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Abstract. Let S = {1,...,n} be a set of integers and X be a subset
of S. We study the boolean function fx(Y) which outputs 1 if and only
if Y is a big enough subset (resp. small enough superset) of X. Our
purpose is to protect X from being known, yet allow evaluations of fx
on any input Y C S. The corresponding research area is called function
obfuscation. The two kinds of functions are called big subset functions
(BSF) and small superset functions (SSF) respectively.

In this paper, we obfuscate BSF and SSF in a very simple and efficient
way. We prove both virtual black-box (VBB) security and input-hiding
security in the standard model based on the subset product problem.
We also give a proof of input-hiding based on the discrete logarithm
problem (DLP) for the conjunction obfuscation by Bartusek et al. [5] (see
Appendix A) and propose a new conjunction obfuscation based on BSF
and SSF obfuscation (see Appendix B). The security of our conjunction
obfuscation is from our new computational problem called the twin subset
product problem.

1 Introduction

Let n be a positive integer and S = {1,...,n} be the set of integers from 1 to
n. Let X be a subset of S. A big subset function (BSF) (resp. small superset
function (SSF)) is a function fx (Y') which takes as input a set Y C S and accepts
if Y is a big subset of X (resp. small superset of X), or rejects otherwise. For
example, let S = {1,...,1000}, X = {1,...,800}, and let ¢ = 700 (resp. t = 900)
be a threshold value. Then fx(Y)=1if Y C X and the size of Y is at least 700
(resp. if Y D X and the size of Y is at most 900).

Our goal is to protect X from being known, yet allow the users to be able to
determine whether Y is a big subset (resp. small superset) of X, for any Y C S.
The research area is called function obfuscation. A simple example of function
obfuscation is point function obfuscation (think about password checkers), of
which the goal is to hide a point z € {0,1}", yet allow determinations on whether
x =y, for all y € {0,1}". A simple obfuscator for point functions is to hash x
and to evaluate by comparing the hash of x and the hash of y.

Generally speaking, the goal of function obfuscation is to prevent a function
from being recovered while preserving its functionality and time complexity. Due
to the impossibility of general purpose obfuscation [2], special purpose obfusca-
tion aims at obfuscating restricted classes of functions. An interesting class of



functions is the class of evasive functions. They are the kind of functions that
are hard to find an accepting input by random sampling. Examples of evasive

functions include point functions [9, 19], conjunctions [5, 7], fuzzy Hamming
distance matching [13], hyperplane membership functions [10], compute-and-
compare functions [14, 20], etc. [17].

Two kinds of functions of interest are BSF and SSF, as we introduced at
the beginning of the section. BSF was firstly introduced in [6] to better analyze
and obfuscate conjunctions; while SSF was firstly introduced in [4] to construct
public-key function-private encryption. Also, [6] and [4] are all the previous works
for BSF or SSF obfuscation. Beullens and Wee [6] obfuscate BSF from a new
knowledge assumption. Bartusek et al. [1] obfuscate SSF using similar techniques
to [5]. The obfuscator in [5] is a dual scheme of Bishop et al.’s obfuscator [3] for
conjunctions. The security proofs in both [6] and [4] are somewhat complicated.

Our contribution is to give new obfuscators for BSF and SSF for certain
parameter ranges that are based on simpler and more standard computational
assumptions, and that have simpler security proofs. Also we give a proof of
input-hiding based on the discrete logarithm problem (DLP) for the conjunction
obfuscation by Bartusek et al. [5] and propose a new conjunction obfuscation
based on the BSF and SSF obfuscations (see Appendix A and Appendix B,
respectively). The security of our conjunction obfuscation is from our new com-
putational problem called the twin subset product problem, which is defined as
given two subset product instances with respect to the same secret, to find the
secret.

1.1 Technical Overview

In this paper we represent a set X C {1,...,n} by its characteristic vector
x € {0,1}™. Hence a BSF is a function f, ¢ ,(y) which takes as input y € {0,1}"
and outputs 1 if x —y € {0,1}" and |y|> ¢ (where |y| denotes the Hamming
weight of y), or outputs 0 otherwise. Similarly, an SSF is a function f, ;. (y)
which takes as input y € {0,1}™ and outputs 1 if y — z € {0,1}" and |y|< ¢, or
outputs 0 otherwise.

We explain our construction for BSF as follows. The case of SSF is similar.

The high level idea of our obfuscation is to encode z € {0,1}" as a subset
product X =[], p;* (mod ¢) with respect to some smooth primes p1,...,p,
and a bigger prime modulus ¢ so that if and only if an input y € {0,1}™ is a big
subset of x (which implies that x and y have many bits in common) the product
[17, p;""¥ has many primes p; being canceled and is smaller than ¢ and thus
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factors over {pi1,...,pn}, where Y = [/, p¥" (mod ¢). We explain the idea
explicitly as follows.

Let n,t € N with ¢t < n. Let = (z1,...,2,) € {0,1}", and r = |z|—t € N.
We require r < n/2. To obfuscate, the obfuscator samples n different small



primes p1,...,p, from [2,B] for some B € N, and a safe prime ¢ such that
B" < q < (14 o0(1))B". It then computes the product X =[], p{* (mod q)
and publishes (p1,...,pn, ¢, X) as the obfuscated function.

To evaluate with input y = (y1,...,yn) € {0,1}", the obfuscated function
firstly checks if |y|> t. If not, which means y is not “big”, then it terminates
and outputs 0. If |y|> ¢, then it further computes Y = []"_; p¥* (mod ¢) and
E = XY ! (mod q) = [['_;p;" ¥ (mod g), and tries to factor E by dividing
the primes p1, ..., p, one by one. If z —y € {0,1}", which means y is a “subset”
of x, then |y|> ¢ ensures that |x — y|< r, then E factors over {p1,...,pn}. If
this is the case, then the function outputs 1. Otherwise, if z —y ¢ {0,1}", which
means y is not a “subset” of z, then with high probability F will not factor over
{p1,...,pn}, then the function outputs 0.

1.2 Organization

In Section 2 we introduce basic notions that will be used in this paper and define
function obfuscation and evasive functions, as well as several entropies for the
analysis of evasiveness in Section 4. In Section 3 we define BSF and SSF. In
Section 4 we first define evasive BSF and SSF, which is the only type of BSF
and SSF that can be obfuscated, then derive distributions of BSF and SSF that
can be obfuscated by our method. In Section 5 we formally define the subset
product problems and present the hardness assumptions that our obfuscation
bases on. We also provide evidence to our hardness assumptions by reducing the
discrete logarithm problem to both the high and low density case subset product
problems. In Section 6 we present our obfuscation for BSF and SSF and prove
distributional virtual black-box (VBB) security and input-hiding security based
on the subset product problems. We discuss potential techniques for attacking
our scheme in Section 6.4, and provide concrete parameters for our scheme in
Section 6.5. Section 7 is a brief conclusion. Besides, Appendix A and Appendix
B are of independent interests, where Appendix A is a proof of input-hiding
for the conjunction obfuscation in [5], and Appendix B is a new obfuscation for
conjunctions, which can be treated as another independent work.

2 Preliminaries

Let S ={1,...,n} be a set of positive integers from 1 to n, where n € N. Let X
be a subset of S. The binary string « € {0,1}"™ whose 1’s indicate the elements
of X is called the characteristic vector of X . In this paper we call a characteristic
vector x a set, by which we mean the set X that it represents.

Let z € {0,1}™, by || we mean the Hamming weight of x, which represents
the size of the set X that = represents. Let C be a circuit, by |C| we mean the size
of C. Let a € R, by |a| we mean the absolute value of a. We denote continuous
intervals in the usual way as (a,b), [a,b), (a,b], and [a, ], for a,b € R. We denote
discrete intervals such as {a,...,b} in the same way as [a,b], for a,b € N. We
denote the natural logarithm as Ina, for a € R. We call a rational number a



proper rational if it is not an integer. Let f,g : N — R be two functions. By
Z:EZ? =1 and by f < g we mean lim,_, % = 0.
Let A € N be the security parameter. We say two distributions D) and E)

are computational indistinguishable if for every probabilistic polynomial time
(PPT) algorithm A, there exists a negligible function p in A such that

f ~ g we mean lim,, .

Pr [A(z) =1]— Pr [A(x) =1]| < pu(N),

x<—Dy < E)

dented D) ~ E\. To be concrete, in the rest of the paper we take p = 1/2*.

2.1 Obfuscation

We use circuits to represent functions. By a circuit we always mean the circuit of
minimal size that computes a specified function. The size complexity of a circuit
of minimal size is polynomial in the time complexity of the function it computes.

Definition 1 (Distributional Virtual Black-Box Obfuscator (VBB) [3,

). Consider a family of circuits C and let O be a PPT algorithm, which takes
as input a circuit C € C, a security parameter A € N, and outputs a circuit
C « O(1*,C). Let D be a class of distribution ensembles D = {Dx}ren that
sample (C,auzx) + Dy with C € C and aux some polynomial size auziliary in-
formation. We say that O is an obfuscator for the distribution class D over the
circuit family C, if it satisfies the following properties:

1. Functionality Preserving: There is some negligible function u(X) such that
for all n € N and for all circuits C' € C with input size n we have

Pr[Vz € {0,1}": C(z) = C(x) | C <+ O(1*,C)] > 1 — u(N),

where the probability is over the coin tosses of O.

2. Polynomial slowdown: There exists a polynomial p such that for every n,
every circuit C € Cy,, and every possible sequence of coin tosses for O, the cir-
cuit O(C) runs in time at most p(|C|), i.e., |O(C)|< p(|C|), where |-| denotes
the size of a circuit.

3. Distributional Virtual Black-Box: For every (non-uniform) polynomial size
adversary A, there exists a (non-uniform) PPT simulator S, such that for every
distribution ensemble D = {Dy}ren € D, and every (non-uniform) polynomial
size predicate v : C — {0, 1}, there exists a negligible function u(\) such that:

[A4(0(1*,C), auz) = ¢(C)]

r
(C,auz)«+ Dy

- Pr  [SY(1*, C.params,aux) = o(C)]| < p(N), (1)
(C,auz)«+ Dy



where the first probability is taken over the coin tosses of A and O, the second
probability is taken over the coin tosses of S, C.params is a set of parameters
associated to C' (e.g., input size, output size, circuil size, etc.) which we are not
required to hide, and S has black-box access to the circuit C.

Note that for evasive functions, black-box access to the circuit C' is useless.
Hence it makes sense to consider a definition that does not give the simulator
black-box access to the circuit.

Definition 2 (Distributional-Indistinguishability [20]). An obfuscator O
for the distribution class D over a family of circuits C, satisfies distributional-
indistinguishability, if there exists a (non-uniform) PPT simulator S, such that
for every distribution ensemble D = {Dx}xen € D that samples (C, aux) < D)
with C € C, we have that

(0(1*,C), auz) = (S(1*, C.params), auz),
where (C,auz) < Dy, and auz is some auziliary information.

For convenience of use, we restate the definition in the following equivalent
way.

Definition 3 (Distributional-Indistinguishability - Alternative Defini-
tion). An obfuscator O for the distribution class D over a family of circuits C,
satisfies distributional-indistinguishability, if there exists a (non-uniform) PPT
simulator S, such that for every PPT distinguisher B, for every distribution
ensemble D = {D\} € D that samples (C,aux) < Dy with C € C, and every
(non-uniform) polynomial size predicate p : C — {0, 1}, there exists a negligible
function p(X) such that:

p B 1>‘ N 1
(C,au:E;(_DA[ (O( aC)7G/’U/x> ]

- Pr  [B(S(1*, C.params),auz’) = 1]| < u(X), (2)
(C,auz)<Dx
where the first probability is taken over the coin tosses of B and O, the second
probability is taken over the coin tosses of B and S, and auz’ = (auz, ¢(C)).

It is shown in [20] that distributional-indistinguishability which works with
aux’ = (auz,p(C)) implies distributional VBB which works with auz, where
©(C) is an arbitrary 1-bit predicate of the circuit. To state the theorem, we
need the following definition of predicate augmentation, which allows to add an
arbitrary 1-bit predicate of the circuit to the auxiliary input.

Definition 4 (Predicate Augmentation [3, 20]). For a distribution class
D, we define its augmentation under predicates, denoted aug(D), as follows.
For any (non-uniform) polynomial-time predicate ¢ : {0,1}* — {0,1} and any
D = {Dy} € D the class aug(D) indicates the distribution ensemble D' = { D)}
where D samples (C,aux) < Dy, computes auxr’ = (auz, p(C)) and outputs
(C,aux’).



Theorem 1 (Distributional-Indistinguishability implies VBB [20]). For
any family of circuits C and a distribution class D over C, if an obfuscator O
satisfies distributional-indistinguishability (Definition 3) for the class of distribu-
tions D' = aug(D), i.e., if there exists a (non-uniform) PPT simulator S, such
that for every PPT distinguisher B, for every distribution ensemble D' = { D)}
where DY samples (C,auz) < Dy with C € C, computes auzr’ = (aux,p(C))
and outputs (C, aux’),

Pr [B(O(1*,C), auz’) = 1]

(C,auzx’)+ D}

- Pr  [B(S(1*,C.params),auz’) = 1]| < u()), (3)
(Cauz’)+ D

then it also satisfies distributional-VBB security for the distribution class D
(Definition 1).

Compared with VBB, input-hiding is a somehow more natural security notion
for evasive function obfuscation.

Definition 5 (Input-Hiding [1]). Let C = {Ci}aen be a circuit collection and
D be a class of distribution ensembles D = {Dx}xen that sample C < Dy with
C € C. An obfuscator O is input-hiding for the distribution class D over the
circuit family C if for every PPT adversary A there exists a negligible function
() such that for every A € N and for every auziliary input auzx € {0,1}P°v)
to A:
Pr [C(A(O(C)), aux) = 1] < u(A),
C+Dy

where the probability is taken over the random sampling of Dy and the coin
tosses of A and O.

2.2 Evasive Functions

Note that input-hiding is particularly defined for evasive functions, since there
is no way one can hide the accepting inputs of a non-evasive function without
changing its functionality.

Definition 6 (Evasive Circuit Collection [1]). A collection of circuits C =
{Cr}xren is evasive if there exists a negligible function u(X\) such that for every
polynomial p, for every A € N, and for every x € {0,1}" with n = p(\) € N:

where the probability is taken over the random sampling of Cy.

Note that in Definition 6 we made a distinction between the security param-
eter A and the input length n, where [1] assumes that A = n.



2.3 Entropies
We define several entropies for the discussion of evasiveness in Section 4.

Definition 7 (Min-Entropy). The min-entropy of a random variable X is
defined as Hoo(X) = —In(max, Pr[X = z]). The (average) conditional min-
entropy of a random variable X conditioned on a correlated variable Y is defined

as Hoo(X|Y) = —In(Ey vy [maz, Pr[X = z|Y = y]).

Definition 8 (Conditional Hamming Ball Min-Entropy [13]). (Also known
as conditional fuzzy min-entropy ([12], Definition 8).) Let v < n € N. The Ham-
ming ball min-entropy of random variables X andY on {0,1}"™ is defined as

Huom,co(X]Y)=—1In (maxye{(],l}“ Pr[| X & y|< rY]),
where @& denotes the XOR operation.

Definition 9 (Conditional Big Subset Min-Entropy). Let 0 <t <n € N.
The conditional big subset min-entropy of a random variable X andY on {0,1}"
is defined as

Hup,o0(X[Y) = = In (maxye (0,130 Pr[X —y € {0,1}", |y[> t]Y]).

Definition 10 (Conditional Small Superset Min-Entropy). Let 0 < ¢ <
n € N. The small superset min-entropy of a random variable X andY on {0,1}"

1s defined as

Hsup,oo(XY) = —In(mawyeqo,13» Prly — X € {0,1}", [y|< t]Y]).

3 Big Subset and Small Superset Functionalities

We define big subset and small superset functions as follows.

Definition 11 (Big Subset Function (BSF) [6]). For each n € N, we define
the class of big subset functions C,, to be the class of functions parametrized by
(n,t, X), where X C{1,...,n}, and t € N is a threshold with 0 <t < n. A big
subset function is a function fn . x : P({1,...,n}) = {0,1} that on input a set
Y C{1,...,n} outputs 1 if Y C X and |Y|>t, or outputs 0 otherwise, where P
denotes the power set.

Definition 12 (Small Superset Function (SSF) [4]). For each n € N,
we define the class of small superset functions to be the class of functions C,
parametrized by (n,t,X), where X C {1,...,n}, and t € N is a threshold with
0 <t < n. A small superset function is a function f,; x : P({1,...,n}) — {0,1}
that on input a set Y C{1,...,n} outputs 1 if X CY and |Y|< t, or outputs 0
otherwise, where P denotes the power set.

Following are equivalent definitions that will be used in the rest of the paper.



Definition 13 (Big Subset Function (BSF) - Alternative Definition).
For each n € N, we define the class of big subset functions to be the class of
functions C,, parametrized by (n,t, z), where x € {0,1}"™, andt € N is a threshold
with 0 <t <n. A big subset function is a function fp 1. :{0,1}" — {0,1} that
on input y € {0,1}" outputs 1 if x —y € {0,1}" and |y|> t, or outputs 0
otherwise.

Definition 14 (Small Superset Function (SSF) - Alternative Defini-
tion). For each n € N, we define the class of small superset functions C,,
to be the class of functions parametrized by (n,t,x), where x € {0,1}", and
t € N is a threshold with 0 < t < n. A small superset function is a function
frte  {0,1}" — {0,1} that on input y € {0,1}" outputs 1 if y —x € {0,1}"
and |y|< t, or outputs 0 otherwise.

4 Evasiveness of BSF and SSF

Now we discuss what kinds of BSF and SSF can be obfuscated. We conclude
that only “evasive” BSF and SSF are possible to obfuscate. To see this, just
to notice that the secret x is immediately leaked once a big subset or a small
superset of z is found.

The attack for BSF is as follows (the case of SSF is similar): Let y be a big
subset of x found by the attacker. The attacker then flips the 0’s of y one by
one and queries the oracle of f, ;. (i.e., the obfuscated function of fy, ¢ ,). If
the y with a O-position flipped is still a big subset of x, then the corresponding
position in x is a 1; otherwise the corresponding bit of x is 0. Running through
all 0’s in y the attacker learns x. In particular, if all the flipped y’s are rejected,
then the attacker learns that z = y.

In the following we discuss the requirements for evasive BSF and SSF.

4.1 Evasive BSF and SSF

We first define evasive BSF and evasive SSF. Let n € N be the bit length of a
set © € {0,1}", and ¢ € {0,...,n} be the threshold indicating big/small. Let
A € N be the security parameter such that n = p(\) for some polynomial p. Note
that n,t are functions in A, we therefore sometimes denote them as n(\), t(\)
for clarity.

Definition 15 (Evasive BSF/SSF). Let {X,,()) }n(r)en be an ensemble of dis-
tributions over {0,1}*N . Let C = {Crn), e fnyen with Cpny 1x) =
{fn(A),t(A),z}zeXnm be the corresponding collection of BSF (or SSF). We say C
is evasive if there exists a negligible function p(X) such that for every polynomial
p, for every A\ € N, and for every y € {0, 1}V

Pr o [fuoneo.e(®) =1 < p(d). (4)

QH_XH(X)



4.2 Uniform Distributions

Now we consider the requirements for evasiveness. Let us start with the case
where {X,,(x) }n(r)en are uniform distributions.

For BSF, if |y|< t(A), then Inequality (4) always holds since y will never be a
“big” subset of any z. If |y|> t(\), then there are at most 2"*(»)~*(X) many x such
that y is a subset of z, Inequality (4) holds if and only if 2}~¢(%) /27(0) < 1 /22X,
i.e. t(A) > A. Therefore in the case where {X,, },en are uniform distributions,
the BSF family C is evasive if and only if

t) > A

Similarly, for SSF, if |y|> t()), then y will never be a “small” superset of
any = hence Inequality (4) always holds. If |y|< #()), then there are at most
2t many z such that y is a superset of x, Inequality (4) holds if and only if
2t 9n(N) < 1/2* e, t(\) < n(\) — A. Hence in the case where {X,, },cn are
uniform distributions, the SSF family C is evasive if and only if

() < n(A) — \.

Note that the above requirements for ¢(\) are the most basic ones in the
sense that they are obtained under the best possible distributions, namely the
uniform distributions.

4.3 General Distributions

We now consider the case where {X,,(x)}n(r)en are general distributions.

Let us first explain what exactly Inequality (4) means. In words, it means
that for every y € {0, 1}”()‘), an z sampled from the distribution X, () has
negligible probability that y is a big subset (or small superset in the case of
SSF) of x. Intuitively, this requires that in the space {0,1}*™), the number of
points x representing BSF (or SSF) is large enough and at the same time they
are “well spread out” in the sense that big subset relations (or small superset
relations, respectively) between points occur sparsely and evenly in the space.
Rigorously, the following requirement implies Inequality (4).

Definition 16 (Big Subset / Small Superset Evasive Distribution). Let
n(A) € N and X be the security parameter. Let 0 < t(A) < n(\) € N. Let
X ={X,(\) tn(nen be an ensemble of distributions over {0, 13", We say that
X is big subset evasive (or small superset evasive, respectively) if for all auziliary
inputs aux, the conditional big subset min-entropy (or conditional small superset
min-entropy, respectively) of X conditioned on aux, as in Definition 9 (or in
Definition 10, respectively), is at least \.

Note that asking for a big subset or a small superset is a stronger question
than asking for a “close” set. Hence the above requirement is somehow looser
than the evasiveness requirement for fuzzy Hamming distance matching. Intu-
itively, in the case of fuzzy Hamming distance matching, we require that the



points in the Hamming space are spread out such that their Hamming balls do
not overlap too seriously; while in the case of BSF (or SSF), the Hamming balls
can overlap more seriously. For example, let = (01]|c) and y = (10||c) be two
strings with only the first two bits different, where ¢ € {0, 1}*")~2. We can see
that z and y have very small Hamming distance |« & y|= 2, but neither of them
is a subset or a superset of the other.

This means that in the same space {0, 1}™Y), there are more evasive BSF as
well as evasive SSF than evasive fuzzy Hamming distance matching functions.

Nonetheless, our obfuscation for BSF and SSF has to work under the stronger
requirement, namely the requirement for evasive Hamming distance matching.
This is because an attacker can always recover the secret x from its encoding
by merely finding a “close” set and not necessary to find a big subset or a small
superset.

We therefore use the following definition for evasiveness of BSF and SSF in
the rest of the paper.

Definition 17 (Hamming Distance Evasive Distribution [13]). Let A €
N be the security parameter and n(X\),t(A) € N. Let X = {X,0\)}nnen be
an ensemble of distributions over ({0,1}**) {0, 11PN where Xn(n) outputs
z € {0,1}"N | and some auziliary information aux € {0,132 about 2. We
say that X is Hamming distance evasive if for all n(\) € N, the conditional

Hamming ball min-entropy of X,,(x) conditioned on aux (as in Definition 8 with
r(A) = [|Xpon[=t(A)|< n(N)) is at least A

Note that this requirement of evasiveness already implies a wide range of
parameters in the sense of the largest obfuscatable gap between |z| and ¢()).
Specifically, for the negligible probability that a uniform y « {0, 1} falls into
the radius-r Hamming ball of z, i.e., Pr,. (o 3oz @ y|< r(N)] < 1/2%, we
require that

A
r(A) < % — v/ An(A)In2 (5)
(for a proof of this for the uniform distribution X)), see Lemma 2 in [13]).

Notice that this r(\) has a rather large domain, and now the Hamming distance
evasive distribution (as in Definition 17) gives the gap ||z|—t())| the same domain
as this ().

5 Computational Assumptions

In this section we define the subset product problems and give evidence to their
hardness.

In the following definitions, n,r,t are always functions in A, denoted n(\),
r(A), t(A\), respectively; and we assume that n(A) > .

10



5.1 Discrete Logarithm Problem

Following are the definition of DLP and its hardness assumption, one can find
them in any standard textbook.

Definition 18 (Discrete Logarithm Problem (DLP)). Let N € N. Let
G of order N be a finite group written in multiplicative notation. The discrete
logarithm problem is the following. Given g,h € G to find a (if it exists) such
that h = g®.

Assumption 2 (Hard DLP) Let A € N. Let Z;; be the multiplicative group of
integers modulo q with ¢ = 2p + 1 > 2* a safe prime for some prime p. If g
is sampled uniformly from Z} and a is sampled uniformly from {0,...,q — 2},
then for all A € N, there exists a negligible function pu(\) such that for all PPT
algorithms A, the probability that A solves the DLP (g, g®) is not greater than

1(A).

5.2 Subset Product Problems and Hardness Assumptions

The subset product problems are also classic problems. We cite [13] for its first
application to obfuscation.

Definition 19 (Subset Product Problem (SP) [13]). The subset product
problem is the following. Given n(\)+ 1 primes (p1,...,Pn(n),q) and an integer
X € Z;, find a subset of the p;’s (if one ewists) that multiply to X modulo

q, or equivalently, find a binary string (T1,...,Tn0)) € {0,1}”0‘) such that
X =12 pi* (mod g).

Definition 20 (Decisional-Subset Product Problem (d-SP) [13]). The
decisional-subset product problem is the following. Given n(\)+1 primes (p1, . .
Pn(x);q) and an integer X € Ly, decide if there exists a binary string (1. ..,

)

In order to state the hardness of SP, we first define the (n(\),t(X\), B(A))-SP
distribution.

Definition 21 ((n()A),t()), B(A))-SP Distribution). Let A, n(\), t(\), B(A) €
N with n(\) > A polynomial in X, t(X) < n, and B(X) larger than the n(\)-th
prime. Let X, () be a distribution over {0, 1}”()‘) with Hamming ball min-entropy
Ao Let (x1...,2500)) < Xpn) such that r(X) = [|z|—=t())| satisfies Inequality
(5). Let p1,...,ppexy be distinct primes sampled uniformly from the primes in
[2, B(\)] and q be a random safe prime in [B(A)"™ | (1 + o(1))B(A\)"™)]. Then
we call the distribution (py,...,pnx), ¢ X) with X = H:l:(/}) p;t (mod ¢q) the
(n(N),t(N\), B(X))-SP distribution.
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Note that requiring Inequality (5) in Definition 21 is to ensure that for a
center point z € {0,1}*™), the probability that a uniform y < {0,1}" falls
into the radius-r Hamming ball of z is at least 1/2*, as we discussed with regard
to Inequality (5). In particular, Assumption 3 is false if 7(A) > n(\)/2 since one
can easily guess a string within Hamming distance n(\)/2 of x, and then solve
SP using the decoding method in [13]. Also, we refer to the discussion regarding
Equation (9.3) in [13] to justify why such a safe prime ¢ in Definition 21 exists.

In the following we state our hardness assumption for the proof of input-
hiding in Section 6.3. Note that the definition of input-hiding (Definition 5)
involves some auxiliary information aux € {0, 1}”0”1()‘). We therefore put the
auxiliary information in the assumption. Since this kind of auxiliary information
is some “fixed” information for all < X, with the same n, giving it out should
not change the hardness of the problem too much.

Assumption 3 (Hard SP) Let A, n(\),t(\), B(A) € N. Let D be an (n(\),
t(\), B(\))-SP distribution. Then for every PPT algorithm A, there exists a neg-
ligible function p(X) such that for every n(\) € N, for every auziliary input aux €

{0, 13PN | the probability that A solves the SP (py, . .. s Pr(n)» s Hn()l‘) p;* (mod

1=

)q) over the distribution D with aux given is not greater than p(\).

We then state the hard d-SP assumption which serves the proof of distri-
butional VBB of our obfuscation. Different from Assumption 3 where there is
only one auz for each n()\), the following Assumption 4 assumes that d-SP is
hard even given auxiliary information auz about the specific x output by X,,(y).
Furthermore, for convenience in proving distributional-indistinguishabiliy, we de-
fine the d-SP problem in the “predicate-augmentation” style (as in Definition
4), namely to define it over a distribution Dj which outputs auz’ = (auz, ¢(x))
instead of just auz, for any (non-uniform) polynomial size predicate ¢ : X;,(x) —
{0,1}, where b € {0,1}. The assumption is as follows.

Assumption 4 (Hard d-SP) Let A\,n()\),t(\), B(A\) € N. Let Dy = (p1,- ..,

Pn(n), €5 X, aux) be the (n(X),t(A), B(X))-SP distribution which outputs some ex-
tra auziliary information aux about x that satisfies Definition 17 (i.e., the con-
ditional Hamming ball min-entropy of the distribution X, conditioned on aux
is still at least \; also note that aux is essentially output by Xy(x)). Let ¢ be any
(non-uniform) polynomial size predicate. Let Dy = (p1, ..., Pn(x), ¢, X, auz’) be
a distribution which samples (p1,...,Pn(n), ¢, X, aux) < Dy, computes auz’ =

(auz,p(x)) and outputs (p1,...,Pn(n), ¢ X, aux’). Similarly, let D1 = (py,.. .,

Pn(n); @, X', aux) be the same distribution as Dy with X = HZL:O{) p;* (mod q)

replaced by X' «+ Z; and Dy be the same distribution as D} with X = H?:()l‘) i
(mod q) replaced by X' + Zy. Then for every PPT algorithm A, there exists a
negligible function p(X\) such that for every n(\) € N, given polynomially many
instances from D; with b € {0,1}, the difference of the probabilities that A out-
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puts b’ = b and A outputs b’ # b is not greater than u(\). Le.,

P A X =1
(pl,...,pn,q,)(r,aur’y—Dé[ (p17 s Pns 4, 7au33) ]

= Pr (AP -5 pns ¢ X aua’) = 1] < p(A). - (6)

(P s sPh,q", X saua’ )< D7

5.3 Evidence to the Hardness of SP and d-SP

Now we turn to give some evidence to the hardness of SP and d-SP. Specifically,
we reduce DLP to SP, and SP to d-SP.

We consider SP and d-SP without auxiliary information and over a slightly
different distribution which is with respect to a fixed r instead of an r := ||z|—¢|
dependent on |z|. Intuitively, these minor differences should not change our
confidence in the hardness of the problems too much. Take SP as an example,
the auxiliary information only decreases the entropy of x by a tiny amount.
Leaking one or two bits of x does not make the task of finding the whole = any
easier. Also, if SP is hard with respect to r, then it should still be hard when r
is defined to be ||z|—t|, as long as ||z|—t| satisfies the same requirements that r
satisfies.

We state the definition and the assumptions in the following.

Definition 22 ((n(A),r(\), B(A))-SP Distribution). Let A, n()\),r(X\), B(A) €
N with n(\) > X polynomial in A, r(\) satisfying Inequality (5), and B(X) larger
than the n(\)-th prime. Let X,y be a distribution over {0, 1} with Hamming
ball min-entropy X. Let (1 ...,2,00)) < Xpn) and let py,...,ppexy be distinct
primes sampled uniformly from the primes in [2, B(\)]. Let q be any safe prime
in [BON)™ ™ (14 0(1))B(A\)"™M]. Then we call the distribution (p1, ...,

Pn(r)s ¢, X) with X = H?:(?) p;t (mod q) the (n(A),r(\), B(N))-SP distribution.

Assumption 5 (Hard SP without auz (SP’)) Let A\,n()\),r(\),B(\) € N.
Then for every n(\) € N, there exists a negligible function uw(\) such that for
every PPT algorithm A, the probability that A solves the SP (p1,...,Pn()), 4
H:L:(’}) p;t (mod q)) over the (n(X), r(X), B(\))-SP distribution is not greater than
1(A).

Assumption 6 (Hard d-SP without auz (d-SP’)) Let A,n(\),r(\), B(A) €
N. Let Do = (p1,---,Pn(n)>q X) be the (n(X),7(X\), B(\))-SP distribution and
Dy = (p1,..-,Pn(n)» 4, X') be the same distribution with X = H?:(?) p;t (mod q)
replaced by X' + Zy. Then for every n(A\) € N, there exists a negligible function
(X)) such that given polynomially many instances from Dy with b € {0,1}, for
every PPT algorithm A, the difference of the probabilities that A outputs b’ = b
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and A outputs b # b is not greater than u(X). Le.,

Pr Alpt,.. . pn,q, X) =1
(p17~--7pn,q7X)<—Do[ (1 Pns @, X) ]

— Pr AWy, d X)) =1 < uN). (T
<pg,...,p;wq/,Xf>eD1[ (P} Py @ X)) = 1] < p(N). (7)

For the hardness of d-SP’, we can refer to [16] and [18] for a search-to-
decision reduction for the knapsack problems, which can be applied to reduce
SP’ to d-SP’. In the following we reduce DLP to SP’.

A reduction from DLP to the high density case SP’ was given in [13]. However,
what we truly care about is the low density case SP’, which is the case that our
obfuscation really relies on. In the following we give a reduction from DLP to
both high and low density case SP’.

The reduction in [13] is based on the following conjecture, which restricts the
SP’ instances to be in the high density case.

Conjecture 1 ([13]). Let A\,n(A\),r(X), B(\) € N. Let (p1, ... ,pn(A),q,H?:(i‘) p;
(mod q)) be the (n(\), r(A), B(A))-SP distribution with the extra condition that

q < 2"V Let X, (n) be the uniform distribution on {0, 1}”0‘). Then the statisti-

cal distance of the distribution of H?:(’}) p;* (mod ¢) and the uniform distribution

on Zy is negligible.

In fact the conditions that ¢ < 2" and that Xp(xn) being uniform are not
necessary. The reduction works as long as the number ngp: of subset products
HZL:(?) p;" (mod q) satisfies ngps/q > p(A) for some polynomial p. This is because
the purpose of Conjecture 1 is to make sure that we can sample a subset product
X from Z; in polynomial time. For this, much looser conditions like ¢ = 2N p(N)
together with merely “high” min-entropy X, () over {0, 1}”()‘) are sufficient.

In the following we give a new conjecture based on the looser conditions, and
reduce DLP to SP’ based on the new conjecture.

Congecture 2. Let \,n()),r(A), B(A) € N. Let (p1,...,Pn(n), 4 H?:()l\) Pt (mod q))
be the (n()\),7()\), B(A))-SP distribution with the extra condition that ¢ < 2"
p(n(A)) for some polynomial p. Then the number of elements in Z; being a subset

product [[;—, p{* (mod q) with (z1,... , Tn(yy) €10, 13N is > q/p(n(N)).

Note that the looser requirement ¢ < 2"Mp(n()\)) in Conjecture 2 permits
SP’ instances in a very low density case.

For the proof of Theorem 7 we also need the following conjecture, which
states that when writing different DLP group elements g® in terms of subset

products H?:()f) p;* (mod ¢) with respect to some random primes pi,. .., pp(r),

the exponent strings x = (21,...,2Z,(\)) € Z;(A) with respect to different g* have
high probability to be linearly independent. This makes sense if we think about

the “kind of” uniform distribution of the subset products X = H:L:(’}) p;t (mod q)
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over Zy, and the randomness of the primes pi, ..., py(x). Here we state the con-
jecture.

Conjecture 3. Let A\,n(A),p1, ..., Pn(r),q be as defined in Definition 21. Let Z; =
(9) be a DLP group generated by ¢ as defined in Assumption 2. Let p be a

n()\) Tk, i

polynomial. Let ay,...,ap) ¢ Z; such that g** = [[.Z7" p;*" (mod q) for

some Ty = (This- - Thn(n)) € Z;(A), for all k € {1,...,p(\)}. Then for every
p, for every n(\), there exists a polynomial function p’ such that the probability
that {x1,...,2,(\) } are linearly independent over Z,_1 is > 1/p'(}).

Theorem 7. Assuming Conjecture 2, Conjecture 3, Assumption 6 , and suppose
there exists an SP’ instance (n(\),r(\),p1,...,0n,q, X) defined in Assumption
5 with g < 2"Np(n(X)) can be solved with overwhelming probability in time T.
Then there is an algorithm to solve the DLP in Z; (as defined in Assumption 2)
with overwhelming probability in expected time O(p(A\)T), for some polynomial

p.

Proof. Let A be a PPT algorithm that solves the SP’ (p1, ..., pn(»), ¢, X) defined
in Assumption 5 and let (g, h) with g, h € Z; be a DLP instance defined in Zj.
Then we solve the DLP as follows. Sample a uniform a from {1,...,q — 1},
then call A to solve (p1,...,Pn(0),q,9%). Note that g* is uniform over Zy. By
Assumption 6, the distribution of (p1,...,pn(r), ¢, g%) is close to the distribution
of SP’ instances. Therefore A can solve (pi,...,pnn),¢,9%) for an z (if one

exists) such that g% = Hf:(i) p;t (mod ¢) with overwhelming probability. Since

q < 2"Mp(n(N)), by Conjecture 2 we have that ngp:/q > p(n()\)). Therefore
we expect that after n(A)p(n(X)) samples, we have n(\) such a’s such that g¢
are subset products with x € {0, 1}"()‘). Also by Conjecture 3, with at most
n(A)p(A)p’ () samples of a, we expect n(\) such x € {0,1}" which are linearly
independent over Z,_1, where p’(A) is some polynomial. We therefore have n(\)
linearly independent relations a = Z?:(i) r;log,(pi) (mod ¢ — 1) over Z, . By
solving the equations we have log,(p;) (mod ¢ — 1) for all i € {1,...,n(\)}.
Lastly we sample b « {1,...,q — 1}, compute hg® (mod ¢), and call A to
solve it. With at most p(\) extra samples of b, we expect one more relation
log,(h) +b= Z?:(i) ;log,(p;) (mod ¢ — 1) with & € {0,1}"™. Then log,(h) =

ST @ log, (pi) — b (mod ¢ — 1).

Unfortunately, due to parameter restriction, we cannot apply Theorem 7 to
reduce the security of our obfuscator to the hardness of DLP. Regardless of
the auxiliary information and the difference between the (n(\),t()\), B()\))-SP
Distribution and the (n(X),r(X), B(A))-SP Distribution, the main barrier comes
from the perfect correctness of our scheme. If we want to use Theorem 7, then
we cannot avoid false acceptances (as defined in Section 6.1), which requires
the parameter r := ||z|—t| to lie in a range that is disjoint with the range that
Theorem 7 requires. This is why our construction is based on SP and d-SP, and
not DLP. Theorem 7 only serves as evidence to why SP and d-SP are “generally”
hard.
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5.4 Parameters for Obfuscation

We discuss how the parameters in SP and d-SP affect the parameters in our
obfuscation.

In the obfuscation, for BSF we have r(A) = |z|—t(\) (or () = t(A) — |z|
for SSF) if ||z]|—t(\)[> %@ (see Algorithm 1 and Inequality (8)). Since
a random z has Hamming weight approximately n(\)/2, due to Assumption
3 which requires Inequality (5), we have r(A) = n(A\)/2 — t(A) < n(\)/2 —

An(A)In2 (or r = t(A) —n(N)/2 < n(A)/2 — /An(A\)In2 for SSF). Hence we
require
t(A) > vV An(A)In2 > A,

(or t(A) < n(A) — v/ An(A)In2 < n(A\) — A for SSF).

On the other hand, under the requirement of Inequality (5), if we choose ¢(\)
based on the average value of |z|, i.e., n(\)/2, then for some extreme cases of x
(like |z|~ n(A) for BSF, or |z|= 0 for SSF), the obfuscated function might not
have perfect correctness. For example, when ¢()\) A)/2 = /An(A)1In2, for a
large set  such that |z|=n(\) — \/An(A\)In2, a blg subset yof x Wlth |x|—|y\>

n(A)/2— /X ( ) In 2 might be falsely rejected. The example for SSF is similar:

when t(A\) = n(\)/24 y/An(\) In2, for a small set x such that |z|= /An(A\) In2,
then a small buperbet y of x Wlth ly|—|x|> n(A)/2 — /An()\)In2 might not

decode correctly. However, this should not be a problem since x is sampled from
a high entropy distribution X, (y), its Hamming weight |z| is approximately n/2
and the extreme 2’s occur with negligible probability.

6 Construction

We now present our obfuscator. The construction is very simple so we do not
give too much explanation here. The readers can refer to Section 1.1 for the
intuition.

Algorithm 1 Obf (for both BSF and SSF)

Input: n € N, t € N, z € {0,1}" with ||z]—¢|<n/2 — VAnIn2
Output: ((p1,...,pn) € N", ¢ e N, X € Z7)
1: sample distinct primes p1,...,pn from [2, B] where B € O(nlnn)

nln(2v2me) }

’ In(nlnn)

2: sample safe prime ¢ from [B", (1 + o(1))B"| where r := maz{||z|—t|
3: compute X =[], p;* mod ¢
4: return ((p1,...,pn),q, X)

Note that in Algorithm 1 we require ||z|—t|< & —+/AnIn2 by Inequality (5).
Also note that from the size of ¢, one can guess r hence |x|. But this is expected,
since |z|€ [0,n], one can always guess |z| with probability > %—l—l
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The following factoring algorithm (Algorithm 2) is a sub-procedure of the
evaluation algorithm (Algorithm 3).

Algorithm 2 Factor

Input: n € N, (p1,...,pn) € N', a €N
Output: 0 or 1

1: fori=1,...,n do

2 if p;|la then a < a/p;
3: end for

4: return 1 if a =1 else 0

Following is the evaluation algorithm.

Algorithm 3 Eval (with embedded data (p1,...,p,) € N", ¢ € N, X € Z7; for
both BSF and SSF)

Input: y € {0,1}"

Output: O or 1

1: F«0

2: if |y|>t (or |y|< ¢ for SSF) then

3:  compute Y =[], p{* (mod q)

4:  compute E = XY ™! (mod q) (or E=Y X! (mod q) for SSF)
5
6

7

compute F < Factor(n, (p1,...,pn), E)
: end if
:return 1if FF =1 else 0

Note that compared with the other use of the subset product problem, i.e.,
[13], our evaluation algorithm (i.e., Algorithm 3) only bases on the uniqueness
of integer factoring and saves the process of computing continued fractions. This
makes our decoding process extremely simple.

6.1 Correctness

Let us take BSF as an example to analyze the correctness. The analysis for SSF
is similar. Note that the inputs y with |y|< ¢ will always be correctly rejected.
We therefore only discuss the case where |y|> t.

Let E= XY ! (mod q) = [\, p{" (mod q) with e = (e1,...,e,) =z —y €
{=1,0,1}™. If y is a big subset of z, then e € {0,1}" with |e|< |z|—t < r, since
[T, pi" < B" < q. This means F is a product of primes in {p1,...,p,} hence
will be reduced to 1 in Factor and therefore y will be correctly accepted by Eval.

If y is not a big subset of z, then it will either (1) result in some E such
that E contains a prime factor not in {p1,...,p,} or e ¢ {0,1}" (i.e., E is not
square-free); or (2) result in some E such that FE is still a product of primes in
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{p1,...,pn}. The former case will be correctly rejected by Eval. The latter case
will be falsely accepted. We therefore call a y € {0,1}"™ such that it is not a big
subset (or not a small superset in the case of SSF) of z but accepted by Eval a
false acceptance.

Dealing with False Acceptances by Lattices We now discuss how to deal
with false acceptances to achieve perfect correctness.
Let y be a false acceptance. We have that E = [[;_, p;" ¥ (mod ¢) =
n i . n :
[, p;" (mod ¢) with J[;_,pi* < q and e = (e1,...,e,) € {0,1}". le,
[T, pi" ¥ =1 (mod ¢) with z —y — e # 0. This implies a nonzero short

vector z € {—2,—1,0,1}" of length < 24/n in the lattice

L:{zEZ" prizl (modq)}.

i=1
To avoid false acceptances, we can require the shortest vector in the above lattice
to be larger than 24/n. If the primes py,...,p, are sufficiently random, which
means that the lattice is sufficiently random, then we can employ the Gaussian
heuristic to estimate the length of the shortest vector as

[ n 1
Al ~ % VOI(L) LI

Also, by the first isomorphism theorem, the volume of the lattice vol(L) is
given by the size of the image |[im ¢| of the group morphism

¢:L" — Lk,

(€1, zn) = [ [ 1" (mod q)
i=1
whose kernel defines L. Hence

vol(L) < (q) =q— 1,

where ¢ is the Euler totient function. The equality holds if and only if {p1,...,pn}
generates Z;. So

n 1 n 1 n 1
A~y m—vol(L)» <y /=—(g— 1) <4/ n,
! 2me vol(L)™ < 2me (g )" < 27Teq

If we take A\; = / 2ﬁeq% and ¢ ~ (nlnn)", for A\; > 24/n we require that

S n1n(2v/2me) . (8)

In(nlnn)
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To summarize, if we require that r satisfy Inequality (8) then heuristically
there are no false acceptances. Note that Inequality (8) is not a serous restriction,
as the problem are most interesting when r = ||x|—t| is large.

Besides, to provide evidence for the precision of the Gaussian heuristic when
applied to the relation lattice L, we did some experiments. Due to the limitation
of computational resources, we only work with small parameters such as n = 20
or 30 or 40, r = [ | (which is an appropriate choice as we will be discussing
in Section 6.5), and B = 3nlnn.

Let A1 denote the length of the shortest vector in a lattice and let v denote
the Gaussian heuristic. For each n = 20 or 30 or 40, we create 1000 lattices L
from random subset products, calculate the proportion of lattices that A; /v falls

into the 20 intervals [0.0,0.1),[0.1,0.2), ..., [1.9, 2.0], respectively. The results are
as follows.
When n = 20, r = |%-|, B = 3nlnn, the sequence of proportions is:
(00000000003200000000)
) ) b ) b ) ) ) ) b 207 207 b ) ) b b ) ) .

When n = 30, r = [ ], B = 3nInn, the sequence of proportions is:

2 26 399 557 16
1000 1000° 1000”1000 1000’

When n =40, 7 = [ %], B = 3nlnn, the sequence of proportions is:

(0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0).

29 702 269
1000’ 1000’ 1000’

We can see that for most cases A1/~ € [1.0,1.2], which means that the Gaus-
sian heuristic is quite close to the true length of the shortest vectors most of
the time. Also A\; tends to be larger than 7, which gives more confidence in
Inequality (8) to avoid false acceptances.

(0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0).

Dealing with False Acceptances by Hashing Another way to deal with
false acceptances is to use a hash function or a point function obfuscation. Let
us take hash as an example. To avoid false acceptances, all we need to do is to
compute and output an extra value h = H(z) in Obf, where H is some hash
function; and in Factor, store the factors of F in a list F' and replace “return 1”
with “return F”; also in Eval, add process to recover x from F' and compare its
hash value against H(z). If y is a big subset (or small superset in the case of
SSF) of x, then the factors of E will tell the positions of distinct bits between x
and y, then one can recover x by flipping y at those positions. Otherwise if y is
a false acceptance, then doing so will give a wrong z’ # x which can be detected
by checking its hash value.

6.2 Efficiency

In the obfuscating algorithm Obf (Algorithm 1), we need to sample n+ 1 primes,
perform n — 1 modular multiplications of integers of size < q. Therefore the time
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complexity of the obfuscation is linear in the number of modular multiplications
of integers of size < gq.

Again, in the evaluation algorithm Eval (Algorithm 3), we need n—1 modular
multiplications of integers of size < ¢ to compute Y, and 1 inversion, 1 modular
multiplication of integers of size < ¢ to compute F, also n inversions and n
modular multiplications of integers of size < ¢ to run Factor (Algorithm 2).
Therefore the time complexity of the evaluation is also linear in the number of
modular multiplications of integers of size < q.

6.3 Security

Theorem 8. Let X, be a distribution over {0,1}" with Hamming ball min-
entropy A. Then assuming Assumption /, the obfuscation given by Algorithm 1
- 3 is distributional VBB.

Proof. (1) In Section 6.1 we have shown correctness.

(2) In Section 6.2 we have shown polynomial slowdown compared to the original
function.

(3) We now show distributional-indistinguishability, which implies distributional
VBB due to Theorem 1. For every circuit C' +— C) (which contains the secret
T+ X,), let O(1*,C) = (p1,-..,Pn,q, X) be the obfuscated function of C.
We define a simulator S which works with as follows: S takes C.params =
(n,t, B) and samples 2’ <— X,, such that r’ := ||z'|—t| satisfies Inequality (5).
S then samples n primes p},...,p,, and a modulus ¢’ in the same way as O
except that it samples ¢’ from [B™, (1 + o(A))B"'] based on its own r’. Denote
S(1*, C.params) = (p},...,p,,q,X’). We will show that the two probabilities
in Inequality (3) equal to the two probabilities in Inequality (7) respectively.

For the first equivalence relation, we have that for every n € N, for every
PPT distinguisher A and for every predicate ¢,

Pr [A(p17"'apnaQ7X,aul’/) = 1]

(x,auf)(—X;’M)

= PI' [A(p17"'7pnaQ7X7aux/):1]7

where both probabilities are over the randomness of x,pi,...,p, and ¢. This
holds simply from the definition of Dj, (as in Assumption 4).

) Replace z with C, X, ) with D}, and p1, ..., ps, ¢, X with O(1*,C) we have
that

p A 1)‘ no_ 1
(C,aux’l)‘eD;\[ (O( 70), auxr ) ]

= Pr Alp1,...,pn,q, X,aux’) = 1], (9
(pl,...,pn,q,x,aum/)epg,[ (1 )=1], (9)
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where the first and the second probabilities are the first probabilities of Inequality
(3) and Inequality (7) respectively.

For the second equivalence relation, we have that for every n € N, for every
PPT distinguisher A and for every predicate ¢,

Pr [A(pY, ... ), ¢, X' aua’) = 1]

’ ’
(z,auz )<—X7L(A)

= Pr [A(pY, .. P, X aux’) = 1],

(PlsPh,q" X Jauz’ ) <D}

where the probability is over the randomness of x,pi,...,p},q and X’. This
holds from the definition of D} (as in Assumption 4).

Replace x with C, X;(A) with D}, and p,...,pl, ¢, X’ with S(1*, C.params)
we have that

[A(S(1*, C.params), auz’) = 1]

T
(C,auzx’)+ D)

/ / / /! /
= (p’l,,,‘,piﬁq’,l?(r’,aux/)%D()[A(pl’ ceypnyq X aux’) = 1], (10)
where the first and the second probabilities are the second probabilities of In-
equality (3) and Inequality (7) respectively.

By Assumption 4, there exists a negligible function u(A) such that the dif-
ference between the right hand sides of Equation (9) and Equation (10) is not
greater that u()). Therefore the difference between the left hand sides of Equa-
tion (9) and Equation (10) is not greater that p(A). Le., Inequality (3) holds.
This completes the proof.

Next we show input-hiding from the hardness of SP.

Theorem 9. Let n,t,r, B € N satisfy Definition 21 and Inequality (5). Then
assuming Congecture 2, Conjecture 3, Assumption /4, and the hardness of SP
(Assumption 3), the BSF obfuscation given by Algorithm 1-3 is input-hiding.

Proof. Let (p1,...,pn,q,X) with X = [[}_, p{* (mod ¢) for some unknown
x = (1,...,2,) € {0,1}"™ be an SP instance defined in Assumption 3, and
auz € {0,1}P°N) be some auxiliary information. Let A be a PPT algorithm
that breaks input-hiding of the obfuscation given by Algorithm 1-3. Then we
solve the SP as follows. We directly call A to break ((pi,...,pn,q,X),auzx).
Since r satisfies Inequality (5), i.e., there are no false acceptances, A will return
a big subset y of  such that £ = XY ™! (mod ¢q) = [[/_, p;" ¥ (mod ¢) =
[T, p§" (mod ¢) with e = (eq,...,e,) € {0,1}™. Then we can factor E to get e
and recover x by flipping y at the positions ¢ such that e; = 1.

Similarly, we have the following dual theorem for SSF.

Theorem 10. Let n,t,r, B € N satisfy Definition 21 and Inequality (5). Then
assuming Conjecture 2, Conjecture 3, Assumption 4, and the hardness of SP
(Assumption 3), the SSF obfuscation given by Algorithm 1-3 is input-hiding.
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6.4 Attacks

As we mentioned earlier, having an accepting y one can recover x by flipping
the corresponding bits of y according to the factors of E. And to recover z, it is
not necessary to find a big subset or a smaller superset of x, but a “close” set.

Theorem 11 (Diophantine Approximation [15]). Let o € R then there

exist fractions p/q € Q such that |a — §| < ﬁ. If, on the other hand, there

exists a/b € Q such that |o — $| < 5k, then a/b is a convergent of a.

An attack based on Theorem 11 is as follows. Having an input y such that
the Hamming distance between z and y is bounded by r, we compute £ =
XY~ (mod q) = [[;p;"™% (mod q) = UV~! (mod q), where UV~ is the
lowest terms of XY ™! modulo ¢ with U = [, p/* and V = [[;_, p;", for

u;,v; € {0,1}. We have that EV — kq = U hence |§ — k= q%. By Theorem

11, if UV < 4, then % is a convergent of %. Finding this convergent from the
continued fraction of E/q is efficient. So we have V and k, and thus U = EV —kgq.
We then factor U and V to find all different bits between x and y, and recover
x by flipping y correspondingly.

Moreover, the following theorem shows a way to push the continued fraction
algorithm beyond the naive limits given by Theorem 11.

Theorem 12 (Extended Legendre Theorem [11]). Let « be an irrational
number, let the fractions f;—:f € Q be its continued fraction, and let a,b be coprime
nonzero integers satisfying the inequality | — §| < %, where ¢ is a positive
real number. Then (a,b) = (rPm+t1 £ SPm, FGm+1 £ S¢m), for some nonnegative
integers m, r and s such that rs < 2c.

By Theorem 12 one can always find a and b by tuning ¢, which gets rid of
the limitation from o — | < 55.

6.5 Parameters

In this section we discuss function families that can be obfuscated using our
method. Restrictions for the parameters A, n, ¢, r, and ¢ are as follows.

(1) By Section 4.2, for uniform z’s, the basic requirements for evasiveness are
t > X for BSF, and t < n — X for SSF.

(2) For the hardness of finding a y close to z such that it decodes (which will
recover x), we require r := ||z|—t| to be small enough, i.e., the Hamming ball
of any z to be small enough. This gives r(n) < n/2 — vAnln2. (Inequality
(5)).

(3) To avoid false acceptances (as we discussed this can also be handled using a
nln(2v2re) (Inequality (8)).

hash), we need r > Tn(n In n)
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From (2) and (3) we have that

In(2v/2
nn(2v2me) <r(n) < 2 Vnaln2.
In(nlnn) 2
Notice that
nin(2v2me)  n_ n < n ViAIng,
In(nlnn) Inn Inlnn — 2
both r(n) ~ - and r(n) ~ —— are possible functions for r. We take r(n) =

| ]. Then the condition r < § — v/nAIn2 gives

Inn

vVniln2 <n (; — 1)

where for the last line we assume n > 1024.

Hence a possible function family is (n = 6\, r = L%J) In terms of ¢ (take
the average weight § of a random x), it is (n = 6A,t = § — L%J) for BSF and
(n="6\t=7%+ Lﬁj) for SSF. Note that an elementary requirement is that
|z|> r since otherwise the encoding of z, namely []!_; p{’ (mod ¢) will always
be factorable and = will be exposed immediately.

Also note that r(n) ~ % ~ m(n), namely our function for 7 is the prime
counting function.

Based on the above analysis, a concrete setting for the BSF/SSF obfuscation
is:

BSF: (A = 128; n = 1024; t = 365; B = pjo24 (the 1024-th prime); X,, has
Hamming ball min-entropy A);

SSF: (A = 128; n = 1024; t = 659; B = p1g24 (the 1024-th prime); X,, has
Hamming ball min-entropy A).

7 Conclusion

We obfuscate big subset and small superset functionalities using the subset prod-
uct problems. Our construction is very simple and highly efficient. The correct-
ness is simply based on the uniqueness of integer factoring. We give security
proofs for both VBB and input-hiding in the standard model.

We conclude the limitations of our solution as follows.

Let n € N be the bit length, ¢ € N be the threshold indicating big/small,
and x € {0,1}" be the characteristic vector of a set X C {1,...,n}, with its
Hamming weight |z| indicating the size of the set X. Our obfuscation for x
requires that ||z|—t|]< n/2. However, this is hardly a restriction since a random
x has Hamming weight |x| approximately n/2 (i.e., with very low probability |z|
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is far away from n/2). Hence the condition ||z|—t|< n/2 is for free most of the
time.

Also, our obfuscation requires Hamming distance evasiveness, which is stronger
than big subset and small superset evasiveness. Though, this requirement already
implies a fairly large family of functions to obfuscate, as we discussed at the end
of Section 4.3.
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Proof of Input-hiding of [5] from DLP

Here we prove input-hiding of the conjunction obfuscation in [5] from the hard-
ness of DLP. This security property is not studied in [5].

Definition 23. (Bartusek et al.’s Scheme [5]). The conjunction obfuscation in
[5] is as follows:

Setup(n). Let G be a group of prime order ¢ > 2" with generator g. Let
B := By4+1,2n,q, where

1 2 ... 2n
122 ... (2n)?
Bn+172n7q = : : : . (11)

12n+l . (2p)n

Obf(pat € {0,1,%}"). Set e € Z2"*" such that ey;_1 = ez = 0 if pat; = x,
or egiy < Lg and ez _1_p) = 0 if pat; = b, for b € {0,1}. Output

v = gB'e e G,

26



— Eval(B € Z(+Dx2) 1y € G g € {0,1}"). Define B, according to x to be
the (n+1) x n matriz with column j set as (By); = (B)a2j_g,. Solve tBy =0

1 1
for a non-zero vector t € qu(n+ ). Compute
n+1
ti
w= ][
i=1

and accept if and only if w = 1.

Correctness For an input (B, Obf(pat), z) of Eval, Eval outputs w = H?:ll(Obf(
pat))’i, which equals 1 if z satisfies pat.

The idea of the scheme is that the obfuscated function accepts only when B,
is correctly created, which cannot be completed without knowing the pattern
pat.

Theorem 13. Suppose the Discrete Logarithm Problem (DLP) is hard (As-
sumption 2). Then the conjunction obfuscation in Definition 23 is input-hiding.

Proof. Let (B,v = ¢g®) be defined as in Definition 23. We show that if there
exists an algorithm A that solves (B, v = g?¢) for an accepting input = € {0,1}",
then there exists an algorithm A’ that solves DLP.

For a DLP instance (g,h = ¢g*) with g a generator of a group G,, and a €
{0,...,|Gpn|—1}, A’ first generates matrix B as Equation (11) shows, samples
51, 8n41 < Zg and computes

u=1(g"..,9"""").

A’ then samples r; < {0,...,|H|—1} for all i € [n + 1], inserts A" into u to
get
u = (kg% ... gt

and invokes A with (B, ') to get 2’ such that

n+1

Pr[ [ (ng™)" =1] = u(w)
i=1
for some function p(n) and for any t' = (#},...,t,,,) # 0 computed as follows:

A’ first creates B,/ according to x’, then solves ' B, = 0 for a non-zero t'.
Note that

n+1

[[rgeoy =1
=1
— ga- ;L=+11 ity . gE;:rf st} = 1.

A’ then solves the DLP (g,h = ¢g%) for a as

n+1 /
r_ T Zi=1 sit;

q = —=*= "

n+1 7
>oin Tty
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Note that r; are independent of all other parameters during the process. In
particular, r; are independent of ;. Hence Z?:Jrll r;t; # 0 with probability 1/p(n)
for some polynomial p. Therefore the probability of solving the DLP is

Pra’ = a] = u(n)(1 - p(n)) = ' (n).

By the hardness of DLP, u'(n) is negligible. Hence p(n) is negligible.

B New Obfuscation for Conjunctions

We now show how to use the techniques for BSF and SSF obfuscation to obfus-
cate conjunctions in a highly efficient way. Compared with [13], the advantage
of the obfuscation in this paper is that it does not rely on continued fractions
hence is much simpler and more efficient.

B.1 New Definition of Conjunctions

Conjunctions are also called pattern matching with wildcards. Typically they are
defined as functions f, . (y) that, holding a secret string = € {0, 1,*}" with
r < n € N wildcards, take as input binary strings y € {0,1}"™ and output 1 if y
matches all non-wildcard positions of z, or output 0 otherwise. We define |z| to
be the number of 1’s in the string.

We give an equivalent definition based on the big subset and small superset
functionalities. The intuition is to do both big subset and small superset tests
so that any unmatched bit at the non-wildcard positions will be exposed.

Our new definition is as follows.

Definition 24. A conjunction (or pattern matching with wildcards function) is
a function fy . (y) which holds a secret string x € {0,1,*}™ with r < n € N
wildcards, takes as input a binary stringy € {0,1}" and outputs 1 if y is a subset
of x with all wildcards being replaced by 1 and at the same time y is a superset
of x with all wildcards being replaced by 0, or outputs 0 otherwise.

Note that in Definition 24 we only require subset and superset, not “big” subset
or “small” superset. In fact, requiring both subset and superset implicitly re-
quires big subset and small superset. This is because if y is a superset of x with
* being replaced by 0, then it must have Hamming weight |y|> |z|. Also, if y is
a subset of x with * being replaced by 1, then it must have Hamming weight
ly|< ||+

So by the new definition, we generically reduce the conjunction obfuscation
problem to the BSF and SSF obfuscation problems. However, the catch is that
the two instances are “correlated” and the previous security analysis is not suf-
ficient.
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B.2 Evasiveness

Note that we used two functions to define the pattern matching with wildcards
function f, ;. (y), which were the BSF f,, ., (y) with |w|= |z|+r, t = |z|, and
the SSF f,, v .(y) with |z|=|z|, ¢’ = |z|+r.

Suppose w and z are uniform. (In fact this is not true but it is convenient
for us to derive some basic results.) By Section 4.2, for the evasiveness of both
frtw and fr ., we need both ¢ > A and ¢ < n — A\. Remind that ¢ = |x| and
t' = |z|+r, we have that |z|> A and |z|+r < n — A. Take the average case of |z|,

ie., [z[~ 5", we have that "5 > X and 5" +r < n — A. Solve for r to get

r<mn-—2\

This is automatically satisfied since we originally require r < 5 to avoid an

easy guess of y close to w or z by Hamming distance 5. Also in our typical
settings for BSF and SSF obfuscation, r is approximately - (as discussed in

Section 6.5).

B.3 Construction

We first explain our obfuscation at a high level.

Let n,r,B € N with r < n/2 and B € O(nlnn). Let f,,,(y) with = €
{0,1,*}™ be a pattern matching with wildcards function with r wildcards.

To obfuscate, we derive two binary strings w, z € {0,1}" from x, where w is
x with the wildcard positions set to 1, and z is x with the wildcard positions set
to 0. We then choose two sequences of small primes, (p1,...,p,) and (I1,...,1,),
from [2, B], and two primes ¢ and s from [B", (1 4 0o(1)B")]. Then we encode w
and z into two different subset products as:

n

Xy =[[p" (mod g),
i1

n

Xy =[] % (mod s).

i=1
Then we output (p1,l1,...,0n,ln,q, s, X1, X2) as the obfuscated function. The
obfuscating algorithm is as follows.

Algorithm 4 Obf
Input: n € N, r € N, z € {0,1,%}"
Output: ((p1,11,...,pn,ln) EN?" ¢,s €N, X1, X5 € Zy)

1: set w as ¢ with * <— 1 and z as « with x < 0

2: sample distinct primes pi,l1, ..., pn,ln from [2, B] where B € O(nlnn)
3: sample safe primes ¢, s from [B", (14 o(1))B"]

4: compute X1 = [[;"; p;"* mod g and Xo =[[;", 7" mod s

5:

return (p1,l1,...,Pn,ln,q, s, X1, X2)

29



To evaluate with an input y € {0,1}", we compute

n

Y) = Hpi.” (mod q),

i=1

n

Y, = Hlf (mod s),
i=1
and By = X1Y; ! (mod q), Ba = Y2 X, ! (mod s). We then use Algorithm 2 to
factor F4 using the primes p1,...,py, and factor E5 using [y, ...,[,. If both F;
and Fs factor successfully, then output 1, otherwise output 0. The evaluation
algorithm is as follows.

Algorithm 5 Eval (with embedded data (pi,l1,...,pn,ln) € N?" q,5 €
N, X1, X € Z;

Input: y € {0,1}"

Output: 0 or 1

: compute Y1 =[], p¥* (mod ¢) and Y2 =[], , I¥* (mod s)

compute F; = XlYfl (mod ¢) and E» = YQX;l (mod s)

compute Fy < Factor(n, (p1,...,pn), F1) and F» < Factor(n, (I1,...,0»), E2)
return 1 if F} = F, =1 else 0

Wiy e

. . n W . n Zi
Correctness For convenience, let us denote Uy = [[,_, p;”", Us = [[,_, ;*,

= H?zl pYt, and Vo = H?zl 1¥" as the pure products without modular reduc-
tion. Then E; = Uy /Vi (mod q), Ey = V5 /Us (mod s). The correctness of our
obfuscation is as follows.

If x and y match at all non-wildcard positions, then w is a superset of y and
z is a subset of y, so Ey = Uy /V; is an integer < ¢, and Ey = V5/Us is an integer
< s, then both the factorings of E; and Es will succeed and the obfuscation will
output 1 correctly. Otherwise if there is any non-wildcard position at which x
and y do not match, then at least one of Uy /V; and V,/Us is a proper rational.
With high probability the corresponding E will not factor over the original list of
primes. Then the factoring will fail and the obfuscation will output 0 correctly.
Note that false acceptances are possible. In the following we discuss them.

Dealing with False Acceptances by Lattices We define a false acceptance
to be ay € {0,1}" such that y is not a matching pattern to = yet both Uy /V; < ¢
and V5 /U, < s are integers.

In other words, a false acceptance means the same y gives short vectors in
two lattices simultaneously. We show in the following that if we choose p; = I;
for all i € {1,...,n} and ¢ = s, then false acceptances can be easily avoided.
The only drawback is that these settings will leak the wildcard positions since
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the attacker can factor X; X5 ! to get the primes corresponding to the wildcard
positions. We give our lattice analysis as follows.

Note that some false acceptances can be rejected by adding rules in Algorithm
5 to check if the resulting error vector e and y both have 1’s at the same positions.
If so, then y is not a good input and should be rejected. Then we only need to
deal with the other cases of false acceptances. In the following we call the other
cases the second case of false acceptances.

Let p; = I; for all ¢ € {1,...,n} and ¢ = s. Let y be a second case false
acceptance. Then By = [[_, pi" ¥ =[]\, p;"" (mod q) implies a nonzero
short vector u = w —y —e; € {—2,—1,0,1}" with e; € {0,1}", |e1|< r in the

lattice
L= {IGZ” Hp“ =1 (mod q)}

Similarly, Es implies a nonzero short vector v =y — z —eg € {—2,-1,0,1}"
with eg € {0,1}", |e2|< r in the same lattice. We therefore have

Hpu it — 1 (mod q).

Note that w = z + e for some e € {0,1}" with |e|=7. Sou+v = (w —y —
e1)+(y—z2—e)=(2+e—y—e1)+(y—z—e)=e—e; —ex € {-2,-1,0,1}.

We have that
lu+ v|< 2v3r.

To avoid false acceptances, it is sufficient to let the shortest vector A\; in L

to be
n 1 n 1
A~y —(g—1)" =4/ n > 24/3r,
! 27T€(q ) 27Teq "

which gives

- *Tlln Srﬂ'e (12)
" In(nln n)
if we take ¢ = (nInn)". If we further take r = *-, we have
1 7n In Sl’ﬂf
—_— > I L
Inn = In(nlnn)’
Solve for n we have
n > 123.025.
Le., when n > 123, false acceptances are naturally avoided, and r can be chosen
in the general way as r = - as we derived in Section 6.5. Hence we have the

following family of parameters:

n
123, r = —).
(n> " lnn)
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But as we mentioned, this is only for the scheme that will leak the wildcard
positions. For our true scheme where no p; is a I; and g # s, we can still hope
that in the low density case, each subset product X € Zj uniquely defines an
x e {0,1}".

Efficiency It is not hard to verify that the obfuscation and the evaluation have
time complexity linear in the number of modular multiplications of primes of size
< ¢q and < s, respectively. In particular, our obfuscation is even more efficient
than the scheme in [13]. One of the drawbacks of [13] is that it uses continued
fractions, which makes the evaluation process complicated. The scheme in this
paper successfully cut off the procedures that deal with continued fractions,
resulting in a very simple algorithm.

Security We prove input-hiding security of our scheme. The security is based
on the following new computational problem.

Definition 25 (Twin Subset Product Problem (TSP)). The twin subset
product problem is defined as the following. Given two instances (p1,...,Pn,q, X)
and (l1,...,ln, 8, X") of SP (as in Definition 19) from two Hamming close points
x € {0,1}™ and 2’ € {0,1}™, respectively, to find any one of x and x'.

The new hardness assumption is as follows.

Assumption 14 (Hard TSP) Letr <n/2 €N and ((p1,-..,0n,q,X), (L1,
cyln, 8, X)) be a TSP with two SPs as in Assumption 3 with |z ®a'|< r. Then

for every n € N, there exists a negligible function u(\) such that for every PPT

algorithm A, the probability that A solves any one of the SPs is not greater than

1(A).
Now we prove input-hiding security.

Theorem 15 (Input-hiding of Conjunction Obfuscation). Assuming the
hardness of TSP (Assumption 14), the conjunction obfuscation given by Algo-
rithm 4 - 5 is input-hiding.

Proof. Let ((p1,---,0n,9,X), (I1,...,1n, 8, X)) be a TSP with respect to the
secret sets x and 2/, respectively. Without loss of generality, let x be a superset
of 2’. Let A be a PPT algorithm that solves the obfuscation given Algorithm 4 -
5. We solve the TSP as follows. We query A on the TSP above. Since the TSP is
exactly an obfuscation instance, A can solve for a y € {0,1}" which is a subset
of x and a superset of /. We then compute and factor E = XY ! (mod ¢q) =
[T7, pi""¥ (mod q) to obtain the error vector e = x —y € {0,1}". Then we can
recover x by flipping y at the positions ¢ such that e; = 1.
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