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Abstract

We obfuscate the big subset and small superset functionalities in a very simple
way. We prove both VBB and input-hiding in the standard model based on the subset
product problems. Our security proofs are simple.

Let n ∈ N be the bit length, t ∈ N be the threshold indicating big/small, x ∈
{0, 1}n be the characteristic vector of a set, with its hamming weight |x| denoting
the size of the set. Our obfuscation for x requires that ||x| − t| < n/2. Note that a
random x has hamming weight approximately n/2, hence this condition is for free
most of the time.

Our obfuscation requires hamming distance evasiveness, which is stronger than
big subset and small superset evasiveness. Though, this requirement already implies
a fairly large family of functions to obfuscate.

We also give a proof of input-hiding for the conjunction obfuscation by Bartusek
et al. [5] (see Appendix A) and propose a new conjunction obfuscation based on
the big subset and small superset obfuscation (see Appendix B). The security of our
conjunction obfuscation is from our new assumption called the twin subset product
problem.

1 Introduction

The goal of function obfuscation is to prevent a function from being recovered while
preserving its functionality. Due to the impossibility of general purpose obfuscation
[2], special purpose obfuscation aims at obfuscating restricted classes of functions. An
interesting class of functions is the evasive functions. They are the kind of functions
that are hard to find an accepting input. Examples of evasive functions include point
functions, conjunctions, fuzzy distance matching, hyperplane membership functions,
compute-and-compare functions, etc.

1



Two problems of interest are big subset functionality and small superset functionality
[6, 4]. Let t ≤ n ∈ N and X ⊆ {1, . . . , n} be a set. A big subset function (BSF) fn,t,X(Y)
takes as input a set Y and outputs 1 if Y is a subset of X and the size of Y is not smaller
than t, or outputs 0 otherwise. Conversely, a small superset function (SSF) fn,t,X(Y) takes
as input a set Y ⊆ {1, . . . , n} and outputs 1 if Y is a superset of X and the size of Y is
not larger than t, or outputs 0 otherwise.

In this paper we will use the following equivalent definitions. Let x ∈ {0, 1}n. A
BSF is a function fn,t,x(y) which takes as input y ∈ {0, 1}n and outputs 1 if x − y ∈
{0, 1}n and |y| ≥ t (where |y| denotes the hamming weight of y), or outputs 0 otherwise.
Similarly, an SSF is a function fn,t,x(y) which takes as input y ∈ {0, 1}n and outputs 1 if
y− x ∈ {0, 1}n and |y| ≤ t, or outputs 0 otherwise.

Previous works for BSF or SSF obfuscation include [6] and [4]. Beullens and Wee
[6] obfuscate BSF from a new knowledge assumption. Bartusek et al. [4] obfuscate SSF
using similar techniques to [5]. The obfuscator in [5] is a dual scheme of Bishop et al.’s
obfuscator [7] for conjunctions. The security proofs in both [6] and [4] are somewhat
complicated.

Our contribution is to give new obfuscators for BSF and SSF for certain parameter
ranges that are based on simpler and more standard computational assumptions, and
that have simpler security proofs. Also we give a proof of input-hiding for the con-
junction obfuscation by Bartusek et al. [5] and propose a new conjunction obfuscation
based on the BSF and SSF obfuscation (see Appendix A and Appendix B, respectively).
The security of our conjunction obfuscation is from our new assumption called the twin
subset product problem.

1.1 Technical Overview

We explain our construction for BSFs as follows. The case of SSFs is similar.

Let n, t ∈ N with t < n. Let x = (x1, . . . , xn) ∈ {0, 1}n, and r = |x| − t ∈ N.
We require r ≤ n/2. To obfuscate, the obfuscator samples n different small primes
p1, . . . , pn from [2, B] for some B ∈ N, and a prime q such that Br < q < (1 + o(1))Br. It
then computes the product X = ∏n

i=1 pxi
i (mod q) and publishes (p1, . . . , pn, q, X) as the

obfuscated function.

To evaluate with input y = (y1, . . . , yn) ∈ {0, 1}n, the obfuscated function firstly
checks if |y| ≥ t. If not, which means y is not “big”, then it terminates and outputs 0.
If |y| ≥ t, then it further computes Y = ∏n

i=1 pyi
i (mod q) and E = XY−1 (mod q) =

∏n
i=1 pxi−yi

i (mod q), and tries to factor E by dividing the primes p1, . . . , pn one by one.
If x− y ∈ {0, 1}n, which means y is a “subset” of x, then |y| ≥ t ensures that |x− y| ≤ r,
so E factors over {p1, . . . , pn}. If this is the case, then the function outputs 1. Otherwise,
if x− y /∈ {0, 1}n, which means y is not a “subset” of x, then with high probability E will
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not factor over {p1, . . . , pn}, then the function outputs 0.

2 Preliminaries

We call a binary string x ∈ {0, 1}n the characteristic vector of a set. Its hamming weight
|x| represents the size of the set. Let C be a circuit, by |C| we mean the size of C. Let a be
a real number, by |a| we mean the absolute value of a. We denote continuous intervals in
the usual way as (a, b), [a, b), (a, b], and [a, b], for a, b ∈ R. We denote discrete intervals
such as {a, . . . , b} in the same way as [a, b], for a, b ∈ N. We call a rational number a
proper rational if it is not an integer. Let f , g : N → R be two functions. By f ∼ g we
mean limn→∞

f (n)
g(n) = 1 and by f ≺ g we mean limn→∞

f (n)
g(n) = 0.

Let λ ∈ N be the security parameter. We say two distributions Dλ and Eλ are com-
putational indistinguishable if for every probabilistic polynomial time (PPT) algorithm
A, there exists a negligible function µ in λ such that∣∣∣∣ Pr

x←Dλ

[A(x) = 1]− Pr
x←Eλ

[A(x) = 1]
∣∣∣∣ ≤ µ(λ),

dented Dλ
c≈ Eλ. To be concrete, in the rest of the paper we take µ = 1/2λ.

We use circuits to represent functions. By a circuit we always mean the circuit of
minimal size that computes a specified function. The size complexity of a circuit of
minimal size is polynomial in the time complexity of the function it computes.

Definition 2.1 (Distributional Virtual Black-Box Obfuscator (VBB) [3, 12]). Consider a fam-
ily of circuits C and let O be a PPT algorithm, which takes as input a circuit C ∈ C, a security
parameter λ ∈ N, and outputs a circuit C̃ ← O(1λ, C). Let D be a class of distribution ensem-
bles D = {Dλ}λ∈N that sample (C, aux) ← Dλ with C ∈ C and aux some polynomial size
auxiliary information. We say that O is an obfuscator for the distribution class D over the circuit
family C, if it satisfies the following properties:

1. Functionality Preserving: There is some negligible function µ such that for all n ∈ N and for
all circuits C ∈ C with input size n we have

Pr[∀x ∈ {0, 1}n : C(x) = C̃(x) | C̃ ← O(1λ, C)] ≥ 1− µ(λ),

where the probability is over the coin tosses of O.

2. Polynomial slowdown: There exists a polynomial p such that for every n, every circuit C ∈ Cn,
and every possible sequence of coin tosses for O, the circuit O(C) runs in time at most p(|C|),
i.e., |O(C)| ≤ p(|C|), where | · | denotes the size of a circuit.
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3. Distributional Virtual Black-Box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) PPT simulator S, such that for every distribution ensemble D =
{Dλ}λ∈N ∈ D, and every (non-uniform) polynomial size predicate ϕ : C → {0, 1}, there exists
a negligible function µ such that:∣∣∣∣ Pr

(C,aux)←Dλ

[A(O(1λ, C), aux) = ϕ(C)]

− Pr
(C,aux)←Dλ

[SC(1λ, C.params, aux) = ϕ(C)]
∣∣∣∣ ≤ µ(λ), (1)

where the first probability is taken over the coin tosses of A and O, the second probability is taken
over the coin tosses of S, C.params is a set of parameters associated to C (e.g., input size, output
size, circuit size, etc.) which we are not required to hide, and SC has black-box access to the circuit
C.

Note that for evasive functions, black-box access to the circuit C is useless. Hence it
make sense to consider a definition that does not give the simulator black-box access to
the circuit.

Definition 2.2 (Distributional-Indistinguishability [12]). An obfuscator O for the distribu-
tion class D over a family of circuits C, satisfies distributional-indistinguishability, if there exists
a (non-uniform) PPT simulator S, such that for every distribution ensemble D = {Dλ}λ∈N ∈ D
that samples (C, aux)← Dλ with C ∈ C, we have that

(O(1λ, C), aux)
c≈ (S(1λ, C.params), aux),

where (C, aux)← Dλ, and aux is some auxiliary information.

For convenience of use, we restate the definition in the following equivalent way.

Definition 2.3 (Distributional-Indistinguishability - Alternative Definition). An obfuscator
O for the distribution classD over a family of circuits C, satisfies distributional-indistinguishabil-
ity, if there exists a (non-uniform) PPT simulator S, such that for every PPT distinguisher B, for
every distribution ensemble D = {Dλ} ∈ D that samples (C, aux) ← Dλ with C ∈ C, and
every (non-uniform) polynomial size predicate ϕ : Cλ → {0, 1}, there exists a negligible function
µ such that:∣∣∣∣ Pr

(C,aux)←Dλ

[B(O(1λ, C), aux′) = 1]

− Pr
(C,aux)←Dλ

[B(S(1λ, C.params), aux′) = 1]
∣∣∣∣ ≤ µ(λ), (2)

where the first probability is taken over the coin tosses of B and O, the second probability is taken
over the coin tosses of B and S, and aux′ = (aux, ϕ(C)).
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It is shown in [12] that distributional-indistinguishability which works with aux′ =
(aux, ϕ(C)) implies distributional VBB which works with aux, where ϕ(C) is an arbitrary
1-bit predicate of the circuit. To state the theorem, we need the following definition of
predicate augmentation, which allows to add an arbitrary 1-bit predicate of the circuit to
the auxiliary input.

Definition 2.4 (Predicate Augmentation [3, 12]). For a distribution class D, we define its
augmentation under predicates, denoted aug(D), as follows. For any (non-uniform) polynomial-
time predicate ϕ : {0, 1}∗ → {0, 1} and any D = {Dλ} ∈ D the class aug(D) indicates the
distribution D′ = {D′λ} where D′λ samples (C, aux)← Dλ, computes aux′ = (aux, ϕ(C)) and
outputs (C, aux′).

Theorem 2.5 (Distributional-Indistinguishability implies VBB [12]). For any family of cir-
cuits C and a distribution class D over C, if an obfuscator O satisfies distributional-indistinguish-
ability (Definition 2.3) for the class of distributions aug(D) then it also satisfies distributional-
VBB security for the distribution class D (Definition 2.1).

Compared with VBB, input-hiding is a more natural security notion for evasive func-
tion obfuscation.

Definition 2.6 (Input-Hiding [1]). An obfuscator O for a circuit collection C = {Cλ}λ∈N is
input-hiding if for every PPT adversary A there exists a negligible function µ such that for every
λ ∈N and for every auxiliary input aux ∈ {0, 1}poly(λ) to A:

Pr
C←Cλ

[C(A(O(C)), aux) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of Cλ and the coin tosses of A and O.

Note that input-hiding is particularly defined for evasive functions, since there is no
way one can hide the inputs of a non-evasive function without changing its functionality.

Definition 2.7 (Evasive Circuit Collection [1]). A collection of circuits C = {Cλ}λ∈N is
evasive if there exists a negligible function µ such that for every polynomial p, for every λ ∈ N,
and for every x ∈ {0, 1}n with n = p(λ) ∈N:

Pr
C←Cλ

[C(x) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of Cλ.

Note that in Definition 2.7 we made a distinction between the security parameter λ
and the input length n, where [1] assumes that λ = n.

We also need the following four definitions to discuss evasiveness.
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Definition 2.8 (Min-Entropy). The min-entropy of a random variable X is defined as H∞(X) =
− ln(maxx Pr[X = x]). The (average) conditional min-entropy of a random variable X condi-
tioned on a correlated variable Y is defined as H∞(X|Y) = − ln(Ey←Y[maxx Pr[X = x|Y = y]).

Definition 2.9 (Hamming Ball Min-Entropy [10]). (Also known as fuzzy min-entropy ([9],
Definition 3).) Let r < n ∈ N. The hamming ball min-entropy of a random variable X on
{0, 1}n is defined as

HHam,∞(X) = − ln
(
maxy∈{0,1}n Pr[|X⊕ y| ≤ r]

)
,

where ⊕ denotes the XOR operation.

Definition 2.10 (Big Subset Min-Entropy). Let 0 ≤ t ≤ n ∈ N. The big subset min-entropy
of a random variable X on {0, 1}n is defined as

HSub,∞(X) = − ln
(
maxy∈{0,1}n Pr[X− y ∈ {0, 1}n, |y| ≥ t]

)
.

Definition 2.11 (Small Superset Min-Entropy). Let 0 ≤ t ≤ n ∈ N. The small superset
min-entropy of a random variable X on {0, 1}n is defined as

HSup,∞(X) = − ln
(
maxy∈{0,1}n Pr[y− X ∈ {0, 1}n, |y| ≤ t]

)
.

3 Big Subset and Small Superset Functionalities

We define big subset and small superset functionalities as follows.

Definition 3.1 (Big Subset Function (BSF) [6]). For each n ∈ N, we define the class of big
subset functions Cn to be the class of functions parametrized by (n, t, X), where X ⊆ {1, . . . , n},
and t ∈ N is a threshold with 0 ≤ t ≤ n. A big subset function is a function fn,t,X :
P({1, . . . , n})→ {0, 1} that on input a set Y ⊆ {1, . . . , n} outputs 1 if Y ⊆ X and |Y| ≥ t, or
outputs 0 otherwise, where P denotes the power set.

Definition 3.2 (Small Superset Function (SSF) [4]). For each n ∈ N, we define the class of
small superset functions to be the class of functions Cn parametrized by (n, t, X), where X ⊆
{1, . . . , n}, and t ∈ N is a threshold with 0 ≤ t ≤ n. A small superset function is a function
fn,t,X : P({1, . . . , n}) → {0, 1} that on input a set Y ⊆ {1, . . . , n} outputs 1 if X ⊆ Y and
|Y| ≤ t, or outputs 0 otherwise, where P denotes the power set.

Following are equivalent definitions that will be used in the rest of the paper.

Definition 3.3 (Big Subset Function (BSF) - Alternative Definition). For each n ∈ N, we
define the class of big subset functions to be the class of functions Cn parametrized by (n, t, x),
where x ∈ {0, 1}n, and t ∈N is a threshold with 0 ≤ t ≤ n. A big subset function is a function
fn,t,x : {0, 1}n → {0, 1} that on input y ∈ {0, 1}n outputs 1 if x− y ∈ {0, 1}n and |y| ≥ t, or
outputs 0 otherwise.
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Definition 3.4 (Small Superset Function (SSF) - Alternative Definition). For each n ∈ N,
we define the class of small superset functions Cn to be the class of functions parametrized by
(n, t, x), where x ∈ {0, 1}n, and t ∈N is a threshold with 0 ≤ t ≤ n. A small superset function
is a function fn,t,x : {0, 1}n → {0, 1} that on input y ∈ {0, 1}n outputs 1 if y− x ∈ {0, 1}n

and |y| ≤ t, or outputs 0 otherwise.

4 Evasiveness of BSFs and SSFs

In this section we discuss requirements for the evasiveness of BSFs and SSFs.

Let n ∈ N be the bit length of a set x ∈ {0, 1}n, and t ∈ {0, . . . , n} be the threshold
indicating big/small. Let λ ∈ N be the security parameter such that n = p(λ) for some
polynomial p. Note that n, t are functions in λ, we therefore sometimes denote them as
n(λ), t(λ).

Definition 4.1 (Evasive BSF/SSF). Let {Xn(λ)}n(λ)∈N be an ensemble of distributions over
{0, 1}n(λ). Let C = {Cn(λ),t(λ)}n(λ)∈N with Cn(λ),t(λ) = { fn(λ),t(λ),x}x←Xn(λ)

be the corre-
sponding collection of BSFs (or SSFs). We say C is evasive if there exists a negligible function µ

such that for every polynomial p, for every λ ∈N, and for every y ∈ {0, 1}n(λ):

Pr
x←Xn(λ)

[ fn(λ),t(λ),x(y) = 1] ≤ µ(λ). (3)

4.1 Uniform Distributions

Now we consider the requirements for evasiveness. Let us start with the case where
{Xn(λ)}n(λ)∈N are uniform distributions.

For BSF, if |y| < t(λ), then Inequality (3) always holds since y will never be a “big”
subset of any x. If |y| ≥ t(λ), then there are at most 2n(λ)−t(λ) many x such that y is
a subset of x, Inequality (3) holds if and only if 2λ−t(λ)/2n(λ) ≤ 1/2λ, i.e. t(λ) ≥ λ.
Therefore in the case where {Xn}n∈N are uniform distributions, the BSF family C is
evasive if and only if

t(λ) ≥ λ.

Similarly, for SSF, if |y| > t(λ), then y will never be a “small” superset of any x
hence Inequality (3) always holds. If |y| ≤ t(λ), then there are at most 2t(λ) many x
such that y is a superset of x, Inequality (3) holds if and only if 2t(λ)/2λ ≤ 1/2λ, i.e.,
t(λ) ≤ n(λ)− λ. Hence in the case where {Xn}n∈N are uniform distributions, the SSF
family C is evasive if and only if

t(λ) ≤ n(λ)− λ.
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Note that the above requirements for t are the most basic ones in the sense that they
are obtained under the best possible distributions, namely the uniform distributions.

4.2 General Distributions

We now consider the case where {Xn(λ)}n(λ)∈N are general distributions.

Let us first explain what exactly Inequality (3) means. In words, it means that for
every y ∈ {0, 1}n(λ), an x sampled from the distribution Xn(λ) has negligible probability
that y is a big subset (or small superset in the case of SSF) of x. Intuitively, this requires
that in the space {0, 1}n(λ), the number of points x representing BSFs (or SSFs) is large
enough and at the same time they are well-spread-out in the sense that big subset rela-
tions (or small superset relations, respectively) between points occur sparsely and evenly
in the space. Rigorously, the following requirement implies Inequality (3).

Definition 4.2 (Big Subset / Small Superset Evasive Distribution). Let n(λ) ∈N and λ be
the security parameter. Let X = {Xn(λ)}n(λ)∈N be an ensemble of distributions over {0, 1}n(λ).
We say that X is big subset evasive (or small superset evasive, respectively) if the big subset min-
entropy (or small superset min-entropy, respectively) of X, as in Definition 2.10 (or in Definition
2.11, respectively), is at least λ.

Note that asking for a big subset or a small superset is a stronger question than asking
for a “close” set. Hence the above requirement is somehow looser than the evasiveness
requirement for fuzzy hamming distance matching. Intuitively, in the case of fuzzy
hamming distance matching, we require that the points in the hamming space are spread
out such that their hamming balls do not overlap too seriously; while in the case of BSFs
(or SSFs), the hamming balls can overlap more seriously. For example, let x = (01||c) and
y = (10||c) be two strings with only the first two bits different, where c ∈ {0, 1}n(λ)−2.
We can see that x and y have very small hamming distance |x⊕ y| = 2, but none of them
is a subset or a superset of the other.

This means that in the same space {0, 1}n(λ), there are more evasive BSFs as well as
evasive SSFs than evasive fuzzy hamming distance matching functions.

Nonetheless, our obfuscation for BSFs and SSFs has to work under the stronger re-
quirement, namely the requirement for evasive hamming distance matching. This is
because an attacker can always recover the secret x from its encoding by merely finding
a “close” set and not necessary to find a big subset or a small superset.

We therefore use the following definition for evasiveness of BSFs and SSFs in the rest
of the paper.

Definition 4.3 (Hamming Distance Evasive Distribution [10]). Let λ ∈ N be the security
parameter and n(λ), t(λ) ∈ N. Let X = {Xn(λ)}n(λ)∈N be an ensemble of distributions over
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{0, 1}n(λ). We say that X is hamming distance evasive if the hamming ball min-entropy of X (as
in Definition 2.9 with r(λ) := ||X| − t(λ)| < n(λ)) is at least λ.

Note that this requirement of evasiveness already implies a wide range of parameters
in the sense of the largest obfuscatable gap between |x| and t(λ). Specifically, for the
negligible probability that a uniform y ← {0, 1}n(λ) falls into the radius-r hamming ball
of x is at least 1/2λ, i.e.,

Pr
y←{0,1}n(λ)

[|x⊕ y| ≤ r(λ)] ≤ 1
2λ

,

we require that

r(λ) ≤ n(λ)
2
−
√

λn(λ) ln 2 (4)

(for a proof of this for the uniform distribution Xn(λ), see Lemma 2 in [10]). The hamming
distance evasive distribution gives the gap ||x| − t(λ)| the same domain as r(λ).

5 Computational Assumptions

In the following we state the subset product problems (SP) defined in [10]. Then we
reduce SP from DLP based on a seemingly looser conjecture than [10]. We show that even
in a very low density case (e.g., q = n(λ)2n(λ)), the reduction still works. In the following
definitions, n, r, t are always functions in λ, denoted n(λ), r(λ), t(λ), respectively; and
we assume n(λ) ≥ λ.

Definition 5.1 (Discrete Logarithm Problem (DLP)). Let N ∈ N. Let G of order N be a
finite group written in multiplicative notation. The discrete logarithm problem is the following.
Given g, h ∈ G to find a (if it exists) such that h = ga.

Definition 5.2 (Subset Product Problem (SP) [10]). The subset product problem is the fol-
lowing. Given n(λ) + 1 primes (p1, . . . , pn(λ), q) and an integer X ∈ Z∗q , find a subset
of the pi’s (if one exists) that multiply to X modulo q, or equivalently, find a binary string
(x1, . . . , xn(λ)) ∈ {0, 1}n(λ) such that X = ∏

n(λ)
i=1 pxi

i (mod q).

Definition 5.3 (Decisional-Subset Product Problem (d-SP) [10]). The decisional-subset prod-
uct problem is the following. Given n(λ) + 1 primes (p1, . . . , pn(λ), q) and an integer X ∈ Z∗q ,

decide if there exist a binary string (x1, . . . , xn(λ)) ∈ {0, 1}n(λ) such that X = ∏
n(λ)
i=1 pxi

i (mod q).
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Assumption 5.4 (Hard DLP). Let λ ∈ N. Let Z∗q be the multiplicative group of integers
modulo q with q = 2p + 1 ≥ 2λ a safe prime for some prime p. If g is sampled uniformly from
Z∗q and a is sampled uniformly from {0, . . . , q− 2}, then for all λ ∈N, there exists a negligible
function µ(λ) such that for all PPT algorithms A, the probability that A solves the DLP (g, ga)
is not greater than µ(λ).

Definition 5.5 ((n(λ), r(λ), B(λ)-SP Distribution). Let λ, n(λ), r(λ), B(λ) ∈N with n(λ) ≥
λ polynomial in λ, r(λ) satisfying Inequality (4), and B(λ) larger than the n(λ)-th prime. Let
Xn(λ) be a distribution over {0, 1}n(λ) with hamming ball min-entropy λ. Let (x1 . . . , xn(λ))←
Xn(λ) and let p1, . . . , pn(λ) be distinct primes sampled uniformly from the primes in [2, B(λ)].
Let q be any safe prime in [B(λ)r(λ), (1+ o(1))B(λ)r(λ)]. Then we call the distribution (p1, . . . ,
pn(λ), q, X) with X = ∏

n(λ)
i=1 pxi

i (mod q) the (n(λ), r(λ), B(λ))-SP distribution.

Assumption 5.6 (Hard SP). Let λ, n(λ), r(λ), B(λ) ∈ N. Then for every n(λ) ∈ N, there
exists a negligible function µ(λ) such that for every PPT algorithm A, the probability that A
solves the SP (p1, . . . , pn(λ), q, ∏

n(λ)
i=1 pxi

i (mod q)) over the (n(λ), r(λ), B(λ))-SP distribution
is not greater than µ(λ).

Note that requiring Inequality (4) in Definition 5.5 is to ensure that for a center point
x ∈ {0, 1}n(λ), the probability that a uniform y ← {0, 1}n(λ) falls into the radius-r ham-
ming ball of x is at least 1/2λ, as we discussed with regard to Inequality (4). In particular,
Assumption 5.6 is false if r(λ) > n(λ)/2 since one can easily guess a string within ham-
ming distance n(λ)/2 of x, and then solve SP using the decoding method in [10]. Also,
we refer to the discussion regarding Equation (9.3) in [10] to justify why such a safe
prime q in Definition 5.5 exists.

Assumption 5.7 (Hard d-SP). Let λ, n(λ), r(λ), B(λ) ∈N. Let D0 = (p1, . . . , pn(λ), q, X) be
the (n(λ), r(λ), B(λ))-SP distribution and D1 = (p1, . . . , pn(λ), q, X′) be the same distribution

with X = ∏
n(λ)
i=1 pxi

i (mod q) replaced by X′ ← Z∗q . Then for every n(λ) ∈ N, there exists a
negligible function µ(λ) such that given polynomially many instances from Db with b ∈ {0, 1},
for every PPT algorithm A, the difference of the probabilities that A outputs b′ = b and A
outputs b′ 6= b is not greater than µ(λ). I.e.,∣∣∣Pr[AD0 = 1]− Pr[AD1 = 1]

∣∣∣ ≤ µ(λ). (5)

It is shown in [10] that the hardness of SP (as in Assumption 5.6) reduces from the
hardness of DLP (as in Assumption 5.4), assuming the following conjecture.

Conjecture 5.8 ([10]). Let λ, n(λ), r(λ), B(λ) ∈N. Let (p1, . . . , pn(λ), q, ∏
n(λ)
i=1 pxi

i (mod q))
be the (n(λ), r(λ), B(λ)-SP distribution with the extra condition that q ≤ 2n(λ). Let Xn(λ)

be the uniform distribution on {0, 1}n(λ). Then the statistical distance of the distribution of

∏
n(λ)
i=1 pxi

i (mod q) and the uniform distribution on Z∗q is negligible.

10



In fact the conditions that q ≤ 2n(λ) and Xn(λ) being uniform are not necessary. The

reduction works as long as the number nSP of subset products ∏
n(λ)
i=1 pxi

i (mod q) satisfies
nSP/q ≥ p(λ) for some polynomial p. For this, looser conditions like q = 2n(λ)p(λ)
together with high min-entropy Xn(λ) over {0, 1}n(λ) should be sufficient.

In the following we give a new conjecture based on the looser conditions, and state
the theorem in terms of the new conjecture.

Conjecture 5.9. Let λ, n(λ), r(λ), B(λ) ∈ N. Let (p1, . . . , pn(λ), q, ∏
n(λ)
i=1 pxi

i (mod q)) be
the (n(λ), r(λ), B(λ)-SP distribution with the extra condition that q ≤ 2n(λ)p(n(λ)) for some
polynomial p. Then the number of elements in Z∗q being a subset product ∏n

i=1 pxi
i (mod q) with

(x1, . . . , xn(λ)) ∈ {0, 1}n(λ) is ≥ q/p(n(λ)).

Note that the looser requirement q ≤ 2n(λ)p(n(λ)) includes SP instances in a very
low density case.

Conjecture 5.10. Let λ, n(λ), p1, . . . , pn(λ), q be as defined in Definition 5.5. Let Z∗q = 〈g〉
be a DLP group generated by g as defined in Assumption 5.4. Let p be a polynomial. Let
a1, . . . , ap(λ) ← Z∗q such that gak = ∏

n(λ)
i=1 pxk,i

i (mod q) for some xk = (xk,i, . . . , xk,n(λ)) ∈
Z

n(λ)
2 , for all k ∈ {1, . . . , p(λ)}. Then for every p, for every n(λ), there exists a polynomial

function p′ such that the probability that {x1, . . . , xp(λ)} are linearly independent over Zq−1 is
≥ 1/p′(λ).

Theorem 5.11. Assuming Conjecture 5.9, Conjecture 5.10, Assumption 5.7 , and suppose
there exists an SP instance (n(λ), r(λ), p1, . . . , pn, q, X) defined in Assumption 5.6 with q ≤
2n(λ)p(n(λ)) can be solved with overwhelming probability in time T. Then there is an algorithm
to solve the DLP in Z∗q (as defined in Assumption 5.4) with overwhelming probability in expected
time O(p(λ)T), for some polynomial p.

Proof. Let A be a PPT algorithm that solves the SP (p1, . . . , pn(λ), q, X) defined in As-
sumption 5.6 and let (g, h) with g, h ∈ Z∗q be a DLP instance defined in Z∗q . Then
we solve the DLP as follows. Sample a uniform a from {1, . . . , q − 1}, then call A to
solve (p1, . . . , pn(λ), q, ga). Note that ga is uniform over Z∗q . By Assumption 5.7, the
distribution of (p1, . . . , pn(λ), q, ga) is close to the distribution of SP instances. Therefore

A can solve (p1, . . . , pn(λ), q, ga) for an x (if exists) such that ga = ∏
n(λ)
i=1 pxi

i (mod q)
with overwhelming probability. Since q ≤ 2n(λ)p(n(λ)), by Conjecture 5.9 we have that
nSP/q ≥ p(n(λ)). Therefore we expect that after n(λ)p(n(λ)) samples, we have n(λ)
such a’s such that ga are subset products with x ∈ {0, 1}n(λ). Also by Conjecture 5.10,
with at most n(λ)p(λ)p′(λ) samples of a, we expect n(λ) such x ∈ {0, 1}n which are lin-
early independent over Zq−1, where p′(λ) is some polynomial. We therefore have n(λ)

linearly independent relations a ≡ ∑
n(λ)
i=1 xi logg(pi) (mod q− 1) over Zq−1. By solving

11



the equations we have logg(pi) (mod q− 1) for all i ∈ {1, . . . , n(λ)}. Lastly we sample
b← {1, . . . , q− 1}, compute hgb (mod q), and call A to solve it. With at most p(λ) extra
samples of b, we expect one more relation logg(h) + b ≡ ∑

n(λ)
i=1 xi logg(pi) (mod q− 1)

with x ∈ {0, 1}n(λ). Then logg(h) = ∑
n(λ)
i=1 xi logg(pi)− b (mod q− 1).

5.1 Parameters for Obfuscation

We discuss how the parameters in SP and d-SP affect the parameters in our obfuscation.

In the obfuscation, for BSF we have r(λ) = |x| − t(λ) (or r(λ) = t(λ)− |x| for SSF)

if ||x| − t(λ)| ≥ n ln(2
√

2πe)
ln(n ln n) (see Algorithm 1 and Inequality (6)). Since a random x has

hamming weight approximately n(λ)/2, due to Assumption 5.6 which requires Inequal-
ity (4), we have r(λ) ≈ n(λ)/2− t(λ) ≤ n(λ)/2−

√
λn(λ) ln 2 (or r ≈ t(λ)− n(λ)/2 ≤

n(λ)/2−
√

λn(λ) ln 2 for SSF). Hence we require

t(λ) ≥
√

λn(λ) ln 2 ≥ λ,

(or t(λ) ≤ n(λ)−
√

λn(λ) ln 2 ≤ n(λ)− λ for SSF).

On the other hand, under the requirement of Inequality (4), if we choose t(λ) based
on the average value of |x|, i.e., n(λ)/2, then for some extreme cases of x (like |x| ≈ n(λ)
for BSF, or |x| ≈ 0 for SSF), the obfuscated function might not have perfect correctness.
For example, when t(λ) = n(λ)/2 −

√
λn(λ) ln 2, for a large set x such that |x| =

n(λ)−
√

λn(λ) ln 2, a big subset y of x with |x| − |y| > n(λ)/2−
√

λn(λ) ln 2 might be
falsely rejected. The example for SSF is similar: when t(λ) = n(λ)/2 +

√
λn(λ) ln 2, for

a small set x such that |x| =
√

λn(λ) ln 2, then a small superset y of x with |y| − |x| >
n(λ)/2−

√
λn(λ) ln 2 might not decode correctly.

So we have two choices: (1) typically sample x from the whole space {0, 1}n(λ) and
ignore the extreme cases of x, which occur with negligible probability, or (2) explicitly
remove the extreme cases and sample x from the subset of {0, 1}n(λ) with |x| lying in
some sub-interval of [0, n(λ)], or with |x| = m for some m ∈ [0, n(λ)]. In this paper we
take the first choice.

6 Construction

We now present our construction.

12



Algorithm 1 Obf (for both BSF and SSF)

Input: n ∈N, t ∈N, x ∈ {0, 1}n with ||x| − t| ≤ n/2−
√

λn ln 2
Output: ((p1, . . . , pn) ∈Nn, q ∈N, X ∈ Z∗q)

1: sample distinct primes p1, . . . , pn from [2, B] where B ∈ O(n ln n)

2: sample safe prime q from [Br, (1 + o(1))Br] where r := max{||x| − t|, n ln(2
√

2πe)
ln(n ln n) }

3: compute X = ∏n
i=1 pxi

i mod q
4: return ((p1, . . . , pn), q, X)

Note that we require ||x| − t| ≤ n
2 −
√

λn ln 2 by Inequality (4). Also note that from
the size of q, one can guess r hence |x|. But this is expected, since |x| ∈ [0, n], one can
always guess |x| with probability ≥ 1

n+1 .

Algorithm 2 Factor

Input: n ∈N, (p1, . . . , pn) ∈Nn, a ∈N

Output: 0 or 1
1: for i = 1, . . . , n do
2: if pi|a then a← a/pi
3: end for
4: return 1 if a = 1 else 0

Algorithm 3 Eval (with embedded data (p1, . . . , pn) ∈ Nn, q ∈ N, X ∈ Z∗q ; for both BSF
and SSF)
Input: y ∈ {0, 1}n

Output: 0 or 1
1: F ← 0
2: if |y| ≥ t (or |y| ≤ t for SSF) then
3: compute Y = ∏n

i=1 pyi
i (mod q)

4: compute E = XY−1 (mod q) (or E = YX−1 (mod q) for SSF)
5: compute F ← Factor(n, (p1, . . . , pn), E)
6: end if
7: return 1 if F = 1 else 0

6.1 Correctness

Let us take BSF as an example to analyze the correctness. The analysis for SSF is similar.
Note that the inputs y with |y| < t will always be correctly rejected. We therefore only
discuss the case where |y| ≥ t.

13



Let E = XY−1 (mod q) = ∏n
i=1 pei

i (mod q) with e = (e1, . . . , en) = x− y ∈ {−1, 0, 1}n.
If y is a big subset of x, then e ∈ {0, 1}n with |e| ≤ |x| − t ≤ r, since ∏n

i=1 pei
i < Br < q.

This means E is a product of primes in {p1, . . . , pn} hence will be reduced to 1 in Factor
and therefore y will be correctly accepted by Eval.

If y is not a big subset of x, then it will either (1) result in some E such that E contains
a prime factor not in {p1, . . . , pn} or e /∈ {0, 1}n (i.e., E is not square-free); or (2) result
in some E such that E is still a product of primes in {p1, . . . , pn}. The former case will
be correctly rejected by Eval. The latter case will be falsely accepted. We therefore call a
y ∈ {0, 1}n such that it is not a big subset (or not a small superset in the case of SSF) of
x but accepted by Eval a false acceptance.

6.1.1 Dealing with False Acceptances

We now discuss how to deal with false acceptances to achieve perfect correctness.

Let y be a false acceptance. We have that E = ∏n
i=1 pxi−yi

i (mod q) = ∏n
i=1 pei

i (mod q)
with ∏n

i=1 pei
i < q and e = (e1, . . . , en) ∈ {0, 1}n. I.e., ∏n

i=1 pxi−yi−ei
i = 1 (mod q) with

x− y− e 6= 0. This implies a nonzero short vector z ∈ {−2,−1, 0, 1}n of length ≤ 2
√

n
in the lattice

L =

{
z ∈ Zn

∣∣∣∣∣ n

∏
i=1

pzi
i = 1 (mod q)

}
.

To avoid false acceptances, we can require the shortest vector in the above lattice to be
larger than 2

√
n. If the primes p1, . . . , pn are sufficiently random, which means that the

lattice is sufficiently random, then we can employ the Gaussian heuristic to estimate the
length of the shortest vector as

λ1 ∼
√

n
2πe

vol(L)
1
n .

Also, by the first isomorphism theorem, the volume of the lattice vol(L) is given by
the size of the image |im φ| of the group morphism

φ : Zn → Z∗q ,

(x1, . . . , xn) 7→
n

∏
i=1

pxi
i (mod q)

whose kernel defines L. Hence

vol(L) ≤ ϕ(q) = q− 1,
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where ϕ is the Euler totient function. The equality holds if and only if {p1, . . . , pn}
generates Z∗q . So

λ1 ∼
√

n
2πe

vol(L)
1
n ≤

√
n

2πe
(q− 1)

1
n <

√
n

2πe
q

1
n .

If we take λ1 =
√ n

2πe q
1
n and q ∼ (n ln n)r, for λ1 > 2

√
n we require that

r >
n ln(2

√
2πe)

ln(n ln n)
. (6)

To summarize, if we require that r satisfy Inequality (6) then heuristically there are
no false acceptances. Note that Inequality (6) is not a serous restriction, as the problem
are most interesting when r = ||x| − t| is large.

Besides, to provide evidence for the precision of the Gaussian heuristic when applied
to the relation lattice L, we did some experiments. Due to the limitation of computational
resources, we only work with small parameters such as n = 20 or 30 or 40, r = b n

ln nc
(which is an appropriate choice as we will be discussing in Section 6.5), and B = 3n ln n.

Let λ1 denote the length of the shortest vector in a lattice and let γ denote the Gaus-
sian heuristic. For each n = 20 or 30 or 40, we create 1000 lattices L from random
subset products, calculate the proportion of lattices that λ1/γ falls into the 20 intervals
[0.0, 0.1), [0.1, 0.2), . . . , [1.9, 2.0], respectively. The results are as follows.

When n = 20, r = b n
ln nc, B = 3n ln n, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
9

20
,

11
20

, 0, 0, 0, 0, 0, 0, 0, 0).

When n = 30, r = b n
ln nc, B = 3n ln n, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0,
2

1000
,

26
1000

,
399

1000
,

557
1000

,
16

1000
, 0, 0, 0, 0, 0, 0, 0).

When n = 40, r = b n
ln nc, B = 3n ln n, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0, 0,
29

1000
,

702
1000

,
269
1000

, 0, 0, 0, 0, 0, 0, 0, 0).

We can see that for most cases λ1/γ ∈ [1.0, 1.2], which means that the Gaussian
heuristic is quite close to the true length of the shortest vectors most of the time. Also λ1
tends to be larger than γ, which gives more confidence on Inequality (6) to avoid false
acceptances.
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6.1.2 Dealing with False Acceptances by Hashing

Another way to deal with false acceptances is to use a hash function or a point function
obfuscation. Let us take hash as an example. To avoid false acceptances, all we need
to do is to compute and output an extra value h = H(x) in Obf, where H is some hash
function; and in Factor, store the factors of E in a list F and replace “return 1” with
“return F”; also in Eval, add process to recover x from F and compare its hash value
against H(x). If y is a big subset (or small superset in the case of SSF) of x, then the
factors of E will tell the positions of distinct bits between x and y, then one can recover
x by flipping y at those positions. Otherwise if y is a false acceptance, then doing so will
give a wrong x′ 6= x which can be detected by checking its hash value.

6.2 Efficiency

In the obfuscating algorithm Obf (Algorithm 1), we need to sample n+ 1 primes, perform
n− 1 modular multiplications of integers of size < q. Therefore the time complexity of
the obfuscation is linear in the number of modular multiplications of integers of size
< q.

Again, in the evaluation algorithm Eval (Algorithm 3), we need n− 1 modular multi-
plications of integers of size < q to compute Y, and 1 inversion, 1 modular multiplication
of integers of size < q to compute E, also n inversions and n modular multiplications
of integers of size < q to run Factor (Algorithm 2). Therefore the time complexity of the
evaluation is also linear in the number of modular multiplications of integers of size < q.

6.3 Security

Theorem 6.1. Let Xn be a distribution over {0, 1}n with hamming ball min-entropy λ. Then
assuming Assumption 5.7, the obfuscation given by Algorithm 1 - 3 is VBB-secure.

Proof. (1) In Section 6.1 we have shown correctness.

(2) In Section 6.2 we have shown polynomial slowdown compared to the original func-
tion.

(3) We now show distributional-indistinguishability, which implies VBB due to Theorem
2.5. For every circuit C ∈ C, let O(1λ, C) = (p1, . . . , pn, q, X) be the obfuscated function
of C. We create a simulator S which works as follows: S takes C.params = (n, t, B)
and samples n primes p′1, . . . , p′n and a modulus q′ in the same way as O. Denote
S(1λ, C.params) = (p′, q′, X′). Note that O(1λ, C) belongs to the distribution D0 in As-
sumption 5.7 and S(1λ, C.params) belongs to the distribution D1. Hence by Assumption
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5.7, we have that, for every n ∈N, there exists a negligible function µ such that for every
PPT distinguisher A,∣∣∣∣∣ Pr

O(1λ,C)←D0

[A(O(1λ, C), aux) = 1]

− Pr
S(1λ,C.params)←D1

[A(S(1λ, C.params), aux) = 1]

∣∣∣∣∣ ≤ µ(λ), (7)

where aux is some auxiliary information.

Also, note that

Pr
(C,aux)←Dλ

[A(O(1λ, C), aux′) = 1] = Pr
O(1λ,C)←D0

[A(O(1λ, C), aux) = 1],

and

Pr
(C,aux)←Dλ

[A(S(1λ, C.params), aux′) = 1]

= Pr
S(1λ,C.params)←D1

[A(S(1λ, C.params), aux) = 1], (8)

where aux′ = (aux, ϕ(C)), and ϕ : Cλ → {0, 1} is any (non-uniform) polynomial time
predicate. I.e., the advantage in the distributional-indistinguishability game (Definition
2.3) equals the advantage in Assumption 5.7. We therefore have∣∣∣∣ Pr

(C,aux)←Dλ

[A(O(1λ, C), aux′) = 1]

− Pr
(C,aux)←Dλ

[A(S(1λ, C.params), aux′) = 1]
∣∣∣∣ ≤ µ(λ). (9)

This completes the proof.

Next we show input-hiding from the hardness of SP.

Theorem 6.2. Let n, t, r, B ∈ N satisfy Definition 5.5 and Inequality (4). Then assuming
Conjecture 5.9, Conjecture 5.10, Assumption 5.7, and the hardness of SP (Assumption 5.6), the
BSF obfuscation given by Algorithm 1-3 is input-hiding.

Proof. Let (p1, . . . , pn, q, X) with X = ∏n
i=1 pxi

i (mod q) for some unknown x = (x1, . . . , xn) ∈
{0, 1}n be an SP instance defined in Assumption 5.6. Let A be a PPT algorithm that
breaks input-hiding of the obfuscation given by Algorithm 1-3. Then we solve the SP
as follows. We directly call A to break (p1, . . . , pn, q, X). Since r satisfies Inequality
(4), i.e., there is no false acceptances, A will return a big subset y of x such that E =

XY−1 (mod q) = ∏n
i=1 pxi−yi

i (mod q) = ∏n
i=1 pei

i (mod q) with e = (e1, . . . , en) ∈ {0, 1}n.
Then we can factor E to get e and recover x by flipping y at the positions i such that
ei = 1.
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Similarly, we have the following dual theorems for SSF.

Theorem 6.3. Let n, t, r, B ∈ N satisfy Definition 5.5 and Inequality (4). Then assuming
Conjecture 5.9, Conjecture 5.10, Assumption 5.7, and the hardness of SP (Assumption 5.6), the
SSF obfuscation given by Algorithm 1-3 is input-hiding.

6.4 Attacks

As we mentioned earlier, having an accepting y one can recover x by flipping the corre-
sponding bits of y according to the factors of E. And to recover x, it is not necessary to
find a big subset or a smaller superset of x, but a “close” set.

Theorem 6.4 (Diophantine Approximation [11]). Let α ∈ R then there exist fractions p/q ∈
Q such that

∣∣α− a
b

∣∣ < 1√
5b2 . If, on the other hand, there exist a/b ∈ Q such that

∣∣α− a
b

∣∣ < 1
2b2 ,

then a/b is a convergent of α.

An attack based on Theorem 6.4 is as follows. Having an input y such that the
Hamming distance between x and y is bounded by r, we compute E = XY−1 (mod q) =
∏i pxi−yi

i (mod q) = UV−1 (mod q), where UV−1 is the lowest terms of XY−1 modulo
q with U = ∏n

i=1 pui
i and V = ∏n

i=1 pvi
i , for ui, vi ∈ {0, 1}. We have that EV − kq = U

hence
∣∣E

q −
k
V

∣∣ = U
qV . By Theorem 6.4, if UV < q

2 , then k
V is a convergent of E

q . Finding
this convergent from the continued fraction of E/q is efficient. So we have V and k, and
thus U = EV − kq. We then factor U and V to find all different bits between x and y,
and recover x by flipping y correspondingly.

Moreover, the following theorem shows a way to push the continued fraction algo-
rithm beyond the naive limits given by Theorem 6.4.

Theorem 6.5 (Extended Legendre Theorem [8]). Let α be an irrational number, let the frac-
tions pi

qi
∈ Q be its continued fraction, and let a, b be coprime nonzero integers satisfying the in-

equality
∣∣α− a

b

∣∣ < c
b2 , where c is a positive real number. Then (a, b) = (rpm+1 ± spm, rqm+1 ±

sqm), for some nonnegative integers m, r and s such that rs < 2c.

By Theorem 6.5 one can always find a and b by tuning c, which gets rid of the
limitation from

∣∣α− a
b

∣∣ < 1
2b2 .

6.5 Parameters

In this section we discuss function families that can be obfuscated using our method.
Restrictions for the parameters λ, n, t, r, and q are as follows.
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(1) By Section 4.1, for uniform x’s, the basic requirements for evasiveness are t ≥ λ for
BSF, and t ≤ n− λ for SSF.

(2) For the hardness of finding a y close to x such that it decodes (which will recover
x), we require r := ||x| − t| to be small enough, i.e., the hamming ball of any x to
be small enough. This gives r(n) ≤ n/2−

√
λn ln 2. (Inequality (4)).

(3) To avoid false acceptances (as we discussed this can also be handled using a hash),

we need r > n ln(2
√

2πe)
ln(n ln n) (Inequality (6)).

From (2) and (3) we have that

n ln(2
√

2πe)
ln(n ln n)

< r(n) ≤ n
2
−
√

nλ ln 2.

Notice that
n ln(2

√
2πe)

ln(n ln n)
≺ n

ln n
≺ n

ln ln n
≤ n

2
−
√

nλ ln 2,

both r(n) ∼ n
ln n and r(n) ∼ n

ln ln n are possible functions for r. We take r(n) = b n
ln nc.

Then the condition r ≤ n
2 −
√

nλ ln 2 gives

√
nλ ln 2 ≤ n

(
1
2
− 1

ln n

)
⇐⇒ λ ≤ n

ln 2

(
1
2
− 1

ln n

)2

⇐= λ ≤ n
6

,

where for the last line we assume n ≥ 1024.

Hence a possible function family is (n = 6λ, r = b n
ln(n)c). In terms of t (take the

average weight n
2 of a random x), it is (n = 6λ, t = n

2 − b
n

ln(n)c) for BSF and (n = 6λ, t =
n
2 + b n

ln(n)c) for SSF. Note that an elementary requirement is that |x| > r since otherwise

the encoding of x, namely ∏n
i=1 pxi

i (mod q) will always be factorable and x will be
exposed immediately.

Also note that r(n) ∼ n
ln n ∼ π(n), namely our function for r is the prime counting

function.

Based on the above analysis, a concrete setting for the BSF/SSF obfuscation is:

BSF: (λ = 128; n = 1024; t = 365; B = p1024 (the 1024-th prime); Xn has hamming
ball min-entropy λ);

SSF: (λ = 128; n = 1024; t = 659; B = p1024 (the 1024-th prime); Xn has hamming ball
min-entropy λ).
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7 Conclusion

We obfuscate big subset and small superset functionalities using the subset product
problems. Our construction is very simple and highly efficient. The correctness is simply
based on the uniqueness of integer factoring. We give security proofs for both VBB and
input-hiding in the standard model.
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A Proof of Input-hiding of [5] from DLP

Here we prove input-hiding of the conjunction obfuscation in [5] from the hardness of
DLP. This security property is not studied in [5].

Definition A.1. (Bartusek et al.’s Scheme [5]). The conjunction obfuscation in [5] is as follows:

• Setup(n). Let G be a group of prime order q > 2n with generator g. Let B := Bn+1,2n,q,
where

Bn+1,2n,q =


1 2 . . . 2n
1 22 . . . (2n)2

...
...

...
...

1 2n+1 . . . (2n)n+1

 (10)

• Obf(pat ∈ {0, 1, ∗}n). Set e ∈ Z2n×1
q such that e2i−1 = e2i = 0 if pati = ∗, or

e2i−b ← Zq and e2i−(1−b) = 0 if pati = b, for b ∈ {0, 1}. Output

v = gB·e ∈ Gn+1.

• Eval(B ∈ Z(n+1)×(2n), v ∈ Gn+1, x ∈ {0, 1}n). Define Bx according to x to be the
(n + 1)× n matrix with column j set as (Bx)j := (B)2j−xi . Solve tBx = 0 for a non-zero

vector t ∈ Z
1×(n+1)
q . Compute

w =
n+1

∏
i=1

vti
i
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and accept if and only if w = 1.

Correctness For an input (B,Obf(pat), x) of Eval, Eval outputs w = ∏n+1
i=1 (Obf(pat))

ti ,
which equals 1 if x satisfies pat.

The idea of the scheme is that the obfuscated function accepts only when Bx is cor-
rectly created, which cannot be completed without knowing the pattern pat.

Theorem A.2. Suppose the Discrete Logarithm Problem (DLP) is hard (Assumption 5.4). Then
the conjunction obfuscation in Definition A.1 is input-hiding.

Proof. Let (B, v = gB·e) be defined as in Definition A.1. We show that if there exists an
algorithm A that solves (B, v = gB·e) for an accepting input x ∈ {0, 1}n, then there exists
an algorithm A′ that solves DLP.

For a DLP instance (g, h = ga) with g a generator of a group Gn and a ∈ {0, . . . , |Gn| −
1}, A′ first generates matrix B as Equation (10) shows, samples s1, . . . , sn+1 ← Zq and
computes

u = (gs1 , . . . , gsn+1).

A′ then samples ri ← {0, . . . , |H| − 1} for all i ∈ [n + 1], inserts hri into u to get

u′ = (hr1 gs1 , . . . , hrn+1 gsn+1),

and invokes A with (B, u′) to get x′ such that

Pr
[ n+1

∏
i=1

(hri gsi)t′i = 1
]
= µ(n)

for some function µ(n) and for any t′ = (t′1, . . . , t′n+1) 6= 0 computed as follows: A′ first
creates Bx′ according to x′, then solves t′Bx′ = 0 for a non-zero t′.

Note that

n+1

∏
i=1

(hri gsi)t′i = 1

⇐⇒ ga·∑n+1
i=1 rit′i · g∑n+1

i=1 sit′i = 1.

A′ then solves the DLP (g, h = ga) for a as

a′ =
−∑n+1

i=1 sit′i
∑n+1

i=1 rit′i
.
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Note that ri are independent of all other parameters during the process. In particular, ri
are independent of t′i. Hence ∑n+1

i=1 rit′i 6= 0 with probability 1/p(n) for some polynomial
p. Therefore the probability of solving the DLP is

Pr[a′ = a] = µ(n)(1− p(n)) = µ′(n).

By the hardness of DLP, µ′(n) is negligible. Hence µ(n) is negligible.

B New Obfuscation for Conjunctions

We now show that how to use the techniques in this paper to obfuscate conjunctions
in a highly efficient way. In particular, the obfuscation here is even more efficient than
the scheme in [10], which is already very efficient. In a high level, our scheme only
bases on uniqueness of integer factoring without using continued fraction. We therefore
can cut off from the decoding algorithm in [10] the procedures that deal with continued
fractions, resulting in a very simple algorithm.

Conjunctions are also called pattern matching with wildcards. Typically it is defined
as a function fn,r,x(y) that holding a secret string x ∈ {0, 1, ∗}n with r < n ∈N wildcards,
takes as input a binary string y ∈ {0, 1}n and outputs 1 if y matches all non-wildcard
positions of x, or outputs 0 otherwise. We define |x| to be the number of 1’s in the string.

We give an equivalent definition based on big subset and small superset functionali-
ties. The intuition is to do both big subset and small superset tests so that any unmatched
bit at the non-wildcard positions will be exposed.

Our new definition is as follows. A pattern matching with wildcards function is a
function fn,r,x(y) which holds a secret string x ∈ {0, 1, ∗}n with r < n ∈ N wildcards,
takes as input a binary string y ∈ {0, 1}n and outputs 1 if y is a subset of x with all
wildcards being replaced by 1 and at the same time y is a superset of x with all wildcards
being replaced by 0, or outputs 0 otherwise.

Note that in the above definition we only require subset and superset, not big subset
or small superset. In fact, requiring both implicitly requires big subset and small super-
set. This is because if y is a superset of x with ∗ being replaced by 0, then it must have
hamming weight |y| ≥ |x|. Also, if y is a subset of x with ∗ being replaced by 1, then it
must have hamming weight |y| ≤ |x|+ r.

So by the new definition, we generically reduce the conjunction obfuscation problem
to the big subset and small superset obfuscation problems. However, the catch is that
the two instances are “correlated” and the previous security analysis is not sufficient.

Let n, r, B ∈ N with r < n/2 and B ∈ O(n ln n). Let fn,r,x(y) with x ∈ {0, 1, ∗}n be a
pattern matching with wildcards function with r wildcards. We explain our obfuscation
as follows.
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To obfuscate, we derive two binary strings w, z ∈ {0, 1}n from x, where w is x with
the wildcard positions set 1, and z is x with the wildcard positions set 0. We then choose
two sequences of small primes, (p1, . . . , pn) and (l1, . . . , ln), from [2, B], and two primes q
and s from [Br, (1+ o(1)Br)]. Then we encode w and z into two different subset products
as:

X1 =
n

∏
i=1

pwi
i (mod q),

X2 =
n

∏
i=1

lzi
i (mod s).

Then output (p1, l1, . . . , pn, ln, q, s, X1, X2) as the obfuscated function.

To evaluate with input y ∈ {0, 1}n, we compute

Y1 =
n

∏
i=1

pyi
i (mod q),

Y2 =
n

∏
i=1

lyi
i (mod s),

and E1 = X1Y−1
1 (mod q), E2 = Y2X−1

2 (mod s). We then use Algorithm 2 to factor
E1 using the primes p1, . . . , pn, and factor E2 using l1, . . . , ln. If both E1 and E2 factor
successfully, then output 1, otherwise output 0.

For convenience, let us denote U1 = ∏n
i=1 pwi

i , U2 = ∏n
i=1 lzi

i , V1 = ∏n
i=1 pyi

i , and V2 =

∏n
i=1 lyi

i as the pure products without modular reduction. Then E1 = U1/V1 (mod q),
E2 = V2/U2 (mod s). The correctness of the obfuscation is as follows. If x and y match at
all non-wildcard positions, then w is a superset of y and z is a subset of y, so E1 = U1/V1
is an integer < q, and E2 = V2/U2 is an integer < s, then both the factorings of E1 and
E2 will succeed and the obfuscation will output 1 correctly. Otherwise if there is any
non-wildcard position at which x and y do not match, then at least one of U1/V1 and
V2/U2 is a proper rational. With high probability the corresponding E will not factor
over the original list of primes. Then the factoring will fail and the obfuscation will
output 0 correctly.

B.1 Evasiveness

Note that we used two functions to define the pattern matching with wildcards function
fn,r,x(y), which were the BSF fn,t,w(y) with |w| = |x|+ r, t = |x|, and the SSF fn,t′,z(y)
with |z| = |x|, t′ = |x|+ r.

Suppose w and z are uniform. (In fact this is not true but it is convenient for us to
derive some basic results.) By Section 4.1, for the evasiveness of both fn,t,w and fn,t,z, we
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need both t ≥ λ and t′ ≤ n − λ. Remind that t = |x| and t′ = |x| + r, we have that
|x| ≥ λ and |x|+ r ≤ n− λ. Take the average case of |x|, i.e., |x| ≈ n−r

2 , we have that
n−r

2 ≥ λ and n−r
2 + r ≤ n− λ. Solve for r to get

r ≤ n− 2λ.

This is automatically satisfied since we originally require r ≤ n
2 to avoid an easy guess

of y close to w or z by hamming distance n
2 . Also in our typical settings for BSF and SSF

obfuscation, r is approximately n
ln n .

B.2 Construction

Algorithm 4 Obf

Input: n ∈N, r ∈N, x ∈ {0, 1, ∗}n

Output: ((p1, l1, . . . , pn, ln) ∈N2n, q, s ∈N, X1, X2 ∈ Z∗q)

1: set w as x with ∗ ← 1 and z as x with ∗ ← 0
2: sample distinct primes p1, l1, . . . , pn, ln from [2, B] where B ∈ O(n ln n)
3: sample safe primes q, s from [Br, (1 + o(1))Br]
4: compute X1 = ∏n

i=1 pwi
i mod q and X2 = ∏n

i=1 lzi
i mod s

5: return (p1, l1, . . . , pn, ln, q, s, X1, X2)

Algorithm 5 Eval (with embedded data (p1, l1, . . . , pn, ln) ∈N2n, q, s ∈N, X1, X2 ∈ Z∗q

Input: y ∈ {0, 1}n

Output: 0 or 1
1: compute Y1 = ∏n

i=1 pyi
i (mod q) and Y2 = ∏n

i=1 lyi
i (mod s)

2: compute E1 = X1Y−1
1 (mod q) and E2 = Y2X−1

2 (mod s)
3: compute F1 ← Factor(n, (p1, . . . , pn), E1) and F2 ← Factor(n, (l1, . . . , ln), E2)
4: return 1 if F1 = F2 = 1 else 0

Correctness. The correctness is similar to the BSF and SSF obfuscation. In the following
we mainly talk about false acceptances.

As before, let us denote U1 = ∏n
i=1 pwi

i , U2 = ∏n
i=1 lzi

i , V1 = ∏n
i=2 pyi

i , and V2 =

∏n
i=1 lyi

i . Also E1 = U1/V1 (mod q) and E2 = V2/U2 (mod q).

We define a false acceptance to be a y ∈ {0, 1}n such that y is not a matching pattern
to x yet both U1/V1 < q and V2/U2 < s are integers.

In other words, a false acceptance means the same y gives short vectors in two lattices
simultaneously. We show in the following that if we choose pi = li for all i ∈ {1, . . . , n}
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and q = s, then false acceptances can be easily avoided. But the drawback is that this
will leak the wildcard positions since the attacker can factor X1X−1

2 to get the primes
corresponding to the wildcard positions.

Note that some false acceptances can be rejected by adding rules in Algorithm 5 to
check if the resulting error vector e and y both have 1’s at the same positions. If so, then
y is not a good input and should be rejected. Then we only need to deal with the other
cases of false acceptances. In the following we call the other cases the second case of
false acceptances.

Let pi = li for all i ∈ {1, . . . , n} and q = s. Let y be a second case false acceptance.
Then E1 = ∏n

i=1 pwi−yi
i = ∏n

i=1 pe1,i
i (mod q) implies a nonzero short vector u = w− y−

e1 ∈ {−2,−1, 0, 1}n with e1 ∈ {0, 1}n, |e1| ≤ r in the lattice

L =

{
x ∈ Zn

∣∣∣∣∣ n

∏
i=1

pxi
i = 1 (mod q)

}
.

Similarly, E2 implies a nonzero short vector v = y − z − e2 ∈ {−2,−1, 0, 1}n with
e2 ∈ {0, 1}n, |e2| ≤ r in the same lattice. We therefore have

n

∏
i=1

pui+vi
i = 1 (mod q).

Note that w = z + e for some e ∈ {0, 1}n with |e| = r. So u + v = (w− y− e1) + (y−
z− e2) = (z + e− y− e1) + (y− z− e2) = e− e1 − e2 ∈ {−2,−1, 0, 1}. We have that

|u + v| ≤ 2
√

3r.

To avoid false acceptances, it is sufficient to let the shortest vectorλ1 in L to be

λ1 ∼
√

n
2πe

(q− 1)
1
n ≈

√
n

2πe
q

1
n > 2

√
3r,

which gives

r >
1
2 n ln 8rπe

n
ln(n ln n)

(11)

if we take q = (n ln n)r. If we further take r = n
ln n , we have

1
ln n

>
1
2 n ln 8rπe

ln n
ln(n ln n)

.
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Solve for n we have
n > 123.025.

I.e., when n > 123, false acceptances are naturally avoided, and r can be chosen in the
general way as r = n

ln n as we derived in Section 6.5. Hence we have the following family
of parameters:

(n > 123, r =
n

ln n
).

But as we mentioned, this is only for the scheme that will leak the wildcard positions.
For our true scheme where no pi is a li and q 6= s, we can still hope that in the low density
case, each subset product X ∈ Z∗q uniquely defines an x ∈ {0, 1}n.

Efficiency. It is not hard to verify that the obfuscation and the evaluation have time
complexity linear in the number of modular multiplications of primes of size < q and
< s, respectively.

Security. We prove input-hiding of our scheme.

Definition B.1 (Twin Subset Product Problem (TSP)). The twin subset product problem is
defined as the following. Given two instances (p1, . . . , pn, q, X) and (l1, . . . , ln, s, X′) of SP (as
in Definition 5.2) from two hamming close points x ∈ {0, 1}n and x′ ∈ {0, 1}n, respectively, to
find any one of x and x′.

Assumption B.2 (Hard TSP). Let r < n/2 ∈N and ((p1, . . . , pn, q, X), (l1, . . . , ln, s, X′)) be
a TSP with two SPs as in Assumption 5.6 with |x⊕ x′| < r. Then for every n ∈N, there exists
a negligible function µ such that for every PPT algorithm A, the probability that A solves any
one of the SPs is not greater than µ(λ).

Theorem B.3 (Input-hiding of Conjunction Obfuscation). Assuming the hardness of TSP
(Assumption B.2), the conjunction obfuscation given by Algorithm 4 - 5 is input-hiding.

Proof. Let ((p1, . . . , pn, q, X), (l1, . . . , ln, s, X′)) be a TSP with respect to the secrete sets
x and x′, respectively. Without loss of generality, let x be a superset of x′. Let A be a
PPT algorithm that solves the obfuscation given Algorithm 4 - 5. We solve the TSP as
follows. We query A on the TSP above. Since the TSP is exactly an obfuscation instance,
A can solve for a y ∈ {0, 1}n which is a subset of x and a superset of x′. We then
compute and factor E = XY−1 (mod q) = ∏n

i=1 pxi−yi
i (mod q) to obtain the error vector

e = x − y ∈ {0, 1}n. Then we can recover x by flipping y at the positions i such that
ei = 1.
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