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Abstract

The private join and compute (PJC) functionality enables secure computation over data
distributed across different databases, which is a functionality with a wide range of applications,
many of which address settings where the input databases are of significantly different sizes.

We introduce the notion of private information retrieval (PIR) with default, which enables
two-party PJC functionalities in a way that hides the size of the intersection of the two databases
and incurs sublinear communication cost in the size of the bigger database. We provide two
constructions for this functionality, one of which requires offline linear communication, which
can be amortized across queries, and one that provides sublinear cost for each query but relies
on more computationally expensive tools. We construct inner-product PJC, which has applica-
tions to ads conversion measurement and contact tracing, relying on an extension of PIR with
default. We evaluate the efficiency of our constructions, which can enable 212 PIR with default
lookups on a database of size 230 (or inner-product PJC on databases with such sizes) with the
communication of 945MB, which costs less than $0.04 for the client and $5.22 for the server.

1 Introduction

Private set intersection (PSI) is a functionality which enables two parties who have private input
sets to identify items that they have in common without learning any other information. This simple
functionality has found many real-world applications and constructing efficient PSI protocols has
been the focus of a long sequence of works [HEK12, DCW13, PSSZ15, KKRT16, KMP+17, CLR17a,
CHLR18, PRTY19]. While PSI has proven its broad applicability, there are settings which require
more refined functionality that does not reveal the whole intersection but rather enables restricted
computation on the data in the intersection. We refer to this to this functionality as private join
and compute (PJC)[Pos19].

An important difference in the privacy requirements relevant for the PJC and the PSI settings,
is that while the intersection size is inherently revealed by the PSI output, in the PJC case this is an
additional privacy leakage, which should be avoided in many scenarios. The cost of the “compute”
part in a private join and compute protocol is determined by the size of the intersection, which is
often much smaller than the size of the input sets, thus the dominant efficiency cost is the cost of
the step computing the intersection. Similarly to the PSI setting, when the two input datasets are
of the same size, the intersection computation is necessarily linear in the input size. However, when
we have asymmetric inputs where one of the datasets is much larger than the other, the efficiency
goal is to avoid linear dependence on the size of the larger input set. While there have been works
that operate in the private join and compute setting and address the privacy requirement of hiding
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the intersection size [PSTY19] or providing sublinear efficiency [CLR17b] separately, there has not
been a work that achieves both of these properties at the same time.

The PSI-Sum solution of Ion et al. [IKN+20], which was deployed in practice, does not provide
either of the above properties, and they will be highly beneficial for that setting. First, that solution
scales poorly for the party with the smaller input set, which also often has much more constrained
resources, but needs to incur cost proportional to the larger set. Second, it inherently reveals the
intersection size, which can be significant leakage especially when one of the inputs is small – their
protocol mitigates the issue by allowing the party with the small input to learn the intersection
size first and decide to abort if it is too small. Our construction addresses both of these issues.
Additionally, we also allow revealing the intersection cardinality in a differentially private manner.
Further, we extend the functionality that can be computed over the intersection, including allowing
both parties to contribute associated values.

1.1 Our Contributions

Inner Product PJC We consider the problem of private join and compute which allows comput-
ing an inner product between attribute values associated with the intersection IDs in each of the two
input datasets. In this setting the two input sets are of the form (X,W ) = {(x1, w1), . . . , (xt, wt)}
and (Y, V ) = {(y1, v1), . . . , (yn, vn)} and the computation evaluated by the PJC functionality is
defined as follows:

f((X,W ), (Y, V )) =
∑

i∈[t],j∈[n],xi=yj

wivj .

We motivate the above functionality with two practical applications. The first application
involves privacy-preserving computation for the effectiveness of advertising campaigns, which is a
generalization of the functionality supported by Ion et al. [IKN+20]. A transaction data provider
(TDP) has a database of transaction values tdp db by different customers on a particular fixed
date, and an ad tech company has a database at db, which contains data about users who have
seen an ad and a weight that may correspond to the time elapsed between the ad display and the
fixed transaction date. Typically the number of ad impressions over a particular time period is
orders of magnitude higher (millions) than the corresponding number of transactions on a fixed
date (thousands), thus the sets are highly asymmetric.

The following query on the join of these two databases computes the sum of the transaction
values of users who saw ads weighted according to the weight supplied by the ad tech company.

SELECT sum(tdp db.spending ∗ at db.type)
FROM at db INNER JOIN tdp db

ON at db.id = tdp db.id

The inner product PJC functionality can also be used to enhance the privacy guarantees of ex-
posure notification protocols in the existing decentralized contact tracing solutions [AG-20, DP320,
CGH+20, TSS+20]. In such solutions, user devices broadcast BLE packets that contain pseudo-
random values generated from a daily secret key. Users who test positive for COVID-19 can report
their secret keys for the periods when they were infectious to a central server. Each key is accom-
panied with a transmission risk score based on the diagnosis and the user symptoms. Anyone who
downloads the server database can check whether the random values that her app has received were
generated by any of the reported secrets. However, this approach also allows learning information
about the values transmitted in individual BLE packets.
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We can view the above problem as an instance of inner product PJC where the server database
contains the random IDs generated from the reported secrets with their risk scores and the user
has the random IDs she has observed with corresponding weights determined by the time elapsed
since the exposure incident, the exposure duration and other parameters. The goal is for the user
to obtain the weighted sum of the transmission risks for key matching all her exposures. We note
that this application also has a natural input size asymmetry: a client set of encountered random
IDs is much smaller than the server database.

PJC from PIR-with-Default We present two protocols for the setting of inner product private
join and compute, which offer different computation and communication trade-offs in terms of
asymptotic and concrete costs. The first construction incurs linear communication and computation
cost in the size of the two input sets, however, the linear dependence of the communication and
computation on the size of the bigger dataset can be amortized and reused across several PJC
executions where this set is fixed. The second construction achieves sublinear communication cost
in the size of the bigger set but incurs a higher concrete computational cost, which is asymptotically
linear in the size of the two sets.

The main building block for one of our PJC constructions provides another primitive of inde-
pendent interest which we call private information retrieval (PIR) with default. This is a primitive
which enables PIR queries over a sparse database where the client has an input index and receives
either the data stored at that index, or a default value, if there is no item with this index in the
database. The server does not learn anything about the query including whether the client received
a database value or a default value. The client does not learn any further information about the
database or the default value apart from her output. In particular, if the database values and the
default value are indistinguishable, then the client does not learn whether the query index was
present in the database. We also present a multi-query PIR-with-Default construction.

PIR-with-Default on its own is sufficient to compute private set intersection-sum [IKN+20].
Another application of PIR-with-Default outside the PJC setting, is a way to distribute anonymous
tokens [KLOR20] as follows: the users who belong to the database stored by the server receive one
type of an authentication token (which is used as the associated value for all database entries in
the PIR-with-Default execution), while every other user receives a second type of an authentication
token which is used for the default value. The server does not learn which of the two groups the
user belongs to, and if the two types of tokens are indistinguishable, the client does not learn which
type it received.

A small extension of the PIR-with-Default functionality, which we call Extended-PIR-with-Default,
enables the two parties to learn shares of the PIR-with-Default answer multiplied with a weight
supplied from the client. If parties sum the shares they receive from multiple queries, they will
receive shares of the inner-product over the intersection, which then directly achieves the inner-
product PJC functionality.

Implementation Evaluation We evaluate the concrete communication, computation and mon-
etary costs of our constructions and present them together with comparisons to existing works in
Section 6. For our first PJC construction, only the offline communication and computation de-
pends (linearly) on the size of the larger dataset. The online communications and computation is
determined completely by the size of the smaller set and the cost of random memory access (for
datasets of size 216 and 230, the online computation is ∼ 48s and the communication is 1794MB).
Our second construction is more computationally expensive but outperforms any existing construc-
tion in terms of communication when the differences of the two dataset sizes are significant (for
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example, if the smaller input set is of size 256, and the bigger set is at least 8.6million). In terms of
monetary cost, a PJC execution on sets of sizes 212 and 230 costs ∼ 4c. for the client and ∼ $5.22
for the server.

1.2 Technical Overview

Inner Product PJC from extended PIR with Default We describe the idea for the con-
struction assuming the asymmetric input setting where the larger input set (Y, V ) = {(y1, v1), . . . , (ym, vn)}
belongs to a server and the smaller input set (X,W ) = {(x1, w1), . . . , (xt, wt)} belongs to a client (we
note that the constructions works with equal size sets as well). In our Extended-PIR-with-Default
primitive the client has as input an index xi and a weight wi and the server has a database
(Y, V ) = {(y1, v1), . . . , (yn, vn)} and a default value d. The output for the client a server are shares
αC and αS such that αC + αS = wi · vj if xi = yj , and αC + αS = d, otherwise.

In our inner-product PJC protocol the client and the server execute t Extended-PIR-with-Default
queries from the set X where the server has default value 0 for all the queries. As a result of this
the client and the server have shares αC,i and αS,i such that αC,i +αS,i = wi · vj for all xi ∈ X and
αC,i + αS,i = 0 for all xi /∈ X. Therefore, by add their local shares

∑
i∈[t] αC,i and

∑
i∈[t] αS,i, the

client and the server obtain shares of the desired output
∑

i∈[t],j∈[n],xi=yj

wivj .

PIR with Default Our Extended-PIR-with-Default construction is a small modification of the
PIR-with-Default construction. We overview the main techniques shared by both constructions and
we note the places where they differ. The cost of the PIR-with-Default protocols determines the
overall complexity of our inner-product PJC constructions. We present two approaches: the first
one has an offline phase with communication linear in the server size, which can be amortized
across client queries, and online cost which is constant per query. Hence, the corresponding inner-
product PJC has linear communication in the size of the two sets. The second PIR-with-Default
construction has no setup cost and provides communication sublinear in the server database size
per query, which gives an inner-product PJC that is linear the client’s dataset size and sublinear
in the server’s dataset size.

The PIR-with-Default functionality implies that the database held by the server is sparse and
only a small fraction of the indices are present in the database. Thus, a straightforward way to
implement PIR-with-Default will be if the server pads its database with all missing indices that will
contain the default value. However, this will increase the size of the database significantly and will
lead to larger communication and computation overheads. Instead, in order to provide an efficient
indexing into the sparse domain we will use Bloom filters [Blo70], which are a data structure that
allows efficient set membership tests over sparse sets. A Bloom filter (BF) lookup allows obtaining
a bit that indicates whether a query index is in the database or not, by querying a constant number
of locations in the BF. In order to obtain an actual value from the database or a default value, we
leverage the notion of garbled Bloom filters (GBF) [DCW13], which allows to store not only a set
of indices but rather a database indexed with a set of indices. For indices present in the database,
a GBF returns the corresponding value in the database by accessing a constant number of locations
in GBF. However, if an index is not present in the database, the corresponding GBF query may
still reveal information about the stored database. In order to prevent this additional leakage, we
use a GBF in conjunction with a BF as we discuss next.

The idea of our construction is that the server creates a BF that contains the indices in Y
and a GBF that contains its database (Y, V ). The client and the server execute a query protocol
where the client has as input an index xi and the output of the protocol will be secret-shares of
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the membership bit for xi in the BF and secret-shares of the value retrieved from the GBF for xi.
Next the client and the server will execute a Value-Or-Default construction in which the two parties
input their shares of the BF and GBF query responses and additionally the server’s default value
for this execution, and the client obtains either the value from the GBF query, if the answer of the
BF query was 1, or the default value, otherwise.

Value-Or-Default As we discussed above the inputs for the client and server for the Value-Or-Default
functionality are XOR shares bC and bS of a bit (the output of the BF query) and additive shares
vC and vS of a value (the output of the GBF query). In addition the server has as input a default
value d. The output received by the client is v = vC + vS if b = bC ⊕ bS = 1, and d, otherwise. Our
construction requires only two oblivious transfer (OT) [Rab05] executions. The first OT enables
the server to learn q = ∆C + b · vC where ∆C is a random value generated by the client. This
is achieved by executing a OT where the client is the sender with messages m0 = ∆C + bC · vC ,
m1 = ∆C + (1 − bC) · vC and the server is the receiver with bit bS . The second OT enables the
client to obtain ∆C + b · vC + b · vS + (1 − b) · d from which the client can subtract ∆C to recover
v if b = 1, and d, if b = 0, as desired. In the second OT the server is the sender with messages
m0 = q+ bS · vS + (1− bS) · d and m1 = q+ (1− bS).vS + bS .d which the client is the receiver with
input bit bC .

BF and GBF Queries Both Bloom filters and garbled Bloom filters have public parame-
ters a set of hash functions H1, . . . ,Hk and executing a query x requires accessing only loca-
tions H1(x), . . . ,Hk(x) in the BF and GBF data structures. The output of a GBF query is∑

i∈[k] GBF[Hi(x)], while the output of a BF query is the AND of the bits at locationsH1(x), . . . ,Hk(x),
which we observe can be computed as the bit of the comparison of

∑
i∈[k] BF[Hi(x)] with the value

k.
We present a protocol that transforms shares rC adn rS of the value

∑
i∈[k] BF[Hi(x)] into shares

of the output from the BF lookup using a single 1-out-of-k + 1 OT as follows. The client choose
a bit bC and computes B = {b0, . . . , bk} where all bi are bC , except b(rC+k) mod (k+1) is the client’s
share which is equal to 1⊕ bC . The client and the server execute 1-out-of-k + 1 where the client is
the sender with input B and the server is the receiver with input rS . The server obtains output bS
such that bC ⊕ bS = 1 if and only if rC + rS = k.

Thus, both of the BF and GBF queries reduce to the task of computing the sum of the entries
at locations H1(x), . . . ,Hk(x) in the server database and providing shares of the output to both
parties.

BF/GBF Queries with Linear Offline Cost. Our first instantiation of the above functionality is
in the amortized setting which includes an offline phase with linear communication, which can be
used later for the execution of multiple queries. In the offline phase the server sends to the client
its database where each entry in encrypted under additively homomorphic encryption Enc(Di).
Now for each query with indices H1(x), . . . ,Hk(x), the client can locally compute the encryption of
Enc(

∑
i∈[k]DHi(x)). The client generates a random value r, which it keeps as its share, and sends

Enc(
∑

i∈[k]DHi(x) + r) to the server, which the server decrypts to obtain its share.

BF/GBF Queries with Sublinear Cost. Our second construction for the BF and the GBF queries
leverages constructions for symmetric private information retrieval [GIKM00] with sublinear com-
munication based on homomorphic encryption (HE) [Gen09]. The general idea of such constructions
is to send a selection vector encrypted under homomorphic encryption, with which the server can
compute an inner product with its database to obliviously obtain an encryption of the query re-
sponse value. Such constructions allow the server to add the results of several queries using the
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additive HE properties in order to obtain Enc(
∑

i∈[k]DHi(x)). Similarly as above the server gener-
ates a random share r for itself and sends Enc(

∑
i∈[k]DHi(x) +r) to the client to decrypt and obtain

its share.
PIR constructions achieve sublinear communication either by using packing techniques lever-

aging the slots in an HE ciphertext to encrypt the entire selection vector in a single cipher-
text [ACLS18, ALP+19], or using recursion where the selection vector is written as an outer prod-
uct of several vectors of shorter length [GR05, ALP+19]. These two techniques are not compatible
with each other, i.e. packing the entire selection vector for a query in a single HE ciphertext
requires increased computation at the server and higher multiplicative degree from the HE, and
does not provide efficiency benefits. However, in our setting we need to execute multiple PIR
queries and we use the HE slots to pack coordinates of the selection vectors from different queries.
This HE-slotting technique is also compatible with multi-query PIR approaches which use Cuckoo
hashing [PR01, PSSZ15] to reduce the communication cost per query. Such hashing techniques
partition both parties’ inputs in a way that guarantees that the client queries are distributed
evenly across the smaller server partitions and can be executed only over the partition without
revealing anything about the query indices. We also instantiated this approach using two-choice
hashing [CRS03, PRTY19] and compare it to Cuckoo hashing for different parameters. In both of
these multi-query instantiations we can pack coordinates from queries for different partitions in the
same HE ciphertext while preserving the efficiency of the server computation.

2 Preliminaries

We briefly introduce notations and cryptographic primitives in this section, and refer to Ap-
pendix A.1 for complete definitions. We denote by κ and λ the computational and statistical
security parameters respectively. For n ∈ N, we write [n] = {1, . . . , n}. We define a probabilistic
polynomial time (PPT) algorithm to be a randomized algorithm that runs in polynomial time in
the length of its first parameter.

Oblivious Transfer (OT) [Rab05] 1-out-of-n OT is a two-party protocol, in which a sender
with n inputs (m1, . . . ,mn) interacts with a receiver who has an input choice b ∈ [n]. The result
is that the receiver learns xi without learning anything about others mj , ∀j ∈ [n], j 6= i, while the
sender learns nothing about b.

Bloom Filter (BF) [Blo70] and Garbled Bloom Filter (GBF) [DCW13] A BF is an array
{BF[i]}i∈[n] of bits where each keyword x is inserted to the BF by setting BF[hi(x)] = 1 for all
hi in a collection of hash functions H = {h1, . . . , hk | hi : {0, 1}? → [n]}. A GBF is an array of
integers in Z` that implements a key-value (x, v) store, where the value v associated with key x is
v =

∑k
i=1 GBF[hi(x)].

Cuckoo Hashing [PR01] and 2-Choice Hashing [CRS03] Basic Cuckoo hashing consists
of m bins B[1], . . . , B[m], a stash, and k random hash functions h1, . . . , hk of range [m]. To insert
an element x into a Cuckoo hash table, we place it in bin hi(x), if this bin is empty for any i.
Otherwise, we choose a random i ∈ [k] and place x in bin hi(x), evict the item currently in that
bin, and recursively insert the evicted item. 2-choice hashing uses k = 2 random hash functions
h1, h2 of range [m], and each item x will be placed in whichever of h1(x), h2(x) currently has fewest
items.
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Homomorphic Encryption (HE) HE is a form of encryption that allows to perform arbitrary
computation on plaintext values while manipulating only ciphertexts. In this work, we use the
BGV [BGV14] and FV [FV12] HE schemes.

Private Information Retrieval Private information retrieval (PIR) is a cryptographic prim-
itive that allows a client to query a database from one or multiple servers without revealing any
information about the query to the database holder(s). A trivial solution suffering linear com-
munication overhead consists in sending the whole database to the client. While the feasibility
of a protocol with sublinear communication has been resolved for a long time [CKGS98], the
search for concretely efficient constructions for practical applications has been an active area of
research [CMS99, DC14, GR05, ACLS18, ALP+19]. In this paper, we focus on the single-server
setting and will use RLWE-based homomorphic encryption scheme as in [ACLS18, ALP+19].

3 Definitions

In this section, we provide the formal security definitions that we will use for our protocols. All
our constructions will be proven in the semi-honest setting where the parties follow the prescribed
steps in the construction.

We provide standard simulation security definitions [Gol04] for our constructions that use the
following notation: ViewΠ

C (1λ, [X]C , [Y ]S) is the view of party C during the execution of protocol
Π with security parameter λ between parties C and S which have inputs X and Y respectively;
SIMΠ

C (1λ, O) is a ppt simulator algorithm, which generates the view of party C in the execution
of a protocol Π (i.e. the messages received from the other participants) given input the security
parameter λ and the output O that C receives at the end of Π.

3.1 PIR with Default

We start by defining formally our new notion of PIR-with-Default. We first recall the different
existing variants of private information retrieval and their security guarantees. The notion of
PIR [CGKS95] enables a client to query a public database with a private index and to obtain
the corresponding entry, while the party who holds the database learns nothing about the index
during the execution of the query. Symmetric PIR [GIKM00] adds also a privacy guarantee for
the database requiring that the client learns nothing but the queried database entry. Keyword
PIR [CGN98] addressed the setting of sparse databases where the query index is over a keyword
domain, and database is index with a subset of the same domain. The query party in keyword PIR
either obtains the requested value if present in the database, or learns that the query is not present
in the database.

PIR-with-Default extends the notion of keyword PIR providing stronger privacy against the client
hiding whether the query is present in the database. This is achieved by modifying the functionality
to return either the database entry if the query is in the database, or a default value provided by
the database holder, otherwise. This privacy property is stronger than symmetric keyword PIR
assuming that the database entries and the default values are indistinguishable.

The precise PIR-with-Default functionality is described in Figure 1. We note that the presen-
tation in Figure 1 allows the client to submit multiple queries, where the server specifies different
default values for each client query. Single-query PIR-with-Default is equivalent to setting t = 1.
Next we define the security properties for such a protocol.
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Parameters: The two parties, Server/Sender S and Client/Receiver R, agree upon
• An upper bound n on the number of key-value pairs in Server S’s input.
• A space Z` for the associated values and default values.
• A bound t on the number of Client C’s queries.

Inputs:
S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, and default values D =
{d1, . . . , dt}.

R: A set of t queries {xi}i∈[t].
Outputs:
S: No output.
R: A set O = {oi}i∈[t] where

oi =

{
vj , if xi = yj for some j ∈ [n]

di, otherwise

Figure 1: The PIR-with-Default Functionality.

Parameters: The two parties, Server/Sender S and Client/Receiver R, agree upon
• An upper bound n on the number of key-value pairs in Server S’s input.
• A space Z` for the associated values and default values.
• A bound t on the number of Client C’s queries.

Inputs:
S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, a set of default values
D = {d1, . . . , dt}, and a set of additive masks S = {s1, ..., st}. Each vi, di and si ∈ Z`.

R: A set of t pairs {(xi, wi}i∈[t]. Each wi ∈ Z`.
Outputs:
S: No output.
R: A set O = {oi}i∈[t] where

oi =

{
(wi · vj) + si, if xi = yj for some j ∈ [n]

di + si, otherwise

Figure 2: The Extended-PIR-with-Default Functionality. All arithmetic is in Z`.

Definition 1 (Semi-Honest Security for PIR-with-Default). Let n(λ) be an upper bound on the
size of server database if (index, value) pairs P, t(λ) be a bound on the number of queries client’s
set X, and Z`(λ) be the domain for the database values and default values D. Let O be a vector of
length |X| that contains the outputs of the PIR with default functionality executed with queries
from X on database P and default values D.

A PIR-with-Default protocol is (n(λ), t(λ), `(λ))-secure, if there exist ppt algorithms SIMC and
SIMS such for any probabilistic polynomial-time adversary A , there exists a negligible function
negl(·) such that ∣∣Pr[A(1λ,ViewΠ

S (1λ, [X]C , [P,D]S)) = 1]

−Pr[A(1λ, SIMC(1
λ, n, `, O, [P,D]S)) = 1]

∣∣ < negl(λ)

and ∣∣∣Pr[A(1λ,ViewΠ
C (1λ, [X]C , [P,D]S)) = 1]

−Pr[A(1λ,SIMS(1λ, [X]C , t)) = 1]
∣∣∣ < negl(λ)
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The above security definition formalizes the intuition that the client does not learn anything
more than the output of its query (the actual value if the item is present, or the default value)
as and the database size, and the server does not learn anything from the executions except the
number of queries.

Extended-PIR-with-Default. We also define the notion that extends the computation of PIR-with-Default
as follows:

1. Allowing the client to also specify associated values, such that the client will learn the product
of the client and server’s associated values if the client identifier is in the server database.

2. Allowing the server to specify an additive mask, such that the client will receive a masked
associated-value or default. This enables the protocol to have additively secret-shared out-
puts.

Extended-PIR-with-Default is formally described in Figure 2. The security definition for this
primitive is the same as PIR-with-Default except the output O is computed with the extended
functionality. While PIR-with-Default is a special case of Extended-PIR-with-Default, where the
client’s associated values are all 1, and the server’s additive masks are all 0, we will be constructing
both primitives in a non-blackbox way from building block component to achieve better efficiency.

4 PIR with Default Construction

In this section, we present our constructions for PIR-with-Default and Extended-PIR-with-Default.

4.1 Construction Outline

Both of our constructions share the following three high-level steps.
The first step is a secret-shared private membership test (SS-PMT). This enables the client and

server to compute a secret-share of a membership bit, i.e. the two parties obtain XOR shares of 1
or 0 if the client’s query is or is not in the database.

The second step is computation of a secret-shared associated value (SS-AV). This enables the
client and server to compute an additive secret share of the database value corresponding to the
client’s query. The outputs for the client and the server are two shares of a value, which is the
value that is in S’s database if the query is in S’s database. If the query is not in the database,
there are no guarantees for the value underlying the secret shared output. in particular, it may be
an arbitrary function of the server’s database entries.

The third step is functionality called Value-Or-Default, which enables the server and the client
to take their outputs from the first two steps as well as the default values on the server side, and
translate them into the client’s output, which is either the associated value or the default value
depending on whether the output of SS-PMT was shares of 0 or of 1 .

In the following sections, we will give two constructions for PIR-with-Default. These construc-
tions will have different implementations for SS-PMT and SS-AV, but will have the same imple-
mentation of Value-Or-Default.

4.2 Construction 1: PIR-with-Default with Offline Setup

Our first construction for PIR-with-Default involves an expensive setup phase that has communica-
tion linear in the server’s database. However, the remainder of the protocol is independent of the
number of entries in the server’s dataset. Therefore this protocol is well suited to scenarios where
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Parameters:
• Security parameter λ.
• Server S input set size n, associated value space Z`, number of client C queries t .
• A 1-out-of-k OT primitive.
• Bloom Filter parameters: Bloom filter size η sufficient to hold n items, a number of hash functions k,

a hash function family HF : {0, 1}? → [η] .
• An additively homomorphic encryption scheme (HGen,HEnc,HDec) with message space Z`.

Input:
• Server S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, and a set of default

values D = {d1, ..., dt}, where each vi, di ∈ Z`. Additionally, a set of t masks {s1, ..., st} each ∈ Z`.

• Client C: A set of t queries {x1, ...., xt}. Additionally, a set of t associated values {w1, ..., wt}. each ∈ Z`

Protocol:
1. Setup phase:

• S and C jointly select k hash functions {h1, ..., hk} at random from HF.
• S generates a HE key-pair (pk, sk)← HGen(λ) and sends pk to C.
• S inserts a set of keys {y1, . . . , yn} into a Bloom filter BF and the set of key-value pairs P into

a Garbled Bloom filter GBF using hash functions hi. S aborts if either insertion operation fails.
• Using pk, S encrypts BF and GBF as EBF[i] = HEnc(pk,BF[i]),∀i ∈ [η] and EGBF[i] =

HEnc(pk,GBF[i]),∀i ∈ [η].
• S sends EBF and EGBF to C.

2. Online phase: The following steps are executed in parallel for each xj for j ∈ [t].

(a) SS-PMT computation:

• C chooses a random mask r ← [` − k − 1], homomorphically computes z =

Refresh(HEnc(pk, r) +
k∑
i=1

EBF[hi(xj)]), and send the ciphertext z to S

• S decrypts the received ciphertext z using secret key sk, and obtains r′.
• Parties invoke an instance of 1-out-of-(k + 1) OT:

– S chooses a bit bS at random.
– S acts as OT’s sender with input {b0, . . . , bk} where each bi is equal to bS , except
b(r′+k) mod (k+1) which is equal to 1⊕ bS .

– C acts as OT’s receiver with choice r mod (k + 1).
– C obtains bC from the OT’s functionality.

(b) SS-AV computation:

• C chooses a random mask vC ← Z`, homomorphically computes z′ =

Refresh(HEnc(pk, vC)+ wj ·
k∑
i=1

EGBF[hi(x)]), and sends the ciphertext to S

• S decrypts the received ciphertext z′ using its secret key sk, and obtains vS .

(c) Value-Or-Default computation:

• S and C engage in an execution of the Value-Or-Default protocol described in Figure 4.
• S uses inputs bS , vS +sj and dj +sj .

• C uses inputs bC and vC .
• Let oj be the output received by C from the Value-Or-Default protocol execution

3. Output: C outputs the set O = {oj}j∈[t].

Figure 3: Construction 1: PIR-with-Default construction with Setup. The highlighted parts are
only needed for Extended-PIR-with-Default construction.

the setup phase can be performed offline, and requires an efficient online phase once the client’s
input is available. Moreover, the setup phase can be run once and reused for multiple protocol
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executions, and for different clients.
The construction presented in Figure 3 works as follows. The server inserts its database into a

Bloom filter BF and a Garbled Bloom filter GBF. The server generates a public/private key pair
(pk, sk) for additively homomorphic encryption, and encrypts the entries of both BF and GBF using
the public key. It sends the encrypted results to the client in the setup phase. Whenever the client
wants to run a PIR-with-Default query x, the client invokes the online phase of computation with the
server to compute SS-PMT, SS-AV and Value-Or-Default. We describe each of these computations
as follows:

4.2.1 SS-PMT Functionality

We instantiate SS-PMT as follows. The client first computes a sum of the encrypted entries b =
k∑
i=1

EBF[hi(x)] using the homomorphic property of the encryption scheme. It is easy to see that

b is an encryption of a value p which is smaller than k + 1. Moreover, if the query x is in the
server dataset Y , p is exactly equal to k. The client now needs to turn this into secret shares of
the membership bit. A straw man solution is to homomorphically convert b to an encryption of
a bit (0/1) so that each party can have a secret share of the bit indicating whether x ∈ Y . The
conversion can be done by homomorphically evaluating the equality circuit that has multiplicative
depth dlog(k)e. However this approach is relatively inefficient.

Instead, we use a simple solution that relies on oblivious transfer. More precisely, the client
randomly chooses a value r ← [`−k−1], which will be its output share, and masks b by computing
c← b+ Enc(pk, r). The client sends the resulting value to the server, who decrypts it to obtain its
output share r′ = Dec(sk, c) = p+ r. The parties use their output shares of p as inputs in the next
OT functionality that translates these shares into shares of a single membership bit.

The client chooses a random bit bC and acts as OT’s sender with k + 1 OT messages B =
{b0, . . . , bk} where all bi are bC , except b(r+k) mod (k+1) which is equal to 1⊕ bC . The server acts as
OT’s receiver with r′ mod (k+ 1). The OT functionality gives the server bS such that bC ⊕ bS = 1
if r + r′ = k (i.e. the client’s keyword is in the server’s database), otherwise bC ⊕ bS = 0. The
described process exactly implements the SS-PMT functionality.

Note that for the described solution to work correctly and be secure, we need that ` is sufficiently
larger than k so that r statistically hides p, and also that p+ r does not wrap around mod ` or else
the output will be corrupt. An alternative is to have ` be a multiple of k + 1, which would enable
choosing r ← Z` uniformly at random.

Instantiating 1-out-of-N OT A trivial implementation of the 1-out-of-(k+ 1) OT used above
is via log(k + 1) 1-out-of-2 OT instances. Recently, several works [KK13, KKRT16, PSZ18] have
proposed efficient protocols to generalize 1-out-of-2 OT extension to 1-out-of-N OT. Each protocol
has a different underlying encoding function to support an upper-bound number of N messages
in OT. Kolesnikov and Kumaresan [KK13] employ 256-bit Walsh-Hadamard error-correcting code
and achieve 1-out-of-N OT on random strings, for N up to approximately 256. For arbitrarily
large N , the best 1-out-of-N OT protocol [KKRT16] uses 424-448 bits codeword length, which
requires 424-448 bits of communication per OT and N hash evaluations. For smaller N , the best
protocols [PSZ18, OOS17] use linear BCH code, in which codeword length depends on N . Our
instantiation for the BF parameters yields N = 25. In this case, the required codeword length and
the best underlying encoding are 248 bits and Linear Orthogonal Array, which are chosen according
to [min] to achieve Hamming distance of two codewords at least κ security parameter.
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Input:
• Server S: A bit bS and two strings vS and d each ∈ Z`.
• Client C: A bit bC and a string vC ∈ Z` .

Desired Output:
• Server S: No output.
• Client C: v = vS + vC if b = 1, or d if b = 0, where b = bS ⊕ bC

Protocol:

1. C chooses ∆C ← Z` at random.

2. Parties invoke an OT instance:

• C acts as OT’s sender with OT’s messages m0 = ∆C + bC · vC and m1 = ∆C + (1− bC) · vC .
• S acts as OT’s receiver with a choice bit bS , and obtains q. Note that q = ∆C + b · vC where
b = bS ⊕ bC

3. Parties invoke another OT instance:

• S acts as OT’s sender with inputs m0 = q+ (bS · vS) + ((1− bS) · d) and m1 = q+ ((1− bS) ·
vS) + (bS · d).

• C acts as OT’s receiver with a choice bit bC , and receives q′. Note that q′ = q + (b · vS) +
((1− b) · d) where b = bS ⊕ bC

4. C outputs q′−∆C . Note that the output is exactly vS +vC if b = 1, or d if b = 0, where b = bS⊕bC

Figure 4: Our Value-Or-Default Construction. All arithmetic is implicitly in Z`.

4.2.2 SS-AV Functionality

The SS-AV protocol uses similar but simplified approach as the one in SS-PMT. The client
first computes a sum of all encrypted EGBF[hi(x)],∀i ∈ [k], using the additive HE property

z =
k∑
i=1

EBF[hi(x)]. Due to the GBF property, z is an encryption of the associated value v if

(x, v) ∈ P, and some unrelated value otherwise. To output SS-AV, the client chooses a random vC
and sends Enc(pk, vC) + z to the server who can decrypt it and obtain vS .

The work [DCW13] observed that the GBF procedure aborts when processing item x if and only
if x is a false positive for a BF containing the previous items. Therefore, to bound the probability
by 2−λ, one can use a table with N = 58n entries to store n items. In that case, the optimal
number of hash functions is k = 31.

In the setting of Extended-PIR-with-Default, the client homomorphically multiplies its value wi
with the sum of the encrypted GBF values before masking and sending it to the server. Then if xi
is in the server database, vS , the decryption of z, will be a share of (vj · wi) . Then the server can
simply add si to vS before proceeding to the next phase: now vC and vS + si are additive shares of
(vj · wi) + si.

Finally, the server and client engage in a Value-Or-Default protocol to translate the outputs of
the previous two steps into the associated value or the default value. We describe this subprotocol
in the next section.

4.2.3 Value-Or-Default Functionality

We describe our Value-Or-Default protocol for the PIR-with-Default construction and note that the
only change required for the Extended-PIR-with-Default construction is that the server has to modify
its inputs to Value-Or-Default, but there are no changes to the Value-Or-Default protocol itself.
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After SS-AV, parties hold secret shares of the associated value v if (x, v) ∈ P. To complete
the PIR-with-Default functionality, the client has to either reconstruct v or obtain a default value d
from the server. We translate the shares into the required output using 2 OT invocations (forward
and backward) as follows.

In the “forward” OT, the client chooses a random value ∆C ← {0, 1}`, and acts as OT’s sender
with OT’s messages {∆C + bC · vC ,∆C + (1− bC) · vC}, while the server acts as OT’s receiver with a
choice bit bS , and obtains q. Clearly, q = ∆C + (bC ⊕ bS) · vC = ∆C + b · vC .

In the “backward” OT, the server acts as OT’s sender with input {q + bS · v + (1− bS) · d, q +
(1− bS) · v+ bS · d} while the client acts as OT’s receiver with a choice bit bC , and receives q′. It is
easy to see that q′ = q + b · vS + (1− b) · d.

Finally the client reconstructs it output o = q′ −∆C .

4.3 Construction 2: PIR-with-Default with Sublinear communication.

Our second construction aims to remove the expensive offline setup phase from our first construc-
tion, replacing it by (standard) Private Information Retrieval queries.

Recall that the offline Phase in Construction 1 consists of S sending encrypted BF and GBF to
the client. For each query xj C homomorphically sums the entries corresponding to hi(xj) for each
of the k hash functions hi, additively masks the encrypted result, and sends it to the server.

In Construction 2, C will instead obliviously query the server at the locations hi(xj), and will
receive the masked sum of the corresponding values at those locations in BF and GBF. Note that
if C only needed to retrieve the entries at locations hi(xj) (without summing or masking), then
C could have used standard (symmetric) PIR. In order to execute the query results summed and
masked, we have C instead use a modified version of PIR, which we call Sum-PIR.

4.3.1 Sum-PIR Functionality

The Sum-PIR primitive allows a receiver C, holding a set of indices p1, . . . , pk, to interact with a
server holding a database P and receive

∑k
i=1 P[pi]+r, for some additive mask r held by the server.

The server should not learn the entries queried by the client.
Our construction for Sum-PIR builds on standard constructions of PIR from additively homo-

morphic encryption, for example [ACLS18, ALP+19]. In the basic version of these constructions,
the receiver C sends η ciphertexts c1, . . . , cη to the server, where η = |P| is the number of items
held by the server. These ciphertexts all encrypt 0, except the ci (where i is the index C wishes
to retrieve), which encrypts 1. The server S receives these ciphertexts and performs a homo-
morphic dot-product between these ciphertexts and its database P. This results in a ciphertext
c∗ =

∑η
j=1 P[j] · cj , which is an encryption of exactly P[i]. S then sends c∗ to the client who

decrypts to receive its desired value.
We observe that if the client wishes to instead receive the sum of k entries, then it can send

k PIR queries simultaneously to the server, who executes the computation described above, and
homomorphically sums the resulting ciphertexts before returning the result to the client. The result
will then contain exactly the sum of the k queried items. If we additionally want the result to be
masked, then the server can homomorphically add a chosen mask r to the result before returning
it to the client.

While the basic construction described has high client communication costs, we can perform
several optimizations to reduce the communication and computation costs, which we describe in Sec-
tion 6. We also note that the description above only requires additively homomorphic encryption.
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Input:
• Server S: A database D of size η and an additive mask r
• Client C: a set of indices p1, . . . , pk.

Desired Output:
• Server S: no output
• Client C: v =

∑k
i=1D[pi] + r

Protocol:

1. C generates a public and secret key pair (pk, sk) with PIR.Gen, and sends pk to S

2. S and C invoke multi-query PIR. For each i ∈ [k],

(a) C uses PIR.Query(pk, pi) to generate a query qi and sends it to S
(b) S uses PIR.Answer(pk, qi, D) to generate the answer di.

(c) S homomorphically computes c =
∑k
i=1 di

(d) S homomorphically masks c? with r as c? ← HEnc(pk, r) + c.

(e) S sends c? to C.

3. C outputs PIR.Extract(sk, c?)

Figure 5: Our Sum-PIR Construction.

However, some of our optimizations will additionally require homomorphic multiplications. There-
fore, our construction will be from RLWE-based somewhat-homomorphic encryption [BGV14].

We present our Sum-PIR functionality and its construction in Figure 5. The security of our
Sum-PIR construction follows in a straightforward way from the security of its building block (e.g.
PIR).

4.3.2 Building PIR-with-Default from Sum-PIR

Our second PIR-with-Default construction is presented in Figure 6 and works as follows. In the
setup phase, the server inserts its database into a Bloom filter BF and a Garbled Bloom filter GBF.
The online execution starts the SS-PMT phase, which now consists of a Sum-PIR execution. For
each item xi∈[t], the client inputs a set of indices {h1(xi), . . . , hk(xi)} while the server inputs BF
and a random mask r. Similar to Construction 1, the parties obtain secret share of the value p
which is smaller than k + 1. The parties then use their obtained values as inputs to the 1-out-of-k
OT that translates these shares into output of SS-PMT functionality.

For SS-AV computation, the parties also invoke Sum-PIR. We observe that the client can reuse
the queries from the SS-PMT phase in the SS-AV phase, since it is querying the same indices (i.e,
C does not need to send PIR.Query to the server in Step (2,a) of Figure 5) while the server inputs
GBF and a random mask vS . Sum-PIR directly gives parties SS-AV’s outputs as desired.

In the setting of Extended-PIR-with-Default , for each j ∈ [t], the client additionally sends
encryption of wj to the server who homomorphically multiplies it with the PIR results in Step (2,c)
of Figure 5 before masking the result with the additive mask vS in Step (2,d) of Figure 5.

Finally, the server and client engage in the Value-Or-Default protocol as before to translate the
outputs of the previous two steps into the associated value or the default value. This protocol is
the same as in Construction 1.
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Parameters:
• Security parameter λ.
• Server S input set size n, associated value space Z`, number of client C queries t .
• A 1-out-of-k OT primitive and a Sum-PIR primitive.
• Bloom Filter parameters: Bloom filter size η sufficient to hold n items, a number of hash functions k,

a hash function family HF : {0, 1}? → [η] .

Input:
• Server S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, and a set of default

values D = {d1, ..., dt}, where each vi, di ∈ Z`. Additionally a set of t masks {s1, ..., st} each ∈ Z`.

• Client C: A set of t queries {x1, ...., xt}. Additionally a set of t associated values {w1, ..., wt} each ∈ Z`.

Protocol:
1. Setup phase:

• S and C jointly select k hash functions {h1, ..., hk} at random from HF.
• S inserts a set of keys {y1, . . . , yn} into a Bloom filter BF and the set of key-value pairs P into

a Garbled Bloom filter GBF using hash functions hi. S aborts if either insertion operation fails.
2. Online phase: The following steps are executed in parallel for each xj for j ∈ [t].

(a) SS-PMT computation:

• S selects a mask r ← [0, `− k − 1].
• C and S execute a Sum-PIR query. C uses inputs h1xj , ..., hk(xj). S uses BF and r as input.

• C receives r′ = r +
∑k
i=1 BF[hi(xj)] as output.

• Parties invoke an instance of 1-out-of-(k + 1) OT:
– S chooses a bit bS at random.
– S acts as OT’s sender with input {b0, . . . , bk} where each bi is equal to bS , except
b(r+k) mod (k+1) which is equal to 1⊕ bS .

– C acts as OT’s receiver with choice r′ mod (k + 1).
– C obtains bC from the OT’s functionality.

(b) SS-AV computation:

• C sends HEnc(pk, wj) to S.

• S selects a mask vS ← Z`.
• C and S execute a Sum-PIR query. C uses inputs h1xj , ..., hk(xj). S uses GBF and vS as

input.
• Prior to additively masking the Sum-PIR result c with vS to compute c?,

S homomorphically multiplies c with HEnc(pk,wj)

• S receives mask vS as output. C receives vC = vS+ wj ·
∑k
i=1 GBF[hi(xj)] as output.

(c) Value-Or-Default computation:

• S and C engage in an execution of the Value-Or-Default protocol described in Figure 4.
• S uses inputs bS , vS +sj and dj +sj .

• C uses inputs bC and vC .
• Let oj be the output received by C from the Value-Or-Default protocol execution

3. Output: C outputs the set O = {oj}j∈[t].

Figure 6: Construction 2: PIR-with-default construction with sublinear communication. Por-
tions with changes highlighted are needed for achieving Extended-PIR-with-Default
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4.3.3 Hashing Based Multi-Query PIR-with-Default Construction

Construction 2 based on Sum-PIR relies heavily on several PIR queries (see Step 2 of Figure 5),
with one query for each client input, which is executed against the server’s data at the same time.
However, standard PIR techniques require the server to touch each item in its dataset for each
client query, which quickly becomes expensive. In this section we describe an optimization based
on hashing to bins that enables large cost savings when executing multiple parallel PIR executions.
Variants of this idea have appeared in previous work: [ACLS18, ALP+19] proposed a new PIR
construction for sparse databases based on Cuckoo hashing to amortize CPU cost when making
multiple PIR queries. In this section, we also show how to leverage a hashing technique [KMP+17,
PRTY19] to speed up the computational cost of Construction 2.

Our main idea is that the parties use hashing to partition its items into m bins. Each bin
contains a smaller fraction of inputs, which allows the parties to evaluate PIR-with-Default or
Extended-PIR-with-Default bin-by-bin. The amount of data the server has to touch per query is now
only it’s items that were mapped to the same bin as the client query, which is much more efficient
computationally.

Our hashing based PIR-with-Default construction is presented in Figure 7. In this construc-
tion, parties hash their items to bins using one of the hashing schemes described above, and ex-
ecute PIR-with-Default bin-by-bin. We note that when we use this hashing technique, we are
able to achieve a weakened version of PIR-with-Default. Specifically, the server cannot assign a
particular default value specifically to the ith client query since it does not know which bin this
query got assigned to. Rather, the server must assign defaults to the ith client query per-bin.
That is, default values must be assigned bin-wise. The same holds true for masks in the case of
Extended-PIR-with-Default . We observe that this does not impact any of our applications, since
they have S choose all default values (and masks) the same way (as a random share of 0), indepen-
dent of which specific client query is being responded to. Therefore these applications lose nothing
from assigning default values and masks by bin.

An additional difference is that the hashing-based modification needs both the client and server
to pad their inputs with dummy values so that each bin is of the same size. These dummy values
need to be chosen carefully so that they are distinct for the client and server, and never occur
in either party’s input set. Our formulation Figure 7 makes it so whenever C uses a dummy
value, it always receives the default value. S therefore has to provide additional default values to
allow for the increased number of client queries due to padding. We also note that in the case of
PIR-with-Default, the client can just discard the values received for dummy items. However, for
Extended-PIR-with-Default , the client must preserve these values, since the server has received a
mask-share for them, and may use it in downstream computation. This implies another caveat for
using hashing: the downstream computation for Extended-PIR-with-Default must also be able to
smoothly handle additional default values corresponding to dummy client inputs. We observe that
our applications are all able to smoothly do so, since their defaults and masks all correspond to
random shares of 0, and computation that follows can accommodate additional shares of 0 while
remaining correct.

We now discuss concrete hashing schemes and parameters. If there are m bins, each with
maximum load γ items on the client’s side, then the number of default values the server must
provide is mγ. In the setting of Extended-PIR-with-Default, the number of additive masks the
server must provide is also mγ.

Concretely, the client uses Cuckoo hashing or 2-choice hashing with k hash functions, and inserts
her items into m bins. The server maps his points into m bins using the same set of k hash functions
(i.e., each of the server’s items appears k times across all over bins). Using a standard ball-and-bin
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Parameters:
• Server S input set size n, associated value space Z`, number of client C queries t .
• A PIR-with-Default and Extended-PIR-with-Default primitive.
• Hashing parameters: a number of bins m, maximum bin sizes β for server bins and γ for client bins,

a number of hash functions k.
• A set of β + γ distinct dummy strings to use for padding bins by the server and client. These strings

must not appear in either party’s set of inputs.

Input:
• Server S: A set of key-value pairs P = {(y1, v1), . . . , (yn, vn)} with distinct yi, and a set of de-

fault values {d1,1, . . . , dm,γ}, where each vi, di,j ∈ Z`. The set of values {d,i,1, . . . , di,γ will serve

as default values for client queries in bin i. Additionally a set of masks {s1,1, . . . , sm,γ} each ∈ Z`.

The set of values {s,i,1, . . . , si,γ} will serve as masks for client queries in bin i.

• Client C: A set of t queriesX = {x1, . . . , xt}. Additionally a associated set W = {w1, . . . , wt} each ∈ Z`.

Protocol:

1. C hashes items {x1, . . . , xt} into m bins using the Cuckoo or 2-choice hashing scheme. Let BC [b] denote
the items in the client’s bth bin.

2. S hashes items {y1, . . . , yn} into m bins under k hash functions. Let BS [b] denote the set of items in
the server’s bth bin.

3. For bin b ∈ [m]:

(a) S computes Pb = {(yi, vi) | (yi, vi) ∈ P and yi ∈ BS [b]}, then pads Pb with dummy pairs to the
maximum bin size β

(b) Parties invoke an instance of PIR-with-Default or Extended-PIR-with-Default :

• S uses a set of key-value Pb, a set of γ default values

{db,1, . . . , db,γ}, and a set of γ masks {sb,1, . . . , sb,γ}.
• C use a set of γ queries {vi | vi ∈ BC [b]} padded with with dummy items to size

γ, and a set of γ associated values {wi|vi ∈ BC [b], wi ∈W}, padded with dummy items till

the bin has size γ

• C receives PIR-with-Default or Extended-PIR-with-Default output.
• Since our parameters include distinct dummy strings that never occur in either party’s input,

a client query for a dummy item is guaranteed to return a default value.

Figure 7: Our hashing based PIR-with-Default construction with sublinear communication. Por-
tions with changes highlighted are needed for achieving Extended-PIR-with-Default

analysis based on k,m, and the input size of client |X|, one can deduce an upper bound β such
that no server bin contains more than β items with high probability (1− 2−λ).

In our protocol, if we use cuckoo hashing, the client can place its set into a Cuckoo table of
size m = 1.27t using k = 3 hash functions. There are only 3% dummy items [PSTY19] required
per bin on the server’s side. Therefore, the client and server maximum bin size are γ = 1 and
β = 1.03d3n/me, respectively. If we use 2-choice hashing, we have flexibility to choose γ to
optimize efficiency, and we will choose it to be equal to the number of slots in the RLWE-based
encryption scheme we use (see Section 6 for specific details). Consequently, the number of bins
needed is m = dt/(γ − 1)e bins. Each server bin contains β = 1.03d2n/me items in this case.
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5 Two Party PJC

5.1 Inner-Product Private Join and Compute

The functionality of Extended-PIR-with-Default provides directly a protocol for inner-product private
join and compute. In particular, a client with input (X,W ) = {(x1, w1), . . . , (xt, wt)} and a server
with input (Y, V ) = {(y1, v1), . . . , (yn, vn)} execute the Extended-PIR-with-Default protocol where
the server uses 0 as the default value for all queries. The two parties receives as outputs additive
shares of wi · vi is xi ∈ Y , or shares of 0 otherwise. Now each of the parties sums locally all the
shares they have obtained, and in doing so they obtain shares of the value

∑
i∈[t],j∈[n],xi=yj

wivj , which

is the desired output.
Private set intersection-SUM is a special case of inner-product PJC can also be obtained in

the same way as above except that the client uses weight equal to 1 in the execution of the
Extended-PIR-with-Default protocol. For a slightly more efficient implementation the parties can
use a plain PIR-with-Default execution, where for the i-th client query, the server additively masks
all values with the same mask si, and sets si to be the default value, and uses these values as input
to the protocol. The client then receives effectively an additive share of the associated value or of
0, with the server’s share being −si. Parties can sum their shares locally to get additive shares of
the intersection-sum.

If the server sets vi = 1 for all i ∈ [n], this protocol computes the cardinality of the intersection
for the two input sets. Since the two parties obtain shares of the cardinality they can further
execute a two-party protocol that checks whether the cardinality is above a threshold.

5.2 General PJC

The Extended-PIR-with-Default functionality enables the two parties to obtain shares of the associ-
ated values for the server’s records included in the intersection, or shares of zero for the records with
identifiers in Y \X. We note we can obtain such shares for multiple attributes values associated
with record.

We can also enable the two parties to obtain shares also of the client’s attribute values (or
vectors of attribute values) for the intersection records (and shares of 0 for the records in Y \X)
as follows: The client executes PIR-with-Default with an input xi to receive a share of the server’s
associated attribute(s). The client and the server execute a 1-out-of-2 OT similar to Step 2 of the
Value-Or-Default protocol, using the shares of membership bit bC and bS from the SS-PMT phase of
the preceding PIR-with-Default, where the client uses inputs m0 = ri+ bC ·wi, m1 = ri+(1− bC) ·wi
for a random mask ri, and the server uses bS as its choice bit. The result will be an additive sharing
of either wi or 0.

At this point the two parties can run any general two-party computation protocol which takes
as input the shares of the attribute values for the records in X ∩ Y and shares of 0 for records in
Y \X, and evaluates a function on these attribute values.

5.3 Supporting Differentially Private outputs

The above approach to compute general functions on the inner-join data can also be extended easily
to support differential privacy (DP) [DMNS06] for the output by having the two parties compute
jointly DP noise that will be added to the output. Since we are constructing semi-honest protocols
each party can locally compute noise with half the magnitude required for the resulting output.
This property is important when the records in the input data sets are records of individuals and
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Parameters Construction 1 Construction 2 Circuit PSI [PSTY19] Poly-ROOM [SGRP19] PJC+RLWE [IKN+20]

Setup Online Online Online Online Online

Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time Comm. Time
n t (MB) (/query) (MB) (/query) (MB) (/query) (MB) (/query) (MB) (/query) (MB) (/query)

216
28 29 35ms 7 2.43ms 77 26ms 5 11.79ms 55 59ms∗ 3† 44.8ms†

212 29 2.19ms 112 1.03ms 77 1.6ms 30 0.93ms 863 3.5ms∗ 3† 2.97ms†

216 29 0.14ms 1794 0.72ms 77 0.10ms 472 0.13ms 13788 2.2ms∗ 6† 0.36ms†

220
28 465 539ms 7 2.43ms 254 6600ms 51 178ms 71 – 40† 713ms†

212 465 34ms 112 1.03ms 295 527ms 76 11.31ms 878 – 40† 44.7ms†

216 465 2.11ms 1794 0.72ms 1318 42ms 522 0.78ms 13837 – 44† 2.97ms†

225
28 14885 17252ms 7 2.43ms 532 252s 1582 5668ms 591 – 1272† 22838ms†

212 14885 1078ms 112 1.03ms 532 15.8s 1607 354ms 1401 – 1272† 1427ms†

216 14885 67ms 1794 0.72ms 3760 1.1s 2180 22.22ms 14391 – 1276† 89ms†

230
28 476322 552s 7 2.43ms 945 7275s 50566 181s 17234 – 40704† 730s†

212 476322 34.5s 112 1.03ms 945 455s 50591 11.33s 18046 – 40704† 45.7s†

216 476322 2.16s 1794 0.72ms 6751 30.3s 55246 0.71s 31034 – 40708† 2.85s†

Machine: single core of Intel(R) Xeon(R) CPU E5-2696 v3 @ 2.30GHz. For all constructions and n ≥ 225, times have been estimated from microbenchmarks
of the core operations, and fixed cost for a random access was assumed.
∗ The times for Poly-ROOM are taken from [SGRP19, Fig. 17], initially provided for a database n = 50, 000 and a number of queries t = 5, 000 and 50, 000.
Unknown machine.
† Although PJC+RLWE does not achieve the PIR-with-Default functionality, we report it for comparison purpose. The times for PJC-RLWE are estimated
from microbenchmarks of the core operations using NIST-P256 as the EC curve and RLWE-encryption with degree 2048 and 62 bit modulus.

Table 1: Communication and computation costs of PIR-with-Default with elements of 32 bits. The
running time is amortized over the number of client queries.

the PJC output is aggregate statistics over the users in the inner-join database, which should not
reveal information about individuals.

6 Implementation

In this section, we report on the communication and computation requirements of our constructions.

6.1 Optimizations for PIR-with-Default

In Appendix A.4, we revisit the state of the art constructions and optimizations of single-server PIR
based on RLWE-based homomorphic encryption, SealPIR [ACLS18] and MulPIR [ALP+19], and
apply them to the application settings of our new PIR-with-Default construction. In particular, we
achieve sublinear communication using recursion and multiplicative homomorphism as in [ALP+19],
discuss why we do not perform oblivious expansion [ACLS18] but instead reduce the amortize cost
using hashing and polynomial slots, and finally, how to embed weights in PIR queries for the
Extended-PIR-with-Default construction.

6.2 Communication and Computation

Asymptotically, Construction 2 (Figure 6) achieves sublinear communication per client query with
respect to the server database size. In our benchmarking, we will make use of the hashing-based
multi-query PIR-with-Default Construction described in 4.3.3 to reduce server costs. For both our
constructions (and related work), we report the communication cost of t queries against a database
of key-value pairs of size n with 32-bit values, for 28 ≤ t ≤ 216 and 216 ≤ n ≤ 230, and the
computational cost amortized over the number of queries t, in Table 1.

For Construction 1 (Figure 3), we report the cost of encrypting a Bloom Filter and Garbled
Bloom Filter of dimension 58n with an homomorphic encryption scheme. We use the Shell homo-
morphic encryption library [she20] with HE parameters d = 1024, log2(q) = 15 for the encryption
of the Bloom filter, and d = 2048, log2(q) = 46 for the encryption of the Garbled Bloom filter,
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(a) t = 28 (b) t = 212 (c) t = 216

Figure 8: Communication cost of t PIR-with-Default queries, for increasing database sizes n and
fixed number t.

(a) n = 220 (b) n = 225 (c) n = 230

Figure 9: Communication cost of t PIR-with-Default queries, for increasing number t and fixed
database sizes n.

both ensuring more than 128 bits of security [APS15] and allowing k = 31 homomorphic additions.
Each coefficient of the polynomials embeds a cell of the (Garbled) Bloom Filter, and rotations are
performed by multiplications with xi. As expected, the setup communication grows linearly with
n and becomes larger than 15GB when n > 225. On the computation side, it is important to note
that, assuming fixed cost for a random access, the online time only depends on t (and not on n).

For Construction 2 (Figure 6), we try different combinations of the optimizations of Section 6.1
and for each input size, we report the cost for the combination with smallest communication cost.
• We use Cuckoo hashing and 2-choice hashing as described in Section 4.3.3, where the number

of bins is taken as large as possible to maximize the use of all the slots in the ciphertexts;
• We loop over 6 recursions levels (from no recursion = 1, to 6 layers of recursion = 6). When

no recursion is used, we encrypt k-shot vectors; otherwise, we send k queries.
• The minimum HE parameters needed for the amount of recursion we have been selected.
For example, for n = 230 and t = 212, we use Cuckoo hashing with 8192 buckets. Each bucket

is of size B = 23 · 106, so we need to send d6 · B1/6e = 102 ciphertexts for each of the k = 31
queries. The HE parameters are d = 8192, log2(q) = 283, and each ciphertext is about 290kB. This
amounts to 916MB out of the 945MB of total communication. The amortized time per query is
estimated to take 455s.

At the other end of the spectrum, for n = t = 216, we use Cuckoo hashing with 90112 buckets
of size 131 without recursion, and use k-shot vectors. This requires 44 PIR queries each of 131
ciphertexts. The HE parameters are then d = 2048, log2(q) = 52, and each ciphertext is about
13kB. This amounts to 75MB out of the 77MB of total communication. The amortized time per
query is measured to take 0.10ms.
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As illustrated in Figure 8, for a fixed number t of elements, Construction 2 has the smallest
communication footprint as the database size n increases. For database of moderate sizes n ≤ 225

and very few elements t, our solutions use less communication than alternatives, but is eventually
less efficient than the Circuit PSI [PSTY19] (cf. Figure 9). We note that Construction 2 becomes
more communication efficient relative to other solutions as the gap between n and t grows larger.
Finally, we note that the computation cost is relatively higher for Construction 2 than related
works, but the bulk of the cost is incurred by the server instead of shared between client and
server.

6.3 Comparison to Previous Work

We compare the resulting communication of our protocols to those of the best Circuit PSI proto-
col [PSTY19] and ROOM [SGRP19].

We first compute the communication complexity of [PSTY19]. The communication is composed
of (a) the OPRF evaluations for each of the m bins which has an amortized communication of at
most 450 bits; (b) the communication of 1.03kn coefficients of size τ + ` bits each where τ is
approximately equal to λ+ log(knt)− log(m); (c) the weighted sum garbled circuit which contains
m comparison of two τ -bit elements, m multiplications of two `-bit associated values, and m − 1
additions of two `-bit associated values. Using circuit compiler [MGC+16], the weighted sum
garbled circuit has m(τ + `− 1) + 993m`+ (m− 1)(`− 1) AND gates in total. Note that each AND
requires 256 bits. The communication cost of garbled circuit also requires m(τ + `) OT instances,
each requiring 256 bits of communication.

In ROOM [SGRP19], the communication is composed of (a) the communication of n coefficients
of size 128 bits each; (b) m garbled AES executions, each requiring 6400 AND gates; (c) and the
same weighted sum garbled circuit as that of [PSTY19], which has t(τ+`−1)+993t`+(t−1)(`−1)
AND gates and m(τ + `) OT instances.

For PJC [IKN+20], we use the NIST-P256 elliptic curve, which requires 32B to represent an
element. We also use RLWE-based encryption for the associated values, with degree d = 2048 and
log2(q) = 62-bit modulus. We use their packing technique to pack 2048 associated values into a
single RLWE ciphertext, together with homomorphic rotation and addition.

6.4 Monetary Costs

In Appendix A.3, we estimate the monetary costs of our protocol compared to other works using
the same cost model as [IKN+20], i.e., the cost charged by Google Platform for pre-emptible virtual
machines (including CPU and RAM).

We observe that Construction 2 enables much lower client costs compared to other protocols.
However, due to the expensive server computation, we notice that the server monetary cost is
higher than that of alternative protocols. However, the relative changes in cost make the comparison
attractive. For example for n = 230 and t = 212, our client cost is 60× lower than that of [PSTY19],
while incurring a server cost that is only 2.5× higher than theirs.

7 Conclusion

Many applications for the private join and compute functionality are settings where the two input
sets have vastly different sizes. In these scenarios the intersection size, which could be quite small,
can be undesirable leakage beyond the required output. We introduced PJC constructions that
both hide the intersection size and achieve efficiency that is sublinear in the size of the larger
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set. The heart of our constructions is a protocol for PIR-with-Default, which is of independent
interest. It implies directly PSI-Sum and a small modification of it gives inner-product PIR.
Additionally, it could be easily composed with general two-party computation protocols to obtain
any PJC computation and also to support differential privacy. We evaluate the efficiency of our
constructions, which could enable 212 PIR-with-Default lookups on the database of size 230 (or inner-
product PJC on databases with such sizes) with communication of 945MB, which costs less than
4c. for the client and $5.22 for the server.

References

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed
queries and amortized query processing. In 2018 IEEE Symposium on Security and
Privacy, pages 962–979. IEEE Computer Society Press, May 2018.

[AG-20] Privacy-preserving contact tracing. https://www.apple.com/covid19/

contacttracing, 2020.
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Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors, Approxima-
tion, Randomization, and Combinatorial Optimization.. Algorithms and Techniques,
pages 240–251, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[DC14] Changyu Dong and Liqun Chen. A fast single server private information retrieval proto-
col with low communication cost. In Miroslaw Kutylowski and Jaideep Vaidya, editors,
ESORICS 2014, Part I, volume 8712 of LNCS, pages 380–399. Springer, Heidelberg,
September 2014.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and
Moti Yung, editors, ACM CCS 2013, pages 789–800. ACM Press, November 2013.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC 2006,
volume 3876 of LNCS, pages 265–284. Springer, Heidelberg, March 2006.

[DP320] Decentralized privacy-preserving proximity tracing. https://github.com/DP-3T,
2020.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. Pir-psi: Scaling private
contact discovery. PoPETs, 2018:159–178, 2018.

[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In EUROCRYPT (1),
volume 9665 of Lecture Notes in Computer Science, pages 294–310. Springer, 2016.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford, CA,
USA, 2009.

[GIKM00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy
in private information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, June
2000.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

23

https://github.com/DP-3T


[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
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A Appendix

A.1 Preliminaries

A.1.1 Bloom Filter (BF) and Garbled Bloom Filter (GBF)

Given a collection of hash functionsH = {h1, . . . , hk | hi : {0, 1}? → [n]}, a Bloom filter (BF) [Blo70]
is the array BF[1 . . . , n] of bits where each keyword x is inserted to the BF by setting BF[hi(x)] = 1
for all hi ∈ H.

A variant of BF is Garbled Bloom filter [DCW13] which is the array GBF[1 . . . , n] of strings.
The GBF implements a key-value (x, v) store, where the value v associated with key x is v =∑k

i=1 GBF[hi(x)]. Both BF and GBF work as follows.
BF and GBF are initialized with all entries equal to 0 and ⊥, respectively. For each key-value

pair (x, v), set BF[hj(x)] = 1,∀j ∈ [k], and let

T = {hj(y) | j ∈ [k],GBF[hj(x)] = ⊥}

be the relevant positions of GBF that have not yet been set. Abort if T = ∅. Otherwise, choose
random values for GBF[j], j ∈ T, subject to

∑k
i=1 GBF[hi(x)] = v.

For any remaining GBF[j] = ⊥, GBF[j] is replaced with a randomly chosen value.

A.1.2 Hashing Scheme

Cuckoo hashing In basic Cuckoo hashing [PR01], there are m bins denoted B[1], . . . , B[m], a
stash, and k random hash functions h1, . . . , hk, each with range [m]. To insert an element x into a
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Cuckoo hash table, we place it in bin hi(x), if this bin is empty for any i. Otherwise, we choose a
random i ∈ [k] and place x in bin hi(x), evict the item currently in that bin, and recursively insert
the evicted item. After a fixed number of evictions, give up and place the current item in the stash.
Using the analysis from [DRRT18, PSTY19], the parameters m, k will be chosen so that, with high
probability (1 − 2−λ), every bin contains at most one item and no item has to place in the stash
during the Cuckoo eviction (i.e., no stash is required).

2-choice hashing In 2-choice hashing [CRS03], there are k = 2 random hash functions h1, h2

of range [m], and each item x can be placed in one of h1(x), h2(x). While in Cuckoo hashing, each
bin contains at most one item, 2-choice hashing does not restrict the number of items per bin: a
2-choice hashing algorithm assigns item x to whichever of h1(x), h2(x) currently has fewest items.
However, using the analysis from [CRS03, PRTY19], the parameter m will be chosen so that, with
high probability (1−2−λ), every bin needs to pad with at most one dummy item to hide the actual
bin size.

A.1.3 Homomorphic Encryption Scheme

Homomorphic encryption (HE) is a form of encryption that allows to perform arbitrary computation
on plaintext values while manipulating only ciphertexts, and consists of the following probabilistic
polynomial-time algorithms.

• HGen(λ): takes a security parameter λ as input, and outputs a public-private key pair (pk, sk).
• HEnc(pk,m): takes the public key pk and a plaintext m as input, and outputs a ciphertext
ct = HEnc(pk,m) as an encryption of m under public key pk.
• HDec(sk, ct): takes the secret key sk and a ciphertext ct = HEnc(pk,m) as input, and recovers

the plaintext m.
• HSum(pk, {cti}): takes the public key pk and a set of ciphertexts {cti = HEnc(pk,mi)} as

input, and outputs a ciphertext encrypting the sum of the underlying messages over the
plaintext space as HEnc(pk,

∑
i
mi).

• HMul(pk, {cti}): takes the public key pk and a set of ciphertexts {cti = HEnc(pk,mi)} as
input, and outputs a ciphertext encrypting the product of the underlying messages over the
plaintext space as HEnc(pk,

∏
i
mi).

In this work, we will use homomorphic encryption based on Ring Learning with Errors (RLWE)
problem, and more precisely on the BGV [BGV14] and FV [FV12] homomorphic encryption
schemes; we defer to Section 6 for details thereon. However, we will use of the property that
one can hide the sequence of operations used to create a ciphertext by using a randomized proce-
dure denoted as Refresh, where the distribution of the ciphertext does not depend on the circuit
that led to it via homomorphic evaluation. In RLWE-based cryptosystems, we can achieve this
functionality by noise flooding or sanitization [DS16].

A.1.4 Private Information Retrieval

In this paper, we focus on the single-server setting and will use RLWE-based homomorphic en-
cryption scheme as in [ACLS18, ALP+19]. The server holds a database DB of N strings, and the
client wishes to read item DB[i] without revealing i. Single-server PIR consists of the following
algorithms.
• PIR.Gen(λ): takes a security parameter λ and generates a public and secret key pair (pk, sk)

from a homomorphic encryption scheme.
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• PIR.Query(pk, i): a randomized algorithm that takes index i ∈ [N ] and public key pk as input
and outputs a query q.
• PIR.Answer(pk, q,DB): takes a query q, public key pk, and a database DB as input, returns

an answer d, containing an encryption of D[i].
• PIR.Extract(sk, d): takes a secret key sk and answer d as input, returns DB[i].
In a basic construction, for server database size N , the PIR client computes (q)← PIR.Gen(i) as

a vector of N ciphertexts encrypting 0, except for the ith ciphertext which encrypts 1. The server

homomorphically computes the following inner product: d
def
=
∑N

j=1 q[j] ·DB[j], which consists of
a ciphertext encrypting DB[i]. The server then sends PIR.Answer’s output to client, who can then
reconstruct DB[i] by decrypting d.

A.2 Correctness and Security Proofs

We observe that our constructions are correct by observation, except with the negligible probability
of Bloom Filter failure. In particular, our constructions fail to be correct if the server is unable to
hash its items into a BF or GBF, or if the Bloom filter returns a false positive on a client query.
However, we note that we can set parameters so that the probability of such failures is negligible.

Theorem 1. The PIR-with-Default constructions 1 and 2 described in Figure 3 and Figure 6 securely
implement the PIR-with-Default functionality defined in Figure 1 in the semi-honest setting, given
the OT, HE, and Sum-PIR functionalities described in Section A.1 and Section 4.3.

Proof. We exhibit simulators for simulating corrupt client and server, respectively. We argue the
indistinguishability of the produced transcript from the real execution.

Recall that our PIR-with-Default construction consists of three main building blocks: SS-PMT,
SS-AV, and Value-Or-Default. The security of our PIR-with-Default constructions follows in a
straightforward way from the security of its building blocks. Thus, we prove each block is se-
cure as follows.

We begin by observing that if we choose parameters appropriately, the server will fail to insert
its entries in the Bloom Filter with negligible probability, and also that each client’s query has a
negligible probability of false positive when checking BF membership. In either failure case, we
assume the simulator fails, and that this has a negligible effect on an adversary’s distinguishing
advantage. We will therefore assume in the following discussions that neither of these failures
occurs.

Simulating the client’s view. In Construction 1 (Figure 1 3) for PIR-with-Default with
setup, the simulator must simulate the view of client C for SS-PMT computation, which consists
of encrypted EBF, encrypted EGBF, and transcripts from the OT ideal functionality. The EBF and
EGBF are encrypted under the public key pk generated by the server. The corrupt client does not
know the secret key sk. Because of the semantic security of the HE scheme property, we can replace
EBF and EGBF with encryptions of random. The simulator proceeds the OT invocation as follows.
The honest server acts as OT’s sender and provides a set of OT messages {b1, . . . , bk} as input.
Note that bi ∈ {bS , 1 ⊕ bS} where bS is chosen by the server, and the client receives only output
bC from OT. The cryptographic guarantees of the underlying OT protocol allow us to replace bC
with a randomly chosen bit. The proof for SS-PMT of our second PIR-with-Default construction,
using the abstraction of our Sum-PIR functionality, and can be proven directly from the fact that
the mask from the server is chosen randomly.

The client C receives no messages from the SS-AV computation in our PIR-with-Default con-
struction 1, therefor the simulator has no work here. For the second construction, the simulator

28



sees Sum-PIR’s randomness and output vC which is masked by a server’s secret value vS . Thus, we
can replace vC with random.

In the Value-Or-Default phase, the simulator simulates an execution of the protocol in which
the client C receives nothing from the OT ideal functionality in Step 2 of Figure 4 since C acts
as OT’s sender. In Step 3 of Figure 4, the honest server’s input is two OT messages m0 and m1

which are masked by his private value either vS or d. The simulator will instead simulate an OT
execution with both messages being o, the output corresponding to the client’s input which the
simulator receives as input. Due to the simulation-privacy of OT, Value-Or-Default produces output
indistinguishable from the real world.

Simulating the server’s view. The server receives nothing from SS-PMT computation,
except its chosen random output bS . In PIR-with-Default construction 1, the server also sees an
encryption of r′, where r′ is masked by the random value r. Furthermore the ciphertext encrypting
r′ has been rerandomized using Refresh. Therefore the simulator can indistinguishably replace this
ciphertext with a new encryption of a randomly chosen r′. In construction 2, the server sees a PIR
query from the client consisting of several homomorphic encryptions. The simulator can replace
these encryptions with encryptions of 0.

In the SS-AV computation, In construction 1 the simulator sees a refreshed homomorphic en-
cryption of vS , consisting of a share of the associated value desired by the client, masked by the
random vC chosen by the client. Relying on the security of the Refresh procedure, the simulator
can replace this ciphertext with a fresh encryption of a randomly chosen vS . In construction 2, the
server sees only homomorphic ciphertexts corresponding to a PIR query, which the simulator can
replace with encryptions of 0.

For both constructions, in the Value-Or-Default phase, the server participates in 2 OTs. In the
first OT, the server acts as a receiver, while the client provides two input messages each masked by
a random δC . Since these messages are statistically uniformly random, the simulator can replace
both messages with random strings and use the simulator for the underlying OT. In the second OT,
the server acts as a sender, and the simulator can rely on OT receiver privacy to indistinguishably
simulate this step.

Because the client’s associated values wj are either masked with random or encrypted before
sending to the server, the security of our Extended-PIR-with-Default constructions follows straight-
forwardly from the security of PIR-with-Default and the encryption scheme. Thus, we omit the
proof of the following theorem.

Theorem 2. The Extended-PIR-with-Default constructions 1 and 2 described in Figure 3 and Fig-
ure 6 securely implement the Extended-PIR-with-Default functionality defined in Figure 2 in the
semi-honest setting, given the OT, HE, and Sum-PIR functionalities described in Section A.1 and
Section 4.3.

A.3 Monetary Costs

We estimate the monetary costs of our protocol compared to other works. Monetary cost gives a
convenient measure to unify the cost of computation and network resources in a practically relevant
way, and has been used in other works include [IKN+20, PRTY19]. A key feature of monetary cost
as a metric is that it gives a large weight to communication cost. A gigabyte of communication
would add only minutes to end-to-end running time, but its monetary cost is equivalent to 8 hours
of computation.
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Para. Construction 1 Construction 2 Circuit PSI [PSTY19] PJC+RLWE [IKN+19]

n t Client Server Client Server Client Server Client Server

216
28 0.14 0.11 0.3 0.3 0.06 0.06 0.01 0.01

212 0.55 0.11 0.3 0.3 0.78 0.78 0.01 0.01
216 7.14 0.11 0.3 0.3 12.51 12.51 0.03 0.03

220
28 1.84 1.84 0.99 1.46 0.24 0.25 0.18 0.18

212 2.26 1.84 1.15 1.75 0.97 0.98 0.18 0.18
216 8.84 1.84 5.15 5.91 12.7 12.72 0.2 0.2

225
28 58.17 58.76 2.08 20 6.22 6.62 5.78 5.78

212 58.58 58.76 2.08 20.06 6.94 7.34 5.78 5.78
216 65.17 58.76 14.69 34.71 19.18 19.58 5.8 5.8

230
28 1860.66 1880.26 3.69 521.02 197.57 210.46 184.93 185.04

212 1861.07 1880.26 3.69 521.38 198.29 211.18 184.93 185.04
216 1867.65 1880.26 26.37 577.97 226.47 239.37 185.06 184.94

Table 2: Total monetary cost in USD cents of PIR-with-Default with elements of 32 bits, using GCP pricing
for network and compute costs (see Table 3). Costs are totals across t queries including network cost (divided
equally amongst client and server), and computation costs for both client and server including setup.

CPU ($/hr) Network ($/GB)

Google Cloud Platform (GCP) $0.01 $0.08
Amazon Web Services (AWS) $0.005 $0.08
Microsoft Azure $0.005 $0.083

Table 3: Computation and Network Costs charged by different cloud providers. Computational costs are
for a single pre-ordered pre-emptible CPU and 2-4 GB of RAM. Network costs are the cost for the 10-50TB
tier of Cloud-to-Internet egress traffic.

A.3.1 Specific costs used

For our concrete monetary costs of resources, we use the model used by [IKN+20], who use the
costs charged by Google Platform for pre-emptible virtual machines (including CPU and RAM),
and the cheapest cost for ”Internet Egress” network usage (representing data flowing to an external
data center or cloud provider). This cost model was used to capture latency-insensitive executions
in a business-to-business setting. As such, it is a good fit for the advertising measurement use
case. However, we note that this model may underestimate true monetary costs in the exposure
notification use case where the client is a mobile device, since computation and network may be
much more constrained in that setting. We note that we expect our constructions to perform even
better compared to other works in this a setting, since our communication costs are relatively low,
and the vast majority of our computation cost is on the server where computation is presumably
cheaper.

GCP costs are in a similar range to the bulk costs charged by the other cloud providers, as
shown in Table 3. The prices shown are for single-CPU machines with 2GB RAM in AWS and
Azure, and 3.75 GB RAM in Google Cloud. The network bandwidth costs are for internet egress
in the 10-50TB data transfer tier.
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A.3.2 Alternative cost models

This cost model assumes participants are hosted in different datacenters or homed in different cloud
providers. Network costs become cheaper if the two participants use the same cloud provider and
are colocated in the same cloud region, which is not the case for our deployment. For example,
network transfer in the same region costs 0.01 per GB within GCP, which is 8× cheaper than the
internet egress rates. In this setting protocols with different efficiency tradeoffs may have a better
monetary cost.

A.4 Optimizations for PIR-with-Default

This section revisits the state of the art constructions and optimizations of single-server PIR based
on RLWE-based homomorphic encryption: SealPIR [ACLS18] and MulPIR [ALP+19], and apply
them to the application settings of our new PIR-with-Default construction.

We recall that the ciphertexts of the RLWE-based HE schemes behind the latter PIR protocols
live in a ring Zq[x]/(xd + 1), for q a product of primes congruent to 1 modulo 2d and d a power of
2, and the plaintext space is Zt[x]/(xd + 1) for t < q.

Sublinear communication using recursion Recursion was proposed by Kushilevitz, Ostro-
vsky [KO97], and later Stern [Ste98], so as to obtain sublinear communication in single-server PIR
based on homomorphic encryption. The key idea is, instead of representing the database as a vector
of size n, to represent it as a r-dimensional hypercube of dimension n1/r (r = 1 is a n-dimensional
vector, r = 2 is a n1/2 × n1/2 matrix) for 1 ≤ r ≤ log2N , so that the client has to send (the
encryption of) r n1/r-dimensional one-shot vectors indicating which position she is querying.

Originally described for additively homomorphic HE schemes, for the recursion to work with
additive-only HE schemes (such as Paillier [Pai99]), the ciphertext after one level of recursion is
“parsed” as a plaintext in the next layer. However, for our applications, we will need the ciphertext
after recursion to encrypt exactly the value (and not a ciphertext of the value); hence, we will
perform recursion using the multiplicative homomorphism of the RLWE-based HE schemes as
proposed in MulPIR [ALP+19].

It follows that a PIR query for index j =
∑r

i=1 ji · n(i−1)/r, ji ∈ [0, n1/r] will therefore
encrypt r one-shot binary vectors si’s such that si[i

′] = 1 ⇐⇒ i′ = ji. In the naive version, each
bit is encrypted in its own ciphertext (e.g., as the constant coefficient of the polynomial). We will
describe below optimizations to reduce the query size.

Oblivious expansion An optimization proposed in SealPIR [ACLS18] is called oblivious expan-
sion, and as explained in [ALP+19], allows to encrypt the concatenation of the r one-shot vectors
into drn1/r/de ciphertexts, by placing each of the bit in a different coefficient of the polynomials.
Now, given an additional key material (of the order of a few megabytes) in the public key, the
server can first using a combination of additions (and substitutions) to obliviously recover rn1/r

ciphertexts encrypting each of the bits of the one-shot vectors.

Reducing the amortized cost Note that all applications listed in Section 5 inherently work
in the setting where the client will perform many PIR-with-Default queries. Henceforth, we aim at
reducing the amortized communication and computation costs.

The first method consists in using a hashing technique [KMP+17, PRTY19] and is already
described in Section 4.3.3. The idea is that both the clients and the server hash their items into
bins. Each client bin contains a small number of inputs (bounded by γ), and the size of each bin on
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the server is significantly smaller than the size of the initial database (cf. Section 4.3.3 for concrete
values). Each client will then evaluate γ times PIR-with-Default on each of the bins. We further
note that this is essentially similar to the multi-query PIR technique described in [ACLS18, Sec. 5].

However, we can do better. Remember that the plaintext space of the HE scheme is Zt[x]/(xd+
1); in particular, when t is a prime congruent to 1 modulo 2d, it follows that the HE scheme can
operate over d polynomial “slots” in parallel. In particular, this means that it is possible to batch up
to d queries in a single ciphertext, and process each query in parallel. This method is incompatible
with oblivious expansion as described above, but yields the best amortized communication and
computation complexity; hence we select this method in our experiments.

k-Shot PIR queries Finally, note that because of the use of (Garbled) Bloom filters, each
PIR-with-Default query requires the client to generate k PIR queries, where k is the number of hash
functions in the Bloom filter. Now, the results of these k PIR queries are homomorphically added
together. In particular, the result becomes the same as if only one PIR query was performed with
one k-shot vector, instead of k 1-shot vectors. Henceforth, when no recursion is used, it is possible
to produce only one PIR query with a k-shot vector instead of k PIR queries.

Weights embedded in PIR queries In the Extended-PIR-with-Default construction as de-
scribed in Figure 6, C sends the encryptions HEnc(pk, wj) to S, which are then homomorphically
multiplied to the results of the PIR queries by the server. In practice, this would require one more
level of homomorphic multiplication (and hence larger parameters for the HE scheme). However,
we note that the client already sends a 1-hot vector that encrypts the value 1 at the right position
for the PIR query. An alternative could then be that the client sends a 1-hot vector that encrypts
the value wj at the right position for the GBF, but this would double the upload since the same
PIR query could not be used both for the BF and the GBF. And this is indeed the case when
no recursion is used. However, when recursion is used, remember that the client sends r one-shot
binary vectors si’s such that si[i

′] = 1 if and only if i′ = ji. In that case, we propose to create a
sGBF1 as sGBF1 [i′] = wj and 0 otherwise, and send encryptions of s1, . . . , sr, s

GBF
1 to the server. The

server will then use s1, . . . , sr to answer in the SS-PMT computation, and sGBF1 , s2, . . . , sr in the
SS-AV computation.

A.5 Related Work

The earliest PSI protocols are based on Diffie-Hellman assumptions [Sha80, Mea86, HFH99]. Over
the last few years, there is a long list of works on efficient secure PSI [DCW13, PSZ14, PSSZ15,
KKRT16, RR17b, RR17a, KMP+17, CLR17a, PRTY19, PRTY20] with fast implementations that
can process millions of items in seconds. However, they only allow to output the intersection itself.
In many scenarios (e.g, online marketing campaign) it is preferable to compute some function of
the intersection rather than reveal the elements in the intersection. There is much less related
work on the more general private intersection join and compute (PJC). In this section, we focus on
protocols that support PJC.

GC-based PSI Huang, Katz, and Evans [HEK12] propose an efficient sort-compare-shuffle
circuit construction to implement PJC. Pinkas et al [PSWW18, PSTY19] improve circuit-PSI using
several hashing techniques. The main bottleneck in the existing circuit-based protocols is the
number of string comparisons and computing the statistics (e.g, count) of the associated values
that are done inside a generic MPC protocol, which requires more interactive round complexity.
Moreover, the communication cost is linear in the set size.
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HE-based PSI The protocol of [CHLR18] uses HE-based PSI to return additive secret share
of the common items, which can be forwarded as input to a secondary generic circuit-based pro-
tocol. While their protocol has the communication complexity logarithmic in the larger set size,
similar to GC-based PSI, it requires at least two more interactive rounds and a certain amount
of cost to implement the second MPC protocol. The current Diffie–Hellman Homomorphic en-
cryption approach of [IKN+20] is still preferable in practice [Pos19], due to their more reasonable
communication complexity.
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