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Abstract

Oblivious transfer (OT) is an essential tool of cryptographic protocols. It can serve as a building block
for realizing all multiparty functionalities. The strongest security notion against malicious adversaries is
universal composibility (UC-secure). Due to the rigorous algebraic structures and operations, achieving
the specific security notion with isogenies is believed to be difficult. Hence, it is an open problem to have
an efficient UC-secure OT oblivious transfer scheme based on isogenies.

In this work, we propose the first isogeny-based UC-secure oblivious transfer protocol in the pres-
ence of malicious adversaries without analogues in the Diffie-Hellman setting. The simple and compact
CSIDH-based scheme consists of a constant number of isogeny computations. The underlying relaxed
problem is called the computational reciprocal CSIDH problem which we can prove equivalent to the
computational CSIDH problem with a quantum reduction.

1 Introduction
Oblivious transfer (OT) was first introduced by Rabin to establish the exchange of secrets protocol [Rab05]
in 1981, based on the factoring problem. Say the sender has two messages, oblivious transfer allows the
receiver to know one of them and keeps the sender oblivious to which message has been received while the
unchosen message remains unknown to the receiver.

It has been shown that oblivious transfer is an important building block as a cryptographic tool. Oblivi-
ous transfer can be used to construct other primitives, like millionaires’ problem protocols [IG03], or sign-
ing contracts protocols [EGL85], or, more generally, private multiparty computation protocols [CvdGT95]
or even secure generic multiparty functionalities [Ode09]. Several oblivious transfer protocols based on
Diffie-Hellman-related problems were proposed [BM89, NP01, PVW08, CO15, BDD+17].

Oblivious transfer protocols exist for various hardness assumptions. However, cryptographic protocols
based on problems subordinate to either the discrete logarithm problem or the factoring problem will suffer
a polynomial-time quantum attack, Shor’s algorithm [Sho99]. Several post-quantum oblivious transfer
schemes have been proposed, including Peikert et al.’s lattice-based OT [PVW08], and code-based OTs
[DvdGMN08, DNMQ12, BDD+17]. Recently, some isogeny-based OTs have been independently proposed
[BOB18, dSGOPS18, Vit19].

Concerning security of oblivious transfer, traditional security definitions aim at guaranteeing privacy
for both parties, including one-sided simulation and the view-based definition for a two-message protocol
[NP01, DvdGMN08], see Section 2.6 of [HL10]. These notions ensure privacy for both parties only in
a standalone setting. However, in real world deployment, protocols are always composed into an enor-
mous and complex construction. For security after composing, more and more oblivious transfer proposals
[Lin08, PVW08, DNMQ12, BDD+17] follow the real/ideal paradigm and universally-composable security
(UC security) provided by Canetti [Can01]. The impossibility results for some protocols have been given
in [CKL03].

The first isogeny-based cryptosystem was proposed by Couveignes [Cou06], which included a key
exchange scheme based on a hard homogeneous space. However, the paper was not published at that time.
It was independently rediscovered by Rostovtsev and Stolbunov in 2006 [RS06]. Then, Jao and De Feo
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proposed the Supersingular Isogeny Diffie Hellman (SIDH) in 2011 [JDF11]. Later, it was transformed into
the Supersingular Isogeny Key Encapsulation (SIKE) [JAC+17] which included a public key encryption
scheme and a key encapsulation mechanism and is now one of the third-round alternate candidates in the
post-quantum cryptography standardization competition led by NIST [NIS20]. Castryck et al. devised
an efficient key exchange cryptosystem called commutative SIDH (CSIDH) [CLM+18]. Castryck et al.’s
setting of CSIDH-512 is conjectured to achieve NIST post-quantum security category 1 with the public key
size of only 64 bytes [CLM+18] without any pseudorandom function key compression technique, which is
far less in comparison with the candidates in the NIST competition [NIS20]. In this work, we exploit the
structure of CSIDH to construct our scheme.

In comparison with the DH-based protocols, due to the algebraic structures, it is arguably more chal-
lenging to develop isogeny-based cryptosystems achieving the desired notion. For example, neither the
randomizing procedure (gsyt, xszt) ← RAND(g, x, y, z; s, t←$Fp) [PVW08, Lin08] nor the fundamental
one-trapdoor setup pk0 pk1 = c where c is a constant in [NP01, BDD+17] can be transplanted to the isogeny-
based setting.

We review the aforementioned isogeny-based oblivious transfer proposals [BOB18, dSGOPS18, Vit19].
Their schemes can be viewed as “tweaks of two Diffie-Hellman key exchange agreements” or variants of
the Diffie-Hellman problem as stated in [CO15]. As a result, wider transmitting bandwidth, more pub-
lic curves, or additional mechanism will serve as trade-offs for the constructions. Besides, as stated in
[CO15], these schemes, including their scheme, cannot achieve full-simulatablility, even in the sense of
the sequential composition theorem [Can00]. This is because a simulator cannot extract the input of the
malicious adversary who delays the decryption and just stores everything. A natural solution is embedding
a zero-knowledge proof protocol to extract the input of the adversary in the hybrid model but sacrificing
efficiency. Chou and Orlandi [CO15] pointed out another potential solution that the receiver should show a
“proof of timely decryption” while not leaking the secret input, which was realized by Barreto et al. in their
framework in the updated version of [BDD+17].

On the aspect of security, the schemes [BOB18, dSGOPS18, Vit19] are all only proved secure under
either semi-honest models or a non-simulation-based definition. In other words, the schemes all ensure
nothing when executed within a larger environment against malicious adversaries. Regarding the underlying
computational assumption, a reduction to a well-known one is a preferred choice since a reduction to a
weaker variant may incur unpredictable flaws for the scheme. For instance, the scheme in [Vit19], as stated
in their work, will be broken by malicious adversaries in CSIDH setting. Consequently, an isogeny-based
oblivious transfer protocol proved to be secure under an assumption equivalent to a well-known problem
and with respect to a powerful security notion is still currently missing from the literature.

1.1 Contributions
To resolve all issues presented above, this paper presents the first construction for a UC-secure isogeny-
based oblivious transfer protocol in the presence of malicious adversaries with a variety of novel techniques.
The construction is not only compact with a constant number of isogeny computations (see Table 1) but
also a robust scheme without compromising the hardness. Our schemes use a feature that is available for
isogenies (the quadratic twist) that does not have an analogue in the DLP setting, but some techniques are
not limited to isogeny-based cryptography, see Section 6.

Firstly, we design a novel 1-out-of-2 oblivious transfer protocol by a small change to the Diffie-Hellman
protocol to achieve a compact OT prototype with a trusted setup curve (or a public curve). Next, the 3-round
protocol is transformed into a 2-round scheme through a new use of quadratic twists. The 2-round scheme
is the most efficient isogeny-based OT scheme in the semi-honest model so far, see Section 5. Based on the
modification, a secure mechanism can be established in which the receiver will demonstrate the “ability to
decrypt” to the sender for one-side simulation, which is based on a similar idea of [CO15, BDD+17] but
with a different mechanism. Furthermore, we replace the trusted setup with a trapdoor algorithm to accom-
plish the fully-simulatable construction. Finally, we introduce a new assumption, the reciprocal CSIDH
problem, (Problem 5) that looks non-standard, but we prove equivalence to the computational CSIDH prob-
lem with a quantum reduction with a proposition we developed called “self-reconciling” (Proposition 2.2).

As pointed out by Canetti et al. [CKL03], it is impossible to achieve a UC-secure OT scheme without
any trusted setup. Our construction is proposed in a hybrid model with two functionalities, see Table 2 for
comparison with the related works concerning the hybrid models.

This paper is organized as follows. Section 2 briefly describes CSIDH, the related functionalities,
as well as simulation-based definition for two-party protocols. Section 3 introduces how we construct
our oblivious transfer protocol. Section 4 discusses the underlying assumptions against the semi-honest
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adversary and then the malicious adversary. Next we will compare our OT with previous three isogeny-
based OT protocols in section 5 and then conclude in section 6. For comprehensibility, the content related
to the isogenies will frequently be accompanied or introduced by the counterparts in the Diffie-Hellman
setting at the beginning.

1.2 Related work
There are three aforementioned isogeny-based OT protocols. All the adversary models are either semi-
honest or non-simulation, which are both quite weak notions. While the semi-honest model cannot reflect
vicious attackers in the real world, the non-simulation-based model cannot enjoy the composition theorems
[Can00, Can01], see section 5.

The first protocol was proposed by Barreto et al. [BOB18] based on the common reference string (CRS)
model along with the random oracle model. They revisited Chou and Orlandi’s work [CO15] and proposed
a SIDH-based OT. They exploited the property of SIDH to mask one party’s public points by randomly
(up to the receiver’s choice) adding shared selective points derived from the common reference string. To
achieve this, the implementation requires an additional coin-flipping mechanism while the security is only
guaranteed in the semi-honest model.

The second one was proposed by de Saint Guilhem et al. [dSGOPS18]. They derived their two con-
structions from the Shamir-3-Pass key transport scheme and [CO15], respectively. Their framework is
UC-secure against semi-honest adversaries based on a masking structure hard homogeneous space or on
Fp2 supersingular isogenies.

The third one was proposed by Vitse [Vit19]. It is derived from Wu, Zhang, and Wang’s OT [WZW03]
based on a Diffie-Hellman-related problem. Their proposal naturally fits well in the general setting (includ-
ing DH, SIDH, and CSIDH). They gave a game-based security definition (semantic security) for their OT
protocol and gave the hardness proof of their assumption in generic groups.

2 Preliminaries

Notation.
Let {X(a, n)} =c {Y(a, n)} denote computationally indistinguishable probabilistic ensembles X,Y for which
any PPT non-uniform algorithm there exists a non-negligible function f such that for all a, n ∈ N we have
|Pr[D(X(a, n))] − Pr[D(Y(a, n))]| ≤ f (n) . The notation a←$ S means a is uniformly generated from the set
S . For simplicity, we often omit the security level parameter n but it is implicit in the indistinguishabiliy
and the negligible function.

2.1 CSIDH
For any given prime p and an elliptic curve E defined over Fp, Endp(E) is the subring of endomorphism
ring End(E) collecting the endomorphisms defined over Fp.

Let O be an order in an imaginary quadratic field and π ∈ O an element of norm p. Define the set
of isomorphism classes of elliptic curves E``p(O, π) where E defined over Fp, Endp(E) = O, and π is the
Fp-Frobenius map of E. For any ideal a ∈ O and E ∈ E``p(O, π), an action can be defined by a ∗ E = E′ for
an isogeny φ : E → E′ with ker(φ) = ∩α∈a{P ∈ E(F̄p) | α(P) = 0}. The image curve of a ∗ E is well-defined
up to isomorphisms. Moreover, the ideal class group Cl(O) acts freely and transitively on E``p(O, π).

Castryck et al specified the prime to be p = 4 × `1 × ... × `n − 1 where `i are small odd primes. In the
case of p = 3 mod 8, for any supersingular elliptic curve E defined over Fp, the restricted endomorphism
ring Endp(E) = Z{π} � Z{

√
−p} if and only if E is Fp-isomorphic to EA : y2 = x3 + Ax2 + x for some

unique A ∈ Fp. The quadratic twist of a given elliptic curve E : y2 = f (x) is Et : dy2 = f (x) where
d ∈ Fp has Legendre symbol value −1. When p = 3 mod 4 and j(E) = 1728, E and Et are Fp-isomorphic.
The quadratic twist can be efficiently computed in the CSIDH setting [CLM+18]. Since the prime p = 3
mod 4, E′ : −y2 = x3 + Ax2 + x is the quadratic twist of EA : y2 = x3 + Ax2 + x and E′ is Fp-isomorphic
to E−A by (x, y) 7→ (−x, y). Besides, the connected components of these special curves are symmetric. That
is, (a ∗ E0)t=a−1 ∗ E0. Therefore, for any curve E ∈ E``p(O, π), we have, by the transitivity of the action,

(a ∗ E)t = a−1 ∗ Et.

Throughout this paper, we concentrate on supersingular curves defined over Fp. Denote the ideal class
group Cl(Endp(E)) by Cl and the set of elliptic curves E``p(O, π) by E. In CSIDH [CLM+18], the sampling
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method of the class group Cl they provided is heuristically assumed to be uniform. Here we assume the
sampling of elements in Cl is indistinguishable from the uniform distribution. A method closer to the
uniform sampling can instantiate this by expanding the n-tuple of the CSIDH sampling from a larger integer
space [−B, B ] to approximate the uniformity where a n-tuple (ei)i represents ideal class

∏
i(`i, π − 1)ei .

Beullens et al. proposed a more efficient instantiation in CSI-FiSh [BKV19] that requires a pre-processing
to complete a lattice of relations in the class group. Good references for the implementations of CSIDH are
[CLM+18, BdFLS20] as well as the constant-time implementations [MCR19, OAYT19].

Next, We define some computational assumptions we need in this paper.

Problem 1. (Computational CSIDH Problem) Given curves E, r ∗ E and s ∗ E where r, s ∈ Cl. Then find
E′ ∈ E such that E′ = rs ∗ E.

Problem 2. Given curves (E, s ∗ E,r ∗ E) where r, s ∈ Cl. Then find E′ ∈ E such that E′ = s−1r ∗ E.

The computational CSIDH problem is the main hardness assumption for [CLM+18]. Problem 2 is the
equivalent problem. To see this, given an oracle O for Problem 1, one can obtain E′ by taking E′ ←
O(s ∗ E, E, r ∗ E) such that E′ = rs−1 ∗ E. Conversely, given an oracle O for Problem 2, one can obtain E′

by taking E′ ← O(s ∗ E, E, r ∗ E) such that E′ = rs ∗ E.
The following two problems are the main underlying problems against semi-honest adversaries.

Problem 3. (Computational Square CSIDH Problem) Given curves E and s ∗E where s ∈ Cl. Then find
E′ ∈ E such that E′ = s2 ∗ E.

Problem 4. (Computational Inverse CSIDH Problem) Given curves E and s∗E where s ∈ Cl. Then find
E′ ∈ E such that E′ = s−1 ∗ E.

These problems are similar to the computational square Diffie-Hellman problem and the computational
inverse Diffie-Hellman problem, respectively. That is, given (g, gs), the challenge is to find gs2

or gs−1
. In

the Diffie-Hellman version, these two problems are equivalent to the computational Diffie-Hellman problem
(see Chapter 21 of [Gal12]). As Castryck et al. pointed out [CLM+18] both problems contain exceptional
cases when E0 takes part in the problems due to the symmetric structure. That is, (a ∗ E0)t = a−1 ∗ E0. The
issue can be circumvented if the public curve is generated by a trusted third party.

In the CSIDH setting, one can also show these two problems are equivalent. Given an oracle O of
Problem 3 and E, s∗E, one can obtain E′ which satisfies E′ = s−1 ∗E with a oracle query E′ ← O(s∗E, E).
Conversely, given an oracle O of Problem 4 and E, s ∗ E, one can obtain E′ = s2 ∗ E with a oracle query
E′ ← O(s ∗ E, E). Besides, one can also easily observe that they are not harder than the computational
CSIDH problem by simply taking r = s ∈ Cl.

Regarding the converse reduction, even though finding the order of a class group is classically non-
trivial, notice that class number can be found with a polynomial-time quantum algorithm [Sho99, Hal05].
We will show an efficient reduction to the computational CSIDH problem with the given class number.

Lemma 2.1. Given (E, a ∗ E). Then for n ∈ N one can compute an ∗ E with given access to the oracle O for
the square CSIDH problem with O(log (n)) queries.

Proof. At a glance, the double and add method seems not to work. But it indeed works based on the idea of
the Montgomery ladder [Mon87, BL17]. Firstly, generate a−1 ∗ E, a ∗ E, a2 ∗ E where a−1 ∗ E = O(a ∗ E, E)
and a2 ∗ E = O(E, a ∗ E). Next, given (ai ∗ E, ai+1 ∗ E), one can compute a2i ∗ E and a2i+2 ∗ E by O(E, aiE)
and O(E, ai+1E), resp. Besides, obtain a2i+1 ∗ E by O(a−1 ∗ E, ai ∗ E). Therefore, we can compute an ∗ E
with Montgomery ladder method within 2 log(n) oracle queries. �

Proposition 2.1. The square CSIDH problem is equivalent to the computational CSIDH problem if the order
h of the group Cl is odd and given.

Proof. Given the challenge (E, a ∗ E, b ∗ E) and access to the oracle O. First, generate a2 ∗ E, a−2 ∗ E by
O(E, a ∗ E),O(a2 ∗ E, E) iteratively. Then, generate a2b2 ∗ E by O(a−2 ∗ E, b ∗ E). By Lemma 2.1, get the
element by computing ( h+1

2 )-fold actions for a2b2 ∗ E with respect to E.
We have (a2b2)

h+1
2 ∗ E = ab ∗ E, since (a2b2)

h+1
2 = ab. Note that, by the basic group theory, the square

root of Cl of an odd order is unique through the isomorphism φ(x) = x2 whose kernel is trivial since x2 = y2

implies x = y. �

Remark. In the formal CSIDH setting (p = 3 mod 4), the class number is odd [CLM+18]. To have a full
reduction, more propositions of the ideal class group are exploited. A full version is provided in Appendix
A for the remaining case. Therefore, we have the following relations.

Computational CSIDH =quantum Computational Square CSIDH =classical Computational Inverse CSIDH.

4



Problem 5. (Reciprocal CSIDH Problem) Given a curve E. Firstly, the adversary chooses and commits to
X ∈ E, then receives the challenge s∗E where s ∈ Cl. Then the adversary must compute a pair (s∗X, s−1∗X)
with respect to the committed X.

Intuitively, the computational reciprocal CSIDH problem is a relaxed version of the square CSIDH
problem or the inverse CSIDH problem. In particular, if one can solve the inverse CSIDH problem, then
one can solve the reciprocal CSIDH problem by taking X = E with (s ∗ X, s−1 ∗ X) = (s ∗ E, s−1 ∗ E).
Conversely, if an attacker knows the isogeny between X and E, or Et, then this can be used to solve the
inverse CSIDH problem. That is, if X = r ∗ E, one can obtain s−1 ∗ E by computing r−1 ∗ (s−1 ∗ X) with the
given r. On the other hand, if X = r ∗ Et, one can obtain s−1 ∗ E by computing r ∗ (s ∗ X)t with the given r.
However, note that the attacker is not required to know the isogeny between X and E or Et in the problem.

The reciprocal CSIDH problem appears to be non-standard at first sight but, in fact, it’s equivalent to
the inverse CSIDH problem. Even though the problem concedes additional freedom X for the attacker, yet
notice that X is chosen prior to the challenge s ∗ E. The proposition leads to the result that uncertainty
and freedom of X can be self-reconciled, as shown in the following reduction. We call the proposition as
“self-reconciling”.

Proposition 2.2. The computational reciprocal CSIDH problem is equivalent to the computational inverse
CSIDH problem.

Proof. Given the challenge (E, s ∗ E) for the inverse CSIDH problem. Invoke the oracle for the reciprocal
CSIDH with E. After receiving X from the oracle, send the challenge s ∗ E to the oracle. Receive (s ∗
X, s−1 ∗ X) from the oracle, then rewind the oracle to the time when it output X, and then send s ∗ X as the
challenge with respect to committed X again. Receive (X0, X1) from the oracle. Output X1.

Claim X1 = s−1 ∗ E. Write X = b ∗ E by the transitivity of the action, so s ∗ X = (sb) ∗ E. Then, since
the second challenge is s ∗ X = (sb) ∗ E, we have X1 = (sb)−1 ∗ X = s−1 ∗ E. Precisely, if the adversary can
solve the problem based on E with committed X with probability ε, then the adversary can be used to solve
the inverse CSIDH problem based on E with probability ε2.

�

In the proof Proposition 2.2, the reduction extracts the first entry of the first solution and the second
entry of the second solution to obtain the solution for the inverse CSIDH problem. We can, therefore,
conclude the following corollary.

Corollary 2.1. In the experiment of Problem 5, after committing to the curve X, if the adversary can solve
(s ∗ X, s′−1 ∗ X) with respect to different given challenges s ∗ E and s′ ∗ E then the adversary can be used to
solve the computation inverse CSIDH problem.

We end the subsection with the following relation for the CSIDH setting in [CLM+18] (p = 3 mod 4).
(A full reduction is provided in Appendix A.)

Computational CSIDH =quantum Computational Inverse/Square/reciprocal CSIDH.

Remark. The above results all extend to the discrete logarithm setting. We leave the details to the reader.

2.2 Functionalities
In this subsection, we define the functionalities we need as well as the related security definitions.

A symmetric encryption scheme is a pair of algorithms (E,D) defined over message space M and
ciphertext space C with key space K .

Definition 2.1. (non-committing encryption (NCE)) A symmetric encryption scheme (E,D) is said to be non-
committing if there exists PPT algorithm B1, B2 such that for any PPT distinguisherD, message m ∈ M.∣∣∣Pr[D(c, k) = 1] − Pr[D(c′, k′) = 1]

∣∣∣ = negl(n),

where k←$K , c = Ek(m) and c′←$ B1(1n), k′←$ B2(c′,m)

Informally speaking, non-committing encryption allows a user to generate a dummy ciphertext indis-
tinguishable from the real one by B1 and later explain it with the assistance of B2. The idea was introduced
by Canetti et al. [CFGN96] with the one-time pad (OTP) as an instantiation. It was also used in some
oblivious transfer constructions [CO15, BDD+17]. The non-committing proposition here is used to extract
the input without rewinding in the simulation process. The proposition can be replaced with IND-CPA, but
the simulation may thereby need rewinding.
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FRO-Functionality of Random Oracle

The functionality is a function with the domain Cl and the codomain K . It keeps a
list L of pairs of the elements in Cl and K where the initial state is empty. It works as
follows:

1. Upon receiving a query C ∈ Cl, check whether (C, k′) for some k′ ∈ K . If so,
set k = k′; if not, generate k←$K and store the pair (C, k) in the list L.

2. Output k.

The functionality of a random oracle FRO internally contains an initially empty list. Upon receiving
the query from the domain, it will check whether it is a repetition. If so, return the value assigned before;
otherwise, it randomly assigns a value from the codomain, stores the pair, and returns the value. Formally
speaking, an input of a random oracle can be any binary string. On account of simplicity, we restrict
the domain to Cl. This can be easily and compatibly extend to {0, 1}∗, since the supersingularity can be
efficiently verified [CLM+18].

FTS C-Functionality of a trusted setup curve

The functionality is to output an element of E. It generates an ideal class t←$ Cl and
outputs the curve t ∗ E0.

The functionality of trusted setup curves FTRS serves as a setup for generating a curve for the protocol.
This setup hides the relation t between the public curve and the curve E0. In practice, this can be replaced
with a key exchange protocol [BF20]. That is, two parties do a key exchange first and obtain a curve that
the isogeny relation to E0 remains unknown.

Here we define the functionality of the oblivious transfer in simple and classic way. The two-party
functionality of the oblivious transfer is characterized by FOT = ( f1, f2) where f1 : {0, 1}∗ × {0, 1}∗ → {⊥}
and f2 : {0, 1} → {0, 1}∗. The functionality FOT : {0, 1}∗ × {0, 1}∗ × {0, 1} → {⊥} × {0, 1}∗ takes in a message
pair x = (M0,M1) of equal length from one party and a bit y = i ∈ {0, 1} from the other party, and returns
FOT (x, y) = ( f1(x, y), f2(x, y)) = (⊥,Mi) where ⊥ represents an empty string.

We briefly define the security terms of OT. We refer [HL10, Lin17] for more details. Intuitively, we say a
protocol realizes the functionality securely based on the simulation-based definition, if not only the protocol
realizes the function but also whatever the adversary can learn from the real execution of the protocol can
be indistinguishably generated by a simulator. Thus, we have to formalize the “view” of a corrupted party
and compare the output of the protocol with the ideal functionality. Let π be a protocol computing FOT .
The viewπi (x, y) represents the transcript that records whatever the ith party sees during an execution of the
protocol π taking input (x, y). Precisely, viewπi (x, y) is the tuple (input, ri,mi

1, ...,m
i
n) where input is the input

of the party, ri is its internal random tape, and mi
j is the jth received message. We also write outputπi (x, y)

as the output received by the ith party after the execution of the protocol π with the input (x, y), and write
outputπ(x, y) = (outputπ1(x, y), outputπ2(x, y)). In particular, if the protocol π completely realizes the function
of the functionality FOT , then outputπ(x, y) = FOT (x, y).

Definition 2.2. (security OT against semi-honest adversary) We say a protocol π securely (privately) com-
putes FOT in the presence of static semi-honest adversaries if there exists probabilistic polynomial-time
algorithms S 1, S 2 such that

outputπ(x, y) = FOT (x, y)

{S 1(x, f1(x, y))}x,y=c{viewπ1(x, y)}x,y

and
{S 2(y, f2(x, y))}x,y=c{viewπ2(x, y)}x,y.

The notion implies that whatever the semi-honest adversary can learn from running the protocol, it
could be generated by themselves without the execution. In other words, the semi-honest adversary can
learn nothing more than allowed. The idea of ideal execution is implicit here. Since anything apart from the
function of the functionality can be self-generated in an indistinguishable manner, the real protocol ideally
realizes the functionality as long as the two parties follow the protocol specification (see Section 7.2 of
[Ode09] for more details).
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However, the semi-honest adversary model is indeed weak. It is inevitable in the real world that mali-
cious users depart from the protocol specification with arbitrary strategies. A relaxation for the oblivious
transfer protocol or single-output functionality is one-sided simulation. One-sided simulation, which re-
quires the indistinguishability for the sender and the simulation for the receiver ensures privacy for both
parties even in the presence of malicious adversaries, is also a plausible choice for an efficient construction.
Here, we consider full-simulation in the presence of malicious adversaries.

Roughly speaking, the standard real/ideal paradigm demonstrates that for any kind of adversaries in the
real world, there exists a corresponding simulator in the ideal world. This provides an ultimate guarantee
for the construction that whatever the adversary can do in the real execution is inconsequential since they
are predictable and simulatable in the ideal world. Hence, the definition of the real execution and the ideal
execution should be clarified first.

Ideal Execution. The ideal execution captures a world where a trusted third party exists. The parties do
not communicate with each other but instead hand their inputs to the trusted party. Then, the trusted party
honestly returns the outcomes to each party, corresponding to the defined functionality. Nevertheless, the
ideal execution in the presence of malicious adversaries is slightly different from the previous consideration
of the semi-honest adversary. Due to losing the honest majority, fairness is not taken into consideration.
Moreover, rational rebelling behaviors of the malicious adversaries, including refusing to participate, abort-
ing the running sessions, or replacing the inputs, are taken into account. These strategies will be taken into
account in the definition of the modified ideal functionality.

We define the modified ideal execution before going to the security definition. For more detailed exposi-
tion, also see [HL10, Lin17]. The ideal execution in consideration of the malicious adversary of a two-party
functionality F = ( f1, f2) consists of six phases: initial inputs, inputs to the trusted party, early abortion,
output to the adversary, instruction of continuing or halting, outputs. Let Pi denote the corrupted party
controlled by S, P j be the honest party where {i, j} = {1, 2}, T be for the trusted third party.

First of all, in the phase of initial inputs, like the ordinary setup, P1 has the input x, P2 has the input y
and the adversary S has the auxiliary input z. Secondly, in the phase of inputs to the trusted party, honest
P j hands the initial input (x or y) to T . What corrupted Pi sends is controlled by S. The decision made
by S including the early abortion option aborti is based on the initial input of Pi and the auxiliary input
z. Let (x′, y′) be the inputs to F. Thirdly, early abortion is an intermediate phase, if aborti is sent within
the second phase by S. Then the trusted party returns aborti to both parties, and the execution terminates;
otherwise, the execution continues. Fourthly, in the phase of output to the adversary, T computes f1(x′, y′)
and f2(x′, y′) and returns fi(x′, y′) to the corrupted party Pi first. Next, in the fifth phase, the adversary
replies continue or aborti to T . This instructs T to continue or terminate by returning f j(x′, y′) or aborti

to P j, respectively. Last but not least, in the final phase outputs, the honest party outputs f j(x′, y′). The
adversary S in place of Pi outputs something based on the knowledge of the initial input (x or y), auxiliary
input z, and fi(x′, y′).

The output pair of the honest party and the adversary from the ideal execution of the functionality F
described above is denoted by IDEALF ,S(z),i(x, y). Note that even though in oblivious transfer the sender
receives no outputs from the trusted party, the adversary can still output something in place of the sender if
the sender is the corrupted party.

Real Execution. The real execution is the execution of a real protocol. Let the protocol π compute the
functionality F where the Pi is the corrupted party controlled by the adversary A. The initial inputs are x
for P1, y for P2 and the auxiliary input z for A. During the execution of π, A will usurp Pi, interact with
P j, and finally output something. The messages and output provided by the adversary may deviate from
the specification of π with a polynomial-time strategy. In contrast, the honest party P j interacts with Pi and
returns outputs as specified by the protocol. Let REALπ,A(z),i(x, y) denote the output pair by P j andA.

The aim of the standard real/ideal paradigm is to show that the ensemble produced by the simulator
through the ideal execution is indistinguishable from the ensemble produced by the adversary via the real
execution. This provides strong assurance of the security irrespective of the strategies the adversary adopts
since any real adversary can be simulated in the ideal world. This also permits modular constructions for
larger protocols by the composition theorems [Can00, Can01]. As a corollary, a relaxed but equivalent
version of the security model is the simulation in the hybrid model.

Hybrid Model. The hybrid model contains real messages communicated between participants and oracle
access to functionality G (ideal messages). The two-party protocol π with input (x, y) in a hybrid model
with the functionality G is called the G-hybrid model. In the presence of adversary A who controls the ith
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party with the auxiliary input z, we denote the output of all parties by HYBRIDGπ,A(z),i(x, y).
We remark that this model is a prerequisite for constructing UC-secure oblivious transfer construction

due to the impossibility results given in [CKL03]. In the G-hybrid model, the simulator in the simulation
process is able to exert control over the functionalityG in simulation. For example, in the common reference
string (CRS) hybrid model, two parties are given a shared string in the protocol execution, while in the
simulation process, the simulator can invoke the adversary with a trapdoor string to cheat [PVW08].

To match the security definition presented in [Can01], assume there exists an environment machine Z
serving as an interactive distinguisher between the real execution and the ideal execution. When interacting
with the machine, the environment Z can decide all inputs of the parties and the auxiliary input for the
adversary/simulator. After the execution, Z outputs a single bit to judge whether it interacts with a real
machine or an ideal machine. Also, the environment Z can interact with the adversary/simulator with any
queries at any time throughout the execution in order to distinguish. Here, we denote the ensemble consist-
ing of the output of the ideal execution of the functionality F involving the adversary S, the environment
Z by IDEALF ,S,Z and the ensemble consisting of the outputs in the hybrid model involving the adversary
A and the environmentZ by HYBRIDG

π,A,Z
.

Definition 2.3. (UC-realize) A protocol π is said to UC-realize an ideal functionality F in the presence of
malicious adversaries and static corruption in the hybrid model with functionality G if for any adversary
A there exists a simulator S such that for every interactive distinguisher environmentZ we have

IDEALF ,S,Z=cHYBRIDG
π,A,Z

.

3 Our Proposal
This section introduces Chou and Orlandi’s core of the OT scheme [CO15] to explain the idea of the tweaked
key exchange. Secondly, we explain how we derive our novel compact proposal. Thirdly, we compress the
three-round scheme to be round optimal (two-round) through the quadratic twist technique. Finally, based
on the round-optimal structure, we add “the proof of ability to decrypt” rounds to extract the input of the
receiver for completing the protocol.

3.1 Secure Schemes Against Passive Adversaries
Tweaked Key Exchange.

Figure 1 presents the Chou-Orlandi OT scheme [CO15], in a nutshell, which is based on the Diffie-
Hellman key exchange. Both the sender and the receiver share their own public key gs, gr with each other.
Both parties can secretly obtain a shared secret grs. In this OT protocol, the receiver uses this shared secret
to decrypt the targeted message from the third flow. On the other hand, the receiver uses the second flow to
obfuscate the secret bit (i).
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Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: N/A Output: Mi

s←$Z r←$Z∗p

A = gs

if i = 0 :B = gr

if i = 1 :B = Agr

B

k0 = H(Bs) ki = H(Ar)

k1 = H(B/A)s

c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

Mi = Dki (ci)

Figure 1: Chou and Orlandi’s OT scheme in a nutshell [CO15]

We can interpret all aforementioned isogeny-based oblivious transfer constructions from this point of
view. In [BOB18], the shared secret between the sender and the receiver is the j-invariant of the isomorphic
elliptic curves φB′φA(E) and φA′φB(E). The receiver hides his intention by masking his pe3

3 -torsion subgroup
public basis by a pair of special pe3

3 -torsion points U,V ∈ φB(E). Alice (the sender) thereby requires the
same pair of points U, V to reconcile the noise. Hence, a coin-flipping mechanism is deployed in the
protocol to guarantee that both the sender and the receiver can obtain the same points U,V . In order
to prevent information leaks, there are three additional requirements for the pair (U,V) to generate, see
[BOB18].

Other proposals [dSGOPS18, Vit19] also rely on the similar idea of using a fixed agreement key from
the key exchange to decrypt the specific ciphertext. In the first OT construction in [dSGOPS18], it requires
two public curves during the trusted setup, which serves as two agreement keys from the perspective of key
exchange. In [Vit19], one more secret exponent/pe2

2 -torsion subgroup generated by the sender is required to
obtain two agreement keys.

Our 3-round protocols.
We overcome this with a different strategy. The key idea is that both the sender and the receiver can

raise to power s, s−1 and r, r−1, respectively. Instead of relying on the single Diffie-Hellman key grs, two
key agreement schemes are used. Each of them relies on a different but equivalent hardness assumption.
The receiver will possess two relevant secrets from a single public key. The main idea of our scheme is
combining the equivalent key exchange schemes from Problem 1 and Problem 2 to obtain “partially dual
agreement keys.” Up to the receiver’s secret bit, one serves as a formal decryption key (agreement key), and
the other one will serve as the message for the sender.

In fact, without revealing, the receiver possesses two secrets gr and gsr. Only the receiver would distin-
guish them with the knowledge of r and gs. Instead of using the shared secret gsr to decrypt, the receiver
decrypts messages with one of them. Specifically, he decrypts c0 with gsr if the secret bit is 0, and decrypts
c1 with gr if the secret bit is 1. After receiving one of the two secrets, the sender encrypts one by doing
one Problem 1 computation and one Problem 2 computation. Intuitively, the receiver’s intention remains
obscure since only one public key is exposed. The other message of the sender keeps secure due to the
hard problem. To be more specific, the receiver has gr, grs as the sender has {grs, gs−1r} or {grs2

, gr}. This
corresponds to the inverse CSIDH problem or the square CSIDH problem, respectively. Based on this idea,
we derive the prototype of our OT protocol as follows.
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Public generator: g

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: N/A Output: Mi

s←$Z×p r←$Z×p

A = gs

if i = 0 :C = gr

if i = 1 :C = grs

C

k0 = H(C s) ki = H(grs1−i
)

k1 = H(C s−1
)

c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

Mi = Dki (ci)

Trusted Setup: E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: N/A Output: Mi

s←$ Cl r←$ Cl

A = s ∗ E

if i = 0 :C = r ∗ E

if i = 1 :C = rs ∗ E

C

k0 = H(s ∗C) ki = H(r ∗ (s1−i ∗ E))

k1 = H(s−1 ∗C)

c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

Mi = Dki (ci)

Figure 2: The prototypes of our 3-round OTs.

Note that a requirement for the isogeny-based protocol in Figure 2 is that the isogeny relation between
public curve E ∈ E and E0 should remain unknown. The reason is that if the receiver knows that t ∗E0 = E,
then the receiver can input i = 0 and compute the other key by t2r2∗(rs∗E)t = t2r2∗(trs∗E0)t = trs−1∗E0 =

rs−1 ∗ E.
As shown in Figure 2, the three-round protocol, however, is somewhat awkward. Notice that the secret

bit of the receiver is committed in the second message after receiving the first message from the sender.
It is imaginable that the receiver corrupted by the malicious adversary can send arbitrary C ∈ E (if we
put a supersingularity verification process). Thus, the hardness assumption is the weaker version of the
reciprocal CSIDH problem: given (E, s ∗ E) to find (X, s ∗ X, s−1 ∗ X) where X ∈ E. Consequently, this not
only undermines the underlying hardness of the protocol but also makes it impossible to prove equivalence
to the computational CSIDH problem.

In this protocol, we believe it is impossible to demonstrate the receiver’s ability to decrypt without us-
ing a zero-knowledge proof of isogenous relation in a secure way. Since the receiver’s message C and the
decryption key ki are bound together by a fixed isogeny s and the sender cannot let both keys exposed, no
simple processes can achieve the desired functionality. The reason is that the corrupted sender can always
replace keys with random strings to extract the receiver’s secret bit. As a result, we should compress the
protocol.

Our 2-Round Protocol.
Notice that in the protocol in Figure 2, the sender computes s ∗ C, s−1 ∗ C as encryption keys where

s−1 ∗ C = (s ∗ Ct)t. Also, notice the quadratic twist of r−1 ∗ (s ∗ E)t is exactly r ∗ (s ∗ E). Based on these
two main ideas, we utilize the quadratic twists to compress our 3-round protocol into a 2-round protocol as
shown in Figure 3.
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: ⊥ Output: Mi

s←$ Cl r←$ Cl

A = s ∗ E if i = 0: C = r ∗ E

if i = 1: C = (r ∗ E)t

C

k0 = H(s ∗C)

k1 = H(s−1 ∗C)

A, c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

if i = 0: ki = H(r ∗ A)

if i = 1: ki = H(r−1 ∗ At)

Mi = Dki (ci)

Figure 3: The core of our 2-round OT scheme. Note that no analogues exist in the Diffie-Hellman setting
due to the quadratic twist.

We can also do an easy check for the correctness in the semi-honest model that if i = 0, then s ∗ C =

s ∗ (r ∗ E) = r ∗ A; if i = 1, then s−1 ∗ C = s−1 ∗ (r ∗ E)t = r−1 ∗ (s−1 ∗ Et) = r−1 ∗ (s ∗ E)t = r−1 ∗ At.
As shown in Figure 3, the computations almost remain the same as the previous scheme. The number of
isogeny computations is the same: 3 for the sender and 2 for the receiver. The quadratic twisting is an
efficient operation via the field negation.

The use of the quadratic twists here structurally ameliorate the scheme in both efficiency and security.
The compressed rounds allow the curve A of the honest sender to be independent to the curve C of the
malicious receiver, which could be dependent in the previous 3-round scheme. This endowed freedom of
the sender is crucial in the reduction to the computational CSIDH problem (Proposition 2.2).

On the aspect of security, the intuition beneath the protocol is that the curious but honest sender cannot
discern the intention of the receiver, since the distributions of the first messages are the same with respect
to the input i. Also, the curious but honest receiver cannot read the unchosen message unless the receiver
can know the corresponding key, which is the hash value of the answer to the inverse CSIDH problem. The
formal simulation-based security notion, however, requires a more rigorous indistinguishable simulation
process for the distinguisher, see Section 4.

Remark. To make the protocol succinct, we slightly modify the protocol by having the sender compute
s ∗C, s ∗Ct, and the receiver compute r ∗ A as the key. One can verify that two versions are equivalent.

3.2 The Full Construction Against Malicious Adversaries
The full protocol is shown in Figure 4 below. The variant follows the remark above. To be secure against
malicious adversaries who may deviate from the specification, both parties will do a simple verification of
the received elements to avoid a variety of unpredictable outcomes. In the CSIDH setting, both parties will
check whether the curve is supersingular, which can be done efficiently, as shown in [CLM+18].

In order to extract the receiver’s input, the receiver must demonstrate the ability to decrypt. The rea-
son to do this is that the corrupted receiver who skips all hash queries makes the input intractable to the
simulator. Note that the mechanism should also ensure the security of the input of the receiver during the
demonstration. Here the sender will send another curve s′ ∗ E distinct from s ∗ E for transferring messages.
The sender encrypts the ideal s′ and a concatenated random string with key pair derived from s′ ∗ E. The
receiver decrypts one ciphertext with X, and the other ciphertext serves as a verification of the equality of
encrypted messages.

Protocol 1. (CSIDH-based OT) Let (E,D) be a symmetric encryption scheme with message spaceM and
ciphertext space C. Let H : E → K be modeled as a random oracle FRO that serves as the key derivation
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function from the group E to the key spaceK for the symmetric encryption scheme. We assume two parties
have a probabilistic polynomial-time algorithm that verifies whether a curve is in E.

• Trusted Setup: Let E = t ∗ E0 where t←$ Cl is unknown.

• Input:
The sender S takes two messages M0,M1 as the input where M0,M1 have the same length. The
receiver R takes a bit i ∈ {0, 1} as the input.

• Procedure:

1. S prepares ideals independently s0, s1←$ Cl, a random string str ∈ {0, 1}n and computes A0 =

s0 ∗ E, A1 = s1 ∗ E.

2. R generates an ideal r←$ Cl then computes C = r ∗ E. If i = 1, overwrite C = Ct. R sends C to
S.

3. S checks whether C ∈ E. If not, S aborts and outputs abort2. Otherwise, S computes four
keys k j,0 = H(s j ∗ C) and k j,1 = H(s j ∗ Ct) for j ∈ {0, 1}. Then, S computes four ciphertexts
c0, j ← Ek0, j (M j) and c1, j ← Ek1, j (s1 ‖ str) for j ∈ {0, 1}. S sends (A0, A1, c0,0, c0,1, c1,0, c1,1) to R.

4. R runs the proof of ability to decrypt first. R checks whether A1 ∈ E. If not, R aborts and
outputs abort1. Otherwise, R computes k′1,i = H(r ∗ A1) and (s′1 ‖ str′) ← Dk′1,i (c1,i). Verify
whether s′1 ∗ (r ∗ E) = r ∗ A1. If not, output abort1. Otherwise, continue.

5. R computes k′1,1−i = H(s′1 ∗ (r ∗ E)t). Verify whether Dk′1,1−i
(c1,i−i) = (s′1 ‖ str′). If not, output

abort1. Otherwise, continue.

6. R verifies A0 ∈ E. If not, R aborts and outputs abort1. Otherwise, compute the decryption key
k′0,1 = H(r ∗ A0) and output Mi ← Dk′0,i (c0,i). And send str′ to S.

7. S checks whether str = str′. If not, S aborts and outputs abort2. Otherwise, S accepts and
outputs ⊥.

On the aspect of simulation-based security, the intuition behind the protocol is that the malicious ad-
versaries controlling the sender cannot discern the intention of the receiver, since the distributions of the
first messages are the same with respect to the input i. Further, the simulator sets up a trapdoor through
controlling the functionality FTS C .

To simulate the malicious adversaries controlling the receiver, the simulator should extract the adver-
sary’s input by observing the hash queries. The additional “proof of ability to decrypt” mechanism forces
the adversary either to abort or to prove the ability to decrypt. This makes the input of the adversary trace-
able to the simulator. Furthermore, since the simulator can only obtain one real message from the trusted
third party (up to the extracted input i), the simulator must forge the other ciphertext by the non-committing
encryption scheme. The difference between the unchosen ciphertexts is not noticeable unless the environ-
ment machine possesses the corresponding decryption key with which combining the other decryption key
is exactly the solution for the reciprocal CSIDH problem. See Section 4 for more details.
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: ⊥ Output: Mi

s0, s1 ←$ Cl r←$ Cl

A0 = s0 ∗ E If i = 0: C = r ∗ E

? A1 = s1 ∗ E If i = 1: C = (r ∗ E)t

? str←$ {0, 1}n

C

If C < E: abort; o.w. continue.

? For j ∈ {0, 1}: k j,0 = H(s j ∗C)

? For j ∈ {0, 1}: k j,1 = H(s j ∗Ct)

For j ∈ {0, 1}: c0, j ← Ek0, j (M j)

? For j ∈ {0, 1}: c1, j ← Ek1, j (s1 ‖ str)

A0, A1,

c0,0, c0,1, c1,0, c1,1

? If A1 < E: abort; o.w. continue.

? k′1,i = H(r ∗ A1)

? (s′1 ‖ str′)← Dk′1,i
(c1,i)

? If s′1 ∗ (r ∗ E) , r ∗ A1: abort; o.w. continue.

? k′1,1−i = H(s′1 ∗ (r ∗ E)t)

? If Dk′1,1−i
, (s′1 ‖ str′): abort; o.w. continue.

If A0 < E: abort; o.w. continue.

k′0,i = H(r ∗ A0)

Output: Mi ← Dk′0,i
(c0,i)

str′

? If str , str′: abort; o.w. ouput: ⊥ .

Figure 4: Our CSIDH-based oblivious transfer protocol. For the sake of readability, we label the steps
related to the process of “proof of ability to decrypt” with ?.

Remark. The final round seems unnatural because the corrupted receiver can still get the message and skip
the final round. In fact, it fits well with the ideal functionality since the adversary can also abort the session
after receiving the value from the trusted party without outputting it.

4 Security Analysis
In this section, we consider three kinds of attackers and the underlying hard problems. We start with eaves-
droppers and semi-honest adversaries as a warm-up. Then we consider the static malicious adversaries.

4.1 Eavesdropper and semi-honest adversary
Eavesdropper. An eavesdropper receives all the communications of parties and does not intervene in the
execution. We will prove that the view of an eavesdropper of the execution of the 2-round protocol in Figure
3 can be simulated by a probabilistic polynomial time simulator without the inputs if the CSIDH problem
is hard (Problem 1).

Note that we may assume the eavesdropper knows the parties’ inputs while the simulator is given noth-
ing. The reason for the assumption is to match the definition of UC-security [Can01] where the environment
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machine decides the inputs.

Semi-Honest Adversary. A static semi-honest adversary who controls one party of the protocol from the
beginning will follow the protocol specification and try to learn more information from the transcript. We
will prove that the naive 2-round protocol in Figure 3 is secure against semi-honest adversaries if the com-
putational inverse CSIDH problem or the computational square CSIDH problem is infeasible.

We remark that it is not meaningless to show the security against different but hierarchical adversaries.
Since the adversaries are endowed with different abilities, the ability of the simulator varies accordingly.
See [HL10] for an example where a protocol is secure against malicious adversaries but is not secure against
semi-honest adversaries.

Theorem 4.1. The protocol in Figure 3, denoted by π, where H(.) is a random oracle and the encryption
scheme (E,D) is IND-CPA, securely computes FOT in the presence of static semi-honest adversaries if the
computational inverse CSIDH problem (Problem 4) is infeasible. Moreover, the view of an eavesdropper of
π can be indistinguishably simulated by a probabilistic polynomial time simulator without the inputs if the
CSIDH problem is hard (Problem 1).

Proof. (Correctness) Let i ∈ {0, 1} be the input of the receiver R. Say the sender S generates ideal s ∈ Cl
and R generates r ∈ Cl. If i = 0, then C = r ∗ E. S computes the encryption key ki as H(s ∗ C), and sends
A = s∗E. R computes k′i = H(r∗A) as the decryption key. We have r∗A = r∗(s∗E) = s∗(r∗E) = s∗C. On
the other hand, if i = 0, then C = (r ∗ E)t. S computes ki = H(s−1 ∗C) while R computes k′i = H(r−1 ∗ At).
We have s−1 ∗C = s−1 ∗ (r ∗ E)t = s−1 ∗ (r−1 ∗ Et) = r−1 ∗ (s−1 ∗ Et) = r−1 ∗ At. This shows the correctness
of the protocol.

(Corrupted sender S∗) The simulator S 1 takes as input (M0,M1,⊥) and is required to simulate the view
viewπ1(M0,M1, i) = (M0,M1, rp,C) where rp is a random tape. S 1 performs these steps:

1. Uniformly generate a random tape rp for S∗.

2. Generate r′←$ Cl.

3. Output (M0,M1, rp,C′ = r′ ∗ E).

On the other hand, S∗ generates s with its own uniformly generated random tape and receives only one
curve C from the honest receiver. The curve C is either r ∗ E or the quadratic twist (r ∗ E)t. Due to the
sampling which is assumed to be indistinguishable from the uniform sampling, any distinguisher D with a
given tuple (M0,M1, i) is not able to distinguish {S 1((M0,M1),⊥)}(M0,M1),i and {viewπ1(M0,M1, i)}M0,M1,i.

(Corrupted receiver R∗) The simulator S 2 takes as input (i,Mi) and is required to simulate the view
viewπ2(M0,M1, i) = (i, rp, A, c0, c1) where rp is a random tape. S 2 performs these steps:

1. Choose a uniform generated random tape rp for R∗.

2. Generate s′←$ Cl, and generate r′←$ Cl by the tape. Compute the curve C as r′ ∗ E or (r′ ∗ E)t for
the sender depending on i.

3. Compute the decryption keys k′i , k
′
1−i as an honest sender with s′ and C. Replace k′1−i with k′′←$K

4. Produce ciphertexts ci = Ek′i (Mi) and c1−i = Ek′′ (garbage) where garbage is a random generated
string from the message spaceM of the same length as Mi.

5. Finally, the simulator outputs (i, rp, s′ ∗ E) concatenated with (ci, c1−i) in the right order depending
on i.

We claim that if there exists a PPT distinguisher which distinguishes between the simulated view and the
real view with non-negligible advantage, then a reduction can be made to solve the computational problems
(Problem 3 or the equivalent Problem 4) or to refute the IND-CPA of the encryption scheme.

To see this, a hybrid argument is used. Let H0 be the view of the real adversary, and H2 be the view
generated by S 2 (i.e., {viewπ2(M0,M1, i)}M0,M1,i and {S 2((M0,M1),⊥)}(M0,M1),i, resp). Let the intermediateH1
be the view of running the same protocol asH0 except that the encryption key k1−i is replaced by a random
one k′←$K . The main difference between H1 and H2 is that the real message M1−i is replaced with a
garbage string.
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Hybrid 1. Claim H0 =c H1 if the computational inverse CSIDH problem (Problem 4) is hard. Let D
be the distinguisher for the experiment, then a solver for Problem 4 with the assistance ofD is constructed
as follows:

Input the challenge (E′, s′ ∗ E′) where s′ ∈ Cl is unknown.

1. Set E′ to be the public curve as in the protocol π and s′ ∗ E′ as the received curve for the receiver.
(The reduction is to Problem 3 if (E′, s′ ∗ E′) is reversed here.)

2. Randomly generate a random tape, generate r′ by the tape, and act as the honest receiver.

3. While running, also simulate the random oracle in a standard way by assigning a random value from
K whenever a query is made and record the queries during the execution.

4. Play the protocol π alone with self-generated input (M′0,M
′
1, i) as the specification except for the

encryption part of the sender. In the encryption part, replace the encryption key k1−i with k′←$K to
simulate the view ofH1.

5. Invoke the distinguisherD with the self-generated view ofH1.

6. If D judges as H0, restart with the pair (E′, s′ ∗ E′) replaced by (t ∗ E′, t′s′t ∗ E′) for two random
isogenies t, t′←$ Cl. Otherwise, continue.

7. Randomly output a curve in the past queries of the simulated random oracle with a slight modification
(see below). If it had been refreshed in Step 6 before, pull back with the isogeny t′t−1 first.

Note that the difference betweenH0 andH1 is the key for Mi−1, and both keys are generated uniformly
from the key space K . That is, a distinguisher for H0 and H1 with non-negligible advantage should know
the corresponding curve for k1−i. Precisely, let E denote the event that the targeted curve (specifically,
s′−1 ∗ E) is in the list, then we have

| Pr[D(H0) = 1] − Pr[D(H1) = 1] |
= | Pr[D(H0) = 1 | E] × Pr[E] + Pr[D(H0) = 1 | ¬E] × Pr[¬E]
− Pr[D(H1) = 1 | E] × Pr[E] − Pr[D(H1) = 1 | ¬E] × Pr[¬E] |
≤Pr[E] + |Pr[D(H0) = 1 | ¬E] − Pr[D(H1) = 1 | ¬E]| ,

where |Pr[D(H0) = 1 | ¬E] − Pr[D(H1) = 1 | ¬E]| is negligible. As a result, if the distinguisher succeeds
with non-negligible advantage, then the targeted curve is in the list with non-negligible probability.

After D succeeds, randomly output a curve from the list with the abovementioned processing as the
solution. Let the reduction requires qH queries of the random oracle to achieve f distinguishing advantage,
then the reduction can solve one of Problem 3 or Problem 4 with probability greater than ( f − negl)/qH .

Hybrid 2. On the other hand, claim H1 =c H2 for any PPT distinguisher if the encryption scheme
(E,D) is IND-CPA. The only difference is the encryption Ek′ (M1−i) inH1 and the encryption Ek′ (garbage)
inH2 where k′ is uniformly sampled fromK . This shall hold due to the IND-CPA security of the encryption
scheme. A reduction can be constructed through the following steps:

1. Run the protocol π with self-generated (M0,M1, i) except keeping the content of the variable c1−i

void.

2. Submit M1−i and garbage to the IND-CPA challenger with an unknown encryption key.

3. Receive and assign the challenge ciphertext to c1−i.

4. Invoke the distinguisher and input the generated view. Note that the distinguisher also knows (M0,M1, i)
from the ensemble index.

5. Output the answer of the distinguisher.

The choice of {M1−i, garbage} made by the challenger in step 3 represents H1 and H2, respectively.
That is, if there is a PPT distinguisher D for H1,H2, then the reduction can win the IND-CPA experiment
with the same advantage.
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(Honest sender and honest receiver) Assume that there is an eavesdropper who can see all communication
between the two parties. We claim that there exists a probabilistic polynomial time simulator that can
generate a tuple which is indistinguishable from the view of the eavesdropper.

Let x = (M0,M1) and y = i ∈ {0, 1} be the inputs for the sender and the receiver, respectively. Write
the view of the eavesdropper as the tuple (C, s ∗ E, c0 = EH(s∗C)(M0), c1 = EH(s−1∗C)(M1)) where r, s←$ Cl
C = r ∗ E or (r ∗ E)t as in the protocol specification. The simulator generates r′, s′←$ Cl and m0,m1←$M,
and outputs the simulated view (C′, s′ ∗ E, c0 = EH(s′∗C)(m0), c1 = EH(s′−1∗C)(m1)) where C′ = r′ ∗ E.

Since we assume the sampling of Cl is indistinguishable from the uniform sampling, the distribution
of the first message (i.e., C) is independent of the input of the sender i. The second messages of the
eavesdropper and the simulator follow the same distribution. The remaining differences are encrypted
messages since the eavesdropper does not know the isogeny class r, s in the real execution.

A hybrid argument is applied to show the indistinguishability again. The hybrid argument here is sim-
ilar to the previous one. Let H0 be the view of the eavesdropper, and H2 be the tuple generated by the
simulator. Insert with an intermediate view H1 which is the same as H0 except that both encryption keys
are replaced with k′0, k

′
1←$K .

Claim that H0 = H1 if the computational CSIDH problem (Problem 1) and its variant (Problem 2)
are hard. Let D be the distinguisher between H0 and H1. Given the challenge (E′, a ∗ E′, b ∗ E′) of the
problems, a concrete reduction can be made as follows:

1. Generate M′0,M
′
1←$M.

2. Generate t0, t1, t2←$ Cl for randomization.

3. Setup the public curve for the protocol to be t0 ∗ E′.

4. While running, also simulate the random oracle in a standard way by assigning a random value from
K whenever a query is made and record the queries during the execution.

5. Give the input ((t1t0) ∗ E′,(t2t0) ∗ E′,Ek0 (M′0),Ek1 (M′1)) to the distinguisher where k′0, k
′
1←$K .

6. If the distinguisher outputs 1, then randomly pick a curve W in the hash list, and output (t0t1t2)−1 ∗W.

The probabilistic analysis is the same as the previous one. Since the encryption keys inH0 andH1 are
all uniformly generated from the key space, if a distinguisher can notice the difference, then the distinguisher
should know the corresponding curves for queries.

Precisely, let E denote the event that the targeted curve is in the list, then we have

| Pr[D(H0) = 1] − Pr[D(H1) = 1] |≤ Pr[E] + |Pr[D(H0) = 1 | ¬E] − Pr[D(H1) = 1 | ¬E]| ,

where |Pr[D(H0) = 1 | ¬E] − Pr[D(H1) = 1 | ¬E]| is negligible. As a result, if the distinguisher succeeds
with non-negligible advantage, then the targeted curve is in the list with non-negligible probability.

We also haveH1 = H2 if the encryption scheme is IND-CPA. We omit the proof here since the proof is
similar to the previous one in the case of the corrupted receiver.

Hence, we have {S 2(i, f2((M0,M1), i))}M0,M1,i=c{viewπ2(M0,M1), i)} and therefore the protocol π securely
computes the functionality FOT in the presence of a semi-honest adversary.

�

4.2 Malicious Adversary
Malicious Adversary. Next, we will prove the full construction in Figure 4 UC-realize the functionality
FOT in the presence of malicious adversaries. We consider static corruptions and malicious adversaries in
charge of specific parties who are chosen before the execution and will deviate the protocol specification.

Theorem 4.2. The protocol 1 of Section 3.2, denoted by π, where the encryption scheme (E,D) is non-
committing, securely UC-realizes the functionality FOT in the hybrid model with the functionality FRO and
a trusted setup FTS C in the presence of malicious adversaries and static corruption if the computational
reciprocal CSIDH problem is infeasible.
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Proof. (Honest Sender and Honest Receiver) We start with the honest sender and the honest receiver. The
goal is to show that the execution of π is indistinguishable from the ideal functionality as the parties follow
the specification. A similar proof as in Theorem 4.1 is sufficient since the view-based proof is equivalent
to the simulation-based proof in the semi-honest (or honest) model, as stated in Section 2. The additional
round does not reduce the security since the ideals s0, s1 are independently generated, the sender can self-
generate a random string and the receiver can self-generate s1 and a random string to recreate the view.

(Corrupted Sender and Corrupted Receiver) When two parties are corrupted, the simulator can invoke
A with the input (x = (M0,M1), y = i, z) given by the environment Z, then the simulator outputs whatever
the adversary outputs for both parties to complete the simulation.

(Honest Sender and Corrupted Receiver) Let A be the malicious adversary controlling the receiver. In
order to emulate the adversary, it’s necessary that the simulator extracts the input of the adversary and then
sends it to the trusted party in the ideal execution. Say the environmentZ generates input (x = (M0,M1), y =

i, z) and gives (y, z) to the simulator. The simulator S 2 passes any query fromZ toA and returns the output
of A. The simulator S 2 with auxiliary input (y, z) proceeds the protocol execution with the adversary as
follows:

1. Firstly, the simulator S 2 emulates a random oracle FRO by keeping a list L of domain E × K and
further records every past query. It initializes the random oracle with an empty list L. If the simulator
receives a query of E′ ∈ E, the simulator checks whether (E′, k′) ∈ L for some k′ ∈ K . If not,
generate k′←$K and add the entry (E′, k′) to the list L. Finally, S 2 returns k′ to emulate the random
oracle.

2. Invoke the adversaryAwith the input (y, z). Generate the public curve E = t∗E0 by sampling t←$ Cl
to simulate FTS C . Receive a curve X from the adversary.

3. Check whether X ∈ E, if not, end the session by outputting abort2 to the functionality. Otherwise,
continue.

4. Activate the algorithm B1 of the non-committing encryption scheme. Generate c0,0, c0,1 with B1,
s0, s1←$ Cl and str←$ {0, 1}n. Compute A0, A1 and c1,0, c1,1 as the honest sender. Send (A0, A1, c0,0,
c0,1, c1,0, c1,1) to the receiver.

5. Process the external hash queries made as follows. Regarding the hash queries of curves E′ ∈ E,
check whether E′ = s j ∗ X or s j ∗ Xt for j ∈ {0, 1}. If not, process it in a standard way. Otherwise,
check further whether both s0 ∗ X and s0 ∗ Xt (i.e., the other decryption key) have been queried. If so,
abort the session by outputting abort2. Otherwise, if E′ is listed in the past queries (E′, k′) ∈ L, then
return k′. Otherwise, send the ideal message i to FOT where i = 0 for the case E′ = s j ∗ X or i = 1 for
the case E′ = s j ∗ Xt. After obtaining Mi from FOT , generate k′ ← B2(c0,i,Mi) and store (s0 ∗ X, k′)
in the list. For the remaining cases ( j = 1), process the hash query in a standard way.

6. After receiving str′ from the adversary as the third flow of the protocol π, verify str = str′. If not,
end the session by outputting abort2. Otherwise, continue.

7. After the outputs of the adversary, if s j ∗ X or s j ∗ Xt for j ∈ {0, 1} are not in the pair of L as the first
entry, then end up the session with outputting abort2. Otherwise, the simulator output whatever the
adversary outputs.

We claim {HYBRIDFRO,FTS C
π,A(z),2 (x, y)}x,y,z =c {IDEALFOT ,S 2(z),2(x, y)}x,y,z. We analyze the indistinguisha-

bility by comparing to the real execution. In the comparison, the abort in Step 5 implies the solution to
the reciprocal CSIDH problem (E, s ∗ E) lying in the list L, which contradicts the assumption. Another
abort is made in Step 7 after the pass in Step 6. The abort implies the adversary decrypts the ciphertext
c1, j without the knowledge of the key. If this occurs with non-negligible probability, then it contradicts the
non-committing assumption since the real ciphertext, the only thing contains information, can be decrypted
without the key, while the dummy ciphertext cannot be (because it can be generated before the plaintext by
B1).

Other differences caused by the simulator are the ciphertexts for the receiver. Among the pair (c0,0, c0,1),
thanks to the non-committing encryption scheme, c0,i is indistinguishable from the one in the real execution.
The only suspicious part is c0,i−1, which is a dummy ciphertext generated by the algorithm B1 of encryption
scheme. The counterpart in the real execution is Ek1−i (M1−i) where k1−i is either H(s ∗ X) or H(s−1 ∗ X).
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Similar to the previous proof, the distinguisher (the environment machine) cannot succeed with non-
negligible advantage only with the knowledge of k1−i. Precisely, let E denote the event that the targeted
curves s ∗ X, s ∗ Xt are both queried where (s ∗ Xt)t = s−1 ∗ X. We have

|Pr[Z(H0) = 1] − Pr[Z(H1) = 1]| ≤ Pr[E] + |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| .

Claim that the term |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| is negligible if the encryption is non-
committing. Given the non-committing challenge, denoted by (c, k). A concrete reduction can be made as
follows:

1. Randomly generate j ∈ {0, 1}.

2. Run as the simulator with the environment machine except that assign value c to the variable c0, j in
Step 4.

3. If the simulation process extracts i, the input of the receiver, is not j, then abort and restart the session.

4. If the environment machine judges the machine as the ideal machine, then output 1. Otherwise,
output 0.

If the environment can win with non-negligible advantage p(n) without the knowledge of the key, then
the reduction can win the non-committing challenge with non-negligible advantage p(n)/2 where the loss
is caused by the guessing in Step 2.

Since |Pr[D(H0) = 1 | ¬E] − Pr[D(H1) = 1 | ¬E]| is negligible, we have |Pr[D(H0) = 1] − Pr[D(H1) = 1]| ≤
Pr[E] + negl(n). If the distinguisher can succeed with non-negligible advantage, then the solution of the re-
ciprocal CSIDH problem (Problem 5) is in the list of the hash queries with non-negligible probability. Let
the challenge of the reciprocal CSIDH problem start with E. A concrete reduction can be made as follows:

1. Run as the simulator with the environment machine, commit to the curve X obtained in Step 3 in the
reciprocal CSIDH experiment and receive s ∗ E.

2. Run as the simulator with the environment machine except that in Step 4 assign s ∗ E to the variable
A0.

3. Run as the simulator with the environment machine except that in Step 5, randomly pick a curve X1
of FRO query, and assign it with B2 to the decryption key ki since s is unknown. If the input bit i has
not been extract, then randomly guess i ∈ {0, 1}.

4. If the environment machine judges the machine as the ideal machine, then randomly pick a curve X2
in the hash query list as the first entry, and output (X1, X2). Otherwise, restart the challenge.

If the environment can win with non-negligible advantage p(n) with q hash queries, then the reduction
can win the non-committing challenge with non-negligible advantage p(n)/(2q2) where the loss is caused
by the guessing in Step 3 and 4. To sum up, the simulator indistinguishably simulates the adversary if the
encryption scheme is non-committing, and the reciprocal CSIDH problem is infeasible.

We remark that the simulator correctly extracts the input of the adversary in Step 5. According to
Corollary 2.1, if the simulator extracts the wrong input, then the adversary can also be used to solve the
inverse CSIDH problem.

(Corrupted Sender and Honest Receiver) LetA be a malicious adversary controlling the sender. In order
to emulate the adversary, it’s necessary for the simulator to extract the input of the adversary and to send it
to FOT in the ideal execution. The input here is exactly the message an honest receiver will read. Say the
environment Z generates input (x = (M0,M1), y = i, z) and gives (x, z) to the simulator. The simulator S 1
with input (x, z) proceeds as follows:

1. Firstly, the simulator S 2 emulates a random oracleFRO by keeping a list L of domain E×K and further
secretly records every past query. It initializes the random oracle with an empty list L. Whenever it
receives a query of E′ ∈ E, the simulator checks whether (E′, k′) ∈ L for some k′ ∈ K . If not,
it generates k′←$K and adds the entry (E′, k′) to the list L. Finally, S 2 returns k′ to emulate the
random oracle.

2. To simulate FTS C , generate t←$ Cl and setup the public curve E = t ∗ E0 for the protocol π with the
trapdoor t. Invoke the adversaryA with input (x, z) and activate the session with the public curve E.
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3. Generate r←$ Cl and compute C = r ∗ E. Send C to the adversary and act as the procedure of an
honest receiver with the input i = 0 throughout the execution. (Note that the simulator does not know
the input of the receiver here.)

4. If the adversary aborts, then send abort1 to FOT and finish the session. Otherwise, assume the
execution is not aborted. Say receive (A0, A1, c0,0, c0,1, c1,0, c1,1) from the adversary. Compute k0 =

H(r ∗ A0), k1 = H((tr ∗ (t−1 ∗ A0)t)t), and m j = Dk j (c0, j) for j ∈ {0, 1}.

5. Send {m0,m1} to the trusted third party (FOT ), output whatever the adversary outputs to complete the
simulation.

Claim {HYBRIDFRO,FTS C
π,A(z),1 (x, y)}x,y,z =c {IDEALFOT ,S(z),1(x, y)}x,y,z. In contrast to the real execution, there

are two differences here. Firstly, the simulator possesses the trapdoor of the public curve. The process is
identical to FTS C , and the simulator acts as an honest receiver throughout the process. Hence, the difference
is unnoticeable to the adversary. Meanwhile, since the distribution of C in the protocol in the case of i = 0
is identical to the process of i = 1, it suffices to show the correctness of the extraction.

For the honest receiver who sends C to the sender with the input i = 1, then the private ideal is equivalent
to r−1t−2 since (r−1t−2 ∗ E)t = (r−1t−1 ∗ E0)t = (r−1 ∗ Et)t = (r ∗ E) = C. Hence, the receiver in the real
execution decrypts c0,1 with the curve r−1t−2 ∗ A0. As our prediction of the key k1 = H((tr ∗ (t−1 ∗ A0)t)t) =

H((tr)−1t−1 ∗ A0) = H(r−1t−2 ∗ A0), the receiver will therefore get m1 = Dk1 (c0,1). Hence, the simulator
perfectly simulates in the ideal execution. Finally, We have IDEALFOT ,S,Z=cHYBRIDFRO,FTS C

π,A,Z
. �

Remark. In the formal description of [Can01], the environment machine and the adversary (simulator)
starts with z, and the inputs of the parties are given through further instruction messages. Regarding read-
ability and simplicity, we combine them into a single statement here without undermining the effectiveness
of the proof.

5 Comparison
Table 1 gives a comparison between our oblivious transfer protocols with others [BOB18, dSGOPS18,
Vit19] in terms of efficiency, including the number of curves in domain parameters, the number of curves
in public keys for the sender and the receiver, the number of isogeny computations for the sender and the
receiver, and the number of rounds, respectively. Among the isogeny-based OTs, our 2-round OT proposal
is the most efficient on each aspect against semi-honest adversaries. It only takes additional one round and
two isogeny computations for both parties to achieve UC-secure against static malicious adversaries.

Proposal DP PKS PKR # IsoS # IsoR # rounds Others
Barreto et al. [BOB18] 1 1 1 3 2 3 SIDH-based
Guilhem et al. I [dSGOPS18] 2 1 1 3 2 2
Guilhem et al. II [dSGOPS18] 1 3 1 5 2 3
Vitse [Vit19] 1 2 1 4 2 3 Insecure in CSIDH setting
This paper (Figure 3) 1 1 1 3 2 2 CSIDH-based
This paper (Figure 4) 1 1 1 5 4 3 CSIDH-based

Table 1: Comparison between isogeny-based OTs on efficiency. We separate the costs of 2-round core in
Figure 3 and the full construction in Figure 4.

In [BOB18], the property of SIDH is used. The receiver randomly subtracts two selected points U,V ∈
EB to the points (φB(PA), φB(QA)) to produce public points (ĜA, ĤA) with respect to the secret bit i. The
sender adds the same points jU, jV to the received points for j ∈ {0, 1} to produce two decryption keys.
The additional mechanism allows the receiver and the sender to generated the same points U,V . As stated
in their work, randomly generated U,V ∈ EB may reveal the secret bit to the honest-but-curious sender by
checking the equality of Weil pairings e(PA,QA)leA

A , e(ĜA, ĤA), and (ĜA + λU, ĤA + λV) for λ ∈ Z. On the
other hand, it is also possible that the honest-but-curious receiver gets the isomorphic curves. In order to
prevent these, the U,V are generated through a delicate process.

In [dSGOPS18], they proposed a secure UC-realize framework of oblivious transfer protocols against
semi-honest adversaries. The DH, SIDH, CSIDH settings can fit into the framework. The first construction
is a two-message oblivious transfer. It requires one more curve in the trusted setup phase.
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In [Vit19], they proposed a construction based on the idea of exponentiation-only Diffie-Hellman. The
construction can fit in the DH, SIDH, CISDH settings. But, as stated in their work, it will be totally insecure
in the CSIDH setting against a malicious receiver. Specifically, their two-inverse problem is given curves
(E, a ∗ E, b ∗ E) to find some curve tuple (X, a−1 ∗ X, b−1 ∗ X) where X is isogenous to E. This can be done
in CSIDH setting by taking quadratic twist curves of (E, a ∗ E, b ∗ E).

Adversary Model Security Definition Model
Barreto et al. [BOB18] Semi-honest* Simulatable* ROM+CRS
Guilhem et al. I [dSGOPS18] Semi-honest UC-realize ROM+TSC
Vitse [Vit19] Malicious Semantic Plain
This paper (Figure 3) Semi-honest UC-realize ROM+TSC
This paper (Figure 4) Malicious UC-realize ROM+TSC

Table 2: Comparison between others’ isogeny OTs and our construction in Figure 4. The models includes
the random oracle model (ROM), the common reference string model (CRS) and trusted setup curves (TSC).
In [BOB18], a claim that the protocol ensures privacy in the malicious model is incorrect. The adapted
definition is definition 2.6.1 of [HL10] that, as the statement, guarantees the privacy in the presence of
malicious adversaries for a 2-rounds oblivious transfer protocol while the scheme in [BOB18] has 3 rounds.
For trusted setup curves (TSC), we believe it can be replaced by doing a key exchange first as [BF20] to
achieve the same effect.

On the issue of security, a comparison is shown in Table 2. In [BOB18], the claim is incorrect. Except
for the misuse of the definition, only limited malicious strategies are taken into account in the analysis. For
instance, there could be potential malicious strategies for the receiver since the sender yields special points
U,V from the points given by the receiver. Besides, the restrictions of U,V only prevent the information
leakage for the passive case. Nevertheless, the proof at least demonstrates the simulatablility against semi-
honest adversaries.

In [dSGOPS18], the protocols are universally composable secure in the semi-honest model. In both con-
structions, they also require trusted setup curves, as shown in Table 1. In [Vit19], they proposed a security
definition called the semantic security of the oblivious transfer, which guarantees the indistinguishability
for the sender within the distinct executions. However, the scheme is under a weak decisional problem
which, in the SIDH setting, is easier than the decisional SIDH problem. Also, the security notion ensures
nothing as coordinated in a larger construction.

6 Conclusion
In this paper, we present the first UC-secure isogeny-based oblivious transfer protocol in the presence of
static corruptions and malicious adversaries. The result not only shows the existence of the construction but
also presents a practical proposal. Despite the lack of freedom that DH-based oblivious transfer has over a
field Fp, the construction remains simple and compact, and the number of isogeny computations is constant.
Moreover, the scheme shares the same hardness as the CSIDH key agreement scheme.

To achieve this outcome, we develop six techniques in this work. In the beginning, we mix the key-
exchange-type problem and an equivalent variant to reduce the communication bandwidth. By utilizing the
quadratic twists, we not only compress the number of rounds of the protocol but also fortify the hardness
of the underlying assumption. Also, by combining the self-reconciling proposition and proof of ability to
decrypt at the cost of one extra round, we are able to extract the input of the receiver to achieve one-side
simulation. Furthermore, for the purpose of extracting the input of the sender, we setup trapdoors for the
protocol via a new use of the quadratic twists to get a fully-simulatable construction. Finally, we develop a
new computational assumption and prove it is equivalent to the standard CSIDH assumption with a quantum
reduction.

We remark that these techniques are not exclusive to isogeny-based cryptography except for the quadratic
twists. We envisage that these techniques can serve as potential cryptographic tools in future work.
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A Equivalence of The Square/Inverse/Reciprocal CSIDH Problem
and The Computational CSIDH Problem

We will show the computational CSIDH problem is equivalent to the square variant with a quantum re-
duction. The order of the ideal class group can be computed with a quantum algorithm [Sho99, Hal05].
In Proposition 2.1 above, we have shown equivalence for the case that the order of the class group of the
endomorphism ring is odd which is the case when p = 3 mod 4. The remaining case is that the class
number is even which happens when p = 1 mod 4. In this case, the discriminant is −4p.

Note that the direct isogeny computation of ae acting on E where a, E are given and e = Θ(log(#Cl))
is avoided in the following proof, since these types of isogeny computations may not be polynomial-time
[CLM+18, BFJ16], which would make the reduction non-polynomial-time. Let (x)−1

y denote the inverse of
x mod y.

Proposition A.1. The square CSIDH problem is equivalent to the computational CSIDH problem if the
order h of the group Cl is given.

Proof. Let p = 1 mod 4 so that the order h of the class group is even. Since the discriminant of the
class group is −4p, by Proposition 3.11 of [Cox11], the 2-Sylow subgroup of the class group is of rank 1.
Hence, the class group is isomorphic to Z2t × Zh′ for some t, h′ ∈ N with h′ being odd. Given the challenge
(E, a ∗ E, b ∗ E) and access to the oracle O, the goal is to find the curve ab ∗ E.

Define the mapping χ : Cl −→ Cl×Cl where χ2t (a) = ah
′(h′)−1

2t , χh′ (a) = a2
t(2t)−1

h′ and χ(a) = (χ2t (a), χh′ (a)).
The image of χ is isomorphic to Z2t × Zh′ . The mapping χ satisfies χ2t (x)χh′ (x) = x. Given a ∗ E, the pair
(χ2t (a) ∗ E, χh′ (a) ∗ E) can be efficiently computed by Lemma 2.1 by using the oracle.

Run the following polynomial-time algorithm.

1. Compute a′′ ∗ E and b′′ ∗ E where a′′ = χh′ (a) and b′′ = χh′ (b) by Lemma 2.1.

2. From Proposition 2.1, given a′′ ∗ E, b′′ ∗ E, one can get a′′b′′ ∗ E since a′′, b′′ are of odd order.

3. Compute (a′′b′′)
h′+1

2 ∗ E using Lemma 2.1. Denote q = (a′′b′′)
h′+1

2 ∈ Cl. Note that q2 = a′′b′′.

4. Generate a curve g ∗ E where g ∈ Cl is of order 2t. (See details below.)

5. Compute a′ ∗ E and b′ ∗ E where a′ = χ2t (a) and b′ = χ2t (b). Write a′ = g
∑

a′i 2
i
and b′ = g

∑
b′i 2

i
where

a′i , b
′
i ∈ {0, 1}.

6. Obtain a′0 by computing a′2
t′−1
∗ E by Lemma 2.1. If it is E, then a′0 = 0. Otherwise, a′0 = 1.

7. Iteratively, for j < t − 1, assume a′0, ..., a
′
j−1 are known, then obtain a′j by computing a′2

t− j−1
∗ E. If,

with Lemma 2.1, the curve equals
g
∑ j−1

0 2i+t− j−1a′i ∗ E,

then a′j = 0; otherwise, a′j = 1.

8. Repeat Step 6 and Step 7 for b′ to obtain b′i ∈ {0, 1}.

9. Compute g−
∑

(a′i +b′i )2
i
∗ E using Lemma 2.1. (Note that χ2t ((ab)−1) ∗ E = g−

∑
(a′i +b′i )2

i
∗ E.)

10. Compute O(g−
∑

(a′i +b′i )2
i
∗ E, q ∗ E) to obtain ab ∗ E.

In Step 4, the curve can be generated by sampling a random element gpre ∈ Cl and raising gpre to the
power of 2t−1h′. If it’s the identity element in Cl, then restart. Otherwise, set g ∗ E to be gh′

pre ∗ E by Lemma
2.1. If the sampling is random enough, then the success rate is 1/2 for each trial.

The relation between a′ ∗ E and g ∗ E is computed in Step 6. Since g is of order 2t, then a′2
t−1
∗ E =

ga′02t−1
∗ E. Hence, a′0 is 0 if and only if the outcome is E.

In Step 7, the idea of Step 6 is taken one step further to recover a′j for j = 1, ..., t − 1 iteratively. This
idea is known as the Pohlig-Hellman attack [PH78]. If a′0, ..., a

′
j−1 are known, raising a′ ∗ E to the power of

t − j − 1 eliminates a j+1, ..., at−1 in the exponentiation of a′ with the base g, since the order of g is 2t. We
can thereby find out a′j through comparing. To be more specific, due to

a′2
t− j−1
∗ E = g

∑ j
0 a′i 2

i+t− j−1
∗ E,
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we have a′j = 0 if and only if

g
∑ j−1

0 2i+t− j−1a′i ∗ E = g
∑ j

0 2i+t− j−1a′i ∗ E.

The same reasoning holds for b. Hence, we can compute g−
∑

(a′i +b′i )2
i
∗ E, which is χ2t ((ab)−1) ∗ E.

In step 10, we invoke the oracle of the square CSIDH problem and get

O
(
g−

∑
(a′i +b′i )2

i
∗ E, q ∗ E

)
=

(
g
∑

(a′i +b′i )2
i
q2

)
∗ E

=
(
χ2t (ab)(a′′b′′)h′+1

)
∗ E

=
(
χ2t (ab)(a′′b′′)

)
∗ E

= (χ2t (ab)χh′ (ab)) ∗ E

= ab ∗ E.

�

With the reduction in the context (Proposition 2.2), we have shown equivalence between square, inverse,
reciprocal variants. Therefore, in a generic CSIDH setting, we have the following relation

Computational CSIDH =quantum Computational Inverse/Square/reciprocal CSIDH.
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