, r ←R {0, 1}∞, ct = Encpk(m
?; r) : (crs, pk, ct)

}
We additionally say that PKE is O-leakage resilient secure if indistinguishability holds w.r.t. all
nuPPT distinguishers that get unbounded oracle access to O(m?, r), and never make the oracle output
⊥.

2-Circular Security We start by defining a notion of 2-circular security w.r.t two encryption
schemes PKE ,PKE . This notion will not be used for our final theorem, but will serve to state some
intermediary results. For our purposes, the key generation algorithm of PKE will be allowed to
depend on the public key of PKE (so they can operate over the same field). To enables this, we
make use of the CRS: the CRS of PKE will be set to the public key for PKE . 2-circular security will
next require indistinguishability of encryptions using PKE of any message m0,m1 in the presence
of encrypted key cycle w.r.t. PKE and PKE . We furthermore generalize this definition to consider
leakage-resilient security of PKE .

Definition 2.10 (Circular security). We say that 2-circular security holds w.r.t. PKE ,PKE where
PKE = (CRSgen,Gen,Enc,Dec) and PKE = (CRSgen,Gen,Enc,Dec) if for all polynomials s(·), all
sequences of pairs of messages {m0

λ,m
1
λ}λ∈N such that for all λ ∈ N: |m0

λ| = |m1
λ| = s(λ), the ensem-

bles {D0
λ}λ∈N and {D1

λ}λ∈N are computationally indistinguishable, where Dbλ is defined as follows:{
crs← CRSgen(1λ), (pk, sk)← Gen(crs), crs = pk, (pk, sk)← Gen(crs)

ct← Encpk(sk),m? = (sk‖mb
λ), r ←R {0, 1}∞, ct = Encpk(m

?; r) : (pk, pk, ct, ct)

}
.

We additionally say that O-leakage resilient 2-circular security holds w.r.t. PKE and PKE if indis-
tinguishability holds w.r.t. all nuPPT distinguishers that get unbounded oracle access to O(m?, r),
and never make the oracle output ⊥.

We are ready to state the 2CIRC assumption that will be useful for stating some intermediary
results (on the way to our main theorem).

Definition 2.11 (2CIRC assumption). We say that the 2CIRCO assumption (resp. the subexpo-
nential 2CIRCO assumption) holds w.r.t. PKE and PKE if the following holds: if PKE is O-leakage
resilient secure (resp. subexponentially O-leakage resilient secure), and PKE is secure (resp. subex-
ponentially secure), then O-leakage resilient 2-circular security (resp. subexponentially O-leakage
resilient 2-circular securirty) holds w.r.t. PKE and PKE.

16

1-Circular Security. We additionally define the simpler notion of 1-circular security of an en-
cryption scheme PKE . Namely, 1-circular security requires indistinguishability of encryptions using
PKE of any message m0,m1 in the presence of an encryption of the secret key for PKE . As before,
we also generalize this definition to consider leakage-resilient security of PKE .

Definition 2.12 (Circular security). We say that 1-circular security holds for PKE where PKE =
(CRSgen,Gen,Enc,Dec) if for all polynomials s(·), all sequences of pairs of messages {m0

λ,m
1
λ}λ∈N

such that for all λ ∈ N: |m0
λ| = |m1

λ| = s(λ), the ensembles {D0
λ}λ∈N and {D1

λ}λ∈N are computation-
ally indistinguishable, where Dbλ is defined as follows:{

crs← CRSgen(1λ), (pk, sk)← Gen(crs)
m? = (sk‖mb

λ), r ←R {0, 1}∞, ct = Encpk(m
?; r) : (pk, ct)

}
.

We additionally say that O-leakage resilient 1-circular security holds for PKE if indistinguishability
holds w.r.t. all nuPPT distinguishers that get unbounded oracle access to O(m?, r), and never make
the oracle output ⊥.

We finally state the 1CIRC assumption that we will rely on in our main theorem.

Definition 2.13 (1CIRC assumption). We say that the 1CIRCO assumption (resp. the subexponen-
tial 1CIRCO assumption) holds w.r.t PKE if the following holds: if PKE is O-leakage resilient secure
(resp. subexponentially O-leakage resilient secure), then O-leakage resilient 1-circular security (resp.
subexponentially O-leakage resilient 1-circular securirty) holds for PKE.

3 Shielded Randomness Leakage Security of GSW

In this section, we define our notion of Shielded Randomness Leakage (SRL) security, which corre-
sponds to O-leakage resilience security for a particular leakage oracle O. Then, we prove the GSW
FHE is SRL secure under the LWE assumption.

3.1 Definition of Shielded Randomness Leakage Security

To define our notion of SRL security, we focus on FHE schemes that satisfy the following properties.

3.1.1 Batch correctness

This property states that decryption of evaluated ciphertexts solely consists of computing the inner
product of the evaluated ciphertext with the secret key (both of which are vectors), then rounding.
Also, a single scalar obtained by decryption can encode many output bits of the evaluated function.
That is, we consider FHE scheme where the crs contains a modulus Ncrs such that decryption of
an evaluated ciphertext yields a scalar in ZN . Our definition of FHE is flexible with respect to the
choice of the modulus N , which we can afford since the LWE assumption holds for essentially any
(large enough) modulus. As observed in [Mic19, BDGM19, BDGM20a], most existing FHE schemes
can fit this framework.

Definition 3.1 (Batch correctness). For all poynomials d(·), an FHE scheme (CRSgen,Gen,Enc,Dec,Eval)
for depth-d(·) circuits satisfies batch correctness if there exist a PPT Eval′ and a polynomial σ(·) such
that following holds:

17

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs), we
have: pk contains Bpk ∈ N such that Ncrs ≥ 2λBpk; the secret key is of the form: sk ∈ Zσ(λ).

� For all λ ∈ N, all crs in the support of CRSgen(1λ), all (pk, sk) in the support of Gen(crs),
all arities ν ∈ N, all messages m1, . . . ,mν ∈ {0, 1}, all depth-d(λ) circuits f of arity ν, all
ciphertexts cti in the support of Encpk(mi) for all i ∈ [ν], all scaling factors ω < log(Ncrs),
the algorithm Eval′(pk, f, ω, ct1, . . . , ctν) deterministically outputs an evaluated ciphertext ctf ∈
Zσ(λ)
Ncrs

such that:

sk>ctf = 2ωf(m) + noisef ∈ ZNcrs ,

with |noisef | < Bpk.

Note that one can recover the value f(m) ∈ ZNcrs when using the scaling factor ω = 2λ. That is,
we can define Eval(pk, f, ct1, . . . , ctν) = Eval′(pk, f, 2λ, ct1, . . . , ctν).

3.1.2 Randomness homomorphism

This property states that it is possible to homomorphically evaluates a circuit f not only on the
ciphertexts, but also the randomness used by the ciphertexts. The resulting evaluated randomness
rf belongs to a noisy randomness space R? — typically the fresh randomness comprises noises, and
the evaluated randomness consists of larger-magnitude noises. The encryption algorithm Enc? is
essentially the same as Enc except it operates on the evaluated (noisier) randomness. The ciphertext
obtained by first evaluating the randomness, then using the noisy encryption algorithm Enc? is the
same as obtained by directly evaluating the original ciphertexts.

Definition 3.2 (Randomness homomorphism). An FHE scheme FHE = (CRSgen,Gen,Enc,Dec,Eval)
for depth-d(·) circuits that satisfies batch correctness (defined above) also satisfies randomness homo-
morphism if there exists a sequence of noisy randomness spaces {R?λ}λ∈N, and the following additional
PPT algorithms:

� Evalrand(pk, f, r,m): given as input the public key pk, a depth-d(λ) circuit f of arity ν, random
coins r = (r1, . . . , rν) where for all i ∈ [ν], ri ∈ {0, 1}∞, and messages m ∈ {0, 1}ν , it
deterministically outputs an evaluated randomness rf ∈ R?.

� Enc?pk(m; r?): given as input the public key pk, a message m ∈ ZNcrs and the randomness
r? ∈ R?, it outputs a noisy ciphertext ct?.

We furthermore require these algorithms to satisfy the following condition: for every λ ∈ N, all crs
in the support of CRSgen(1λ), all pairs (pk, sk) in the support of Gen(crs), all ν ∈ N, all depth-d(λ)
circuits f of arity ν, all messages mi ∈ {0, 1}, all randomness ri ∈ {0, 1}∞ for i ∈ [ν], denoting
cti = Encpk(mi; ri) and rf = Evalrand(pk, f, r,m), we have:

Eval′(pk, f, 0, ct1, . . . , ctν) = Enc?pk(f(m); rf).

3.1.3 Shielded Randomness-Leakage security

To define the following Shielded Randomness-Leakage oracle oracle, we restrict ourselves to FHE
where the noisy randomness consists of integer vectors. That is, there exists a polynomial t(·) such
that the sequence {R?λ}λ∈N is such that for all λ ∈ N, R?λ ⊆ Zt(λ). Henceforth, we denote by
r1 + r2 ∈ R?λ and r1 − r2 ∈ R?λ the addition and subtraction in Zt(λ). We denote R?λ by R? for
simplicity.

18

Definition 3.3 (SRL security). An FHE scheme FHE for depth d(·) circuits satisfying randomness
homomorphism is said to be SRL-secure if it is OFHESRL -leakage resilient secure for the following oracle
OFHESRL , where Evalrand and Enc? are the algorithms guaranteed to exist by the definition of randomness
homomorphism. Similarly, for any public-key encryption scheme PKE, we say 2-circular SRL secu-
rity holds with respect to FHE and PKE if the OFHESRL -leakage resilient 2-circular security holds with
respect to FHE and PKE. Finally, we say FHE is 1-circular SRL secure if OFHESRL -leakage resilient
1-circular security holds with respect to FHE.

OFHESRL (m?, r):

r? ←R R?, ct? = Enc?pk(0; r?)

(f, α)← A(ct?)
rf = Evalrand(pk, f, r,m?).
If f(m?) = α and f is of depth at most d, then leak = r? − rf ∈ R?.
Otherwise, leak = ⊥. Return leak.

Roughly speaking, given a message m? and randomness r, the oracle OFHESRL samples fresh random
coins r? from which it generates a noisy encryption of zero, that is sent to the adversary. The
adcersary next chooses a circuit f and a value α ∈ Z. The oracle then checks that f(m?) = α, upon
which it returns the evaluated randomness ”shielded” with the randomness r?.

In the concrete FHE we consider from [GSW13], the randomness leakage corresponds to the
randomness obtained from homomorphically subtracting the encryption Enc?pk(0; r?) by the evaluated
challenge ciphertext. Revealing such leakage allows the adversary to decrypt and recover the value
0 − f(m?). By enforcing f(m?) = α, we make sure the adversary does not learn anything more
than what she already knew (recalling that the notion of O-leakage resilient security only requires
indistinguishability w.r.t. adversarys that do not make the oracle output ⊥).

Whenever the scheme FHE is clear from context, we simply write OSRL to denote OFHESRL .

3.2 SRL Security of the GSW FHE from LWE

We now recall the FHE scheme from [GSW13], whose security relies on the LWE assumption. The
variant we present uses a large modulus to permit batching many output bits in a single scalar. We
prove the GSW scheme is SRL-secure (as per Definition 3.3) under the LWE assumption.

3.2.1 Learning With Error Assumption

We recall the Learning with Error (LWE) assumption [Reg05] with subexponential modulus-to-noise
ratio.

Definition 3.4 (Learning With Error Assumption). For all polynomials κ(·), B(·), all sequences
q = {qλ}λ∈N such that for every λ ∈ N the bit size |qλ| is polynomially bounded in λ, all B-bounded
ensemble of efficiently sampleable distributions χ = {χλ}λ∈N, we say LWE holds with respect to q, κ, χ
if for all polynomials m(·), the following ensembles are computationally indistinguishable:{

A←R Zm(λ)×κ(λ)
qλ

, s← χ
κ(λ)
λ , e← χ

m(λ)
λ , z = As + e ∈ Zm(λ)

qλ
: (A, z)

}
λ∈N

.{
A←R Zm(λ)×κ(λ)

qλ
, z←R Zm(λ)

qλ
: (A, z)

}
λ∈N

.

In [Reg05], Regev showed that solving the LWE problem with modulus q, dimension κ, arbitrary
number of samples m, and discrete Gaussian distribution χ of standard deviation σ = αq ≥ 2

√
κ (this

19

is the distribution over Z that follows the normal distribution of standard deviation σ, which is σ ·
ω(
√

log(λ))-bounded) is at least as hard as quantumly approximating the shortest independent vector

problem (SIVP) to within an approximation factor γ = Õ(κ/α) in the worst case κ-dimensional
lattices. His result only applied to every modulus q that is a prime power, or a product of small
(poly-size) distinct primes. Later, in [PRS17], the result was generalized to any modulus q.

As typical, we choose a noise-to-modulus ratio α = 2−κ
c

for a constant c ∈ (0, 1), which corre-
sponds to the SIVP problem with an approximation factor γ = Õ(κ · 2κc), which is believed to be
intractable for c small enough. That is, we rely on the following theorem.

Theorem 3.5 ([Reg05, PRS17]). There exists a constant c ∈ (0, 1) such that for all polynomials
κ(·), B(·) and sequences q = {qλ}λ∈N where for all λ ∈ N, |qλ| is polynomially bounded in λ, such
that for all λ ∈ N, the following holds:

� B(λ) ≥ 2
√
κ(λ) log(λ)

� B(λ) ≥ qλ2−κ(λ)c

there exists a B-bounded ensemble χ of efficiently sampleable distributions over Z, such that LWE
holds with respect to q, κ, χ.

3.2.2 The GSW scheme

We present the FHE from [GSW13]. It is parameterized by a polynomial d that bounds the depth
of the circuits that can be homomorphically evaluated. We denote the scheme by GSWd.

The key generation algorithm we describe works when given as input any CRS that contains a
modulus N , that will be used by the scheme. Apart from being sufficiently large to ensure correctness
(that is, larger than the noise magnitude obtained when evaluating circuits of depth at most d), no
property is required from the modulus.

This way, the key generation algorithm can be fed with the crs generated as in [GSW13], and
recalled here, but also with a crs that describes the public key of a Linearly Homomorphic Encryp-
tion scheme that performs linearly operation over ZN . This ensures compatibility: both schemes can
operate on the same ring ZN .

• CRSgen(1λ):

Pick a modulus N such that N ≥ 22λB, where B is a bound on the noise obtained when homomor-
phically evaluating circuits of depth at most d.

• Gen(crs):
Given as input a crs that contains a modulus N ∈ N of θ bits for a sufficiently large θ, it chooses
κ,B′ ∈ poly(λ) and an efficiently sampleable B′-bounded distribution χ over Z such that LWE holds
with respect to N,κ, χ. It sets w = (κ+1)dlog(N)e, m = 2(κ+1)dlog(N)e+2λ, B̃ = (w+1)ddlog(N)e
and B = B̃B′m. We also require that the modulus N to be such that N ≥ 22λB.

It samples A ←R Zκ×mN , s ← χκ, e ← χm, g = (1, 2, . . . , 2dlog(N)e−1) ∈ Zdlog(N)e
N , G =

g> ⊗ Id =

g> 0 · · ·
0 g>

...
. . .

 ∈ Z(κ+1)×w
N where Id ∈ Z(κ+1)×(κ+1)

N denotes the identity matrix,

U =

(
A

s>A + e>

)
∈ Z(κ+1)×m

N . It sets pk = (B,N, χ,U,G), and sk = (−s, 1) ⊗ g ∈ ZwN . The

20

parameters define the noisy randomness space R? = [−2λB̃, 2λB̃]m. It outputs (pk, sk).

• Enc(pk,m):

Given the public pk, a message m ∈ {0, 1}, it samples the randomness R←R [−1, 1]m×w and outputs

the ciphertext ct = UR + mG ∈ Z(κ+1)×w
N . For any m ∈ {0, 1}n, we denote by Encpk(m; r) the

concatenation of the encryptions Encpk(m1; R1), . . . ,Encpk(mn; Rn).

• Eval(pk, f, ct1, . . . , ctν):
Given the public key pk, a depth-d(λ) arithmetic f : {0, 1}ν → {0, 1}, ciphertexts ct1, . . . , ctν , it runs
ctf ← Eval′(pk, f, ω, ct1, . . . , ctν) with scaling factor ω = 2B, where the algorithm Eval′ is described
below, for the batch correctness property.

• Decsk(ct): The decryption computes the inner product of ct ∈ {0, 1}w and sk ∈ ZwN in ZN , and
rounds the result.

We demonstrate that the GSW FHE satisfies the batch correctness property.

Proposition 1 (Batch correctness). The GSW FHE described above for depth-d(·) circuits satisfies
batch correctness, as per Definition 3.1.

Proof: We present the following PPT algorithm:

• Eval′(pk, f, ω, ct1, . . . , ctν):
Given the public pk, a depth-d(λ) arithmetic circuit f : {0, 1}ν → ZN , a scaling factor ω < log(N),
ciphertexts ct1, . . . , ctν , it evaluates the circuit gate by gate as follows.

� Addition gate between cti and ctj : return cti + ctj ∈ Z(κ+1)×w
N .

� Multiplication gate between cti and ctj : return cti · BD(ctj) ∈ Z(κ+1)×w
N , where BD(ctj) ∈

{0, 1}w×w denotes the binary decomposition of ctj ∈ Z(κ+1)×w
N .

By recursively applying the above operations, one can turn the ciphertexts ct1, . . . , ctν into Ci
f =

URi
f + fi(m)G ∈ Z(κ+1)×w

N , where fi(m) ∈ {0, 1} denotes the i’th bit of the binary decomposition

of f(m) ∈ ZN , that is, f(m) =
∑dlog(N)e−1

i=0 2ifi(m). For all i ∈ [0, dlog(N)e − 1], we have ‖Ri
f‖∞ ≤

(w+ 1)d. By definition of the matrix G, choosing the κ · dlog(N)e+ i+ω+ 1’th column of Ci
f yields:

cif =
(
Arif , (s

>A + e>)rif + 2ω+ifi(m)
)
∈ Zκ+1

N .

Summing up for all i ∈ [0, dlog(N)e − 1], we get: ct′f =
(
Arf , (s

>A + e>)rf + 2ωf(m)
)
∈ Zκ+1

N ,

where rf =
∑dlog(N)e−1

i=0 rif of norm ‖rf‖∞ ≤ (w + 1)ddlog(N)e = B̃. It outputs the evaluated

ciphertext ctf = BD
(
ct′f
)
∈ {0, 1}w.

The evaluated ciphertext ctf ∈ {0, 1}w is such that:

sk>ctf = −s>Arf + (s>A + e>)rf + 2ωf(m) = 2ωf(m) + noisef ∈ ZN ,

where noisef = e>rf . We have |noisef | < B̃B′m = B.
We turn to proving that it also satisfies the randomness homomorphism property.

Proposition 2 (Randomness homomorphism). The GSW FHE for depth-d(·) circuits, satisfying bath
correctness presented above satisfies the randomness homomorphism property as per Definition 3.2.

21

Proof: We present the following PPT algorithms:

• Enc?(pk,m; r?):

Given the public pk, a message m ∈ Z, the randomness r? ∈ [−2λ/2B̃, 2λ/2B̃]m, it computes
ct′ =

(
Ar?, (s>A + e>)r? +m

)
∈ Zκ+1

N , and outputs ct = BD(ct′) ∈ {0, 1}w.

• Evalrand(pk, f, (Ri)i∈[ν], (mi)i∈[ν]):

This algorithm is similar to the ciphertext evaluation algorithm. Namely, given the public pk, a
depth-d(λ) arithmetic circuit f : {0, 1}ν → ZN , randomness R1, . . . ,Rν ∈ [−1, 1]m×w, it evaluates
the circuit gate by gate as follows.

� Addition gate between Ri and Rj : return Ri + Rj ∈ Zm×wN .

� Multiplication gate between Ri and Rj : compute ctj = Encpk(mj ; Rj), return RiBD(ctj) +

miRj ∈ Zm×wN , where BD(ctj) ∈ {0, 1}w×w denotes the binary decomposition of ctj ∈ Z(κ+1)×w
N .

By recursively applying the above operations, one can turn the randomness R1, . . . ,Rn into Ri
f ∈

Zm×wN such that: Ci
f = URi

f + fi(m)G ∈ Z(κ+1)×w
N , for all i ∈ [0, dlog(N)e − 1]; and ‖Ri

f‖∞ ≤ (w+

1)d. By definition of the matrix G, choosing the κdlog(N)e+i+1’th column of Ri
f yields rif ∈ ZmN such

that: cif =
(
Arif , (s

>A + e>)rif + 2ifi(m)
)
∈ Zκ+1

N , and ‖rif‖∞ ≤ (w + 1)d. Summing up for all i ∈

[0, dlog(N)e − 1], we get: rf =
∑dlog(N)e−1

i=0 rif ∈ R? such that ct′f =
(
Arf , (s

>A + e>)rf + f(m)
)
∈

Zκ+1
N . It outputs the evaluated randomness rf .

3.2.3 SRL Security

Before proving the SRL security of GSW under the LWE assumption, we describe new trapdoor
generation and pre-image sampling algorithms that are inspired by those from [MP12]. As in prior
works, the trapdoor generation algorithm generates a matrix U ∈ Zd×mN that is statistically close to

uniformly random over Zd×mN , together with an associated trapdoor TU. The pre-image sampling
algorithm, given a target vector t ∈ ZdN , produces a short pre-image, that is, a short vector r ∈ ZmN
such that Ur = t. In these works, the distribution of these short pre-images is independent of the
trapdoor — typically they follow a discrete (spherical) Gaussian distribution. Our requirements are
slightly different: a pre-image produced by our sampling algorithm when given as input a target
vector t ∈ ZdN should be statistically close to a pre-image produced by our sampling algorithm when
given as input the vector 0 ∈ ZdN , shifted by a much smaller pre-image of t. That is, if a very short
pre-image is given, adding a somewhat short pre-image of 0 (produced by the sampling algorithm)
to it will produce a pre-image that looks like a fresh output of the sampling algorithm on input t.
This inherently requires smudging size noises, which implies the use of an exponential-size modulus
q. In fact this property is not known to hold for existing trapdoor generation and pre-image sampling
algorithms using polynomial-size modulus.

We prove this property for the concrete algorithms provided in [MP12], which we simplify since
we can afford to use smudging-size noises. We provide a self-contained description of the scheme and
its proofs here.

22

Lattice trapdoors.

• TrapGen(1λ, N, d):

Given as input the security parameter λ ∈ N, a modulus q ∈ N, a dimension d ∈ N, it sets
m̃ = ddlog(N)e + 2λ, w = ddlog(N)e, m = m̃ + w, computes the gadget matrix G = Id ⊗ g>

where Id ∈ Zd×dN denotes the identity matrix and g = (1, 2, . . . , 2dlog(N)e−1) ∈ Zdlog(N)e
N , Ũ←R Zd×m̃N ,

R←R [−1, 1]m̃×w, U = (Ũ‖ − ŨR + G) ∈ Zd×mN , TU = R. It outputs (U, TU).

• PreImSamp(U, TU, t, B):

Given as input the matrix U, the trapdoor TU, a target vector t ∈ ZdN and a bound B ∈ N, it
samples v ←R [−B2λ/2, B2λ/2]m, sets b = BD (Uv + t) ∈ {0, 1}w×w which denotes the binary de-

composition of Uv + t ∈ ZdN . It outputs

(
Rb
b

)
− v ∈ ZmN .

We show the following properties hold.

Proposition 3 (Correctness of TrapGen). For all λ,N, d, writing m = 2ddlog(N)e+2λ, the following
distributions have statistical distance at most 2−λ:{

U←R Zd×mN : U
}

{
(U, TU)← TrapGen(1λ, N, d) : U

}
.

Proof: The proposition follows readily from Lemma 2.1 (left over hash lemma).

Proposition 4 (Correctness of PreImSamp). For all λ, q, d,B ∈ N, all (U, TU) in the support of
TrapGen(1λ, q, d), all t ∈ ZdN , all r ∈ ZmN in the support of PreImSamp(U, TU, t, B) are such Ur = t
and ‖r‖∞ < B2λ/2 + w.

Proof: Straightforward.

Proposition 5 (Security). For all λ, q, d,B ∈ N, writing m = 2ddlog(N)e + 2λ, for all w ∈ ZmN
such that ‖w‖∞ < B, the the statistical distance of the two following distributions is upper-bounded
by 2−λ/2:

{(U, TU)← TrapGen(1λ, q, d), r̃0 ←R PreImSamp(U, TU,0, B) : r̃0 + w ∈ ZmN}
{(U, TU)← TrapGen(1λ, q, d), r̃← PreImSamp(U, TU,Uw, B) : r̃}

Proof: By definition of PreImSamp we have: r̃0 =

(
Rb
b

)
− v where v ←R [−B2λ/2, B2λ/2]m and

b = BD(Uv) ∈ {0, 1}w. Since ‖w‖∞ < B, by Lemma 2.2 (smudging), we have: v ≈s v + w with

statistical distance 2−λ/2. This implies that r̃0 + w ≈s
(

Rb′

b′

)
−v, where b′ = BD(Uv + Uw). The

latter is identically distributed to PreImSamp(U, TU,Uw, B).
We also prove the following lemma, that will prove useful later.

Lemma 3.1. For all λ, q, d ∈ N, the following distributions have statistical distance upper-bounded
by 2−λ: {

(U, TU)←R TrapGen(1λ, q, d), r←R [−1, 1]m : (U, TU,Ur)
}
.{

(U, TU)←R TrapGen(1λ, q, d),v←R ZmN : (U, TU,v)
}
.

23

Proof: For all λ, q, d ∈ N, there exists an inefficient probabilistic algorithm A such that the
following distributions are identical: {(U, TU) ← TrapGen(1λ, q, d) : (U, TU)} and {(U, TU) ←
TrapGen(1λ, q, d) : (U,A(U))}. For instance, the algorithmA enumerates all matrices R ∈ [−1, 1]m̃×w,
then chooses one uniformly at random among those which match U. Thus, Proposition 3 implies
the lemma.

Theorem 3.6 (SRL security). For any polynomials d(·), the GSW FHE for depth-d circuits with
batch correctness presented above is SRL-secure, under the LWE assumption.

Proof: We proceed via a hybrid argument using the following ensembles for all b ∈ {0, 1}.

• Dbλ: is the ensemble given in Definition 3.3.

• Hb.1λ : is as Dbλ except the LWE sample s>A + e> from the public key is switched to a uni-
formly random vector using the LWE assumption. That is, the public key is computed as follows:

A←R Zκ×mN , v←R ZmN , U =

(
A
v>

)
; the gadget matrix G is computed as in Dbλ, and pk = (B,U,G).

The secret key is also computed as in Dbλ (but now it is uncorrelated with pk), namely: s ←R χκ,
sk = (−s, 1) ⊗ g ∈ ZwN . The challenge ciphertext is computed as ct = Encpk(m

?; r) and the oracle
OSRL(m?, r) behaves as in Dbλ. From the LWE assumption, we have:

Dbλ ≈c Hb.1λ .

• Hb.2λ : is asHb.1λ except the matrix U from the public key is sampled from (U, TU)← TrapGen(1λ, q, κ+

1). By Property 3, this is statistically close to generating a uniformly random U ←R Z(κ+1)×m
N as

done in Hb.1λ . The rest of the adversary view can be generated from U, thus, we have:

Hb.1λ ≈s Hb.2λ .

• Hb.3λ : is as Hb.2λ except we use the oracle ÕSRL instead of OSRL:

ÕSRL(m?, ct):

r? ←R R?, ct? = Enc?pk(0; r?)

(f, α)← A(ct?)

BD(ct′f) = Eval′(pk, f, 0, ct). Parse ct′f =
(
Arf ,v

>rf + f(m?)
)
∈ Zκ+1

N .

Compute tf = (Arf ,v
>rf) ∈ Zκ+1

N , and r̃f ← PreImSamp(U, TU, tf , B̃).
If f(m?) = α, and f is of depth d, then leak = r? − r̃f ∈ R?.
Otherwise, leak = ⊥. Return leak.

Note that the oracle ÕSRL only takes as input the message m? ∈ {0, 1}∗ and the challenge ciphertext
ct = Encpk(m

?; r), but not the randomness r itself. Instead of computing the evaluated randomness
rf = Evalrand(pk, f,m?, r), it computes a small r̃f that is consistent with ctf , that is, such that
ctf = (Ar̃f ,v

>r̃f + f(m)). Clearly, the distributions: (ct, rf), which corresponds to Hb.2λ and
(ct, r̃f), which corresponds to Hb.3λ are distinct — for one thing, the first distribution has less entropy
than the second distribution where r̃f is sampled freshly. However, the value r̃f is shielded by the
noisy randomness r? ←R R?. Because it is of much larger magnitude than rf and r̃f , the latter
can smudge the difference δf = rf − r̃f , which would successfully transition from Hb.2λ to Hb.3λ . To
effectively hide δf , we need to make sure r? ∈ Zm itself is hidden. Partial information is revealed in
ct? = Enc?pk(0; r?), of the form Ur? ∈ Zκ+1

N . Intuitively, the component of r? along U is revealed by

24

ct?, but the remaining entropy of r? is hidden; in particular, its component along U⊥, the orthogonal
space of U, is hidden. Because r̃f is consistent with ctf , we have Uδf = 0; that is, δf is orthogonal
to U. The orthogonal component of r? can simply smudge δf . This argument is formalized in
Lemma 3.2. Overall, we have:

Hb.2λ ≈s Hb.3λ .

To complete the proof of Theorem 3.6, we show that H0.3
λ ≈s H1.3

λ , which gives overall:

D0
λ ≈c H0.1

λ ≈s H0.2
λ ≈s H0.3

λ ≈s H1.3
λ ≈s H1.2

λ ≈s H1.1
λ ≈c D1

λ.

We look at the challenge ciphertext inH0.3
λ . It of the form ct = (cti)i∈[|m?|] where for all i ∈ [|m?|],

cti = URi + m?
iG ∈ Z(κ+1)×w

N , where the randomness Ri ←R [−1, 1]m×w, and m?
i denotes the i’th

bit of the message m?. The only information revealed about Ri is URi — in particular the oracle
ÕSRL does not require to know Ri. Thus, we can use Lemma 3.1, which directly implies that the
following two distributions have statistical distance at most 2−λ:{

(U, TU)← TrapGen(1λ, N, κ+ 1),Ri ←R [−1, 1]m×w :
(
U, TU,

(
URi +m0

iG
)
i∈[s]

)}
{

(U, TU)← TrapGen(1λ, N, κ+ 1),Ri ←R [−1, 1]m×w :
(
U, TU,

(
URi +m1

iG
)
i∈[s]

)}
,

where s = |m0| = |m1|. The first distribution corresponds to H3.0
λ , whereas the second corresponds

to H3.1
λ .

Lemma 3.2. The following ensembles are statistically close: Hb.2λ ≈s Hb.3λ .

Proof: We introduce intermediate ensembles {Hb.2.iλ }λ∈N for i = 1, 2 which are defined as follows.
Ensemble Hb.2.1λ is as Hb.2λ except is uses the following oracle O1

SRL instead of OSRL.

O1
SRL(m?, r):

r? ←R R?, r̃0 ← PreImSamp(U, TU,0, B̃), ct? = Enc?pk(0; r? − r̃0)

(f, α)← A(ct?)
rf = Evalrand(pk, f, r,m?).
If f(m?) = α and f is of depth d, then leak = r? − r̃0 − rf ∈ R?.
Otherwise, leak = ⊥. Return leak.

We first prove that:
Hb.2λ ≈s Hb.2.1λ .

The only difference between these ensembles is that O1
SRL adds a pre-image of 0 ∈ ZmN to the shielded

randomness, that is, it uses r? − r̃0 with r? ←R R? and r̃0 ← PreImSamp(U, TU,0, B̃) instead of r?.
By Property 4, r̃0 ∈ ZmN is such that ‖r̃0‖∞ < B̃2λ/2. Thus, by Lemma 2.2 (smudging), the

following distributions have statistical distance at most 2−λ/2:

{r? ←R [−B̃2λ, B̃2λ]m : r?} and {r? ←R [−B̃2λ, B̃2λ]m : r? − r̃0}.

The leftmost ensemble corresponds to Hb.2λ , whereas the rightmost ensemble corresponds to Hb.2.1λ .
This completes the proof that Hb.2λ ≈s Hb.2.1λ .

Now, we introduce another intermediate ensemble, Hb.2.2λ , which is defined as Hb.2.1λ except is uses
the following oracle O2

SRL instead of O1
SRL.

25

O2
SRL(m?, r):

r? ←R R?, ct? = Enc?pk(0; r?)

(f, α)← A(ct?)

rf = Evalrand(pk, f, r,m?), r̃0 ← PreImSamp(U, TU,0, B̃).
If f(m?) = α and f is of depth d, then leak = r? − r̃0 − rf ∈ R?.
Otherwise, leak = ⊥. Return leak.

by Property 4, we have, Ur̃0 = 0. This implies Enc?pk(0; r? − r̃0) = Enc?pk(0; r?). Thus, we have:

Hb.2.1λ = Hb.2.2λ .

To conclude the proof of this lemma, we now prove that:

Hb.2.2λ ≈s Hb.3λ .

To do so, we note that rf ∈ ZmN is such that ‖rf‖∞ < B̃. Moreover, it is independent of the

vector r̃0 ← PreImSamp(U, TU,0, B̃). Therefore, we can use Proposition 5, which states that the
following distributions have statistical distance at most 2−λ/2:

{r̃0 ←R PreImSamp(U, TU,0, B̃) : r̃0 + rf ∈ ZmN} and {r̃f ← PreImSamp(U, TU,Urf , B̃) : r̃f}.

The leftmost distribution corresponds to Hb.2.2λ , whereas the rightmost distribution corresponds to
Hb.3λ .

4 Hintable Linearly Homomorphic Encryption

BDGM [BDGM20a] introduced the notion of “hintable” Linearly Homomorphic Encryption (LHE).
Roughly speaking, an LHE scheme is said to be hintable if there is a secret-key algorithm that given
a ciphertext, produces a “short” decryption hint. The latter can be used to decrypt the ciphertext
is was generated from, without the secret key. It is also possible to generate a hint from a ciphertext
only knowing the random coins used to produce that ciphertext (but without knowledge of the secret
key), and the hints generated in these two ways should be statistically close. For our purposes (and
as explained in the introduction), we will need to consider a notion of a hintable LHE satisfying a
“weak circuit privacy” notion.

Additionally, we here generalize the notion of a hintable LHE to also consider “packed” LHE,
where we can encrypt a vector of messages. Additionally, (just as we did for FHE), we will consider
LHE with two encryption modes: a “normal” and an “extra noisy” mode. Linear functions can be
evaluated on normal encryptions; furthermore one addition with a noisy encryption can be performed.
More additions with noisy encryptions would lead to ill-formed ciphertexts that cannot be decrypted
properly. (We introduce these extra generalizations to be able to obtain an instantiation based on
LWE; these extra generalizations are not needed to capture DJ).

More precisely, we consider the notion of an (`1, `2, h)-hintable packed LHE which enables operat-
ing over a plaintext space of length `2(λ) vectors over ZN for some modulus |N | ≥ `1(λ), and release
hints of size h(λ). We will be interested in schemes where either `1 or `2 can be made arbitrarily big,
while keeping h the same (i.e, the hint will become significantly shorter than a single group element,
or it will be significantly smaller than the packing capacity).

We will present two constructions satifying the notion of a hintable packed LHE. The first one
is the Damg̊ard-Jurik [DJ01] encryption scheme which is proven secure under the DCR assumption:

26

this construction considers the setting where `2(λ) = 1 (i.e., there is no packing, and instead the
group elements are directly much larger than the size of the hint). The second construction will
instead be a tweaked version of Packed Regev [Reg05, PVW08] which is secure under the LWE
assumption; in this construction, `1(λ) is small (comparable to the hint size), but instead `2(λ) can
be made arbitrarily large (i.e., we can pack a large number of elements into a ciphertext and still
keep the hint size small).

4.1 Definition of Hintable LHE

We proceed to the formal defnition.

Definition 4.1 (hintable LHE). An (`1, `2, h)-Hintable Packed LHE comprises the following PPT
algorithms:

� CRSgen(1λ): given as input the security parameter λ ∈ N, it outputs crs.

� Gen(crs): given as input crs, it outputs the tuple (pk, sk, td), where td a trapdoor that will be used

to compute decryption hints. This tuple defines the message space Z`2(λ)
N , where N ≥ 2`1(λ).

� Encpk(x): given as input the public key pk and a vector in x ∈ ZνN , it outputs a ciphertext ct.

� Enc?pk(m): given as input the public key pk and a message in m ∈ Z`2(λ)
N , it outputs a noisy

ciphertext ct?.

� Eval(pk, ct, ct?,y): given as input the public key pk, ciphertexts ct, a noisy ciphertext ct? and
a function y ∈ [−1, 1]ν`2, it outputs an evaluated ciphertext cty.

� Dec(sk, ct?): given as input the secret key and a (noisy or evaluated) ciphertext ct?, it outputs
a plaintext.

� SecHint(td, ct?): given as input the secret trapdoor td and a (noisy or evaluated) ciphertext ct?,
it outputs a decryption hint ρ.

� PubHint(pk, r): given as input the public key and some random coins r ∈ R?, where R? denotes
the randomness space of Enc?, it outputs a hint ρ.

� Rec(pk, ct?, ρ): given as input a (noisy or evaluated) ciphertext and a decryption hint ρ, it
outputs a plaintext.

These PPT algorithms additionally need to satisfy the properties listed below.

Property 4.1 (Correctness). For all λ ∈ N, all crs in the support of CRSgen(1λ), all tuples (pk, sk, td)

in the support of Gen(crs) that define the message space Z`2(λ)
N where N ≥ 2`1(λ), all messages

m ∈ Z`2(λ)
N , all ciphertexts ct? in the support of Enc?pk(m), we have Dec(sk, ct?) = m.

Property 4.2 (Linear Homomorphism). For all polynomials ν(·), all λ ∈ N, all crs in the support

of CRSgen(1λ), all tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N ,

all vectors x ∈ Zν(λ)
N , all ciphertexts ct in the support of Encpk(x), all messages m ∈ Z`2(λ)

N , all
ciphertexts ct? in the support of Enc?pk(x

?), all vectors y = (y1, . . . ,y`2) ∈ {0, 1}ν(λ)`2, the algorithm
Eval deterministically outputs an evaluated ciphertext cty = Eval(pk, ct, ct?,y) that is in the support
of Enc?pk(m1 + x>y1, . . . ,m`2 + x>y`2).

27

Property 4.3 (Correctness of secret hints). For all λ ∈ N, all crs in the support of CRSgen(1λ),

all tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , for all messages

m ∈ Z`2(λ)
N , we have: Pr

[
ct? ← Enc?pk(m), ρ← SecHint(sk, ct?) : Rec(pk, ct?, ρ) = m

]
∈ 1 − 2−Ω(λ),

where the probability is taken over the random coins of Enc? and SecHint.

Property 4.4 (Correctness of public hints). For all λ ∈ N, all crs in the support of CRSgen(1λ), all

messages m ∈ Z`2(λ)
N , the following distributions have statistical distance at most 2−Ω(λ):

{(pk, sk, td)← Gen(1λ), ct? ← Enc?pk(m), ρ← SecHint(sk, ct) : (pk, ct?, ρ)}
{(pk, sk, td)← Gen(1λ), r ←R R?, ρ← PubHint(pk, r), ct? = Enc?pk(m; r) : (pk, ct?, ρ)}

Property 4.5 (h-succinctness of hints). For all λ ∈ N, all crs in the support of CRSgen(1λ), all tuples

(pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , all messages x ∈ Z`2(λ)

N ,
all ciphertexts ct? in the support of Enc?pk(x), all hints ρ in the support of SecHint(sk, ct?) are of size
at most h(λ).

Property 4.6 (Weak circuit privacy). For all polynomials ν(·), all λ ∈ N, all crs in the support of

CRSgen(1λ), all tuples (pk, sk, td) in the support of Gen(crs) that define the message space Z`2(λ)
N , all

messages m ∈ Z`2N , all vectors x ∈ Zν(λ)
N , all vectors y ∈ [−1, 1]ν(λ)`2(λ), the following distributions

have statistical distance at most 2−Ω(λ):

{ct← Encpk(x), ct? ← Enc?pk(m), cty = Eval(pk, ct, ct?,y) : (pk, crs, ct, ct?, cty)}
{ct← Encpk(x), cty ← Enc?pk(µ), ct? = Eval(pk, ct, cty,−y) : (crs, pk, ct, ct?, cty)},

where µ = (m1 + x>y1, . . . ,m`2 + x>y`2) ∈ Z`2N .

Property 4.7 (Density of the noisy ciphertexts). There exists a polynomial s(·) and a poly-time
determinstic function CTsample such that the following distributions have statistical distance at most
2−Ω(λ): {

crs← CRSgen(1λ), (pk, sk, td)← Gen(crs), r←R {0, 1}s(λ) : CTsample(r)
}
.{

crs← CRSgen(1λ), (pk, sk, td)← Gen(crs),m←R Z`2(λ)
N , ct? ← Enc?pk(m) : ct?

}
.

4.2 Hintable LHE from DCR

We consider the Damg̊ard Jurik (DJ) Linearly Homomorphic Encryption scheme from [DJ01], which
generalizes Paillier’s encryption scheme [Pai99] to larger message spaces, whose security relies on the
Decisional Composite Residuosity (DCR) assumption. This scheme is not needed for our main result,
but serves as a good warm-up for understanding the notion of a hintable packed LHE (and leads to
our simplest construction of an XiO). As mentionned in the introduction, BDGM already showed
that the DJ scheme is a hintable LHE; since our notion of a hintable LHE is somewhat different, for
completeness, we here include the standard proof.

We start by recalling the DCR assumption on which the DJ scheme is proven secure.

Definition 4.2 (Decisional Composite Residuosity (DCR) assumption [Pai99]). There exists a PPT
algorithm RSAsample that on input a security parameter λ, outputs a pair (N,φ(N)) where N is a
2λ-bits integer, φ denotes Euler’s totient function; such that gcd(φ(N), N) = 1 and such that for all
polynomial ζ(·), the following ensembles are computationally indistinguishable:

{D0
λ}λ∈N =

{
(N,φ(N))← RSAsample(1λ); r ←R ZM : rN

ζ(λ) ∈ ZNζ(λ)+1

}
λ∈N

{D0
λ}λ∈N =

{
(N,φ(N))← RSAsample(1λ);u←R ZNζ(λ)+1 : u ∈ ZNζ(λ)+1

}
λ∈N

28

As explained in [DJ01] in further details, the algorithm RSAsample(1λ) samples two safe primes
p, q of λ bits each, and compute the RSA modulus N = pq.

We will show how the DJ encryption scheme satisfies our notion of a hintable packed LHE
(actually even without any packing):

Theorem 4.3. Assuming the DCR assumption, for every polynomial `1, there exists a secure
(`1, `2, h)-hintable packed LHE, where h(λ) = 2λ and `2(λ) = 1.

4.2.1 The DJ scheme

Given a polynomial `1(·), we recall the LHE from [DJ01] when operating on plaintext of size `1
(recall that `2 = 1 so there is no packing). That is, the scheme is parameterized by a polynomial `1,
and we call it DJ`1 . For this scheme, the hint is simply the randomness used to encrypt a message,
and noisy and normal encryptions behave in the same way:

• CRSgen(1λ):

It simply outputs crs = 1λ, i.e. there is no proper crs for that scheme.

• Gen(crs):

Given crs = 1λ, it uses the sampling algorithm from Definition 4.2, (M,φ(M)) ← RSAsample(1λ),
where M ∈ N is a 2λ-bit modulus, φ denotes Euler’s totient function, and we have gcd(φ(M),M) = 1.
Then it chooses a polynomial ζ(·) such that 2`1(λ)+2λ > N ≥ 2`1(λ), where N = M ζ(λ). For simplicity
of the notations, we write ζ = ζ(λ). It sets pk = (N, ζ), sk = td = φ(M) and outputs (pk, sk, td).
The plaintext space is ZN = ZMζ . The randomness space for Enc is Z∗M , the ciphertext space is
Z∗
Mζ , and the function space is ZN , that is t = N .

• Encpk(x):

Given the public pk, a vector x ∈ ZνN , for all i ∈ [ν], it samples ri ←R Z∗M and compute cti =

rM
ζ

i · (1 +M)xi ∈ Z∗
Mζ+1 . It outputs the ciphertext ct = (ct1, . . . , ctν).

• Enc?pk(m):

Given the public pk, a message m ∈ ZN , it samples r ←R Z∗M and outputs the noisy ciphertext

ct? = rM
ζ · (1 +M)m ∈ Z∗

Mζ+1 .

• Eval(pk, ct, ct?,y):
Given as input the public key pk, ciphertext ct ∈ Z∗ν

Mζ+1 , noisy ciphertext ct? ∈ Z∗
Mζ+1 , and a vector

y ∈ [−1, 1]ν , it outputs the evaluated ciphertext ct? ·
∏
i∈[ν] ct

yi
i ∈ Z∗

Mζ+1 , where · denotes the integer
multiplication in Z∗

Mζ+1 .

• SecHint(td, ct?):
Given the secret key td and a noisy ciphertext ct? ∈ Z∗

Mζ+1 , it computes d = ct mod M . Since

gcd(M ζ , φ(M)) = 1, it can compute M−ζ ∈ Z such that M ζ ·M−ζ = 1 mod φ(M). It outputs the

hint dM
−ζ ∈ Z∗M .

• PubHint(pk, r):
Given the public key pk and some randomness r ∈ Z∗M , it outputs the hint ρ = r.

• Rec(pk, ct?, ρ):

29

Given the public key pk, a noisy ciphertext ct?, and a hint ρ ∈ Z∗M , it computes d = ct·r−Mζ ∈ Z∗
Mζ+1 ,

where ρ−M
ζ

is the inverse of ρM
ζ

in Z∗
Mζ+1 . Then, it applies Paillier’s decryption recursively to ob-

tain x ∈ ZN . It outputs x ∈ ZN .

• Decsk(ct?):
Given the secret key sk, a noisy ciphertext ct?, it runs Ext(sk, ct?) to recover the randomness r ∈ Z∗M ,
then outputs Rec(pk, ct?, r).

The proof of Theorem 4.3 follows from the propositions and theorem below (which demonstrate
that DJ satisfies the desired properties of a hintable packed LHE, as well as security).

Proposition 6 (Linear Homomorphism). The LHE presented above satisfies Property 4.2 (linear
homomorphism).

Proof: For all i ∈ [ν], let cti be a ciphertext in the support of Encpk(xi), that is, of the form

cti = (ri)
Mζ

· (1 +M)xi ∈ Z∗
Mζ+1 , and let ct? be a ciphertext in the support of Enc?pk(x

?), that is, of

the form ct? = rM
ζ ·(1+M)x

? ∈ Z∗
Mζ+1 . For all y ∈ {0, 1}ν , the evaluated ciphertext cty is of the form:(

r
∏
i∈[ν] r

yi
i

)Mζ

·(1+M)x
?+

∑
i∈[ν] xiyi ∈ Z∗

Mζ+1 , which is in the support of Enc?pk(x
?+
∑

i∈[ν] xiyi).

Proposition 7 (Correctness of secret hints). The LHE presented above satisfies Property 4.3 (cor-
rectness of hints).

Proof: Let ct? = rM
ζ · (1 + M)x

? ∈ Z∗
Mζ+1 , where x? ∈ ZMζ and r ∈ Z∗M . We have ct?

mod M = rM
ζ mod φ(M) ∈ Z∗M . Since gcd(φ(M),M ζ) = 1, there is M−ζ ∈ Z such that M ζ ·M−ζ = 1

mod φ(M). Thus, the algorithm SecHint(td, ct) outputs r ∈ Z∗M . That is, the hint output by SecHint
is the randomness used to produce ct?.

The algorithm Rec(pk, ct?, r) computes d = ct? · r−Mζ
= (1 + M)x

? ∈ Z∗
Mζ+1 where r−M

ζ
is the

inverse of rM
ζ

in Z∗
Mζ+1 . Then it applies Paillier’s decryption recursively to obtain x? ∈ Z∗

Mζ . It
outputs x?.

Proposition 8 (Correctness of the public hints). The LHE presented above satisfies Property 4.4 (cor-
rectness of public hints).

Proof: As seen in the proof of Proposition 7, the hint recovered by SecHint on input the secret
key sk and a ciphertext ct? is the randomness r used by Enc? to produce ct?, which is the output
also what PubHint(pk, r) outputs.

Proposition 9 (Correctness). The LHE presented above satisfies Property 4.1 (correctness).

Proof: Correctness follows from the correctness of the secret hints (Property 4.3).

Proposition 10 (h-succinctness of hints). The LHE presented above satisfies h(λ) = 2λ-succinctness.

Proof: For all λ ∈ N, for all pairs (pk, sk) in the support of Gen(1λ) that define the message space
ZN , for all x? ∈ ZN , all ciphertext ct? in the support of Enc?pk(x

?), we have: all hints ρ in the support
of SecHint(sk, ct?) are in Z∗M , where M is an RSA modulus of size at most 2λ bits.

Proposition 11 (Weak circuit privacy). The LHE presented above satisfies Property 4.6 (weak
circuit privacy).

30

Proof: For any message x = (x1, . . . , xν) ∈ ZνN , x? ∈ ZN , y ∈ {0, 1}ν , we aim at proving that
following distributions are identical:

D0 :

{
∀i ∈ [ν], ri ←R Z∗M , cti = rM

ζ

i · (1 +M)xi , r ←R Z∗M , ct? = rM
ζ · (1 +M)x

?

cty = (r
∏
i r
yi
i)M

ζ · (1 +M)x
?+x>y : ((cti)i, ct

?, cty)

}

D1 :

{
∀i ∈ [ν], ri ←R Z∗M , cti = rM

ζ

i · (1 +M)xi , r ←R Z∗M , ct? = (r/
∏
i r
yi
i)

Mζ

· (1 +M)x
?

cty = rM
ζ · (1 +M)x

?+x>y : ((cti)i, ct
?, cty)

}
.

This relies on the fact that for all i ∈ [ν], all ri ∈ Z∗M , all yi ∈ ZMζ , the following distributions are
identical: D′0 = {r ←R Z∗M : ((ri)i, r, r ·

∏
i r
yi
i)} and D′1 = {r ←R Z∗M : ((ri)i, r/ (

∏
i r
yi
i) , r)}. The

distribution D′0 corresponds to D0, whereas D′1 corresponds to D1.

Proposition 12 (Density of the noisy ciphertexts). The LHE presented above satisfies Property 4.7 (den-
sity of the noisy ciphertexts).

Proof: One can sample a uniform random value u ←R ZMζ+1 from dlog(M ζ+1)e random bits.

The random value u ∈ ZMζ+1 can be written u = rM
ζ · (1 + M)x where x ∈ ZMζ and r ∈ Z∗M with

probability 1− φ(N)
N > 1− 3

2λ
over the choice of u←R ZMζ+1 .

Theorem 4.4 (Security [DJ01]). Assuming the DCR assumption (see Definition 4.2), the DJ scheme
is secure.

4.3 Hintable LHE from LWE

We present a packed version of Regev encryption scheme [Reg05], and demonstrate that it can be
used to satisfy our notion of a (`1, `2, h)-hintable packed LHE, where `1 and `2 can be any polynomial,
and h(λ) is a polynomial that that is larger than `1 but is independent of `2. That is, the hint is large
in comparison to individual group elements, but we can pack in an arbitrary polynomial number of
elements and still use the same hint size.

As explained in the introduction, our construction is slightly different, but similar in spirit, to
the Packed Regev from [PVW08]. Just as in [PVW08], the idea is to individually encrypt the `2
different components of the message vector but reusing the same randomness r (but different parts
of the secret key) for the components. In contrast to [PVW08], as we do not want the length of the
randomness to grow with `2, to prove security of the scheme, we add an extra smudging noise term
e′ to each encrypted component.

The hint for an encrypted message is a short pre-image of the ciphertext hear Ar, where r is the
randomness of the encryption. To enable efficiently recovering this hint, we will generate the lattice
given in the public key together with a standard lattice trapdoor that enables sampling random short
pre-images as in [Ajt96, GPV08, AP09, MP12].

To satisfy the properties of density and weak circuit privacy, we will rely on a extra noisy Packed
Regev encryption which proceeds just like the normal one but uses a much larger amount of ran-
domness (so that it covers the whole set of strings for density, and so that it smudges the noises of
evaluated ciphertexts for weak circuit privacy).

We will show how the Packed Regev encryption scheme satisfies our notion of a hintable packed
LHE.

Theorem 4.5. Assuming the LWE assumption, for all polynomials `1, there exists some polynomial
h such that for all polynomials `2, there exists a secure (`1, `2, h)-hintable packed LHE.

31

4.4 The Packed Regev Scheme

Our hintable Packed Regev scheme makes use of the following lattice trapdoor mechanism: Prior
works [Ajt96, GPV08, AP09, MP12] show that there exist PPT algorithm TrapGen and PreImSamp,
an ensemble of efficiently sampleable distributions over Z, {Dλ}λ∈N, such that the following holds.

• TrapGen(1λ, q, d):

Given as input the security parameter λ ∈ N, a modulus q ∈ N, a dimension d ∈ N, it outputs
(A, TA), where A ∈ Zd×mq , m ∈ Θ(d log(q)) and TA is a trapdoor. The matrix A is statistically close
to uniform, that is, for all λ, q, d ∈ N, the following distributions have statistical distance at most
2−Ω(λ): {(A, TA)← TrapGen(1λ, q, d) : A} and {A←R Zκ×mq : A}.

• PreImSamp(A, TA, t):

Given as input the matrix A, the trapdoor TA, a target vector t ∈ Zdq , it outputs r ∈ Zmq . For

all λ, d, q ∈ N, all (A, TA) in the support of TrapGen(1λ, q, d), all t ∈ Zdq , PreImSamp(A, TA, t) out-

puts r ∈ Zdq such that Ar = t ∈ Zdq and ‖r‖∞ < 2λ/2 with probability 1 − 2−Ω(λ) over its random
coin.

We require the output r to follow some distribution that does not depend on the actual trapdoor
TA, namely, for all λ, d, q, the following distributions have statistical distance at most 2−Ω(λ):

{(A, TA)← TrapGen(1λ, q, d), r←R Dmλ , r′ ←R PreImSamp(A, TA,Ar) : (r′,Ar)}
{(A, TA)← TrapGen(1λ, q, d), r← Dmλ : (r,Ar)}.

For our purposes, we want the distributions Dλ to be of smudging size. That is, for all polynomials
p(·), all λ, q ∈ N, γ ∈ Zq such that |γ| < p(λ), the following distributions have statistical distance at
most 2−Ω(λ):

{r ←R Dλ : r ∈ Zq}
{r ←R Dλ : r + γ ∈ Zq}.

Finally, by the left over hash lemma, since m is large enough and D has enough entropy, for all
λ, d, q ∈ N, the following distributions have statistical distance at most 2−Ω(λ): {r← Dmλ , (A, TA)←
TrapGen(1λ, q, d) : (A,Ar)} and {r← Dmλ , (A, TA)← TrapGen(1λ, q, d),u←R Zdq : (A,u)}.

We now proceed to describing the Packed Regev scheme, which is parameterized by polynomials
`1 and `2. We denote the scheme by P-Regev`1,`2 .

• CRSgen(1λ):

It simply outputs crs = 1λ, i.e. there is no proper crs for that scheme.

• Gen(crs):

Given as input crs = 1λ, it chooses polynomials κ(·), B(·), a B-bounded ensemble of efficiently
sampleable distributions χ = {χλ}λ∈N over Z, a sequence q = {qλ}λ∈N where for each λ ∈ N,
qλ has a polynomially bounded bit size, such that LWE holds with respect to q, κ, χ. The exis-
tence of such parameters is ensured by Theorem 3.5. Concretely, Gen takes κ(λ) = (`1(λ) + λ)1/c,
B(λ) = κ(λ), and qλ = 2λNλB(λ), where Nλ = 2`1(λ) and c ∈ (0, 1) is the constant from Theo-
rem 3.5. For simplicity we write q = qλ, B = B(λ), N = Nλ, χ = χλ, and κ = κ(λ). It sets

32

m = 2κ log(q) + 2λ. It samples (A, TA)← TrapGen(1λ, q, κ), S← χ`2×κ, E← [−2λ/3, 2λ/3]`2×m, and
sets pk = (N,A,SA + E) ∈ N× Zκ×mq × Z`2×mq , sk = S and td = TA. It outputs (pk, sk, td).

• Encpk(x ∈ ZνN):

Given the public pk, a vector x ∈ ZνN , it samples R ← [−1, 1]m×ν`2 , E′ ←R [−2λ/2, 2λ/2]`2×ν`2

and outputs the ciphertext ct =
(
AR, (SA + E)R + E′ + q/N · x> ⊗ Id`2

)
∈ Z(κ+`2)×ν`2

q , where

Id`2 ∈ Z`2×`2N denotes the identity matrix, and x> ⊗ Id`2 =

x> 0 · · ·
0 x>

...
. . .

 ∈ Z`2×ν`2N .

• Enc?pk(m ∈ Z`2N):

Given the public pk, a message m ∈ Z`2q , it samples r? ←R Dm, where D is the efficiently sampleable

distribution over Z related to TrapGen and PreImSamp; e? ←R

[
− q

2N + 1, q
2N

]`2 , and outputs the

noisy ciphertext ct? =
(
Ar?, (SA + E)r? + e? + q/N ·m

)
∈ Zκ+`2

q .

• Eval(pk, ct, ct?,y):

Given the public pk, ciphertext ct ∈ Z(κ+`2)×ν`2
q , noisy ciphertext ct? ∈ Zκ+`2

q and a vector y ∈
[−1, 1]ν`2 , it outputs the evaluated ciphertext cty + ct? ∈ Zκ+`2

q .

• SecHint(td, ct?):
Given as input the secret key sk and a (noisy or evaluated) ciphertext ct? ∈ Zκ+`2

q of the form (t, z)

where t ∈ Zκq and z ∈ Z`2q , it samples ρ← PreImSamp(A, TA, t) and outputs the hint ρ ∈ Zmq .

• PubHint(pk, r):
Given as input the public key pk and the random coins r = (r?, e?) where r? ∈ Dmλ , e? ∈

[
− q

2N +

1, q
2N

]`2 used to produce a noisy ciphertext, it outputs r? ∈ Zmq .

• Rec(pk, ct?, ρ):

Given as input the public key pk, a (noisy or evaluated) ciphertext ct? ∈ Zκ+`2
q of the form ct = (t, z)

where t ∈ Zκq , z ∈ Z`2q and a hint ρ ∈ Zmq , it computes d = z − (SA + E)ρ ∈ Z`2q and outputs

bN/q · de ∈ Z`2N .

• Decsk(ct?):
Given as input the secret key sk and a (noisy or evaluated) ciphertext ct? = (t, z) with t ∈ Zκq ,

z ∈ Z`2q , it computes d = z− St ∈ Z`2q and outputs bN/q · de ∈ Z`2N .

The proof of Theorem 4.5 follows from the propositions and theorem below (which demonstrate
that Packed Regev Scheme satisfies the desired properties of a hintable packed LHE, as well as se-
curity).

Proposition 13 (Linear Homomorphism). The LHE presented above satisfies Property 4.2 (linear
homomorphism).

Proof: The ciphertext produced by Encpk(x) has the form ct =
(
AR, (SA + E) R + E′ + q/N · x> ⊗ Id`2

)
∈

Z(κ+`2)×ν`2
q , and ct? = (Ar?, (SA + E) r? + e? + x?). For all y ∈ [−1, 1]ν`2 , Eval(pk, ct, ct?,y) out-

33

puts the evaluated ciphertext cty =
(
A(Ry + r?), (SA + E)(Ry + r?) + E′y + e? + q/N ·µ

)
∈ Zκ+`2

q

where µ = (m1 + x>y1, . . . ,m`2 + x>y`2) ∈ Z`2N which is in the support of Enc?pk(µ).

Proposition 14 (Correctness of secret hints). The LHE presented above satisfies Property 4.3 (cor-
rectness of secret hints).

Proof: For all messages m ∈ Z`2N , Enc?pk(m) is of the form ct? = (t, z) ∈ Zκ×`2N , where t = Ar?

and z = (SA + E) r? + e? + x?
)
.

The algorithm SecHint computes ρ ← PreImSamp(A, TA, t). By the properties of PreImSamp,
ρ ∈ Zmq is such that ‖ρ‖∞ ≤ 2λ/2 with all but 2−Ω(λ) probability over the random coins of PreImSamp,
and Aρ = t.

Next, the algorithm SecHint computes d = z − (SA + E) ρ = q/N · m + noise + e?, where
noise = E(r?−ρ). With probability 1−2−Ω(λ) over the choice of E← [−2λ/3, 2λ/3]`2×m, r? ← Dmλ and
the random coins used to produce ρ, we have ‖noise‖∞ ≤ (2λ/2 +2λ/3)Bm ∈ q/N ·2−Ω(λ). Thus, with

probability 1−2−Ω(λ) over the choice of e? ←R

[
− q

2N +1, q
2N

]`2 , we have bN/q(noise+e?)e = 0`2 ∈ Z`2N .

Consequently, we have bN/q · de = µ ∈ Z`2N .

Proposition 15 (Correctness of public hints). The LHE presented above satisfies Property 4.4 (cor-
rectness of public hints).

Proof: We aim at proving that for all λ ∈ N, all messages m ∈ Z`2N , the following distributions
have statistical distance at most 2−Ω(λ):

D0 =

{ (
pk = (A,SA + E), sk = S, td = TA

)
← Gen(1λ), r? ← Dmλ , e? ←R [− q

2N + 1, q
2N]`2

ρ← PreImSamp(A, TA,Ar?) : (Ar?, (SA + E)r? + e? + q/N ·m, ρ)

}
D1 =

{ (
pk = (A,SA + E), sk = S, td = TA

)
← Gen(1λ), r? ← Dmλ

e? ←R [− q
2N + 1, q

2N]`2 : (Ar?, (SA + E)r? + e? + q/N ·m, r?)

}
By Lemma 2.2 (smudging), distribution D0 has statistical distance at most 2−Ω(λ) with D′0 =

{(pk, sk)← Gen(1λ), r? ← Dmλ , e? ←R

[
− q

2N +1, q
2N

]`2 , ρ← PreImSamp(A, TA,Ar?) :
(
Ar?,SAr?+

e? + q/N ·m, ρ
)
}. By the property of PreImSamp, D′0 has statistical distance at most 2−Ω(λ) with

D′1 = {(pk, sk) ← Gen(1λ), r? ← Dmλ , e? ←R

[
− q

2N + 1, q
2N

]`2 :
(
Ar?,SAr? + e? + q/N ·m, r?

)
}.

Finally, using smudging again, we have D′1 ≈s D1, with statistical distance at most 2−Ω(λ).

Proposition 16 (Correctness). The LHE presented above satisfies Property 4.1 (correctness).

Proof: A ciphertext ct? in the support of Enc?pk(m) is of the form ct? = (t, z) with t = AR ∈ Zκq
and z = (SA + E)R ∈ Z`2q . the vector d ∈ Z`2q computed by the decryption is

Proposition 17 (Succinctness of hints). The LHE presented above satisfies h(λ) = (λ/2 + 1)m
succinctness, where m = 2κ log(q) + 2λ.

Proof: Hints are of the form r? ∈ [−2λ/2, 2λ/2]m.

Proposition 18 (Density of the noisy ciphertexts). The LHE presented above satisfies Property 4.7 (den-
sity of the noisy ciphertexts).

Proof: For all m ∈ Z`2q , a noisy ciphertext ct? ←R Enc?pk(m) is of the form ct? = (Ar?, (SA +

E)r? + e? + q/N ·m) ∈ Zκ+`2
q . When m ←R Z`2N , the second part of the ciphertext is uniformly

random over Z`2q , since e? ←R

[
− q

2N + 1, q
2N

]`2 . That is, for all λ ∈ N, for all pairs (pk, sk) in the

34

support of Gen(1λ), the following distributions are identical: {m←R Z`2N , ct
? ← Enc?pk(m) : ct?} and

{r? ←R Dmλ ,w←R Z`2q : (Ar?,w)}. We conclude the proof using the properties of PreImSamp, which

imply that the following distributions have statistical distance at most 2−Ω(λ): {A←R Zκ×mq , r? ←R

Dmλ : (A,Ar?)} and {A←R Zκ×mq ,u←R Zκq : (A,u)}.

Proposition 19 (Weak circuit privacy). The LHE presented above satisfies Property 4.6 (weak
circuit privacy).

Proof: For all x ∈ ZνN , y ∈ [−1, 1]ν`2 , we aim at proving the following distributions have statistical
distance at most 2−Ω(λ):

D0 =
{

(pk, sk)← Gen(1λ), ct← Encpk(x), ct? ← Enc?pk(m), cty = Eval(pk, ct, ct?,y) : (ct, ct?, cty)
}

D1 =

{
(pk, sk)← Gen(1λ), ct← Encpk(x)
cty ← Enc?pk(µ), ct? = Eval(pk, ct, cty,−y) : (ct, ct?, cty)

}
,

where µ = (m1 + x>y1, . . . ,m`2 + x>y`2) ∈ Z`2N .
In distribution D0, we have:

� ct =
(
AR, (SA + E) R + E′ + q/N · x> ⊗ Id`2

)
,

� ct? = (Ar?, (SA + E) r? + e? + q/N · x?),

� cty = (A(Ry + r?), (SA + E) (Ry + r?) + E′y + e? + q/N · µ).

We show that it has statistical distance 2−Ω(λ) from D1 by a series of claims.

Claim 1. For all y ∈ [−1, 1]ν`2 , the following distributions have statistical distance 2−Ω(λ):{
r? ←R Dmλ ,R←R [−1, 1]m×ν`2 : (R, r?, r? + Ry)

}
{

r? ←R Dmλ ,R←R [−1, 1]m×ν`2 : (R, r? −Ry, r?)
}
,

by the properties of PreImSamp.

Claim 2. For all y ∈ [−1, 1]ν`2 , the following distributions have statistical distance 2−Ω(λ):{
e? ←R

[
− q

2N
+ 1,

q

2N

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 : (E′, e?, e? + E′y)
}

{
e? ←R

[
− q

2N
+ 1,

q

2N

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 : (E′, e? −E′y, e?)
}
.

by Lemma 2.2 (smudging).
Claim 1 and Claim 2 imply the following claim.

Claim 3. For all y ∈ [−1, 1]ν`2 , the following distributions have statistical distance 2−Ω(λ):

D′0 =

{
e? ←R

[
− q

2N + 1, q
2N

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 , r? ←R Dmλ
R←R [−1, 1]m×ν`2 :

(
R, r?, r? + Ry,E′, e?, e? + E′y

) }

D′1 =

{
e? ←R

[
− q

2N + 1, q
2N

]`2 ,E′ ← [−2λ/2, 2λ/2]`2×ν`2 , r? ←R Dmλ
R←R [−1, 1]m×ν`2 :

(
R, r? −Ry, r?,E′, e? −E′y, e?

) }
.

Now we prove the following claim, that will conclude the proof of Proposition 19.

35

Claim 4. There exists a (possibly inefficient) simulator S that given as input v ∈
(
Zm×(ν`2+2)
q ×

Z`2×(ν`2+2)
q , outputs a tuple (ct, ct?, cty) ∈ Z(κ+`2)×ν`2

q ×
(
Zκ+`2
q

)2
, such that when S is fed with an

input from distribution D′0, it produces an output following the distribution D0, whereas when fed
with an input coming from distribution D′1, it produces an output following the distribution D1.

Given as input
(
R, r1, r2,E

′, e1, e2

)
, S computes:

� ct =
(
AR, (SA + E) R + E′ + q/N · x> ⊗ Id`2

)
,

� ct? = (Ar1, (SA + E) r1 + e1 + q/N ·m),

� cty = (Ar2, (SA + E) r2 + e2 + q/N · µ).

Theorem 4.6 (Security). The LHE presented is semantically secure under the LWE assumption.

Proof: In a nutshell, Regev encryption uses the LWE assumption to switch the LWE samples from
the public key SA+E to uniformly random, then use the left over hash lemma to extract the entropy
from the randomness used to encrypt the messages. The problem here is that for succinctness, we
use small randomness, and large messages: the randomness does not hold enough entropy to hide the
messages. Instead, we use the randomness and extra smudging noise to generate fresh LWE samples,
and then hide the messages.

We now provide the formal proof. We use the following hybrid games, for all b ∈ {0, 1}.

• Dbλ: as per Definition 2.9. Namely, this game generates (pk, sk)← Gen(1λ) where pk = (A,SA+E),

ct = (Ar, (SA + E)r + e′ + q/N ·mb) ∈ Zκ+`2
q . It returns (pk, ct) to the adversary.

• Hb.1λ : this game generates (pk, sk) ← Gen(1λ) where pk = (A,SA + E), ct = (Ar,SAr + e′ +

q/N · mb). Recall that E ←R [−2λ/3, 2λ/3]`2×m, r ←R [−1, 1]m for a polynomial m and e′ ←R

[−2λ/2, 2λ/2]`2 . Thus, we can use Lemma 2.2 (smudging) to argue that (E, r, e′ + Er) ≈s (E, r, e′)
with statistical distance 2−Ω(λ). The first distribution corresponds to Dbλ (with pre-processing),
whereas the second distribution corresponds to Hb.1λ (with pre-processing).

• Hb.2λ : this game generates (pk, sk)← Gen(1λ) where pk = (A,SA+E), ct = (u,Su+e′+q/N ·mb),

u ←R Zκq . The fact that Hb.1λ ≈s Hb.2λ with statistical distance 2−Ω(λ) follows readily from the left

over hash lemma, which states that the following distributions have statistical distance 2−Ω(λ):

{A←R Zκ×mq , r←R [−1, 1]m : (A,Ar)}
{A←R Zκ×mq ,u←R Zκq : (A,u)}.

Now we prove that H0.2
λ ≈c H1.2

λ . This holds by the properties of TrapGen, which states that A is
statistically close to uniform over Zκ×mq . Then, we rely on the LWE assumption, which implies that

(A,SA + E,u,Su + e′) ≈c (A,V,u,w) ≈ (A,SA + E,u,w) where w←R Z`2q , and V←R Z`2×mq .
Summarizing, we have shown that: D0

λ ≈s H0.1
λ ≈s H0.2

λ ≈c H1.2
λ ≈s H1.1

λ ≈s D1
λ.

5 Constructing XiO for Plog/poly

We present a modular construction of XiO Plog/poly from the GSW FHE scheme for circuits of depth
δ, denoted by GSWδ, for sufficiently sufficiently large δ, and any (`1, `2, h)-hintable packed LHE for

36

sufficiently small h and sufficiently large `1 and `2 —recall that h measures the LHE succinctness,
while `1, `2 measure the plaintext size, or ”batching capacity” of the scheme; `1 intuitively represents
how many bits can be packed in a scalar, i.e. how large is the modulus in use, whereas `2 measures
how many such scalars are recovered when decrypting one ciphertext. We now state our formal
theorem.

Theorem 5.1. Assume that for all polynomials δ, b, all constants ε ∈ (0, 1), there exists a polynomial
h s.t. for all polynomials n, there exist `1, `2 and an (`1, `2, h)-hintable packed LHE denoted by
LHEb,ε,n s.t. for all λ ∈ N:

� `1(λ) ≥ b(λ)

�

(
`1(λ)− b(λ)

)
· `2(λ) > n(λ)ε

� LHEb,ε,n and the GSW FHE scheme for depth δ(λ) circuits are circularly SRL-secure.

Then XiO for Plog/poly exists.

To enable a modular proof, we abstract out 2 additional properties of the GSW FHE that we
will rely on.

5.1 Additional properties for GSW

Weak Circuit Privacy of GSW As mentionned in the introduction, we will rely on the fact
that the GSW encryption scheme also satisfies a notion of “weak circuit privacy” similar to the one
defined for LHE. More precisely, we show that GSW satisfies a property that involves a public-key
algorithm that re-randomizes evaluated ciphertext so that they look like fresh ciphertexts from the
support of the noise encryption algorithm Enc?. Namely, we show that there exists a PPT algorithm
ReRand that takes as input the public key pk, an evaluated ciphertext ct, some random coins r? ∈ R?,
and outputs an evaluated ciphertext ct computed as described below.

• ReRand(pk, ct; r?):

Given pk = (B,U,G), ct ∈ {0, 1}w and r? ←R [−B̃2λ, B̃2λ]m, it computes ct′ ∈ Zκ+1
N whose binary

decomposition is ct, computes c̃t = ct′ + Ur? ∈ Zκ+1
N , and outputs the re-randomized ciphertext

BD(c̃t) ∈ {0, 1}w.

Theorem 5.2 (weak circuit privacy). For all polynomials ν, q, all λ ∈ N, all crs containing a modulus
N of θ ∈ Ω(λ · d(λ)) bits, all pairs (pk, sk) in the support of Gen(crs), all messages m1, . . . ,mν(λ),
all depth-d circuits f1, . . . , fq : {0, 1}ν → ZN , the following distributions have statistical distance at
most 2−λ:

D0 :


∀i ∈ [ν],Ri ←R [−1, 1]m×w, cti ← Encpk(mi; Ri)
∀j ∈ [q], ctfj = Eval′(pk, fj , 1, ct1, . . . , ctν), r?j ←R R?

ct?fj = ReRand(pk, ctfj ; r
?) :

(
(cti)i∈[ν], (r

?
j , ct

?
fj

)j∈[q]

)


D1 :


∀i ∈ [ν] : Ri ←R [−1, 1]m×w, cti ← Encpk(mi; Ri)
∀j ∈ [q], r?j ←R R?, ct?fj = Enc?pk(fj(m); r?)

rfj = Evalrand
(
pk, fj , (Ri)i∈[ν], (mi)i∈[ν]

)
:
(

(cti)i∈[ν], (r
?
j − rfj , ct

?
fj

)j∈[q]

)


Proof: By batch correctness of the scheme, for all j ∈ [q], the evaluated ciphertext is of the form
ctfj =

(
Arfj , (s

>A+e>)rfj +fj(m)
)
∈ Zκ+1

N , and the re-randomized ciphertext is of the form ct?fj =

37

(
A(rfj + r?j), (s

>A + e>)(rfj + r?j) + fj(m)
)
∈ Zκ+1

N , where ‖rfj‖∞ < B̃ and r?j ←R [−B̃2λ, B̃2λ]m.

By Lemma 2.2 (smudging), the following distributions have statistical distance at most 2−λ:(
r?j
)
j∈[q]

≈s
(
r?j − rfj

)
j∈[q]

.

The leftmost distribution corresponds to D0, whereas the rightmost distribution corresponds to
D1.
We also show that a fresh noisy encryption satisfies the following weak correctness notion.

Proposition 20 (approximate noisy correctness). For all λ ∈ N, all crs containing a modulus N of
θ ∈ Ω(λ · d(λ) bits, all (pk, sk) in the support of Gen(crs), all messages m ∈ {0, 1}ν , all ciphertexts
ct in the support of Encpk(m), all circuits f : {0, 1}ν → ZN of depth d, all ct′f in the support of

ReRand(pk, ctf) where ctf = Eval′(pk, f, 1, ct), we have:

sk>ct′f = f(m) + noise ∈ ZN ,

with |noise| < B(2λ + 1).

Proof: The ciphertext ctf is the binary decomposition of
(
A(r? + rf), (s>A + e>)(r? + rf) + f(m)

)
∈

Zκ+1
N , where |e>rf | < B by batch correctness, and |e>r?| < 2λB̃B′m = 2λB.

5.2 XiO Construction

We directly dive into the formal description of the construction, see the introduction for a detailed
overview.

We present a modular construction of XiO for the class of circuits Clog(n),s,d for polynomials n, s, d,
from the following building blocks:

� the GSW FHE scheme for depth δ circuits, denoted by GSWδ = (Gen,Enc,Enc?,Eval,ReRand),
presented in Section 3.2.2. The depth δ is chosen sufficiently large to handle the homomorphic
evaluations of the circuits described below.

� an (`1, `2, h)-Hintable Packed LHE, denoted by LHEb,n,ε = (Gen,Enc,Enc
?
,Dec,Eval,SecHint,

PubHint,Rec) where h is independent of n to ensure succinctness; `1(λ) ≥ b(λ) + 2λ, where 2b

is a bound on the noise obtained when FHE evaluating circuits of depth at most δ8; moreover(
`1(λ)− b(λ)− 2λ

)
· `2(λ) ≥ nε(λ), where ε ∈ (0, 1) is defined below (see the paragraph about

succinctness).

Notations. For every program Π with log(n) bits inputs, every ε ∈ (0, 1), the truth table can be
written as (Πi)i∈[n1−ε], where each chunk Πi contains nε bits. The chunks Πi themselves can be
subdivided into sub-chunks Πi = (Πi,j)j∈[`2], where each sub-chunk Πi,j contains nε/`2 bits. For all
i ∈ [n1−ε] and j ∈ [`2], we denote by Ci,j the circuit that takes as input a program Π of size s and
outputs Πi,j .

The construction: We proceed to the construction.

• GenObf(1
λ):

Set the parameters:

8To make sure these parameters are instantiable, we require that LHE decryption is of poly-logarithmic depth,
which ensures that δ and therefore B only depend poly-logarithmically on `1.

38

� Choose a constant 0 < ε < 1 that is small enough so as to ensure succinctness of the scheme
(see paragraph succinctness below).

� Let |ct|(·), |r?|(·) be polynomials such that for every λ ∈ N, every (pk, sk) in the support of
Gen(1λ) that defines the message space Z`2N and the noisy randomness space R?, every message

m ∈ Z`2N , every ciphertext in the support of Encpk(m) has a bit size at most |ct|(λ) and every
r? ∈ R? has bit size at most |r?|(λ).

� FHE.PubCoin←R {0, 1}n
1−ε·`2·|r?|, LHE.PubCoin←R {0, 1}n

1−ε·|ct|.

Return pp = (FHE.PubCoin, LHE.PubCoin).

• Obf(pp, 1n,Π):

Sample the following parameters:

�

(
pk, sk

)
← Gen(1λ) that defines the message space Z`2N .

� (pk, sk)← Gen(pk) that defines the noisy randomness spaceR?, where sk ∈ ZwN , and pk contains
the noise bound B; we write b = dlog(B)e.

Compute the following ciphertexts:

� ct1 ← Encpk (Π).

� ct2 ← Encpk(sk).

� ct← Encpk(sk).

For all i ∈ [n1−ε], j ∈ [`2], compute the following:

� cti,j = Eval′ (pk, Ci,j , b+ 2λ, ct1) ∈ {0, 1}w, where the circuit Ci,j is defined above. The homo-
morphic evaluation is performed with scaling factor b+ 2λ.

� ctMSB,i,j = Eval′(pk, fi,j , 0, ct2) ∈ {0, 1}w, where the circuit fi,j takes as input a bit string

a ∈ {0, 1}|sk|, which it uses as an LHE secret key to compute vi = Deca(LHE.PubCoini),
where LHE.PubCoini is interpreted as an LHE ciphertext Encpk(ui), with ui ∈ Z`2N , by density
of the LHE ciphertext space. I If the decryption is successful, then it computes vi,j ∈ ZN ,

the j’th coordinate of vi ∈ Z`2N and outputs the most significant bits of vi,j , of the form:
MSB(vi,j) = vi,j − LSB(vi,j) ∈ Z`2 , where the (shifted) least significant bits are of the form:
LSB(vi,j) = vi,j mod B22λ − B22λ/2 ∈ ZN . The homomorphic evaluation is performed with
scaling factor 1.

� Parse FHE.PubCoini,j = r?i,j ∈ R? and compute ct′MSB,i,j = ReRand(pk, ctMSB,i,j ; r
?
i,j) ∈ Zκ+1

N .

� Compute cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

� Compute cti = Eval
(
pk, ct, LHE.PubCoini, cti − ct′MSB,i

)
.

� Compute ρi ← SecHint(sk, cti).

Return Π̃ =
(
pk, pk, ct1, ct2, ct, {ρi}i∈[n1−ε]

)
.

• Eval(pp, Π̃,x):

39

� Let i ∈ [n1−ε] such that Π(x) belongs to the i’th chunk of the truth table of Π. Compute cti
as described above.

� Recover mi ← Rec(pk, cti, ρi).

� Compute m′i = b2−2λ/B ·mie, which contains Π(x).

We now proceed to prove Theorem 5.1.

Succinctness. By h-succinctness of LHEn,q, for all i ∈ [n1−ε], we have |ρi| ≤ h(λ) for a polynomial

h that is independent of n and d. The rest of the obfuscated circuit Π̃ is of size poly(λ, nε, d). Overall,
there exists a constant c ∈ N (independent of ε) and polynomials p such that

∣∣Π̃∣∣ ∈ ncε(λ) · p(λ) +
n1−ε(λ) · h(λ). For succinctness, we pick an appropriately small 0 < ε < 1/c.

Correctness.

� By the batch correctness of the GSW scheme (Proposition 1), for all i ∈ [n1−ε] and j ∈ [`2],
we have:

sk>cti,j = 22λB ·Πi,j + noisei,j ∈ ZN ,

where |noisei,j | < B.

� By the density of the noisy ciphertexts of LHEn, for all i ∈ [n1−ε], we have LHE.PubCoini =
Encpk(ui) with ui ∈ Z`2N .

� By the approximate noisy correctness of the GSW scheme (Proposition 20), for all i ∈ [n1−ε]
and j ∈ [`2], we have:

sk>ct′MSB,i,j = MSB(ui,j) + noiseMSB,i,j ∈ ZN ,

where |noiseMSB,i,j | < (2λ + 1)B.

� By linear homomorphism of LHEn,d (Property 4.2), the ciphertext cti is in the support of
Encpk(mi), mi = (mi,j)j∈[`2] of the form:

mi,j = B22λ ·Πi,j + LSB(ui,j) + noisei,j + noiseMSB,i,j ∈ ZN .

� By correctness of secret hints of LHEn,d (Property 4.3), the evaluator of the obfuscated circuit

recovers the message mi ∈ Z`2N .

� With probability 1− 2−Ω(λ) over the choice of ui ←R Z`2N , we have for all j ∈ [`2], |LSB(ui,j) +
noisei,j + noiseMSB,i| < B22λ/2. Thus, m′i,j =

⌊
mi,j2

−2λ/B
⌉

= Πi,j for all j ∈ [`2], and the
evaluator outputs Π(x).

IND security. We now prove that the XiO scheme presented in Section 5 is IND-secure, provided
the GSW FHE for depth δ circuits and LHEn,d are 2-circular SRL secure (as per Definition 3.3).

We proceed via a hybrid argument using the following ensembles for all b ∈ {0, 1}.

• Dbλ: this is the ensemble from Definition 2.4. For completeness, we describe it here.

40

� Generation of pp: for all i ∈ [n1−ε], LHE.PubCoini ←R {0, 1}|ct|, for all j ∈ [`2], FHE.PubCoini,j ←R

R?, whereR? denotes the noisy randomness space of FHE . Return pp =
(

(LHE.PubCoini)i∈[n1−ε],

(FHE.PubCoini,j)i∈[n1−ε],j∈[`2]

)
.

� Generation of Π̃b: (pk, sk) ← Gen(1λ), (pk, sk) ← Gen(pk), ct1 ← Encpk (Π), ct2 ← Encpk(sk),
ct← Encpk(sk). For all i ∈ [n1−ε], j ∈ [`2], compute the following:

– cti,j = Eval′(pk, Ci,j , b+ 2λ, ct1) ∈ {0, 1}w;

– ctMSB,i,j = Eval′(pk, fi,j , 0, ct2) ∈ {0, 1}w;

– Parse FHE.PubCoini,j = r?i,j ∈ R? and compute ct′MSB,i,j = ReRand(pk, ctMSB,i,j ; r
?
i,j) ∈

{0, 1}w.

– Compute cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

– cti = Eval(pk, ct, LHE.PubCoini, cti − ct′MSB,i);

– ρi ← SecHint(sk, cti).

Return Π̃b =
(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
.

• Hb.1λ : the ensemble samples LHE.PubCoin as in Dbλ, but does not sample FHE.PubCoin just yet; it

then generates Π̃b as in Dbλ up until the point that the ctMSB,i,j get re-randomized into ct′MSB,i,j via
ReRand. Next, instead of performing the re-randomization, it samples ct′MSB,i,j as a fresh extra noisy
encryption of MSB(ui,j) using randomness r?i,j ←R R?, and setting FHE.PubCoini,j to be r?i,j − rfi,j ,
where rfi,j denotes the evaluated randomness computed via Evalrand. Afterwards, the experiment

continues exactly the same way as in Dbλ.
We use the weak circuit privacy of FHE (Theorem 5.2) we have:

Dbλ ≈s Hb.1λ .

The latter states that for all (pk, sk) in the support of Gen(1λ), all (pk, sk) in the support of
Gen(pk), for all depth d-circuits and in particular the functions fi,j defined previously, these two
distributions have statistical distance at most 2−Ω(λ):

D0 :


r ←R

(
[−1, 1]m×w

)|sk|
, ct = Encpk(sk; r), ∀i ∈ [n1−ε], j ∈ [`2], ctfi,j = Eval′(pk, fi,j , 0, ct)

r?i,j ←R R?, ct?fi,j = ReRand(pk, ctfi,j ; r
?
i,j) :

(
pk, pk, ct,

(
r?i,j , ct

?
fi,j

)
i∈[n1−ε],j∈[`2]

) 
D1 :


r ←R

(
[−1, 1]m×w

)|sk|
, ct = Encpk(sk; r), ∀i ∈ [n1−ε], j ∈ [`2], r?i,j ←R R?

ct?fi,j = Enc?pk(MSB(ui,j); r
?
i,j)

rfi,j = Evalrand
(
pk, fi,j , r, sk

)
:

(
pk, pk, ct,

(
r?i,j − rfi,j , ct

?
fi,j

)
i∈[n1−ε],j∈[`2]

)
 .

We design an inefficient simulator S that given a tuple
(
pk, pk, ct, (ri,j , cti,j)i∈[n1−ε],j∈[`2]

)
, sim-

ulates the adversary view in the XiO security experiment. That is, we show that when fed with
an input distributed according to D0, S simulates the experiment Dbλ, whereas it simulates the
experiment Hb.1λ when fed with an input distributed according to D1.

Given
(
pk, pk, ct, (ri,j , cti,j)i∈[n1−ε],j∈[`2]

)
, S (inefficiently) recovers sk from pk, sk from pk, and the

randomness r from ct (more precisely S samples some uniformly random sk, sk, r among those that
match pk, pk and ct). It samples LHE.PubCoin←R {0, 1}n

1−ε·|ct|, and for all i ∈ [n1−ε], j ∈ [`2], sets

41

FHE.PubCoini,j = ri,j , and pp = (LHE.PubCoin, (FHE.PubCoini,j)i,j). It computes ct1 ← Encpk(Πb),
ct← Encpk(sk).

For all i ∈ [n1−ε], j ∈ [`2], S computes the following:

� cti,j = Eval′(pk, Ci,j , b+ 2λ, ct1) ∈ {0, 1}w;

� ct′MSB,i,j = cti,j ∈ {0, 1}w.

� Compute cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

� cti = Eval(pk, ct, LHE.PubCoini, cti − ct′MSB,i);

� ρi ← SecHint(sk, cti).

The simulator sets Π̃b =
(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
, and returns (pp, Π̃b). It is clear from the

description of the simulator S that when the latter is fed with an input distributed according to D0,
it simulates Dbλ, whereas it simulates Hb.1λ when fed with an input distributed according to D1.

• Hb.2λ : this ensemble is the same as Hb.1λ , except that instead of sampling LHE.PubCoini as ran-
dom strings, they are sampled as fresh LHE ciphertexts of random plaintexts, that is, of the form
LHE.PubCoini ← Encpk(ui) for ui ←R Z`2N . By density of the ciphertexts of LHE Property 4.7, we
have:

Hb.1λ ≈s Hb.2λ ,

with statistical distance 2−Ω(λ).

• Hb.3λ : this ensemble is the same as Hb.2λ , except it generates the ciphertexts cti as fresh noisy LHE

encryptions of the messages mi = sk>(cti−ct′MSB,i)+ui ∈ Z`2N , and LHE.PubCoini is instead computed

homomorphically by subtracting the LHE encryption of the message m̃i = sk>(cti + ct′MSB,i) ∈ Z`2N
from the fresh noisy encryption of mi. That is, for all i ∈ [n1−ε], cti ← Enc

?
pk(mi), LHE.PubCoini =

Eval
(
pk, ct, cti,−cti + ct′MSB,i

)
.

Note that it is possible to define this hybrid since ct′MSB,i remains exactly the same no matter

what LHE.PubCoini is. This was not true in Dbλ, and we introduced Hb.1λ to break this dependency.
We use the weak circuit privacy property of LHEn,d (Property 4.6), to show that:

Hb.2λ ≈s Hb.3λ ,

with statistical distance 2−Ω(λ).
The latter states that for all (pk, sk) in the support of Gen(1λ), all vectors x ∈ ZwN and in

particular x = sk ∈ ZwN , all ui ∈ Z`2N , all functions yi = (yi1, . . . ,y
i
`2

) ∈ [−1, 1]w`2 and in particular

the vector cti − ct′MSB,i ∈ [−1, 1]w`2 defined previously for all i ∈ [n1−ε], the following distributions

have statistical distance 2−Ω(λ):

D0 =

{
ct← Encpk(sk), ∀i ∈ [n1−ε], LHE.PubCoini ← Enc

?
pk(ui)

cti = Eval(pk, ct, LHE.PubCoini, cti − ct′MSB,i) :
(
pk, ct, (LHE.PubCoini, cti)i∈[n1−ε]

) }

D1 =

{
ct← Encpk(sk), ∀i ∈ [n1−ε], cti ← Enc

?
pk(mi)

LHE.PubCoini = Eval(pk, ct, cti,−cti + ct′MSB,i) :
(
pk, ct, (LHE.PubCoini, cti)i∈[n1−ε]

) } ,
42

where for all i ∈ [n1−ε], mi = sk>(cti − ct′MSB,i) + ui ∈ Z`2N .

We design an inefficient simulator S that given a tuple
(
pk, ct, (c̃ti, cti)i∈[n1−ε]

)
, simulates the

adversary view in the XiO security experiment. That is, we show that when fed with an input
distributed according to D0, S simulates the experiment Hb.1λ , whereas it simulates the experiment
Hb.2λ when fed with an input distributed according to D1.

Given
(
pk, ct, (c̃ti, cti)i∈[n1−ε]

)
, S (inefficiently) recovers sk from pk, sk from ct, pk from sk and ui

from c̃ti for all i ∈ [n1−ε]. It generates ct1 ← Encpk(Πb), r ←R

(
[−1, 1]m×w

)|sk|
, ct2 = Encpk(sk; r),

for all i ∈ [n1−ε], j ∈ [`2], cti,j = Eval′(pk, Ci,j , b + 2λ, ct1), r?i,j ←R R?, where R? denotes the

noisy randomness space of FHEd, ct′MSB,i,j = Enc?pk(MSB(ui,j); r
?
i,j), rfi,j = Evalrand(pk, fi,j , r, sk),

FHE.PubCoini,j = r?i,j − rfi,j , ρi ← SecHint(sk, cti), LHE.PubCoini = c̃ti.

It returns pp =
(
(LHE.PubCoini)i, (FHE.PubCoini,j)i,j

)
and Π̃b =

(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
.

It is clear from the description of the simulator S that when the latter is fed with an input distributed
according to D0, it simulates Hb.1λ , whereas it simulates Hb.2λ when fed with an input distributed ac-
cording to D1.

• Hb.4λ : it is the same ensemble as Hb.3λ , except the hints ρi for i ∈ [n1−ε] are computed using

PubHint(pk, ri), where ri denotes the randomness used to produces the ciphertexts cti; instead of
SecHint(sk, cti). By Property 4.4, we have Hb.3λ ≈s Hb.4λ , with statistical distance 2−Ω(λ). Note that
in Hb.4λ , we no longer use the LHE secret key sk.

• Hb.5λ : it is the same ensemble as Hb.4λ , except that cti is generated as a fresh encryption of a

message mi ∈ Z`2N of the form (mi,1, . . . ,mi,`2) where for all j ∈ [`2], we have mi,j = B22λ · Πb
i,j +

LSB(ui,j) ∈ ZN . Recall that LSB(ui,j) = ui,j mod B22λ − B22λ/2 ∈ ZN . This is instead of hav-
ing mi,j = sk>(cti,j + ct′MSB,i,j) + ui,j = B22λ · Πb

i,j + LSB(ui,j) + noisei,j + noiseMSB,i ∈ ZN , where

noisei,j = e>rCi,j ∈ ZN and noiseMSB,i = e>r?i,j ∈ ZN , rCi,j is the randomness obtained when eval-
uating the circuit Ci,j on the FHE ciphertext ct1, r?i,j ←R R?, and e ← χm is used to generate
pk.

Note in particular that noisei,j and noiseMSB,i are deterministic functions of pk, r?i,j and the

randomness
(
[−1, 1]m×w

)s
used to produce ct1.

We show that Hb.3λ ≈s Hb.4λ with statistical distance 2−Ω(λ). To do so, we exhibit two distributions
D0 and D1, together with a (possibly inefficient) simulator S, such that (1) D0 and D1 have statistical
distance 2−Ω(λ), and (2) for all β ∈ {0, 1}, when fed with an input from distribution Dβ, S produces

the adversary view as in hybrid Hb.4+β
λ .

The distributions are defined as follows (the differences are highlighted in red):

D0 =


(pk, sk)← Gen(crs), r ←R

(
[−1, 1]m×w

)s
,∀i ∈ [n1−ε], j ∈ [`2], r?i,j ←R R?

γi,j ←R

(
−B22λ/2, B22λ/2

]
:

(
pk, r,

(
γi,j , r

?
i,j

)
i∈[n1−ε],j∈[`2]

) 
D1 =


(pk, sk)← Gen(crs), r ←R

(
[−1, 1]m×w

)s
, ∀i ∈ [n1−ε], j ∈ [`2], r?i,j ←R R?

γi,j ←R

(
−B22λ/2, B22λ/2

]
:

(
pk, r,

(
γi,j + noisei,j + noiseMSB,i,j , r

?
i,j

)
i∈[n1−ε],j∈[`2]

)  ,

where noisei,j noiseMSB,i,j are functions of pk, r and r?i,j defined as below, namely, noisei,j = e>rCi,j
and noiseMSB,i,j = e>r?i,j .

We show that these distributions have statistical distance 2−Ω(λ). The only difference is that in
D1, an extra noise noisei,j +noiseMSB,i,j is added to the random value si,j . This noise is small, indeed

43

|noisei,j + noiseMSB,i,j | ≤ B(2λ + 1) (see the correctness section for more details). Moreover, γi,j is
sampled uniformly at random over

(
− B22λ/2, B22λ/2

]
, independently of the other values output

by the distributions. Thus, we can use the value γi,j to smudge the noise noisei,j +noiseMSB,i,j . That
is, by Lemma 2.2 (smudging), the statistical distance of the two distributions is 2−Ω(λ).

Now, we proceed to describe the simulator S. Given as input the tuple
(
pk, r, (vi,j , r

?
i,j)i∈[n1−ε],j∈[`2]

)
,

the simulator (inefficiently) recovers sk from pk, samples (pk, sk)← Gen(1λ), generates ct← Encpk(sk),

ct1 = Encpk(Πb; r). It samples r′ ←R

(
[−1, 1]m×w

)|sk|
, computes ct2 = Encpk

(
sk; r′

)
.

For all i ∈ [n1−ε], j ∈ [`2], samples ωi,j ←R ZN/(22λB), and sets mi,j = B22λ ·Πb
i,j+vi,j+ωi,j ∈ ZN .

Note that (γi,j , ωi,j) is identically distributed to (LSB(ui,j),MSB(ui,j)) for ui,j ←R ZN .

It sets mi = (mi,1, . . . ,mi,`2) ∈ Z`2N , samples ri ←R R, where R denotes the randomness space of
Enc, computes cti = Encpk (mi; ri) and ρi ← PubHint(pk, ri). It computes ct′MSB,i,j = Enc?pk(ωi,j ; r

?
i,j),

cti,j = Eval′(pk, Ci,j , b + 2λ, ct1), cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 , ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 ,

and LHE.PubCoini = Eval(pk, ct, cti,−cti + ct′MSB,i). It computes rfi,j = Evalrand(pk, fi,j , ct2) where
the functions fi,j are defined as before, and sets FHE.PubCoini,j = r?i,j − rfi,j ∈ ZmN .

It returns pp = (LHE.PubCoini,FHE.PubCoini,j)i∈[n1−ε], and Π̃b =
(
pk, pk, ct1, ct2, ct, (ρi)i∈[n1−ε]

)
.

When S is fed with distribution D0, it simulates the hybrid Hb.4λ , whereas it simulates the hybrid
Hb.5λ when fed with distribution D1. Thus, we have:

Hb.4λ ≈s Hb.5λ .

• H0.5
λ ≈c H1.5

λ : To complete the proof, we show that H0.5
λ is computationally indistinguishable

from H1.5
λ . These two ensembles are the same except the former obfuscates the program Π0, whereas

the latter obfuscates Π1. Note that other than the encrypted key cycle, we never use the FHE secret
key, and due to Hybrid Hb.4λ , we no longer use the LHE secret key. The coins FHE.PubCoin exactly
correspond to an SRL leakage on the FHE ciphertext ct2 (and note that in the experiment we do
know the output αi,j of the function fi,j that is applied to the plaintexts encrypted in ct1, ct2—
namely, it is MSB(ui,j) where ui,j is a random element of ZN selected in the experiment, see Hybrid
Hb.2λ). Thus, indistinguishability of H0.5

λ and H1.5
λ follows from 2-circular SRL-security of FHEd and

LHEn,d.
Namely, we provide a reduction from the 2-circular SRL security with respect to FHEd and

LHEn,d (as per Definition 3.3) to distinguishing H0.5
λ and H1.5

λ . Given the public keys pk, pk and
the ciphertexts ct = (ct1‖ct2), ct provided by the 2-circular security experiment, where ct1 encrypts
Π0 or Π1, ct2 encrypts sk, and ct encrypts sk, the reduction samples ui,j ←R ZN for all i ∈ [n1−ε],
j ∈ [`2], and generates the following:

� Generation of pp:

– To generate LHE.PubCoini:

* It samples ri ←R R, where R denotes the randomness space of Enc, and computes
cti = Encpk(mi; ri), where for all j ∈ [`2], the j’th coordinate of mi is of the form:

mi,j = B22λ ·Πb
i,j + LSB(ui,j) ∈ ZN . Note that this does not require to know the bit

b, since Π0
i,j = Π1

i,j for all i ∈ [n1−ε], j ∈ [`2], because the program Π0 and Π1 are
functionally equivalent.

* It computes ρi ← PubHint(pk, ri).

* It computes cti,j = Eval′(pk, Ci,j , b+ 2λ, ct1).

* Then, it queries its OSRL oracle, to obtain a fresh, extra noisy encryption Enc?pk(0; r?i,j).
It leaves the oracle OSRL pending.

44

* It adds the vector (0,MSB(ui,j)) ∈ Zκ+1
N to the vector whose binary decomposition

is Enc?pk(0; r?i,j), which yields a vector ct?i,j ∈ Zκ+1
N whose binary decomposition is

Enc?pk(MSB(ui,j); r
?
i,j). Then, it computes ct′MSB,i,j = BD(ct?i,j) ∈ {0, 1}w.

* It computes cti = (cti,j)j∈[`2] ∈ {0, 1}w`2 and ct′MSB,i = (ct′MSB,i,j)j∈[`2] ∈ {0, 1}w`2 .

* Finally, it computes LHE.PubCoini = Eval(pk, ct, cti,−cti − ct′MSB,i).

– To generate FHE.PubCoini,j : it answers the pending oracle OSRL with the function fi,j
and the value α = MSB(ui,j). The oracle OSRL returns the leakage r?i,j − rfi,j ∈ R?. The
reduction sets FHE.PubCoini,j = r?i,j − rfi,j .

It returns pp =
(
(LHE.PubCoini)i∈[n1−ε], (FHE.PubCoini,j)i∈[n1−ε],j∈[`2]

)
.

� Generation of Π̃b: it returns (pk, pk, ct, ct, (ρi)i∈[n1−ε]) computed as described above.

When ct1 encrypts Π0, the reduction simulates H0.5
λ , whereas it simulates H1.5

λ when ct2 encrypts
Π1.

Overall, we have shown that:

D0
λ ≈s H0.1

λ ≈s H0.2
λ ≈s H0.3

λ ≈s H0.4
λ ≈s H0.5

λ ≈c H1.5
λ ≈s H1.4

λ ≈s H1.3
λ ≈s H1.2

λ ≈s H1.1
λ ≈s D1

λ.

6 XiO from 2CIRC

As a warm up to our main theorem, we now provide two instantiations based on the 2-circular SRL
security of GSW encryption scheme and DJ or Packed-Regev LHE. These results will be improved
in Section 7, where we only rely on the 1-cicular security of GSW.

6.1 Instantiation with DJ LHE

Now we instantiate our modular XiO construction with the DJ LHE presented in Section 4.2 that is
parameterized by a polynomial `1; we denote it by DJ`1 . For all polynomials δ, we denote by GSWδ

the GSW FHE scheme for depth δ circuits.
By combining Theorem 4.4 (i.e. security of DJ`1 for all polynomials `1 under DCR) and Theo-

rem 3.6 (i.e. SRL-security of the GSWδ for all polynomials δ under LWE), and noting that both of
these results directly upgrade to subexponential security if we assume subexponential security of the
underlying assumptions, we get:

Lemma 6.1. Assume the (subexponential) DCR and (subexponential) LWE assumptions hold. Then,
assuming that for all polynomials δ and `1, the (subexponential) 2CIRCOSRL assumption w.r.t. GSWδ

and DJ`1 holds implies that for all polynomials δ and `1, (subexponential) 2-circular SRL security
holds w.r.t. GSWδ and DJ`1.

By combining Lemma 6.1 above with Theorem 4.3, which states that for all polynomials `1, DJ`1
is an (`1, `2, h)-hintable packed LHE with `2(λ) = 1 and h(λ) = 2λ, together with Theorem 5.1, and
noting that Theorem 5.1 yields a subexponentially-secure XiO assuming the subexponential security
of the underlying building block (i.e., subexponential 2-circular SRL security of GSWδ and DJ`1),
we get:

Theorem 6.1. Assume the (subexponential) DCR and (subexponential) LWE assumptions hold.
Then, assuming that for all polynomials δ, `1, the (subexponential) 2CIRCOSRL assumption holds
w.r.t. GSWδ and DJ`1 implies the existence of XiO for Plog/poly.

45

Finally, combining Theorem 6.1 with Theorem 2.5 (i.e., iO from XiO and LWE) yields out one
of our two main theorem:

Theorem 6.2. Assume the subexponential DCR and subexponential LWE assumptions hold. Then,
assuming that for all polynomials δ and `1 the subexponential 2CIRCOSRL assumption w.r.t. GSWδ

and DJ`1 implies the existence of iO for P/poly.

6.2 Instantiation with Packed Regev LHE

We now state the results when instantiating our modular XiO construction with the Packed Regev
LHE, presented in Section 4.3. This construction is parameterized by polynomials `1 and `2, and it
is denoted by P-Regev`1,`2 .

By combining Theorem 4.6 (i.e. security of P-Regev`1,`2 for all polynomials `1 and `2 under LWE)
and Theorem 3.6 (i.e. SRL-security of the GSWδ for all polynomials δ under LWE), we get:

Lemma 6.2. Assume the (subexponential) LWE assumption holds. Then, assuming for all polyno-
mials δ, `1 and `2, the (subexponential) 2CIRCOSRL assumption w.r.t. GSWδ and P-Regev`1,`2 implies
that for all polynomials δ, `1 and `2, (subexponential) 2-circular SRL security holds w.r.t. GSWδ

and P-Regev`2.

By combining Lemma 6.2 above with Theorem 4.5, which states that for all polynomials `1, there
exists a polynomial h such that for all polynomials `2, P-Regev`1,`2 is an (`1, `2, h)-hintable packed
LHE, together with Theorem 5.1, we get:

Theorem 6.3. Assume the (subexponential) LWE assumption holds. Then, assuming that for
all polynomials δ, `1 and `2 the (subexponential) 2CIRCOSRL assumption holds w.r.t. GSWδ and
P-Regev`1,`2 implies the existence of XiO for Plog/poly.

Finally, combining Theorem 6.3 with Theorem 2.5 (i.e., iO from XiO and LWE) yields out one
of our two main theorem:

Theorem 6.4. Assume the subexponential LWE assumptions hold. Then, assuming that for all
polynomials δ, `1 and `2, the subexponential 2CIRCOSRL assumption w.r.t. GSWδ and P-Regev`1,`2
implies the existence of iO for P/poly.

7 XiO from 1CIRC

We finally show how to base security on just the LWE assumption, and the 1CIRCOSRL-assumption
w.r.t. GSW—i.e, the assumption that SRL security of GSW is preserved in the presence of an
encryption of the GSW secret key.

We do this in two steps. First, we remark that in our XiO construction, security still holds
if both the FHE and LHE use the same secret key (as long as the 2-circularly security of the two
schemes holds in this setting).

Next, we present a slight modification of Packed Regev, called Packed-Regev’, where the secret
key s is just a vector like in GSW and we then expand it into a Packed Regev secret key (which is a
matrix) by tensoring with the identify matrix. We finally remark that, as is well known for Regev’s
scheme, 1-circular security directly holds also for Packed Regev’. Thus, same-key 2-circular SRL
security of GSW and Packed-Regev’ is implied by just 1-circular security of GSW.

46

7.1 Correlated Key Circular security

Let us define the notion of “correlated key” 2-circular security. This notion is identically defined
to 2-circular security except that we here let the CRS output by PKE contain both the public and
secret key of PKE (as opposed to just the public key); this will enable the key generation algorithm
of PKE to take the secret key of PKE as input.

Definition 7.1 (correlated key 2-circular security). We say that correlated key 2-circular security
holds w.r.t. PKE ,PKE where PKE = (CRSgen,Gen,Enc,Dec) and PKE = (CRSgen,Gen,Enc,Dec)
if for all polynomials s(·), all sequences of pairs of messages {m0

λ,m
1
λ}λ∈N such that for all λ ∈ N:

|m0
λ| = |m1

λ| = s(λ), the ensembles {D0
λ}λ∈N and {D1

λ}λ∈N are computationally indistinguishable,
where Dbλ is defined as follows:{

crs← CRSgen(1λ), (pk, sk)← Gen(crs), crs = (pk, sk), (pk, sk)← Gen(crs)

ct← Encpk(sk),m? = (sk‖mb
λ), r ←R {0, 1}∞, ct = Encpk(m

?; r) : (pk, pk, ct, ct)

}
.

For any oracle O, we additionally say that O-leakage resilient correlated-key 2-circular security holds
w.r.t. PKE and PKE if indistinguishability holds w.r.t. all nuPPT distinguishers that get unbounded
oracle access to O(m?, r), and never make the oracle output ⊥. Finally, we say that correlated
key 2-circular SRL assumptions holds w.r.t. PKE and PKE if OSRL-leakage resilient correlated-key
2-circular security holds w.r.t. PKE and PKE, where the oracle OSRL is given in Definition 3.3.

By defining the XiO in exactly the same way as in Section 5, except that we let Gen take both
pk and sk as input (instead of just pk), and noting that nothing in the proof depends on Gen just
taking pk as input, we get:

Theorem 7.2. Assume that for all polynomials δ, b, all constants ε ∈ (0, 1), there exists a polynomial
h s.t. for all polynomials n, there exist `1, `2 and an (`1, `2, h)-hintable packed LHE denoted by
LHEb,ε,n s.t. for all λ ∈ N:

� `1(λ) ≥ b(λ)

�

(
`1(λ)− b(λ)

)
· `2(λ) > n(λ)ε

� LHEb,ε,n and the GSW FHE scheme for depth δ(λ) circuits are correlated-key 2-circularly
SRL-secure.

Then XiO for Plog/poly exists.

7.2 Packed Regev with Short Secret Key

We now introduce Packed Regev’ which is identical to Packed Regev except that except for the
distribution of the secret key and the dimensions of the public matrix A. Namely, the secret key
is now used to generate a sparse matrix S, but of larger width. Concretely, it is of the form S =

s> ⊗ Id`2 =

s> 0 · · ·
0 s>

...
. . .

 ∈ Z`2×`2κq , and the secret key itself is s.

Note that this is still an LHE since none of the properties relied on the distribution of S. It also
satisfies semantic security (although this property is not needed, since we ultimately only rely on the
1-circular SRL security GSW), the reason being that even though S is sparse, the public key SA+E

47

still consists of a bunch of LWE samples; the sparsity of S is compensated by larger dimensions of S
and A (from κ to κ`2).

We now describe the Packed Regev’ LHE in more details (the difference with the Packed Regev
LHE from Section 4.3 are highlighted in red). As for Packed-Regev, this scheme is parameterized by
polynomials `1 and `2; we denote it by P-Regev′`1,`2 .

• Gen(crs):

Given as input crs = 1λ, it chooses the parameters q, χ, κ,N exactly as described in Section 4.3,
where χ is an efficiently sampleable B-bounded distribution over Z. It sets m = 2`2κ log(q) + 2λ
(recall in Packed-Regev m = 2κ log(q) + 2λ). It samples (A, TA)← TrapGen(1λ, q, `2κ),

s←R χ
κ,S = s> ⊗ Id`2 =

s> 0 · · ·
0 s>

...
. . .

 ∈ Z`2×`2κq ,

E ← [−2λ/3, 2λ/3]`2×m, and sets pk = (N,χ, κ,A,SA + E), sk = s ∈ Zκ, td = TA. It outputs
(pk, sk, td).

The PPT algorithms CRSgen, Enc, Enc?, Eval, SecHint, PubHint, and Rec are exactly the same
as described in Section 4.3.

7.3 Variant of GSW for Correlated-Key Security

We describe an FHE scheme which is exactly the GSW FHE described in Section 3.2.2, except the
Gen algorithm, given as input a crs, checks that the crs contains an LWE secret s, and uses it as its
secret key (if crs doesn’t contain such a vector, the algorithm aborts). The public key is computed
from s as in the original GSW FHE. This minor change will allow us to consider an LHE scheme
(namely, Packed Regev’described above) using the same secret key as the GSW’ encryption scheme.
This scheme, as for the original GSW, is parameterized by a polynomial d, and is denoted by GSW′

d.

• Gen(crs):
Given as input crs which contains a modulus N , a dimension κ, a distribution χ, a bound B,

and a vector s ∈ Zκ, it sets g = (1, 2, . . . , 2dlog(N)e−1) ∈ Zdlog(N)e
N , w = (κ + 1)dlog(N)e and

sk = (−s, 1)⊗ g ∈ ZwN . The rest of the parameters is generated as in the original GSW presented in

Section 3.2.2. Namely, it sets m = 2(κ + 1)dlog(N)e + 2λ, B̃ = (w + 1)ddlog(N)e and B = B̃B′m.

It samples A ←R Zκ×mN , e ← χm, G = g> ⊗ Idκ+1 ∈ Z(κ+1)×w
N , U =

(
A

s>A + e>

)
∈ Z(κ+1)×m

N and

sets pk = (B,U,G).

The algorithms Enc, Enc?, Eval, Dec, Eval′, Evalrand, ReRand are defined exactly as for the GSW
scheme, given in Section 3.2.2 and in Section 5.1.

7.4 Correlated-Key 2-Circular SRL Security from 1-Circular SRL Security

Theorem 7.3. Assume for all polynomials δ, GSWδ, is 1-circular SRL secure. Then for all poly-
nomials δ, `1, `2, correlated-key 2-circular SRL security holds w.r.t. GSW′

δ and P-Regev′`1,`2.

Proof: The proof proceeds via series of hybrid experiments defined for all bits b ∈ {0, 1}, listed
below.

48

• Dbλ: this is the ensemble from Definition 7.1. For completeness, we describe it here. We write

GSW′
δ = (Gen,Enc,Enc?,Eval,Eval′,Evalrand,ReRand), and P-Regev′`1,`2 = (Gen,Enc,Enc

?
,Eval,SecHint,

PubHint,Rec,Dec). The experiment generates the following:

� (pk, sk) ← Gen(1λ), where pk =
(
N,χ,B, κ,A ∈ Z`2κ×mN , (s⊗ Id`2) A + E ∈ Z`2×mN

)
with

m = 2`2κdlog(N)e+ 2λ, and sk = s ∈ Zκ.

� sk = (−s, 1)⊗ g ∈ Z(κ+1)dlog(n)e
N .

� pk = (B,U,G), with U =

(
A

s>A + e>

)
∈ Z(κ+1)×m

N .

� ct← Encpk(s‖mb).

� R ←R [−1, 1]m×κ`2 , E′ ←R [−2λ/2, 2λ/2]`2×κ`2 , ct =
(
AR,

((
s> ⊗ Id`2

)
A + E

)
R + E′ + s> ⊗

Id`2

)
.

The experiments sends (pk, pk, ct, ct) to the adversary.

• Hb.1λ : this experiment is the same as Dbλ, except the challenge ciphertext ct is computed as follows:

ct =
(
AR,

((
s> ⊗ Id`2

)
AR + E′ + s> ⊗ Id`2

)
. We show that

Dbλ ≈s Hb.1λ ,

with statistical distance 2−Ω(λ). For all E ∈ [−2λ/3, 2λ/3]`2×m and R ∈ [−1, 1]m×κ`2 , by Lemma 2.2 (smudg-
ing), the following distributions have statistical distance 2−Ω(λ): {E′ ←R [−2λ/2, 2λ/2]`2×κ`2 : E′ +
ER} and {E′ ←R [−2λ/2, 2λ/2]`2×κ`2 : E′}. The first distribution (with pre- and post-processing)
corresponds to Dbλ, whereas the second distribution (with the same pre- and post-processing) corre-
sponds to Hbλ.

• Hb.2λ : this experiment is the same as Hb.1λ , except the challenge ciphertext ct uses U ←R Z`2κ×`2q ,

instead of AR with A←R Z`1κ×mq and R←R [−1, 1]m×`2 . We prove that:

Hb.1λ ≈s Hb.2λ ,

with statistical distance 2−Ω(λ). To do so, we use Lemma 2.1 (leftover has lemma), which states that
the following distributions have statistical distance 2−Ω(λ): {A ←R Z`2κ×mq ,R ←R [−1, 1]m×`2κ :

(A,AR)} and {A ←R Z`2κ×mq ,U ←R Z`2κ×`2κq : (A,U)}. The first distribution corresponds to

Hb.1λ (with pre- and post-processing), whereas the second distribution (with the same pre- and post-
processing) corresponds to Hb.2λ .

• Hb.3λ : this experiment is the same as Hb.2λ , except the challenge ciphertext ct uses U − Id`2κ

where U ←R Z`2κ×`2κq and Idκ`2 ∈ Zκ`2×κ`2q denotes the identity matrix, instead of U. The two

experiments Hb.2λ and Hb.3λ are identically distributed, since the following are identically distributed:
{U←R Z`2κ×`2κq : U} and {U←R Z`2κ×`2κq : U− Id`2κ}. Note that in hybrid Hb.3λ , the ciphertext ct

is of the form: ct =
(
U− Id`2κ,

(
s> ⊗ Id`2

)
U + E′

)
.

49

• Hb.4λ : this experiment is the same asHb.3λ , except the matrix U is computed as follows: U =

U1
...

U`2


where for all i ∈ [`2], Ui = AR′i with R′i ←R [−1, 1]m×`2 . We prove that:

Hb.3λ ≈s Hb.4λ ,

with statistical distance 2−Ω(λ). To do so, we use the leftover hash lemma (Lemma 2.1) that states the
following distributions have statistical distance 2−Ω(λ): {A←R Zκ×mq , ∀i ∈ [`2],Ri ←R [−1, 1]m×`2κ :(
A, (ARi)i∈[`2]

)
} and {A←R Zκ×mq , ∀i ∈ [`2],Ui ←R Zκ×`2κq :

(
A, (U)i∈[`2]

)
}. The first distribution

(with pre- and post-processing) corresponds to Hb.4λ , whereas the second distribution (with the same
pre- and post-processing) corresponds to Hb.3λ .

Note that in Hb.4λ , the ciphertext ct is of the form: ct =
(
U− Id`2κ,

 s>AR′1
...

s>AR′`2

+ E′
)

.

• Hb.5λ : this experiment is the same as Hb.4λ , except the challenge ciphertext ct is of the form (the

differences with previous hybrid highlighted in red): ct =
(
U− Id`2κ,

 (s>A + e>)R1
...

(s>A + e>)R`2

+ E′
)

. We

show that
Hb.4λ ≈s Hb.5λ ,

with statistical distance 2−Ω(λ). For all e ∈ Zmq such that ‖e‖∞ ∈ poly(λ), and Ri ∈ [−1, 1]m×κ`2

for all i ∈ [`2], by Lemma 2.2, the following distributions have statistical distance 2−Ω(λ): {E′ ←R

[−2λ/2, 2λ/2]`2×κ`2 : E′} and {E′ ←R [−2λ/2, 2λ/2]`2×κ`2 : E′ +

e>R1
...

e>R`2

}. The first distribution

(with pre- and post-processing) corresponds to Hb.4λ , whereas the second distribution (with the same
pre- and post-processing) corresponds to Hb.5λ .

• Hb.6λ : this experiment is the same as Hb.5λ , except pk is computed as follows: for all i ∈ [`2],

Ri ←R [−1, 1]m×`2κ, A =

AR1
...

AR`2

 ∈ Z`2κ×`2κq . By the leftover hash lemma (Lemma 2.1) with pre-

and post-processing, we have:
Hb.5λ ≈s Hb.6λ ,

with statistical distance 2−Ω(λ).

Note that in hybrid Hb.6λ , the public key pk is of the form: pk =
(
A,

 s>AR1
...

s>AR`2

+ E
)

.

• H7.b
λ : this experiment is the same as Hb.6λ , except pk is of the form (the differences with previ-

50

ous hybrid highlighted in red): pk =
(
A,

 (s>A + e>)R1
...

(s>A + e>)R`2

+ E
)

. We prove that:

Hb.6λ ≈s Hb.7λ ,

with statistical distance 2−Ω(λ). To do so, we use the fact that for for all e ∈ Zmq such that

‖e‖∞ ∈ poly(λ), all R ∈ [−1, 1]m×`2κ for all i ∈ [`2], the following distribution have statistical distance
2−Ω(λ), by Lemma 2.2 (smudging):{E′ ←R [−2λ/1, 2λ/2]`2×`2κ : E′} and {E′ ←R [−2λ/1, 2λ/2]`2×`2κ :

E′+

e>R1
...

e>R`2

}. The first distributions (with pre- and post-processing) corresponds to Hb.6λ , whereas

the second distribution (with the same pre- and post-processing) corresponds to Hb.7λ .

• H0.7
λ ≈c H1.7

λ :

Finally we prove that H0.7
λ ≈c H1.7

λ , using the 1-circular SRL security of GSWd. Namely, we provide
a reduction from the 1-circular SRL security of GSWd to distinguishing H0.7

λ from H1.7
λ . Given as

input the pk = (A, s>A + e>,G) and the ciphertext ct = Encpk(s‖mb) from its experiment, the
reduction computes the following:

� for all i ∈ [`2], it samples Ri ←R [−1, 1]m×`2κ, E ←R [−2λ/3, 2λ/3]`2×m, A =

AR1
...

AR`2

,

pk =
(
A,

 (s>A + e>)R1
...

(s>A + e>)R`2

+ E
)

, where (s>A + e>) is taken from pk.

� For all i ∈ [`2], it samples Ri ←R [−1, 1]m×κ`2 , E′ ←R [−2λ/2, 2λ/2]`2×κ`2 , ct =
(AR1

...
AR`2

 −
Id`2κ,

 (s>A + e>)R1
...

(s>A + e>)R`2

+ E′
)

, where (s>A + e>) is taken from pk.

It returns (pk, pk, ct, ct).

7.5 Concluding Our Main Theorem

Combining Theorem 3.6 (SRL security of GSW from LWE), with Theorem 7.3 (1CIRC SRL of GSW
⇒ correlated-key 2CIRC SRL of GSW’ and Packed-Regev’) and Theorem 7.2 (correlated-key 2CIRC
SRL of GSW’ and Packed-Regev’ ⇒ XiO) we obtain the following theorem.

Theorem 7.4. Assume the (subexponential) LWE assumption holds. Then, assuming that for all
polynomial δ, the (subexponential) 1CIRCOSRL holds w.r.t GSWδ implies (subexponential) XiO for
Plog/poly.

Finally, combining with Theorem 2.5 (subexponential XiO and LWE ⇒ iO), we obtain our main
theorem.

Theorem 7.5. Assume the subexponential LWE assumption holds. Then, assuming that for all
polynomial δ, the subexponential 1CIRCOSRL holds w.r.t GSWδ implies iO for P/poly.

51

Acknowledgments

We wish to thank Hoeteck Wee and Daniel Wichs for their insightful feedback on a previous eprint
version of this paper.

References

[ABBC10] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryptographic agility and its relation
to circular encryption. In EUROCRYPT 2010, LNCS 6110, pages 403–422. Springer,
Heidelberg, May / June 2010.

[Agr19] S. Agrawal. Indistinguishability obfuscation without multilinear maps: New methods
for bootstrapping and instantiation. In EUROCRYPT 2019, Part I, LNCS 11476, pages
191–225. Springer, Heidelberg, May 2019.

[AJ15] P. Ananth and A. Jain. Indistinguishability obfuscation from compact functional en-
cryption. In CRYPTO 2015, Part I, LNCS 9215, pages 308–326. Springer, Heidelberg,
August 2015.

[AJKS18] P. Ananth, A. Jain, D. Khurana, and A. Sahai. Indistinguishability obfuscation without
multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryp-
tology ePrint Archive, Report 2018/615, 2018. https://eprint.iacr.org/2018/615.

[AJL+19] P. Ananth, A. Jain, H. Lin, C. Matt, and A. Sahai. Indistinguishability obfuscation
without multilinear maps: New paradigms via low degree weak pseudorandomness and
security amplification. Cryptology ePrint Archive, Report 2019/643, 2019. https:

//eprint.iacr.org/2019/643.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In 28th
ACM STOC, pages 99–108. ACM Press, May 1996.

[AP09] J. Alwen and C. Peikert. Generating Shorter Bases for Hard Random Lattices. In 26th
International Symposium on Theoretical Aspects of Computer Science STACS 2009,
Proceedings of the 26th Annual Symposium on the Theoretical Aspects of Computer
Science, pages 75–86, Freiburg, Germany, February 2009. IBFI Schloss Dagstuhl.

[AP20] S. Agrawal and A. Pellet-Mary. Indistinguishability obfuscation without maps: Attacks
and fixes for noisy linear FE. In EUROCRYPT 2020, Part I, LNCS, pages 110–140.
Springer, Heidelberg, May 2020.

[BBKK18] B. Barak, Z. Brakerski, I. Komargodski, and P. K. Kothari. Limits on low-degree
pseudorandom generators (or: Sum-of-squares meets program obfuscation). In EURO-
CRYPT 2018, Part II, LNCS 10821, pages 649–679. Springer, Heidelberg, April / May
2018.

[BCGI18] E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM
CCS 2018, pages 896–912. ACM Press, October 2018.

[BCP14] E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In TCC, pages
52–73, 2014.

52

https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2019/643
https://eprint.iacr.org/2019/643

[BDGM19] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Leveraging linear decryption:
Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC 2019, Part II,
LNCS, pages 407–437. Springer, Heidelberg, March 2019.

[BDGM20a] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Candidate iO from homomorphic
encryption schemes. In EUROCRYPT 2020, Part I, LNCS, pages 79–109. Springer,
Heidelberg, May 2020.

[BDGM20b] Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Factoring and pairings are
not necessary for io: Circular-secure lwe suffices. Cryptology ePrint Archive, Report
2020/1024, 2020. https://eprint.iacr.org/2020/1024.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang.
On the (im)possibility of obfuscating programs. In CRYPTO 2001, LNCS 2139, pages
1–18. Springer, Heidelberg, August 2001.

[BGL+15] N. Bitansky, S. Garg, H. Lin, R. Pass, and S. Telang. Succinct randomized encodings
and their applications. IACR Cryptology ePrint Archive, 2015:356, 2015.

[BHJ+18] B. Barak, S. B. Hopkins, A. Jain, P. Kothari, and A. Sahai. Sum-of-squares meets
program obfuscation, revisited. Cryptology ePrint Archive, Report 2018/1237, 2018.
https://eprint.iacr.org/2018/1237.

[BHW15] A. Bishop, S. Hohenberger, and B. Waters. New circular security counterexamples from
decision linear and learning with errors. In ASIACRYPT 2015, Part II, LNCS 9453,
pages 776–800. Springer, Heidelberg, November / December 2015.

[BP15] N. Bitansky and O. Paneth. ZAPs and non-interactive witness indistinguishability from
indistinguishability obfuscation. In TCC 2015, Part II, LNCS 9015, pages 401–427.
Springer, Heidelberg, March 2015.

[BPR15] N. Bitansky, O. Paneth, and A. Rosen. On the cryptographic hardness of finding a Nash
equilibrium. In 56th FOCS, pages 1480–1498. IEEE Computer Society Press, October
2015.

[BPW16] N. Bitansky, O. Paneth, and D. Wichs. Perfect structure on the edge of chaos - trapdoor
permutations from indistinguishability obfuscation. In TCC 2016-A, Part I, LNCS
9562, pages 474–502. Springer, Heidelberg, January 2016.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, November 1993.

[BRS02] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence
of key-dependent messages. Cryptology ePrint Archive, Report 2002/100, 2002. http:
//eprint.iacr.org/2002/100.

[BV15] N. Bitansky and V. Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In 56th FOCS, pages 171–190. IEEE Computer Society Press, October
2015.

[BZ14] D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more
from indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2014 -
34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 480–499, 2014.

53

https://eprint.iacr.org/2020/1024
https://eprint.iacr.org/2018/1237
http://eprint.iacr.org/2002/100
http://eprint.iacr.org/2002/100

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited
(preliminary version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

[CGH12] D. Cash, M. Green, and S. Hohenberger. New definitions and separations for circular
security. In PKC 2012, LNCS 7293, pages 540–557. Springer, Heidelberg, May 2012.

[CHJV14] R. Canetti, J. Holmgren, A. Jain, and V. Vaikuntanathan. Indistinguishability ob-
fuscation of iterated circuits and RAM programs. Cryptology ePrint Archive, Report
2014/769, 2014. http://eprint.iacr.org/2014/769.

[CHL+15] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé. Cryptanalysis of the multilinear
map over the integers. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 3–12, 2015.

[CKP15] R. Canetti, Y. T. Kalai, and O. Paneth. On obfuscation with random oracles. In The-
ory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, pages 456–467, 2015.

[CL01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In EUROCRYPT 2001, LNCS 2045,
pages 93–118. Springer, Heidelberg, May 2001.

[CLP15] K.-M. Chung, H. Lin, and R. Pass. Constant-round concurrent zero-knowledge from
indistinguishability obfuscation. In CRYPTO 2015, Part I, LNCS 9215, pages 287–307.
Springer, Heidelberg, August 2015.

[CLT13] J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the integers.
In CRYPTO 2013, Part I, LNCS 8042, pages 476–493. Springer, Heidelberg, August
2013.

[CLT15] J.-S. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers. In
CRYPTO 2015, Part I, LNCS 9215, pages 267–286. Springer, Heidelberg, August 2015.

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In PKC 2001, LNCS 1992, pages 119–136.
Springer, Heidelberg, February 2001.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009.

[GGH13a] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT 2013, LNCS 7881, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS,
pages 40–49. IEEE Computer Society Press, October 2013.

[GGH15] C. Gentry, S. Gorbunov, and S. Halevi. Graph-induced multilinear maps from lattices.
In TCC 2015, Part II, LNCS 9015, pages 498–527. Springer, Heidelberg, March 2015.

54

http://eprint.iacr.org/2014/769

[GGHR14] S. Garg, C. Gentry, S. Halevi, and M. Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In Theory of Cryptography - 11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, pages
74–94, 2014.

[GH10] M. Green and S. Hohenberger. Cpa and cca-secure encryption systems that are not
2-circular secure, 2010. matthewdgreen@gmail.com 14686 received 16 Mar 2010, last
revised 18 Mar 2010.

[GJLS20] R. Gay, A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from simple-to-
state hard problems: New assumptions, new techniques, and simplification. Technical
report, Cryptology ePrint Archive, Report 2020/764, 2020. https://eprint.iacr.

org/2020/764, 2020.

[GK05] S. Goldwasser and Y. T. Kalai. On the impossibility of obfuscation with auxiliary input.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005),
23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 553–562, 2005.

[GKW17] R. Goyal, V. Koppula, and B. Waters. Separating semantic and circular security for
symmetric-key bit encryption from the learning with errors assumption. In EURO-
CRYPT 2017, Part II, LNCS 10211, pages 528–557. Springer, Heidelberg, April / May
2017.

[GLSW14] C. Gentry, A. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from
the multilinear subgroup elimination assumption. Cryptology ePrint Archive, Report
2014/309, 2014.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–
299, 1984.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In 40th ACM STOC, pages 197–206. ACM Press, May
2008.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO 2013,
Part I, LNCS 8042, pages 75–92. Springer, Heidelberg, August 2013.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions (extended abstracts). In 21st ACM STOC, pages 12–24. ACM Press, May
1989.

[JLMS19] A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree
expanding polynomials overa R to build iO. In EUROCRYPT 2019, Part I, LNCS
11476, pages 251–281. Springer, Heidelberg, May 2019.

[JLS20] A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded as-
sumptions. Cryptology ePrint Archive, Report 2020/1003, 2020. https://eprint.

iacr.org/2020/1003.

[JS18] A. Jain and A. Sahai. How to leverage hardness of constant-degree expanding poly-
nomials over R to build iO. Cryptology ePrint Archive, Report 2018/973, 2018.
https://eprint.iacr.org/2018/973.

55

https://eprint.iacr.org/2020/764
https://eprint.iacr.org/2020/764
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2018/973

[KLW15] V. Koppula, A. B. Lewko, and B. Waters. Indistinguishability obfuscation for turing
machines with unbounded memory. In 47th ACM STOC, pages 419–428. ACM Press,
June 2015.

[KMN+14] I. Komargodski, T. Moran, M. Naor, R. Pass, A. Rosen, and E. Yogev. One-way
functions and (im)perfect obfuscation. In 55th FOCS, pages 374–383. IEEE Computer
Society Press, October 2014.

[KNY14] I. Komargodski, M. Naor, and E. Yogev. Secret-sharing for NP. In ASIACRYPT 2014,
Part II, LNCS 8874, pages 254–273. Springer, Heidelberg, December 2014.

[KRW15] V. Koppula, K. Ramchen, and B. Waters. Separations in circular security for arbi-
trary length key cycles. In TCC 2015, Part II, LNCS 9015, pages 378–400. Springer,
Heidelberg, March 2015.

[KW16] V. Koppula and B. Waters. Circular security separations for arbitrary length cycles from
LWE. In CRYPTO 2016, Part II, LNCS 9815, pages 681–700. Springer, Heidelberg,
August 2016.

[Lin16] H. Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In EUROCRYPT 2016, Part I, LNCS 9665, pages 28–57. Springer, Heidelberg, May
2016.

[Lin17] H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 599–629. Springer, Heidelberg,
August 2017.

[LPST16] H. Lin, R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation with non-trivial
efficiency. In PKC 2016, Part II, LNCS 9615, pages 447–462. Springer, Heidelberg,
March 2016.

[LT17] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and block-
wise local PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 630–660. Springer,
Heidelberg, August 2017.

[LV16] H. Lin and V. Vaikuntanathan. Indistinguishability obfuscation from DDH-like as-
sumptions on constant-degree graded encodings. In 57th FOCS, pages 11–20. IEEE
Computer Society Press, October 2016.

[MF15] B. Minaud and P.-A. Fouque. Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://eprint.iacr.

org/.

[Mic19] D. Micciancio. From linear functions to fully homomorphic encryption.
https://bacrypto.github.io/presentations/2018.11.30-micciancio-fhe.pdf. Technical re-
port, 2019.

[MMN15] M. Mahmoody, A. Mohammed, and S. Nematihaji. More on impossibility of virtual
black-box obfuscation in idealized models. IACR Cryptology ePrint Archive, 2015:632,
2015.

[MO14] A. Marcedone and C. Orlandi. Obfuscation⇒ (IND-CPA security 6⇒ circular security).
In SCN 14, LNCS 8642, pages 77–90. Springer, Heidelberg, September 2014.

56

http://eprint.iacr.org/
http://eprint.iacr.org/

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In EUROCRYPT 2012, LNCS 7237, pages 700–718. Springer, Heidelberg, April 2012.

[MRH04] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In TCC 2004, LNCS
2951, pages 21–39. Springer, Heidelberg, February 2004.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidelberg, May 1999.

[PRS17] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-LWE for
any ring and modulus. In 49th ACM STOC, pages 461–473. ACM Press, June 2017.

[Ps16] R. Pass and a. shelat. Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In TCC 2016-A, Part I, LNCS 9562, pages 3–17. Springer, Heidel-
berg, January 2016.

[PST14] R. Pass, K. Seth, and S. Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In CRYPTO 2014, Part I, LNCS 8616, pages 500–517.
Springer, Heidelberg, August 2014.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and com-
posable oblivious transfer. In CRYPTO 2008, LNCS 5157, pages 554–571. Springer,
Heidelberg, August 2008.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
37th ACM STOC, pages 84–93. ACM Press, May 2005.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In 46th ACM STOC, pages 475–484. ACM Press, May / June
2014.

[WW20] H. Wee and D. Wichs. Candidate obfuscation via oblivious lwe sampling. Cryptology
ePrint Archive, Report 2020/1042, 2020. https://eprint.iacr.org/2020/1042.

57

https://eprint.iacr.org/2020/1042

	Introduction
	Our Results
	Shielded Randomness Leakage (SRL) Security
	Overview of the XiO Construction
	Concurrent and Subsequent Work

	Preliminaries and Definitions
	Some Standard Lemmas
	Indistinguishability
	Definition of iO
	Definition of XiO
	Definition of Public-Key Encryption
	Definition of Linearly-Homomorphic Encryption
	Definition of Fully Homomorphic Encryption
	Leakage-resilient and Circular Security

	Shielded Randomness Leakage Security of GSW
	Definition of Shielded Randomness Leakage Security
	Batch correctness
	Randomness homomorphism
	Shielded Randomness-Leakage security

	SRL Security of the GSW FHE from LWE
	Learning With Error Assumption
	The GSW scheme
	SRL Security

	Hintable Linearly Homomorphic Encryption
	Definition of Hintable LHE
	Hintable LHE from DCR
	The DJ scheme

	Hintable LHE from LWE
	The Packed Regev Scheme

	Constructing XiO for Plog/poly
	Additional properties for GSW
	XiO Construction

	XiO from 2CIRC
	Instantiation with DJ LHE
	Instantiation with Packed Regev LHE

	XiO from 1CIRC
	Correlated Key Circular security
	Packed Regev with Short Secret Key
	Variant of GSW for Correlated-Key Security
	Correlated-Key 2-Circular SRL Security from 1-Circular SRL Security
	Concluding Our Main Theorem

