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Abstract

Oblivious transfer (OT) is an essential cryptographic tool that can serve as a building block for almost
all secure multiparty functionalities. The strongest security notion against malicious adversaries is uni-
versal composability (UC-secure). An important goal is to have post-quantum OT protocols. One area of
interest for post-quantum cryptography is isogeny-based crypto. Isogeny-based cryptography has some
similarities to Diffie-Hellman, but lacks some algebraic properties that are needed for discrete-log-based
OT protocols. Hence it is not always possible to directly adapt existing protocols to the isogeny setting.

We propose the first practical isogeny-based UC-secure oblivious transfer protocol in the presence
of malicious adversaries. Our scheme uses the CSIDH framework and does not have an analogue in
the Diffie-Hellman setting. The scheme consists of a constant number of isogeny computations. The
underlying computational assumption is a problem that we call the computational reciprocal CSIDH
problem, and that we prove polynomial-time equivalent to the computational CSIDH problem.

1 Introduction
Oblivious transfer (OT) was first introduced by Rabin [Rab81] in 1981 to establish an exchange of secrets
protocol based on the factoring problem. Say the sender has two messages, oblivious transfer allows the
receiver to know one of them and keeps the sender oblivious to which message has been received. The
unchosen message remains unknown to the receiver.

It has been shown that oblivious transfer is an important building block as a cryptographic tool. Obliv-
ious transfer can be used to construct other cryptographic primitives [GMW87, CvdGT95, Ode09]. Sev-
eral oblivious transfer protocols based on Diffie-Hellman-related problems were proposed [BM89, NP01,
PVW08, CO15, BDD+17].

Oblivious transfer protocols exist for various hardness assumptions. However, cryptographic protocols
based on problems subordinate to either the discrete logarithm problem or the factoring problem will suffer
a polynomial-time quantum attack from Shor’s algorithm [Sho99]. Several post-quantum oblivious transfer
schemes have been proposed, including Peikert et al.’s lattice-based OT [PVW08], and code-based OTs
[DvdGMN08, DNMQ12, BDD+17]. Recently, some isogeny-based OTs have been proposed [BOBN18,
dSGOPS18, Vit19].

Concerning security of oblivious transfer, traditional security definitions aim at guaranteeing privacy
for both parties, including one-sided simulation and the view-based definition for a two-message protocol
[NP01, DvdGMN08, HL10]. These notions ensure privacy for both parties in a standalone setting. However,
in real world deployment, protocols are always composed into an enormous and complex construction. To
ensure security of the full system the leading oblivious transfer proposals [Lin08, PVW08, DNMQ12,
BDD+17] follow the real/ideal paradigm and universally-composable security (UC security) as defined by
Canetti [Can01]. Impossibility results for some protocols have been given in [CKL03].

The first isogeny-based cryptosystem was proposed by Couveignes [Cou06], which included a key
exchange scheme based on a hard homogeneous space. However, the paper was not published at that time.
The approach was independently rediscovered by Rostovtsev and Stolbunov [RS06]. Then, Jao and De Feo
proposed the Supersingular Isogeny Diffie Hellman (SIDH) [JDF11]. Later, SIDH was transformed into the
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Supersingular Isogeny Key Encapsulation (SIKE) [JAC+17] which includes a public key encryption scheme
and a key encapsulation mechanism and is now one of the third-round alternate candidates in the post-
quantum cryptography standardization competition led by NIST [NIS20]. Castryck et al. [CLM+18] devised
an efficient implementation of the Couveignes/Rostovtsev-Stolbunov approach that they called commutative
SIDH (CSIDH). CSIDH is conjectured to provide post-quantum security with smaller public keys than the
candidates in the NIST competition [NIS20]. In this work, we exploit the structure of CSIDH to construct
our schemes.

In comparison with Diffie-Hellman-based protocols, due to the reduced number of algebraic operations
available, it is arguably more challenging to develop isogeny-based cryptosystems achieving the desired
notion. For example, neither the randomizing procedure (gsyt, xszt) ← RAND(g, x, y, z; s, t←$Fp) used
in [NP01, PVW08, Lin08], nor the fundamental one-trapdoor setup pk0 pk1 = c where c is a public constant
used in [NP01, BDD+17] can be realized in the isogeny-based setting with current techniques in an efficient
way.

We review the aforementioned isogeny-based oblivious transfer proposals [BOBN18, dSGOPS18, Vit19].
Their schemes can be viewed as “tweaks of two Diffie-Hellman key exchange agreements” or variants of the
Diffie-Hellman problem as stated in [CO15]. As stated in [CO15], these schemes, including their scheme,
cannot achieve full-simulatablility, even in the sense of the sequential composition (SC) theorem [Can00].
This is because a simulator cannot extract the input of the malicious adversary who delays the decryption.

To get a secure OT against malicious adversaries, an inefficient solution is embedding a zero-knowledge
proof to force the adversary to follow the protocol specification, which is the idea of the GMW compiler
[GMW87]. But then using isogenies the ZK proof may require a polynomial number of isogeny computa-
tions [FG19, BKV19]. Another solution is using the transformation provided by Döttling et al. [DGH+20].
The mechanism can transform a two-round semi-simulatable OT into one secure against malicious adver-
saries and keep the construction round-optimal (2-round). The cost is a polynomial number of executions
of the original OT scheme. Chou and Orlandi [CO15] pointed out another potential solution that the re-
ceiver should show a “proof of timely decryption” while not leaking the secret input, which was realized by
Barreto et al. in their framework in the updated version of [BDD+17].

On the aspect of security, the schemes [BOBN18, dSGOPS18, Vit19] are all only proved secure under
either semi-honest models or a non-simulation-based definition. In other words, the schemes all ensure
nothing when executed within a larger environment against malicious adversaries. Regarding the underlying
computational assumption, a reduction to a well-known one is a preferred choice over a reduction to a
weaker variant. For instance, the scheme in [Vit19], as stated in their work, relies on a non-standard
computational assumption that does not hold in the CSIDH setting. In conclusion, before our work, a
practical isogeny-based oblivious transfer protocol proved to be secure under an assumption equivalent to a
well-known problem and with respect to a powerful security notion was missing from the literature.

1.1 Contributions
We present the first practical construction of a UC-secure isogeny-based oblivious transfer protocol in the
presence of malicious adversaries, hence resolving all the issues discussed above. To achieve this we
introduce a variety of novel techniques. The construction is not only compact with a constant number of
isogeny computations (see Table 1) but also a robust scheme without compromising the hardness. Our
schemes use a feature that is available for isogenies (the quadratic twist) that does not have an analogue
in the DLP setting, but some of our other techniques are not limited to isogeny-based cryptography, see
Section 6.

Firstly, we design a novel 1-out-of-2 oblivious transfer protocol by a small change to the Diffie-Hellman
protocol to achieve a compact OT prototype with a trusted setup curve (or a public curve). Next, the 3-round
protocol is transformed into a 2-round scheme through a new use of quadratic twists. The 2-round scheme
is the most efficient isogeny-based OT scheme in the semi-honest model so far, see Section 5. Based on
this modification, a secure mechanism can be established in which the receiver will demonstrate the “ability
to decrypt” to the sender for one-sided simulation, which is based on a similar idea of [CO15, BDD+17]
but with a different mechanism for group actions. Furthermore, we establish a trapdoor algorithm with
a novel use of quadratic twists in the setup to accomplish the fully-simulatable construction. Finally, we
introduce a new assumption, the reciprocal CSIDH problem, (Problem 5) that looks non-standard, but we
prove equivalence to the computational CSIDH problem with a quantum reduction using a tool we call
“self-reconciling” (Proposition 2.2).

As pointed out by Canetti et al. [CKL03], it is impossible to achieve a UC-secure OT scheme without
any trusted setup. Our construction is proposed in a hybrid model with two functionalities, see Table 2 for
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comparison with the related works concerning the hybrid models.
This paper is organized as follows. Section 2 briefly describes CSIDH, the related functionalities, our

new assumptions, and recalls the simulation-based definition for two-party protocols. Section 3 constructs
our oblivious transfer protocol. Section 4 gives security proofs against the semi-honest adversary and
the malicious adversary. A comparison of our OT with the previous three isogeny-based OT protocols is
given in Section 5. We conclude in Section 6. For comprehensibility, the content related to isogenies will
frequently be accompanied or introduced by the counterparts in the Diffie-Hellman setting.

1.2 Related work
There are three aforementioned isogeny-based OT protocols. All the adversary models are either semi-
honest or non-simulation, which are both quite weak notions. While the semi-honest model cannot reflect
vicious attackers in the real world, the non-simulation-based model cannot enjoy the composition theorems
[Can00, Can01], see Section 5.

The first protocol was proposed by Barreto et al. [BOBN18] and used the common reference string
(CRS) model along with the random oracle model. They revisited Chou and Orlandi’s work [CO15] and
proposed an SIDH-based OT. They exploited the properties of SIDH to mask one party’s public points by
randomly (up to the receiver’s choice) adding shared selective points derived from the common reference
string. However, the claim of security is false. It may not ensure privacy even in the semi-honest model.

The second protocol was proposed by de Saint Guilhem et al. [dSGOPS18]. They derived their two
constructions from the Shamir-3-Pass key transport scheme and [CO15], respectively. Their framework is
UC-secure against semi-honest adversaries based on a masking structure hard homogeneous space or on
Fp2 supersingular isogenies.

The third protocol was proposed by Vitse [Vit19]. It is derived from Wu, Zhang, and Wang’s OT
[WZW03], based on a Diffie-Hellman-related problem. Their proposal naturally fits well in the general
setting (including DH, SIDH, and CSIDH). They claimed UC-security in a semi-honest model and gave
another game-based security definition (semantic security) for their OT protocol. They also proved the
hardness of their special assumption in generic groups.

An independent and concurrent work of Alamati et al. [AFMP20] is concerned with giving a general
framework for developing cryptographic primitives based on group actions such as CSIDH. As an applica-
tion, they briefly present some OT schemes. Their paper is concerned with theoretical aspects, not practical
ones. Hence, the efficiency is worse than using the GMW compiler [GMW87] or using the transformation
of [DGH+20].

2 Preliminaries

Notation
Let {X(a, n)} =c {Y(a, n)} denote computationally indistinguishable probabilistic ensembles X,Y , which
means for any PPT non-uniform algorithm D there exists a negligible function f such that for all a, n ∈ N
we have |Pr[D(X(a, n))] − Pr[D(Y(a, n))]| ≤ f (n). Let {X(a, n)} =s {Y(a, n)} denote statistically indistin-
guishable probabilistic ensembles X,Y on the same set, which means the statistical distance between X and
Y is negligible. The notation a←$ S means a is uniformly generated from the set S . For simplicity, we often
omit the security level parameter n but it is implicit in the indistinguishabiliy and the negligible function.

2.1 CSIDH
For a given prime p and an elliptic curve E defined over Fp, Endp(E) is the subring of the endomorphism
ring End(E) consisting the endomorphisms defined over Fp.

Let O be an order in an imaginary quadratic field and π ∈ O an element of norm p. Define the set
of isomorphism classes of elliptic curves E``p(O, π) where E defined over Fp, Endp(E) = O, and π is the
Fp-Frobenius map of E. For any ideal a ∈ O and E ∈ E``p(O, π), an action can be defined by a ∗ E = E′

such that there exists an isogeny φ : E → E′ with ker(φ) = ∩α∈a{P ∈ E(F̄p) | α(P) = 0}. The image
curve of a ∗ E is well-defined up to Fp-isomorphism. Moreover, the ideal class group Cl(O) acts freely and
transitively on E``p(O, π).

Castryck et al specified the prime to be p = 4 × `1 × ... × `n − 1 where `i are small odd primes. In the
case of p = 3 mod 8, for any supersingular elliptic curve E defined over Fp, the restricted endomorphism
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ring Endp(E) = Z{π} � Z{
√
−p} if and only if E is Fp-isomorphic to EA : y2 = x3 + Ax2 + x for some

unique A ∈ Fp. The quadratic twist of a given elliptic curve E : y2 = f (x) is Et : dy2 = f (x) where
d ∈ Fp has Legendre symbol −1. When p = 3 mod 4 let E0 be such that j(E0) = 1728, then E0 and
Et

0 are Fp-isomorphic. The quadratic twist can be efficiently computed in the CSIDH setting [CLM+18].
Since the prime p = 3 mod 4, E′ : −y2 = x3 + Ax2 + x is the quadratic twist of EA : y2 = x3 + Ax2 + x
and E′ is Fp-isomorphic to E−A by (x, y) 7→ (−x, y). Further, (a ∗ E0)t=a−1 ∗ E0. Therefore, for any curve
E ∈ E``p(O, π), we have, by the transitivity of the action,

(a ∗ E)t = a−1 ∗ Et.

Throughout this paper, we concentrate on supersingular curves defined over Fp. Denote the ideal class
group Cl(Endp(E)) by Cl and the set of elliptic curves E``p(O, π) by E.

2.1.1 Uniform sampling of curves

In CSIDH, the method provided to sample elements of the class group Cl is heuristically assumed to be
statistically close to uniform [CLM+18]. Here we make the same assumption and derive the following
lemma when p = 3 mod 4.

Lemma 2.1. Given a curve E ∈ E and a distribution D on Cl, let D ∗ E be the distribution on E of a ∗ E for
a← D, and let (D ∗ E)t be the distribution on E of (a ∗ E)t for a← D. If D is statistically indistinguishable
from the uniform distribution on Cl, then D ∗ E and (D ∗ E)t are statistically indistinguishable from the
uniform distribution on E.

Proof. Let U be the uniform distribution on E. Since Cl acts freely and transitively on E, D∗E is statistically
indistinguishable from U. Since taking quadratic twists is a transposition on E, by taking a twist on both
distributions, we have D ∗ E =s U = U t =s (D ∗ E)t. �

CSIDH works by sampling ideal classes as
∏n

i=1(`i, π − 1)ei where ei are sampled from [−B, B ] ∩ Z
for a suitably chosen value B. Heuristically, increasing B means that sampling becomes closer to the
uniform distribution on Cl. Beullens et al. [BKV19] proposed an efficient instantiation of these sampling
methods in CSI-FiSh which requires pre-processing to compute a lattice of relations in the class group.
Implementations of the CSIDH scheme can be found in [CLM+18, BdFLS20]. We refer to [MCR19,
OAYT20] for constant-time variants.

2.1.2 Computational assumptions

The computational assumptions relevant to this work are defined as follows.

Problem 1. (Computational CSIDH Problem) Given curves E, r ∗ E and s ∗ E in E where r, s ∈ Cl, find
E′ ∈ E such that E′ = rs ∗ E.

Problem 2. Given curves (E, s ∗ E,r ∗ E) in E where r, s ∈ Cl, find E′ ∈ E such that E′ = s−1r ∗ E.

The computational CSIDH problem is the main hardness assumption for [CLM+18]. Problem 2 is an
equivalent problem. To see this, given an oracle O for Problem 1, one can obtain E′ by taking E′ ←
O(s ∗ E, E, r ∗ E) such that E′ = rs−1 ∗ E. Conversely, given an oracle O for Problem 2, one can obtain E′

by taking E′ ← O(s ∗ E, E, r ∗ E) such that E′ = rs ∗ E.
The following two problems are the main underlying problems against semi-honest adversaries.

Problem 3. (Computational Square CSIDH Problem) Given curves E and s ∗ E in E where s ∈ Cl, find
E′ ∈ E such that E′ = s2 ∗ E.

Problem 4. (Computational Inverse CSIDH Problem) Given curves E and s ∗ E in E where s ∈ Cl, find
E′ ∈ E such that E′ = s−1 ∗ E.

The equivalence between these two assumptions and a conditional reduction to the computational
CSIDH problem were given in [Fel19]. The condition for the second reduction is that the group order
is given and odd. Therefore, we can say that there is quantum reduction [Sho99, Hal05] to the computa-
tional CSIDH problem when p = 3 mod 4. In fact, there is also an efficient quantum reduction for the
case of p = 1 mod 4, see Appendix A. Note that the quantum computation is only to compute the group
structure of Cl, and so can be considered as a precomputation; the remainder of the reduction is classical.
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As Castryck et al. pointed out [CLM+18] both problems contain exceptional cases when E0 takes part
in the problems due to the symmetric structure. That is, (a ∗E0)t = a−1 ∗E0, and so Problem 4 is easy in the
special case E = E0. The issue can be circumvented if the public curve is generated by a trusted third party.

Next, we will introduce the main underlying assumption for our UC-secure construction.

Problem 5. (Reciprocal CSIDH Problem) Given E in E. Firstly, the adversary chooses and commits to
X ∈ E, then receives the challenge s∗E where s ∈ Cl. Then the adversary must compute a pair (s∗X, s−1∗X)
with respect to the committed X.

Intuitively, the computational reciprocal CSIDH problem is a relaxed version of the square CSIDH
problem or the inverse CSIDH problem. In particular, if one can solve the inverse CSIDH problem, then
one can solve the reciprocal CSIDH problem by taking X = E with (s ∗ X, s−1 ∗ X) = (s ∗ E, s−1 ∗ E).
Conversely, if an attacker knows the isogeny between X and E, or Et, then this can be used to solve the
inverse CSIDH problem. That is, if X = r ∗ E, one can obtain s−1 ∗ E by computing r−1 ∗ (s−1 ∗ X) with the
given r. On the other hand, if X = r ∗ Et, one can obtain s−1 ∗ E by computing r ∗ (s ∗ X)t with the given r.
However, note that the attacker is not required to know the isogeny between X and E or Et in the problem.

The reciprocal CSIDH problem appears to be non-standard at first sight but, in fact, it is equivalent to
the inverse CSIDH problem. Even though the problem provides additional freedom X for the attacker, yet
notice that X is chosen prior to the challenge s ∗ E. We show in the following reduction that the freedom to
choose X can be handled. We call the reduction strategy “self-reconciling”.

Proposition 2.2. The computational reciprocal CSIDH problem is equivalent to the computational inverse
CSIDH problem.

Proof. Given a challenge (E, s ∗ E) for the inverse CSIDH problem. Invoke the adversary for the reciprocal
CSIDH with E. After receiving X from the adversary, send the challenge t1s ∗ E to the adversary where
t1←$ Cl. Receive (t1s ∗ X, (t1s)−1 ∗ X) from the adversary, then rewind the adversary to the time when it
output X, and then send t2s ∗ X as the challenge with respect to committed X where t2←$ Cl. Receive
(X0, X1) from the adversary. Output X1.

Claim (t2) ∗ X1 = s−1 ∗ E. Write X = b ∗ E by the transitivity of the action, so t2s ∗ X = (t2sb) ∗ E. Then,
since the second challenge is t2s ∗ X = (t2sb) ∗ E, we have t2 ∗ X1 = (sb)−1 ∗ X = s−1 ∗ E. Precisely, if the
adversary can solve the problem based on E with committed X with probability ε, then the adversary can
be used to solve the inverse CSIDH problem based on E with probability ε2. �

In the proof Proposition 2.2, the reduction extracts the first entry of the first solution and the second
entry of the second solution to obtain the solution for the inverse CSIDH problem. We can, therefore,
conclude the following corollary.

Corollary 2.3. In the experiment of Problem 5, after committing to the curve X, if the adversary can solve
(s ∗ X, s′−1 ∗ X) with respect to different given challenges s ∗ E and s′ ∗ E then the adversary can be used to
solve the computation inverse CSIDH problem.

We end the subsection with the following relation for the CSIDH setting in [CLM+18] (p = 3 mod 4).
(A full reduction is provided in Appendix A.)

Computational CSIDH =quantum Computational Inverse CSIDH
=classical Computational Square CSIDH
=classical Computational Reciprocal CSIDH

Remark. The above results can all be extended to general (free and transitive) group actions and hard
homogeneous spaces [Cou06]. We leave the details to the reader.

2.2 Functionalities
In this subsection, we define the functionalities we need as well as the related security definitions.

A symmetric encryption scheme is a pair of algorithms (E,D) defined over message space M and
ciphertext space C with key space K .

Definition 2.1. (non-committing encryption (NCE)) A symmetric encryption scheme (E,D) is said to be non-
committing if there exists PPT algorithm B1, B2 such that for any PPT distinguisherD, message m ∈ M.∣∣∣Pr[D(c, k) = 1] − Pr[D(c′, k′) = 1]

∣∣∣ = negl(n),

where k←$K , c = Ek(m) and c′←$ B1(1n), k′←$ B2(c′,m)
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Informally speaking, non-committing encryption allows a user to generate a dummy ciphertext indistin-
guishable from the real one by B1 and later explain it with the assistance of B2. The idea was introduced by
Canetti et al. [CFGN96] with the one-time pad (OTP) as an instantiation. It was also used in some oblivious
transfer constructions [CO15, BDD+17]. We use the non-committing property to extract the input without
rewinding in the simulation process.

FRO-Functionality of Random Oracle

The functionality is a function with the domain E and the codomain K . It keeps a list
L of pairs in E × K where the initial state is empty. It works as follows:

1. Upon receiving a query C ∈ E, check whether (C, k′) for some k′ ∈ K . If so, set
k = k′; if not, generate k←$K and store the pair (C, k) in the list L.

2. Output k.

The functionality of a random oracle FRO internally contains an initially empty list. Upon receiving
the query from the domain, it will check whether it is a repetition. If so, return the value assigned before;
otherwise, it randomly assigns a value from the codomain, stores the pair, and returns the value. Formally
speaking, an input of a random oracle can be any binary string. For simplicity, we restrict the domain to
E. This can be easily and compatibly extend to {0, 1}∗, since supersingularity can be efficiently verified
[CLM+18].

FTS C-Functionality of a trusted setup curve

The functionality is to output an element of E. It generates an ideal class t←$ Cl and
outputs the curve t ∗ E0.

The functionality of trusted setup curves FTS C serves as a setup for generating a curve for the protocol.
This setup hides the relation t between the public curve and the curve E0. In practice, this can be replaced
with a key exchange protocol [BF20]. That is, two parties do a key exchange first and obtain a curve such
that the isogeny relation to E0 remains unknown if the two parties do not share their ideal classes or collude.

Here we define the functionality of the oblivious transfer in a simple and classic way. The two-party
functionality of the oblivious transfer is characterized by FOT = ( f1, f2) where f1 : {0, 1}∗ × {0, 1}∗ → {⊥}
and f2 : {0, 1} → {0, 1}∗. The functionality FOT : {0, 1}∗ × {0, 1}∗ × {0, 1} → {⊥} × {0, 1}∗ takes in a message
pair x = (M0,M1) of equal length from one party and a bit y = i ∈ {0, 1} from the other party, and returns
FOT (x, y) = ( f1(x, y), f2(x, y)) = (⊥,Mi) where ⊥ represents an empty string.

We briefly define the security of OT. We refer [HL10, Lin17] for more details. Intuitively, we say a
protocol realizes the functionality securely in the simulation-based definition, if the protocol realizes the
function and also whatever the adversary can learn from a real execution of the protocol can be indis-
tinguishably generated by a simulator. Thus, we have to formalize the “view” of a corrupted party and
compare the output of the protocol with the ideal functionality. Let π be a protocol computing FOT . We
denote by viewπi (x, y) the transcript that records whatever the ith party sees during an execution of the pro-
tocol π taking input (x, y). Precisely, viewπi (x, y) is the tuple (input, ri,mi

1, ...,m
i
n) where input is the input

of the party, ri is its internal random tape, and mi
j is the jth received message. We also write outputπi (x, y)

as the output received by the ith party after the execution of the protocol π with the input (x, y), and write
outputπ(x, y) = (outputπ1(x, y), outputπ2(x, y)). In particular, if the protocol π completely realizes the func-
tionality FOT , then outputπ(x, y) = FOT (x, y).

Definition 2.2. (OT security against semi-honest adversary) We say a protocol π securely (privately) com-
putes FOT in the presence of static semi-honest adversaries if there exist probabilistic polynomial-time
algorithms S 1, S 2 such that

outputπ(x, y) = FOT (x, y)

{S 1(x, f1(x, y))}x,y=c{viewπ1(x, y)}x,y

and
{S 2(y, f2(x, y))}x,y=c{viewπ2(x, y)}x,y.

The notion implies that whatever the semi-honest adversary can learn from running the protocol, it
could be generated by themself without the execution. In other words, the semi-honest adversary can learn
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nothing more than allowed. The idea of ideal execution is implicit here. Since anything apart from the
output of the functionality can be self-generated in an indistinguishable manner, the real protocol ideally
realizes the functionality as long as the two parties follow the protocol specification (see Section 7.2 of
[Ode09] for more details).

However, the semi-honest adversary model is not sufficient. It is inevitable in the real world that ma-
licious users depart from the protocol specification with arbitrary strategies. A relaxation for oblivious
transfer protocols or single-output functionalities is one-sided simulation. One-sided simulation requires
the indistinguishability for the sender and the simulation for the receiver. Since the sender has no outputs,
the notion ensures privacy for both parties in the presence of malicious adversaries. It is also a plausi-
ble choice for an efficient construction in the stand-alone model. Here, we consider full-simulation in the
presence of malicious adversaries.

Roughly speaking, the standard real/ideal paradigm demonstrates that for any adversary in the real
world, there exists a corresponding simulator in the ideal world such that the outputs from the two worlds
are indistinguishable. The notion provides an ultimate guarantee that whatever the adversary can do in the
real execution is simulatable in the ideal world. Since the execution in the ideal world is secure, the real
execution is secure as well. To see this, we need to clarify the definitions of the real and ideal executions.

Ideal Execution. The ideal execution captures a world where a trusted third party exists. The parties do
not communicate with each other but instead hand their inputs to the trusted party. Then, the trusted party
honestly returns the outcomes to each party, corresponding to the defined functionality. Nevertheless, the
ideal execution in the presence of malicious adversaries is slightly different from the previous consideration
of the semi-honest adversary. Due to losing the honest majority, fairness is not taken into consideration.
Moreover, rational rebelling behaviors of the malicious adversaries, including refusing to participate, abort-
ing the running sessions, or replacing the inputs, are taken into account. These strategies will be taken into
account in the definition of the modified ideal functionality.

We define the modified ideal execution before going to the security definition. For more detailed expo-
sition, also see [HL10, Lin17]. The ideal execution in consideration of a malicious adversary of a two-party
functionality F = ( f1, f2) consists of six phases: initial inputs, inputs to the trusted party, early abortion,
output to the adversary, instruction of continuing or halting, outputs. Let Pi denote the corrupted party
controlled by S, P j be the honest party where {i, j} = {1, 2}, T be for the trusted third party.

First of all, in the phase of initial inputs, like the ordinary setup, P1 has the input x, P2 has the input y
and the adversary S has an auxiliary input z. Secondly, in the phase of inputs to the trusted party, honest
P j hands the initial input (x or y) to T . What corrupted Pi sends is controlled by S. The decision made
by S including the early abortion option aborti is based on the initial input of Pi and the auxiliary input
z. Let (x′, y′) be the inputs to F . Thirdly, early abortion is an intermediate phase, if aborti is sent within
the second phase by S. Then the trusted party returns aborti to both parties, and the execution terminates;
otherwise, the execution continues. Fourthly, in the phase of output to the adversary, T computes f1(x′, y′)
and f2(x′, y′) and returns fi(x′, y′) to the corrupted party Pi first. Next, in the fifth phase, the adversary
replies continue or aborti to T . This instructs T to continue or terminate by returning f j(x′, y′) or aborti

to P j, respectively. Last but not least, in the final phase outputs, the honest party outputs f j(x′, y′). The
adversary S in place of Pi outputs something based on the knowledge of the initial input (x or y), auxiliary
input z, and fi(x′, y′).

The output pair of the honest party and the adversary from the ideal execution of the functionality F
described above is denoted by IDEALF ,S(z),i(x, y). Note that even though in oblivious transfer the sender
receives no outputs from the trusted party, the adversary can still output something in place of the sender if
the sender is the corrupted party.

Real Execution. The real execution is the execution of a real protocol. Let the protocol π compute the
functionality F where Pi is the corrupted party controlled by the adversary A. The initial inputs are x for
P1, y for P2 and the auxiliary input z for A. During the execution of π, A will usurp Pi, interact with
P j, and finally output something. The messages and output provided by the adversary may deviate from
the specification of π by a polynomial-time strategy. In contrast, the honest party P j interacts with Pi and
returns outputs as specified by the protocol. Let REALπ,A(z),i(x, y) denote the output pair by P j andA.

The aim of the standard real/ideal paradigm is to show that the ensemble produced by the simulator
through the ideal execution is indistinguishable from the ensemble produced by the adversary via the real
execution. This provides strong assurance of the security irrespective of the strategies the adversary adopts
since any real adversary can be simulated in the ideal world. This also permits modular constructions for
larger protocols by the composition theorems [Can00, Can01]. As a corollary, a relaxed but equivalent
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version of the security model is the simulation in the hybrid model.

Hybrid Model. The hybrid model contains real messages communicated between participants and oracle
access to functionality G (ideal messages). The two-party protocol π with input (x, y) in a hybrid model
with the functionality G is called the G-hybrid model. In the presence of adversary A who controls the ith

party with the auxiliary input z, we denote the output of all parties by HYBRIDGπ,A(z),i(x, y).
We remark that this model is a prerequisite for constructing UC-secure oblivious transfer due to the

impossibility results given in [CKL03]. In the G-hybrid model, the simulator in the simulation process is
able to exert control over the functionality G. For example, in the common reference string (CRS) hybrid
model, two parties are given a shared string in the protocol execution, while in the simulation process, the
simulator can invoke the adversary with a trapdoor string to cheat [PVW08].

To match the security definition presented in [Can01], assume there exists an environment machine Z
serving as an interactive distinguisher between the real execution and the ideal execution. When interacting
with the machine, the environment Z can decide all inputs of the parties and the auxiliary input for the
adversary/simulator. After the execution, Z outputs a single bit to judge whether it interacts with a real
machine or an ideal machine. Also, the environment Z can interact with the adversary/simulator with any
queries at any time throughout the execution in order to distinguish. Here, we denote the ensemble consist-
ing of the output of the ideal execution of the functionality F involving the adversary S, the environment
Z by IDEALF ,S,Z and the ensemble consisting of the outputs in the hybrid model involving the adversary
A and the environmentZ by HYBRIDG

π,A,Z
.

Definition 2.3. (UC-realize) A protocol π is said to UC-realize an ideal functionality F in the presence of
malicious adversaries and static corruption in the hybrid model with functionality G if for any adversary
A there exists a simulator S such that for every interactive distinguisher environmentZ we have

IDEALF ,S,Z=cHYBRIDG
π,A,Z

.

3 Our Proposal
This section first presents the idea behind our tweaked key exchange by introducing the core of Chou and
Orlandi’s OT scheme [CO15]; we then derive a novel compact protocol as a prototype. Following this, we
compress the three-round scheme to an optimal two rounds by using the quadratic twist technique. Finally,
building on the round-optimal structure, we add a “proof of decryption” mechanism, which requires an
extra round, in order to achieve security against malicious adversaries.

3.1 Passively Secure Schemes
3.1.1 Tweaked Key Exchange

Figure 1 presents the Chou–Orlandi OT scheme [CO15] which is based on Diffie–Hellman key exchange.
In Diffie–Hellman, the sender and the receiver first share their public “keys”, gs and gr, with each other,
after which both of them can secretly obtain a shared secret grs. To adapt this for the purpose of OT,
the receiver can use the second round to obfuscate his secret bit i. In the third round, the sender can
communicate an encryption of the two OT messages by deriving two keys, one which cancels out the
obfuscation, and one which does not. Because of this key derivation, the receiver can then only decrypt the
message corresponding to his input bit.

We can view the isogeny-based oblivious transfer constructions of previous works in the same way. In
Barreto et al.’s work [BOBN18], the shared secret between the sender and the receiver is the j-invariant
of the isomorphic elliptic curves φB′φA(E) and φA′φB(E) [BOBN18]. Here, the receiver hides his input bit
by masking his pe3

3 -torsion subgroup public basis by a pair of special pe3
3 -torsion points U,V ∈ φB(E); the

sender then requires the same pair of points U, V to remove the noise. A coin-flipping mechanism is then
used to guarantee that both parties obtain the same points U,V .

Proposals by de Saint Guilhem et al. and Vitse rely on a similar idea to use a fixed key from the key
exchange to decrypt the chosen ciphertext [dSGOPS18, Vit19]. In the first OT construction of [dSGOPS18],
two public curves are required as a trusted setup, which serve the same role as two fixed keys from the
perspective of key exchange. In [Vit19], one more pe2

2 -torsion subgroup generated by the sender is required
to obtain two fixed keys.
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Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: N/A Output: Mi

s←$Z r←$Z∗p

A = gs

if i = 0 :B = gr

if i = 1 :B = Agr

B

k0 = H(Bs) ki = H(Ar)

k1 = H((B/A)s)

c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

Mi = Dki (ci)

Figure 1: Chou and Orlandi’s OT scheme in a nutshell [CO15]

3.1.2 Our three-round Protocol

We present our three-round protocol in Figure 2 using the notation of the CSIDH setting. In this work we
approach the change from key exchange to OT with a different strategy. The essence is that the sender and
the receiver can exponentiate by both s and by s−1, and by both r and r−1 respectively.

Upon receiving gs from the sender, the receiver computes both gr and gsr, and sends one of them to the
sender depending on its choice bit. The sender then exponentiates it by both s and by s−1 as the encryption
keys, which is like doing the key exchange as Problem 1 and 2. One can verify that the “shared secret” in
each case is grs and gr, resp.

The other encryption keys are grs−1
and grs2

, resp. They are intractable to the honest-but-curious receiver
due to the hardness of the inverse and square CSIDH problems, respectively. Furthermore, the receiver’s
input bit remains unknown since the sender only knows either gr or gsr.

Note that in this isogeny-based setting, it is necessary that the relation between the shared public curve
E ∈ E and a fixed base curve E0 remains unknown. Should the receiver know that E = t ∗ E0, then he can
always input i = 0 and compute the other key as t2r2 ∗ (rs ∗ E)t = t2r2 ∗ (trs ∗ E0)t = trs−1 ∗ E0 = rs−1 ∗ E.

3.1.3 Our two-Round Protocol

To address the drawbacks of our three-round protocol, we observe that the quadratic twist provides addi-
tional flexibility for the curve computations.

To first break the dependency of C on A, we let the receiver compute C = (r ∗ E)t in the case i = 1,
instead of r ∗ A. Lemma 2.1 guarantees that this still statistically hides i. Now that C is independent of A,
the receiver can send his message first, reducing the protocol to only two rounds. Furthermore, this removes
the hypothetical attack of a malicious receiver choosing C in response to A and enables a direct reduction
to the computational CSIDH problem.

We then note that the sender’s second encryption curve can be computed as (s ∗Ct)t, instead of s−1 ∗C,
in the three-round version. Here again we can simplify by letting the sender compute the second curve as
s ∗ Ct, without the additional twisting operation. This then results in a simplification for key computation
too: for i = 0, the encryption curve is s ∗ (r ∗ E) = r ∗ A, and for i = 1 it is s ∗ ((r ∗ E)t)t = r ∗ A; thus we
return to the idea of using a single Diffie–Hellman key by way of using the twist operation. The modified
two-round protocol is described in Figure 3. We give a formal security proof in Section 4.1.

In this simplified variant the number of isogeny computations remains the same as in the three-round
variant. We note that taking quadratic twists is an efficient operation via field negation.
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Trusted Setup: random E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: N/A Output: Mi

s←$ Cl r←$ Cl

A = s ∗ E

if i = 0 : C = r ∗ E

if i = 1 : C = r ∗ A

C

k0 = H(s ∗C) ki = H(r ∗ (s1−i ∗ E))

k1 = H(s−1 ∗C)

c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

Mi = Dki (ci)

Figure 2: Our three-round OT protocol.

3.2 The Full Construction Against Malicious Adversaries
The full protocol is shown in Figure 4 below. To be secure against malicious adversaries who may deviate
from the specification, both parties will do a simple verification of the received elements. In the CSIDH
setting, both parties will check whether the curve is supersingular, which can be done efficiently, as shown
in [CLM+18].

Protocol. (CSIDH-based OT) Let (E,D) be a symmetric encryption scheme with message spaceM and
ciphertext space C. Let H : E → K be modeled as a random oracle FRO that serves as the key derivation
function from the group E to the key space K for the symmetric encryption scheme.

• Trusted Setup: Let E = t ∗ E0 where t←$ Cl is unknown.

• Input: As input, the sender S takes two messages M0,M1 of the same length; the receiver R takes a
bit i ∈ {0, 1}.

• Procedure:

1. S samples independent ideals s0, s1←$ Cl, a random string str←$ {0, 1}n and computes A0 =

s0 ∗ E, A1 = s1 ∗ E.

2. R generates an ideal r←$ Cl and computes C = r ∗ E; if i = 1, overwrites C = Ct; and sends C
to S.

3. S checks whether C ∈ E. If not, S aborts and outputs abort2. Otherwise, S computes four
keys k j,0 = H(s j ∗ C) and k j,1 = H(s j ∗ Ct) for j ∈ {0, 1}. Then, S computes four ciphertexts
c0, j ← Ek0, j (M j) and c1, j ← Ek1, j (s1 ‖ str) for j ∈ {0, 1}. S sends (A0, A1, c0,0, c0,1, c1,0, c1,1) to R.

4. R runs the proof of ability to decrypt first. R checks whether A1 ∈ E. If not, R aborts and
outputs abort1. Otherwise, R computes k′1,i = H(r ∗ A1) and (s′1 ‖ str′) ← Dk′1,i (c1,i). Verify
whether s′1 ∗ (r ∗ E) = r ∗ A1. If not, output abort1. Otherwise, continue.

5. R computes k′1,1−i = H(s′1 ∗ (r ∗ E)t). Verify whether Dk′1,1−i
(c1,i−i) = (s′1 ‖ str′). If not, output

abort1. Otherwise, continue.

6. R verifies A0 ∈ E. If not, R aborts and outputs abort1. Otherwise, compute the decryption key
k′0,1 = H(r ∗ A0) and output Mi ← Dk′0,i (c0,i). And send str′ to S.

7. S checks whether str = str′. If not, S aborts and outputs abort2. Otherwise, S accepts and
outputs ⊥.
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: ⊥ Output: Mi

s←$ Cl r←$ Cl

A = s ∗ E if i = 0: C = r ∗ E

if i = 1: C = (r ∗ E)t

C

k0 = H(s ∗C)

k1 = H(s ∗Ct)

A, c0 ← Ek0 (M0)

c1 ← Ek1 (M1)

ki = H(r ∗ A)

Mi = Dki (ci)

Figure 3: The core of our two-round OT scheme. No analogue exists in the Diffie–Hellman setting due to
the use of the quadratic twist.

Intuitively, to simulate a sender controlled by an adversary, we have to show that the receiver’s mes-
sage’s distribution with input i = 0 and that with input i = 1 are indistinguishable. Asides from that, the
simulator needs to extract the real input of the message pair since the adversary can replace the original
input. Lemma 2.1 assures the first requirement. The second condition is attained by controlling the func-
tionality FTS C . As a result, the simulator can decrypt two ciphertexts by using the trapdoor of FTS C and
extract the real input of the sender.

To simulate a receiver corrupted by an adversary, the simulator should extract the adversary’s input by
observing the hash queries. In order to extract the input, the receiver should demonstrate the ability to
decrypt. The reason to do this is that the corrupted receiver who skips all hash queries makes the input
intractable to the simulator. The additional “proof of ability to decrypt” mechanism forces the adversary
either to abort or to prove its ability to decrypt by querying the hash function. Here the sender will send
another curve s′ ∗ E distinct from s ∗ E for transferring messages. The sender encrypts the ideal s′ and a
concatenated random string with key pair derived from s′ ∗ E. The receiver decrypts one ciphertext with X,
and the other ciphertext serves as a verification of the equality of encrypted messages. By requiring this
together with Corollary 2.3, the mechanism enables the simulator to extract the input by observing the
random oracle queries. Furthermore, since the simulator can only obtain one real message from the trusted
third party (corresponding to the extracted input i), the simulator must forge the other ciphertext via the non-
committing encryption scheme. The difference between the unchosen ciphertexts is not noticeable unless
the environment machine knows the corresponding decryption key. In this case, the environment machine
contains a pair of curves which is exactly the solution for the reciprocal CSIDH problem. See Section 4 for
more details.

4 Security Analysis
In this section, we prove the security of our two schemes from Sections 3.1 and 3.2 against semi-honest
and malicious adversaries respectively.

4.1 Semi-honest security
Eavesdropper. An eavesdropper receives all the communications of parties and does not intervene in the
execution. We assume that such an adversary knows the parties’ inputs while the simulator tasked with
simulating an indistinguishable transcript is given nothing. The reason for this assumption is to match the
definition of UC-security [Can01] where the environment machine decides the inputs. In fact, security
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Trusted Setup: E ∈ E

Sender Receiver

Input: (M0,M1) Input: i ∈ {0, 1}

Output: ⊥ Output: Mi

s0, s1 ←$ Cl r←$ Cl

A0 = s0 ∗ E If i = 0: C = r ∗ E

? A1 = s1 ∗ E If i = 1: C = (r ∗ E)t

? str←$ {0, 1}n

C

If C < E: abort; o.w. continue.

? For j ∈ {0, 1}: k j,0 = H(s j ∗C)

? For j ∈ {0, 1}: k j,1 = H(s j ∗Ct)

For j ∈ {0, 1}: c0, j ← Ek0, j (M j)

? For j ∈ {0, 1}: c1, j ← Ek1, j (s1 ‖ str)

A0, A1,

c0,0, c0,1, c1,0, c1,1

? If A1 < E: abort; o.w. continue.

? k′1,i = H(r ∗ A1)

? (s′1 ‖ str′)← Dk′1,i
(c1,i)

? If s′1 ∗ (r ∗ E) , r ∗ A1: abort; else continue.

? k′1,1−i = H(s′1 ∗ (r ∗ E)t)

? If Dk′1,1−i
, (s′1 ‖ str′): abort; else continue.

If A0 < E: abort; else continue.

k′0,i = H(r ∗ A0)

Output: Mi ← Dk′0,i
(c0,i)

str′

? If str , str′: abort; o.w. ouput: ⊥ .

Figure 4: Our CSIDH-based oblivious transfer protocol. For the sake of readability, we label the steps
related to the process of “proof of ability to decrypt” with ?.

against such eavesdroppers corresponds exactly to the honest-honest case discussed in the proof below.

Semi-Honest Adversary. A static semi-honest adversary can choose to corrupt either, both or neither
of the parties and will follow the protocol specification. We will prove that such adversary cannot obtain
any information from the transcript of our two-round protocol (Figure 3) assuming that the computational
inverse CSIDH problem is hard.

We remark that it is not meaningless to design two different protocols for different security levels. As
security against semi-honest adversaries is easier to achieve, it is better to use a simpler and more efficient
protocol when only such guarantees are required. This then implies that it is not necessary to prove the
semi-honest security of our second protocol since the first provides a simpler secure variant. We highlight
the fact that some maliciously secure protocols fail to also be semi-honest secure [HL10] and stress that we
do not claim the semi-honest security of our second protocol of Section 3.2.

Theorem 4.1. The protocol π of Figure 3 securely computes FOT in the presence of static semi-honest
adversaries if the computational inverse CSIDH problem (Problem 4) is infeasible, assuming that H(·) is a
random oracle and the encryption scheme (E,D) is IND-CPA.

Proof. (Correctness) Let i ∈ {0, 1} be the input of the receiver R. Say the sender S generates ideal s ∈ Cl
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and R generates r ∈ Cl. If i = 0, then C = r ∗ E. S computes the encryption key k0 as H(s ∗ C), and sends
A = s∗E. R computes k′0 = H(r∗A) as the decryption key; as we have r∗A = r∗ (s∗E) = s∗ (r∗E) = s∗C,
we indeed have k′0 = k0. On the other hand, if i = 1, then C = (r ∗ E)t. S computes k1 = H(s ∗ Ct) while
R computes k′1 = H(r ∗ A). We have s ∗ Ct = s ∗ ((r ∗ E)t)t = s · r ∗ E = r ∗ A which implies k′1 = k1 and
shows the correctness of the protocol.

(Corrupt sender S∗) The simulator S 1 takes as input (M0,M1,⊥) and is required to simulate the view
viewπ1(M0,M1, i) = (M0,M1, rp,C) where rp is a random tape. To generate this, S 1 performs these steps:

1. Uniformly generate a random tape rp for S∗.

2. Generate r′←$ Cl acting as an honest R and using a private random tape.

3. Output (M0,M1, rp,C′ = r′ ∗ E).

In a real execution, the curve C sent by the honest receiver is either r ∗ E if i = 0, or (r ∗ E)t if i = 1. In the
first case, the transcript output by S 1 is identically distributed to that produced by a real execution. In the
second case, Lemma 2.1 gives us that the distribution of C′ produced by S 1 is statistically close to that of C
produced by the real receiver. Thus, any polynomial-time distinguisher that is given a tuple (M0,M1, i) is
not able to distinguish {S 1((M0,M1),⊥)}(M0,M1),i from {viewπ1(M0,M1, i)}M0,M1,i.

(Corrupt receiver R∗) The simulator S 2 takes as input (i,Mi) and is required to simulate the view
viewπ2(M0,M1, i) = (i, rp, A, c0, c1) where rp is a random tape. To generate this, S 2 performs these steps:

1. Choose a uniform generated random tape rp for R∗.

2. Generate s′←$ Cl acting as an honest S and using a private random tape, and generate r′←$ Cl using
rp. Compute the curve C as r′ ∗ E or (r′ ∗ E)t depending on i.

3. Compute the decryption keys k′i , k
′
1−i honestly using s′ and C. Replace k′1−i with k̃′←$K

4. Compute ciphertexts ci = Ek′i (Mi) and c1−i = Ek̃′ (M̃) where M̃ is a string of the same length as Mi

sampled at random from the message spaceM.

5. Output (i, rp, s′ ∗ E, c0, c1).

We claim that if there exists a successful PPT distinguisher between the simulated view and the real view,
then reductions can be made to solve the computational problems (Problem 3 or the equivalent Problem 4)
or to break the IND-CPA security of the encryption scheme.

To show this, we build a series of hybrid views. Let H0 be the view of the real adversary, and H2
be the view generated by S 2 (i.e., {viewπ2(M0,M1, i)}(M0,M1),i and {S 2((M0,M1),⊥)}(M0,M1),i, resp). Let the
intermediate H1 be the view produced by running a real execution and replacing the encryption key k1−i

with a random k̃←$K . The difference between H1 and H2 is then that the real message M1−i is replaced
with a random one M̃←$M.

Hybrid 1. We first claimH0 =c H1 if the computational inverse CSIDH problem (Problem 4) is hard. To
offer an intuition: let E1−i denote the curve from which the replaced key k1−i is derived. When i = 0, we have
E1−i = s∗Ct = s∗(r∗E)t = r−1∗(s−1∗E)t; and when i = 1, we have E1−i = s∗C = s∗(r∗E)t = r−1∗(s−1∗E)t

as well. In both cases we see that the hard-to-compute curve contains s−1 ∗ E which we use to reduce a
successful distinguisher to the computational inverse CSIDH problem (Problem 4).

Let Z be an environment that can successfully distinguish between H0 and H1, then a solver B for
Problem 4 with the assistance ofZ runs as follows:

1. Receive challenge (E′, s′ ∗ E′) from Problem 4, where s′ ∈ Cl is unknown.

2. Set E′ to be the public curve used by the protocol π and set s′ ∗ E′ as the curve A sent to the receiver.

3. Randomly generate random tape rp for the receiver, use it to sample r, and compute C according to i.

4. While running, simulate the random oracle by assigning a random value from K whenever a new
query is made and recording a list of past queries during the execution.

5. When deriving the real encryption key ki, compute it as r ∗ (s′ ∗ E′) (since s′ from the challenge is
unknown).
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6. Replace the other encryption key k1−i with k̃←$K to simulate the output of H1; abort if k̃ already
appears on the list of answers to random oracle queries.

7. Invoke the distinguisherZ with the produced output ofH1.

8. When Z terminates, randomly select a curve Ẽ in the list of past queries of the simulated random
oracle and return (r ∗ Ẽ)t as the computational inverse CSIDH solution.

Note that, if B does not abort, the only difference between H0 and H1 is the key for Mi−1, thus a distin-
guisherZ which does not query this key must have a zero advantage.

Let A denote the event that B aborts when sampling the replacement key. Denoting by qH the maximum
number of queries made to H during the reduction, we have that Pr[A] ≤ qH

|K|
. Also let E denote the event

that the targeted curve E′1−i = r−1 ∗ (s−1 ∗ E′)t is present on the query list. We see that the reduction B wins
with probability 1/qH when E happens, and we can then write:

AdvProblem 4
B

= Pr[B wins] = Pr[B wins | ¬A] · Pr[¬A] + Pr[B wins | A] · Pr[A]
≥ Pr[B wins | ¬A] · (1 − Pr[A])

≥ Pr[B wins | ¬A] ·
(
1 −

qH

|K|

)
⇔

1
1 − qH

|K|

· Pr[B wins] ≥ Pr[B wins | ¬A] =
1

qH
· Pr[E] (1)

Looking an arbitrary distinguisherZ, we then have

|Pr[Z(H0) = 1] − Pr[Z(H1) = 1]| = |Pr[Z(H0) = 1|E] · Pr[E]
− Pr[Z(H1) = 1|E] · Pr[E]
+ Pr[Z(H0) = 1|¬E] · Pr[¬E]
− Pr[Z(H1) = 1|¬E] · Pr[¬E]|

≤ Pr[E] (2)

since |Pr[Z(H0) = 1|¬E] − Pr[Z(H1) = 1|¬E]| = 0 and |Pr[Z(H0) = 1|E] − Pr[Z(H1) = 1|E]| ≤ 1 by
definition. By combining (1) and (2) we see that ifZ distinguishes the two views with non-negligible advan-
tage ε, then B successfully solves Problem 4 with probability at least ε · (1− qH

|K|
)/qH which is non-negligible

if qH = poly(n) and 1/|K| = negl(n). This contradicts the assumption that Problem 4 is intractable and
therefore implies thatH0 andH1 are computationally indistinguishable to any PPT environmentZ.

Hybrid 2. We now claim H1 =c H2 for any PPT distinguisher if the encryption scheme (E,D) is IND-
CPA secure. The only difference is the encryption Ek̃(M1−i) in H1 and the encryption Ek̃(M̃) in H2, where
k̃ is uniformly sampled fromK . A successful distinguisherZ between the two distributions can be reduced
to an adversary against the IND-CPA security of (E,D) in a straightforward manner. As this reduction is
common in the literature, we only include a sketch here.

The IND-CPA adversary B has access to a left-right encryption oracle which uses a secret key randomly
sampled from K to encrypt either the left or the right input; this hidden key plays the role of k̃ in the
generation of the view given to Z. After setting up and executing the protocol honestly, B uses the left-
right oracle to encrypt either M1−i or a random M̃ as the ciphertext c1−i; depending on the hidden bit (left
or right) of the oracle, the view viewB generated by B for Z is distributed identically to either H1 or H2.
After the distinguisher terminates, the reduction returns its output as the guess of the oracle’s hidden bit.
Labelling the oracle’s hidden bit as b, we then have

AdvIND-CPA
B,(E,D) = |Pr[B = 1 | b = 0] − Pr[B = 1 | b = 1]|

= |Pr[Z(viewB) = 1 | b = 0] − Pr[Z(viewB) = 1 | b = 1]|
= |Pr[Z(H1) = 1] − Pr[Z(H2) = 1]|

which immediately shows that ifZ is successful with non-negligible advantage, then so is B which contra-
dicts the assumption that (E,D) is IND-CPA secure.

(Honest sender and honest receiver) We now claim that there exists a PPT simulator that can generate
a transcript tuple, without knowledge of the parties’ inputs, which is indistinguishable from the view of an
eavesdropper Z that knows the parties’ inputs (but not their random tapes). This simulator is constructed
from the following sequence:

14



1. S0 knows the real inputs (M0,M1) and i of the parties; by sampling random tapes and acting honestly,
it produces a perfect simulation.

2. S1 always uses i = 0; by Lemma 2.1 and the argument made in the case of a corrupt sender, the
output of S1 is either identically distributed or statistically indistinguishable from the output of S0.

3. S2 replaces k1 with a randomly sampled key; as above, this is computationally indistinguishable from
the output of S1 assuming that Problem 4 is intractable.

4. S3 replaces M1 with a randomly sampled message; as above, this is computationally indistinguishable
from the output of S2 assuming that the encryption scheme is IND-CPA secure.

5. S4 always uses i = 1; as above, the output of S4 is statistically indistinguishable from the output
of S3.

6. S5 and S6 respectively first replace k0 and then M0 with random values; as above, these changes are
computationally indistinguishable assuming the hardness of Problem 4 and the IND-CPA security of
the encryption scheme.

Finally, we observe that the last simulator S6 does not use any of the real inputs to produce a random
transcript. By the sequence above, this simulation is indistinguishable from the transcript of a real execution.

(Corrupt sender and corrupt receiver) In this case, the simulator knows the inputs of both corrupt
parties; as for S0 in the previous case, it can generate a perfect simulation of the views of the parties.

The four cases considered above cover all possible corruption strategies; this thus completes the proof
that the protocol π securely computes FOT . �

4.2 Malicious Adversary
Malicious Adversary. A malicious adversary with static corruptions can corrupt either, both or neither
of the parties prior to the execution. The environment machine decides the initial inputs of all parties. The
adversary will be in charge of the corrupted party or parties, and decide all messages to be sent. In particular,
the adversary can replace the inputs of the participants from the environment machine and deviate from the
protocol specification. We will prove that the construction in Figure 4 UC-realizes the functionality FOT in
the presence of malicious adversaries with static corruptions.

Theorem 4.2. The protocol π of Figure 4, where the encryption scheme (E,D) is non-committing, securely
UC-realizes the functionalityFOT in the hybrid model with the functionalityFRO and a trusted setupFTS C in
the presence of malicious adversaries and static corruption if the computational reciprocal CSIDH problem
is infeasible.

Proof. (Honest Sender and Honest Receiver) We start with the honest sender and the honest receiver.
The goal is to show that the execution of π is indistinguishable from the ideal functionality when the parties
follow the specification.

By following the same process as the honest-sender-and-honest-receiver case in Theorem 4.1, we can
construct the simulator that simulates the first-half messages. By continuing the process of S1 or S4,
the simulator can simulate the second-half messages A1, c1,0 and c1,1 by generating s1 and str. Since the
second-half part requires no inputs from either the sender or the receiver, it produces a perfect simulation.
Therefore, the simulator outputs a transcript indistinguishable from the one of a real execution.

(Corrupted Sender and Corrupted Receiver) When two parties are corrupted, the simulator can invoke
the adversary with the input (x = (M0,M1), y = i, z) given by the environmentZ to run the whole execution.
The simulator outputs whatever the adversary outputs for both parties to produce a perfect simulation.

(Honest Sender and Corrupted Receiver) Let A be the malicious adversary controlling the receiver. In
order to emulate the adversary, the simulator needs to extract the input of the adversary, and send it to the
trusted party in the ideal execution. Say the environment Z generates input (x = (M0,M1), y = i, z) and
gives (y, z) to the simulator. The simulator S2 passes any query from Z to A and returns the output of A.
The simulator S2 with auxiliary input (y, z) proceeds the protocol execution with the adversary as follows:
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1. The simulator S2 emulates a random oracle FRO by keeping a list L in E × K that records each past
query. It initializes the random oracle with an empty list L. If the simulator receives a query on
E′ ∈ E, the simulator checks whether (E′, k′) ∈ L for some k′ ∈ K . If not, generate k′←$K and add
the entry (E′, k′) to the list L. Finally, S2 returns k′ to emulate the random oracle.

2. Generate the public curve E = t ∗ E0 by sampling t←$ Cl to simulate FTS C . Invoke the adversary A
with the input (y, z) and E.

3. Receive a curve X, the first message, from the adversary. Check whether X ∈ E, if not, end the session
by outputting abort2 to the trusted party in the ideal execution. Otherwise, continue.

4. Activate the algorithm B1 of the non-committing encryption scheme. Generate c0,0, c0,1 with B1,
s0, s1←$ Cl and str←$ {0, 1}n. Compute A0, A1 and c1,0, c1,1 as the honest sender. Send (A0, A1, c0,0,
c0,1, c1,0, c1,1) to the receiver.

5. After Step 4, the simulator starts to do an additional process for any hash query of a curve E′ ∈ E.
Firstly, check whether E′ = s j ∗X or s j ∗Xt for any j ∈ {0, 1} (any one out of four). If not, process the
query in a standard way as Step 1. Otherwise, secondly, check whether both s0 ∗ X and s0 ∗ Xt (i.e.,
the other decryption key) have been queried. If so, abort the session by outputting abort2. Otherwise,
thirdly, check whether E′ is listed in the past queries (E′, k′) ∈ L, then return k′. Otherwise, send the
ideal message i to FOT in the ideal execution where i = 0 for the case E′ = s j ∗ X or i = 1 for the case
E′ = s j ∗ Xt, which is the extraction process. After obtaining Mi from FOT , generate the decryption
key k′ ← B2(c0,i,Mi) and store (s0 ∗ X, k′) for the case i = 0 or (s0 ∗ Xt, k′) for the case i = 1 in the
list, which is the process for the case j = 0. For the case j = 1, process the hash query in a standard
way as Step 2.

6. After receiving str′, the third message, from the adversary, verify str = str′. If not, end the session
by outputting abort2. Otherwise, continue.

7. After the outputs of the adversary, if none of s0 ∗X, s0 ∗Xt, s1 ∗X, and s1 ∗Xt are in the list L, then end
the session by outputting abort2. Otherwise, the simulator outputs whatever the adversary outputs.

We claim {HYBRIDFRO,FTS C
π,A(z),2 (x, y)}x,y,z =c {IDEALFOT ,S 2(z),2(x, y)}x,y,z. In comparison with the real exe-

cution, the abort in Step 5 implies the solution to the reciprocal CSIDH problem (E, s ∗ E) lies in the list L,
which contradicts the assumption. The other abort in Step 7, together with the result of Step 6, implies the
adversary decrypts the ciphertext c1, j without the knowledge of the key. If this occurs with non-negligible
probability, then it contradicts the non-committing assumption since the real ciphertext can be decrypted
without the key, while the dummy ciphertext cannot be (because it can be generated before the plaintext by
B1).

Other differences caused by the simulator are the ciphertexts for the receiver. The ciphertext c0,i in the
pair (c0,0, c0,1) is indistinguishable from the one in the real execution due to the non-committing encryption
scheme. The only suspicious part is c0,i−1, which is a dummy ciphertext generated by the algorithm B1 of
the encryption scheme. The counterpart in the real execution is the encrypted message Ek1−i (M1−i) where
k1−i is either H(s ∗ X) or H(s−1 ∗ X).

Similar to the previous proof, the distinguisher (the environment machine) can only succeed with neg-
ligible advantage only without the knowledge of k1−i. Precisely, let E denote the event that the targeted
curves s ∗ X, s ∗ Xt are both queried where (s ∗ Xt)t = s−1 ∗ X. We have |Pr[Z(H0) = 1] − Pr[Z(H1) = 1]|
is not greater than Pr[E] + |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| .

Claim that |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| is negligible if the encryption scheme is non-
committing. Given the non-committing challenge (c, k), a solver runs as follows:

1. Randomly generate j ∈ {0, 1}.

2. Run as the simulator S2 with the environment machine except in Step 4 that assign value c to the
variable c0, j

3. Say the simulation in Step 2 extracts i from the input of the receiver. If i , j, then abort and restart
the session.

4. If the environment machine judges the machine as the ideal machine, then output 1. Otherwise,
output 0.
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IfZ succeeds with non-negligible advantage p(n) without the knowledge of the key, then the reduction
can win the non-committing challenge with non-negligible advantage p(n)/2 where the loss is caused by
the guess in Step 2.

Since |Pr[Z(H0) = 1 | ¬E] − Pr[Z(H1) = 1 | ¬E]| is negligible, we have

|Pr[Z(H0) = 1] − Pr[Z(H1) = 1]| ≤ Pr[E] + negl(n).

Therefore, if the distinguisher can succeed with non-negligible advantage, then the solution for the
reciprocal CSIDH problem (Problem 5) is in the list of the hash queries with non-negligible probability. Let
the challenge of the reciprocal CSIDH problem start with E. A solver B for the problem runs as follows:

1. Run as the simulator S2 with the environment machine except for the changes in Step 4 and 5, and an
extraction in Step 3. The solver B commits to the curve X obtained in Step 3 in the reciprocal CSIDH
experiment.

2. Say B receives s ∗ E from the challenge. Then, in Step 4, assign s ∗ E to the variable A0.

3. In Step 5, guess i ∈ {0, 1} and obtain the decryption key ki via B2(c0,i,Mi). Randomly pick a curve X1
of FRO queries, and assign ki to it. (Due to the unknown element s, the solver needs to guess here.)

4. After the simulation, if the environment machine judges the machine as the ideal machine, then
randomly pick a curve X2 in the hash query list, and output (X1, X2). Otherwise, restart the challenge.

If the environment machine can win with non-negligible advantage p(n) with q hash queries, then the
solver B can win the reciprocal CSIDH challenge with non-negligible advantage p(n)/(2q2) where the loss
is caused by the guesses in Step 3 and 4. To sum up, if the encryption scheme is non-committing, and the
reciprocal CSIDH problem is hard, then the simulator S2 indistinguishably simulates the adversary.

We remark that the simulator S2 correctly extracts the input of the adversary in Step 5. According to
Corollary 2.3, if the simulator extracts the wrong input, then the adversary can also be used to solve the
inverse CSIDH problem.

(Corrupted Sender and Honest Receiver) LetA be a malicious adversary controlling the sender. In order
to emulate the adversary, the simulator needs to extract the input of the adversary, and send it to the trusted
party in the ideal execution. The input here is the message pair which the honest receiver will read. Say
the environment machine Z generates input (x = (M0,M1), y = i, z) and gives (x, z) to the simulator. The
simulator S1 with input (x, z) proceeds as follows:

1. Firstly, the simulator S1 emulates a random oracle FRO by keeping a list L in E×K that records every
past query. It initializes the random oracle with an empty list L. Whenever it receives a query on
E′ ∈ E, the simulator checks whether (E′, k′) ∈ L for some k′ ∈ K . If not, it generates k′←$K and
adds the entry (E′, k′) to the list L. Finally, S1 returns k′ to emulate the random oracle.

2. Generate the public curve E = t ∗ E0 by sampling t←$ Cl to simulate FTS C . Invoke the adversary A
with the input (x, z) and E. Keep t as the trapdoor secret.

3. Generate r←$ Cl,, and compute C = r ∗ E. Send C to the adversary, and act as the procedure of an
honest receiver with the input i = 0 throughout the remaining execution. (Note that the simulator
does not know the input of the receiver here.)

4. If the adversary aborts, then send abort1 to FOT and finish the session. Otherwise, assume the
execution is not aborted. Say it receives (A0, A1, c0,0, c0,1, c1,0, c1,1) from the adversary. Compute
k0 = H(r ∗ A0), k1 = H((tr ∗ (t−1 ∗ A0)t)t), and m j = Dk j (c0, j) for j ∈ {0, 1}.

5. Send (m0,m1) to the trusted third party in the ideal execution, output whatever the adversary outputs
to complete the simulation. (Note that (M0,M1) and (m0,m1) are not necessary the same since the
adversary can change the original input.)

Claim {HYBRIDFRO,FTS C
π,A(z),1 (x, y)}x,y,z =c {IDEALFOT ,S(z),1(x, y)}x,y,z. In contrast to the real execution, there

are two differences here. Firstly, the simulator possesses the trapdoor t of the public curve. The process is
identical to FTS C , and the simulator acts as an honest receiver throughout the process. Hence, this difference
is unnoticeable to the adversary.
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The other difference is the receiver the simulator plays always uses input i = 0. By Lemma 2.1, the
distribution of the first message (C) in the protocol as i = 0 is indistinguishable to that generated as i = 1.
Hence, it suffices to show the correctness of the extraction in Step 4.

If an honest receiver sends C to the sender with the input i = 0, then the decryption key is k0 =

H(r ∗ A0). The message the receiver will obtain is Dk0 (c0,0) = m0. Besides, if an honest receiver sends
C to the sender with the input i = 1, then the private ideal is equivalent to r−1t−2 since (r−1t−2 ∗ E)t =

(r−1t−1 ∗ E0)t = (r−1 ∗ Et)t = (r ∗ E) = C. Hence, the receiver will decrypt c0,1 with H(r−1t−2 ∗ A0). Due to
k1 = H((tr ∗ (t−1 ∗ A0)t)t) = H((tr)−1t−1 ∗ A0) = H(r−1t−2 ∗ A0), the receiver will therefore get the message
m1 = Dk1 (c0,1). That is, the simulator correctly extracts the input of the adversary. Hence, the real execution
is indistinguishable from the ideal execution. �

Remark. In the formal description of [Can01], the environment machine and the adversary (simulator)
starts with z, and the inputs of the parties are given through further instruction messages. Regarding read-
ability and simplicity, we combine them into a single statement here without undermining the effectiveness
of the proof.

5 Comparison

5.1 Efficiency
Table 1 illustrates a comparison between our oblivious transfer protocols with [BOBN18, dSGOPS18,
Vit19, AFMP20] in terms of efficiency, including the number of curves in the domain parameters or gen-
erated by a trusted party, the number of curves in the public keys for the sender and the receiver, the total
number of isogeny computations for the sender and the receiver, and the number of rounds, respectively.
Among the isogeny-based OTs, our 2-round OT proposal is the most efficient with respect to every criteria
against semi-honest adversaries. It only takes an additional round and two isogeny computations for each
participant to achieve UC-secure against static malicious adversaries.

Proposal DP PKS PKR # IsoS # IsoR # rounds Others
[BOBN18] 1 1 1 3 2 3 SIDH-based
[dSGOPS18] I 2 1 1 3 2 2
[dSGOPS18] II 1 3 1 5 2 3
[Vit19] 1 2 1 4 2 3 Insecure in CSIDH
[AFMP20] I 4 2n 2 4n n + 2 2 Group-action-based
[AFMP20] II 1 2n 5 4n n + 5 2 Single Bit Transfer
This paper (Figure 3) 1 1 1 3 2 2 CSIDH-based
This paper (Figure 4) 1 1 1 5 4 3 CSIDH-based

Table 1: Comparison between isogeny-based OTs on efficiency where n is the security parameter. We give
the costs for both our 2-round protocol from Figure 3 and the full construction from Figure 4.

In [BOBN18], they used some properties of SIDH. The receiver randomly subtracts two selected points
U,V ∈ EB to the points (φB(PA), φB(QA)) to produce public points (ĜA, ĤA) with respect to the secret bit i.
The sender adds the same points jU, jV to the received points for j ∈ {0, 1} to produce two decryption keys.
The additional mechanism allows the receiver and the sender to generate the same points U,V . As stated
in their work, randomly generated U,V ∈ EB may reveal the secret bit to an honest-but-curious sender by
checking the equality of Weil pairings e(PA,QA)leA

A , e(ĜA, ĤA), and (ĜA + λU, ĤA + λV) for λ ∈ Z. On the
other hand, it is also possible that the honest-but-curious receiver gets the isomorphic curves. In order to
prevent these, the U,V are generated through a delicate process.

The two frameworks of [dSGOPS18] includes DH, SIDH, and CSIDH settings. The first construction
is a two-message oblivious transfer and requires one more curve in the trusted setup phase.

The paper [Vit19] showed a construction based on exponentiation-only Diffie-Hellman. The construc-
tion can fit in the DH, SIDH, and CISDH settings. But, as stated in their work, it will be totally insecure
in the CSIDH setting against a malicious receiver. Specifically, their two-inverse problem is given curves
(E, a ∗ E, b ∗ E) to find some curve tuple (X, a−1 ∗ X, b−1 ∗ X) where X is isogenous to E. This can be done
in the CSIDH setting by taking quadratic twists of (E, a ∗ E, b ∗ E).

In [AFMP20], both constructions are based on the decisional group action problem (the decisional
CSIDH problem for instance). If the number of isogeny computations in the encryption (and decryption)

18



algorithm is ` = ω(log(n)), then the statistical distance between a pair of ciphertexts is ∆ = n−ω(1). In
particular, the parameter ` here is taken to be n so that the distance is less than 2−n.

5.2 Security

Adversary Model Security Definition Model
[BOBN18] ≤Semi-honest* Simulatable* ROM+CRS
[dSGOPS18] I Semi-honest UC-realize ROM+TSC
[dSGOPS18] II Semi-honest UC-realize ROM+TSC
[Vit19] Malicious Semantic Plain
[AFMP20] I Malicious UC-realize CRS
[AFMP20] II Malicious SSP Plain
This paper (Figure 3) Semi-honest UC-realize ROM+TSC
This paper (Figure 4) Malicious UC-realize ROM+TSC

Table 2: Comparison between previous isogeny OTs and our constructions. The models include the random
oracle model (ROM), the common reference string model (CRS) and trusted setup curves (TSC).

On the issue of security, a comparison is shown in Table 2. In [BOBN18], the claim is incorrect. Firstly,
the adapted definition is Definition 2.6.1 of [HL10] that guarantees the privacy in the presence of malicious
adversaries for a two-round oblivious transfer protocol while the scheme in [BOBN18] is three-round.
Except for the misuse of the definition, the view-based simulation proof is incomplete even against semi-
honest adversaries. The evidence is the further algebraic analysis appended after the proof. The context
manifests that the protocol might still leak information even both the sender and the receiver follow the
protocol specification. In other words, the proof is incomplete even against semi-honest adversaries.

In [dSGOPS18], the schemes are universally composable secure in the semi-honest model. In [Vit19],
they proposed a security definition called the semantic security of oblivious transfer, which guarantees
indistinguishability for the sender within the distinct executions. The scheme is under a weak decisional
problem which, in the SIDH setting, is easier than the decisional SIDH problem.

Section 4.2 and 4.3 of [AFMP20] present two OT constructions. Through using group actions and devel-
oping new tools, the first one is derived from a dual-mode public key encryption based on the Diffie-Hellman
setting of [PVW08]. The second construction is a plain model OT, which is statistically sender-private. The
notion ensures computational indistinguishability privacy for the receiver and statistical indistinguishability
privacy for the sender. The schemes’ main drawback is efficiency since both of them are bit-transferring
and require a poly(n) number of isogeny computations.

Remark. One can also show that the construction of Figure 3 is a private oblivious transfer (Definition
2.6.1 in [HL10]) ensuring privacy for both parties in the malicious model. Since the proof would sidetrack
the goal of this work, we leave this to the reader.

6 Conclusion
In this paper, we present the first practical UC-secure isogeny-based oblivious transfer protocol in the
presence of static corruptions and malicious adversaries. The construction is simple and compact, and the
number of isogeny computations is constant. Moreover, the scheme shares the same hardness as the CSIDH
key agreement scheme.

To achieve this outcome, we developed six techniques in this work. In the beginning, the communication
bandwidth is reduced through mixing the key-exchange-type problem and an equivalent variant. Next, by
utilizing a new use of quadratic twists, we not only compress the number of rounds of the protocol but also
fortify the hardness of the underlying assumption (achieving the self-reconciling property). By combining
the self-reconciling proposition and proof of ability to decrypt at the cost of one extra round, the simulator
is able to extract the input of the receiver to achieve one-sided simulation. Furthermore, for the purpose
of extracting the input of the sender, we set up trapdoors for the protocol via a new use of quadratic twists
to get a fully-simulatable construction. Finally, we develop a new computational assumption as well as
the inverse and square variants and prove equivalence to the standard CSIDH assumption with quantum
reductions.
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We remark that these techniques are not exclusive to isogeny-based cryptography except for the use
of quadratic twists. We envisage that these techniques can serve as potential cryptographic tools in future
work.
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[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious transfer and
private multi-party computation. In CRYPTO ’95, volume 963 of Springer LNCS, pages
110–123, 1995.
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A Equivalence of The Square/Inverse/Reciprocal CSIDH Problem
and The Computational CSIDH Problem

We will show the computational CSIDH problem is equivalent to the square variant with a quantum reduc-
tion. The order of the ideal class group can be computed with a quantum algorithm [Sho99, Hal05]. This
is the only part of the reduction that is quantum and it can be viewed as a precomputation; the rest of the
reduction is classical. In Proposition A.1 above, we have shown equivalence for the case that the order of
the class group of the endomorphism ring is odd which is the case when p = 3 mod 4. The remaining case
is that the class number is even which happens when p = 1 mod 4. In this case, the discriminant is −4p.

Proposition A.1. ([Fel19]) The square CSIDH problem is equivalent to the computational CSIDH problem
if the order h of the group Cl is odd and given.

Lemma A.2. Given (E, a ∗ E). Then for n ∈ N one can compute an ∗ E with given access to the oracle O
for the square CSIDH problem with O(log (n)) queries.

Proof. The reduction is based on the double-and-add method. Firstly, generate a−1 ∗E = O(a∗E, E). Given
ai ∗ E, by quering O(E, aiE) and O(a−1 ∗ E, ai ∗ E), one can compute a2i ∗ E and a2i+1 ∗ E, resp. Therefore,
we can compute an ∗ E within log(n) + 3 oracle queries. �

Note that the direct isogeny computation of ae acting on E where a, E are given and e = Θ(log(#Cl))
is avoided in the following proof, since these types of isogeny computations may not be polynomial-time
[CLM+18, BFJ16], which would make the reduction non-polynomial-time. Let (x)−1

y denote the inverse of
x mod y.

Proposition A.3. The square CSIDH problem is equivalent to the computational CSIDH problem if the
order h of the group Cl is given.

Proof. Let p = 1 mod 4 so that the order h of the class group is even. Since the discriminant of the
class group is −4p, by Proposition 3.11 of [Cox11], the 2-Sylow subgroup of the class group is of rank 1.
Hence, the class group is isomorphic to Z2t × Zh′ for some t, h′ ∈ N with h′ being odd. Given the challenge
(E, a ∗ E, b ∗ E) and access to the oracle O, the goal is to find the curve ab ∗ E.

Define the mapping χ : Cl −→ Cl×Cl where χ2t (a) = ah
′(h′)−1

2t , χh′ (a) = a2
t(2t)−1

h′ and χ(a) = (χ2t (a), χh′ (a)).
The image of χ is isomorphic to Z2t × Zh′ . The mapping χ satisfies χ2t (x)χh′ (x) = x. Given a ∗ E, the pair
(χ2t (a) ∗ E, χh′ (a) ∗ E) can be efficiently computed by Lemma A.2 by using the oracle.

Run the following polynomial-time algorithm.

1. Compute a′′ ∗ E and b′′ ∗ E where a′′ = χh′ (a) and b′′ = χh′ (b) by Lemma A.2.

2. From Proposition A.1, given a′′ ∗ E, b′′ ∗ E, one can get a′′b′′ ∗ E since a′′, b′′ are of odd order.

3. Compute (a′′b′′)
h′+1

2 ∗ E using Lemma A.2. Denote q = (a′′b′′)
h′+1

2 ∈ Cl. Note that q2 = a′′b′′.

4. Generate a curve g ∗ E where g ∈ Cl is of order 2t. (See details below.)

5. Compute a′ ∗ E and b′ ∗ E where a′ = χ2t (a) and b′ = χ2t (b). Write a′ = g
∑

a′i 2
i
and b′ = g

∑
b′i 2

i
where

a′i , b
′
i ∈ {0, 1}.

6. Obtain a′0 by computing a′2
t′−1
∗ E by Lemma A.2. If it is E, then a′0 = 0. Otherwise, a′0 = 1.

7. Iteratively, for j < t − 1, assume a′0, ..., a
′
j−1 are known, then obtain a′j by computing a′2

t− j−1
∗ E. If,

with Lemma A.2, the curve equals
g
∑ j−1

0 2i+t− j−1a′i ∗ E,

then a′j = 0; otherwise, a′j = 1.

8. Repeat Step 6 and Step 7 for b′ to obtain b′i ∈ {0, 1}.

9. Compute g−
∑

(a′i +b′i )2
i
∗ E using Lemma A.2. (Note that χ2t ((ab)−1) ∗ E = g−

∑
(a′i +b′i )2

i
∗ E.)

10. Compute O(g−
∑

(a′i +b′i )2
i
∗ E, q ∗ E) to obtain ab ∗ E.
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In Step 4, the curve can be generated by sampling a random element gpre ∈ Cl and raising gpre to the
power of 2t−1h′. If it is the identity element in Cl, then restart. Otherwise, set g ∗E to be gh′

pre ∗E by Lemma
A.2. If the sampling is random enough, then the success rate is 1/2 for each trial.

The relation between a′ ∗ E and g ∗ E is computed in Step 6. Since g is of order 2t, then a′2
t−1
∗ E =

ga′02t−1
∗ E. Hence, a′0 is 0 if and only if the outcome is E.

In Step 7, the idea of Step 6 is taken one step further to recover a′j for j = 1, ..., t − 1 iteratively. This
idea is known as the Pohlig-Hellman attack [PH78]. If a′0, ..., a

′
j−1 are known, raising a′ ∗ E to the power of

t − j − 1 eliminates a j+1, ..., at−1 in the exponentiation of a′ with the base g, since the order of g is 2t. We
can thereby find out a′j through comparing. To be more specific, due to

a′2
t− j−1
∗ E = g

∑ j
0 a′i 2

i+t− j−1
∗ E,

we have a′j = 0 if and only if

g
∑ j−1

0 2i+t− j−1a′i ∗ E = g
∑ j

0 2i+t− j−1a′i ∗ E.

The same reasoning holds for b. Hence, we can compute g−
∑

(a′i +b′i )2
i
∗ E, which is χ2t ((ab)−1) ∗ E.

In step 10, we invoke the oracle of the square CSIDH problem and get

O
(
g−

∑
(a′i +b′i )2

i
∗ E, q ∗ E

)
=

(
g
∑

(a′i +b′i )2
i
q2

)
∗ E

=
(
χ2t (ab)(a′′b′′)h′+1

)
∗ E

=
(
χ2t (ab)(a′′b′′)

)
∗ E

= (χ2t (ab)χh′ (ab)) ∗ E

= ab ∗ E.

�

With the reduction in the context (Proposition 2.2), we have shown equivalence between square, inverse,
reciprocal variants. Therefore, in a generic CSIDH setting, we have the following relation

Computational CSIDH =quantum Computational Inverse/Square/reciprocal CSIDH.
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