
Small Superset and Big Subset Obfuscation

Steven D. Galbraith and Trey Li

Department of Mathematics, University of Auckland, Auckland, New Zealand
{s.galbraith,trey.li}@auckland.ac.nz

Abstract. Let S = {1, . . . , n} be a set of integers and X be a subset of
S. We study the boolean function fX(Y) which outputs 1 if and only if Y
is a small enough superset (resp., big enough subset) of X. Our purpose
is to protect X from being known when the function is evasive, yet allow
evaluations of fX on any input Y ⊆ S. The corresponding research area
is called function obfuscation. The two kinds of functions are called small
superset functions (SSF) and big subset functions (BSF), respectively.
In this paper, we obfuscate SSF and BSF in a very simple and efficient
way. We prove both input-hiding security and virtual black-box (VBB)
security based on the subset product problem.
We also give a proof of input-hiding based on the discrete logarithm
problem (DLP) for the conjunction obfuscation by Bartusek et al. [5] (see
Appendix A) and propose a new conjunction obfuscation based on SSF
and BSF obfuscation (see Appendix B). The security of our conjunction
obfuscation is from our new computational problem called the twin subset
product problem.

1 Introduction

Let n be a positive integer and S = {1, . . . , n} be the set of integers from 1 to
n. Let X be a subset of S. A small superset function (SSF) (resp., big subset
function (BSF)) is a function fX(Y) which takes as input a set Y ⊆ S and accepts
if Y is a small superset of X (resp., big subset of X), or rejects otherwise. For
example, let S = {1, . . . , 1000}, let X ⊆ S be a randomly chosen subset of size
800, and let t = 900 (resp., t = 700) be a threshold value. Then fX(Y) = 1 if
and only if Y ⊇ X and the size of Y is at most 900 (resp., if and only if Y ⊆ X
and the size of Y is at least 700). Our goal is to protect X from being known
when the function is evasive, yet allow the users to be able to determine whether
Y is a small superset (resp., big subset) of X, for any Y ⊆ S.

The research area is called function obfuscation. A simple example of function
obfuscation is point function obfuscation (think about password checkers), of
which the goal is to hide a point x ∈ {0, 1}n, yet allow determinations on whether
x = y, for any given input y ∈ {0, 1}n. A simple obfuscation for point functions
is to hash x and to evaluate by comparing the hash of x and the hash of y.

Generally speaking, the goal of function obfuscation is to prevent a function
from being recovered while preserving its functionality and time complexity. Due
to the impossibility of general purpose obfuscation [2], special purpose obfusca-
tion aims at obfuscating restricted classes of functions. An interesting class of

functions is the class of evasive functions [17]. They are the kind of functions
that are hard to find an accepting input by random sampling. Examples of eva-
sive functions include point functions [9,19], conjunctions [7,5], fuzzy Hamming
distance matching [13], hyperplane membership functions [10], compute-and-
compare functions [20,14], etc. Section 5 of [1] gives an impossibility result for
obfuscating all evasive functions.

Previous works for SSF or BSF obfuscation are [4] and [6]. SSF was first
introduced in [4] to construct public-key function-private encryption, while BSF
was first introduced in [6] to better analyze and obfuscate conjunctions. Bartusek
et al. [4] obfuscate SSF using similar techniques to [5]. The obfuscator in [5] is a
dual scheme of Bishop et al.’s conjunction obfuscator [8]. However, the security
proof of [4] is somewhat complicated and it lacks a discussion on input-hiding.
Beullens and Wee [6] obfuscate BSF from a new knowledge assumption called
the KOALA assumption, which is very strong.

In this paper we use the subset product problem to obfuscate SSF and BSF.
This is a much more simple and trustworthy assumption. This gives the main
motivation of the paper. The other motivation is to provide a construction that
is simple, efficient, and has simpler security proofs than [4] and [6].

1.1 Technical Overview

In the rest of the paper we focus on SSF since BSF can be converted into SSF.
To see this, let fX with threshold t be a BSF. Then fS\X with threshold n − t
is an SSF, where S\X is the complement of X. Also, for simplicity, we consider
function families where the sets have fixed size w.

We represent a set X ⊆ {1, . . . , n} by its characteristic vector x ∈ {0, 1}n.
Hence an SSF is a function fx : {0, 1}n → {0, 1} such that fx(y) = 1 if and only
if y − x ∈ {0, 1}n and |x| = w ≤ |y| ≤ t (where |y| denotes the Hamming weight
of y).

We explain the obfuscation as follows. The high level idea is to encode x ∈
{0, 1}n as a subset product X =

∏n
i=1 p

xi
i (mod q) with respect to some small

primes p1, . . . , pn and a larger prime modulus q so that if and only if an input
y ∈ {0, 1}n is a small superset of x (which implies that x and y have many bits
in common) the product

∏n
i=1 p

yi−xi

i is smaller than q and thus

Y X−1 (mod q) =

n∏
i=1

pyi−xi

i (mod q) =

n∏
i=1

pyi−xi

i

factors over {p1, . . . , pn}, where Y =
∏n

i=1 p
yi

i (mod q). We explain the idea
explicitly as follows.

Let n, t ∈ N with t < n. Let x = (x1, . . . , xn) ∈ {0, 1}n with Hamming
weight w and r = t − w. We require r ≤ n/2. To obfuscate, the obfuscator
samples n different small primes p1, . . . , pn from {2, . . . , B} for some sufficiently
large B ∈ N, and a safe prime q such that Br < q < (1 + o(1))Br. It then
computes the product X =

∏n
i=1 p

xi
i (mod q) and publishes (p1, . . . , pn, q,X) as

the obfuscated function.

2

To evaluate with input y = (y1, . . . , yn) ∈ {0, 1}n, the obfuscated function
firstly checks if w ≤ |y| ≤ t. If not then it terminates and outputs 0. If w ≤ |y| ≤
t, then it further computes Y =

∏n
i=1 p

yi

i (mod q) and E = Y X−1 (mod q) =∏n
i=1 p

yi−xi

i (mod q), and tries to factor E by dividing by the primes p1, . . . , pn
one by one. If y − x ∈ {0, 1}n then E factors over {p1, . . . , pn} and the function
outputs 1. Otherwise, if y − x /∈ {0, 1}n, which means y is not a superset of x,
then with high probability E will not factor over {p1, . . . , pn} and the function
outputs 0.

1.2 Organization

In Section 2 we introduce basic notions that are used in this paper and define
evasive functions and function obfuscation. In Section 3 we define SSF and BSF
and discuss their evasiveness. In Section 4 we define the subset product problem
and reduce the discrete logarithm problem to both high and low density subset
product problems. In Section 5 we present our obfuscation for SSF and BSF. In
Section 6 we prove distributional virtual black-box (VBB) security and input-
hiding security of our scheme based on the subset product problems. We discuss
techniques for potential attacks to our scheme in Section 7. Section 8 is a brief
conclusion.

2 Preliminaries

Let S = {1, . . . , n} be a set of positive integers from 1 to n, where n ∈ N. Let X
be a subset of S. The binary string x ∈ {0, 1}n whose 1’s indicate the elements
of X is called the characteristic vector of X. In this paper we call a characteristic
vector x a set, by which we mean the set X that it represents.

Let x ∈ {0, 1}n, by |x| we mean the Hamming weight of x, which represents
the size of the set X that x represents. Let C be a circuit, by |C| we mean the size
of C. Let a ∈ R, by |a| we mean the absolute value of a. We denote continuous
intervals in the usual way as (a, b), [a, b), (a, b], or [a, b], for a, b ∈ R. We denote
discrete intervals in the usual way as {a, . . . , b}, for a, b ∈ N. We denote the
natural logarithm as ln a, for a ∈ R. We call a rational number a proper rational
if it is not an integer. Let f, g : N → R be two functions. By f ∼ g we mean

limn→∞
f(n)
g(n) = 1 and by f ≺ g we mean limn→∞

f(n)
g(n) = 0.

We say two distributions Dλ and Eλ are computationally indistinguishable
for every probabilistic polynomial time (PPT) algorithm A, for every λ ∈ N, if
there exists a negligible function µ(λ) such that∣∣∣∣ Pr

x←Dλ

[A(x) = 1]− Pr
x←Eλ

[A(x) = 1]

∣∣∣∣ ≤ µ(λ),

denoted Dλ
c
≈ Eλ. To be concrete, in the rest of the paper we take µ = 1/2λ.

3

2.1 Obfuscation

We use circuits to represent functions. By a circuit we always mean a circuit of
minimal size that computes a specified function. The size complexity of a circuit
of minimal size is polynomial in the time complexity of the function it computes.

Evasive Functions Evasive functions are the kind of Boolean functions that
have small fiber of 1 compared to the domain of the function.

Definition 1 (Evasive Circuit Collection [1]). A collection of circuits C =
{Cλ}λ∈N, where Cλ takes n(λ)-bit input, is evasive if there exists a negligible
function µ(λ) such that for all λ ∈ N and all x ∈ {0, 1}n(λ),

Pr
C←Cλ

[C(x) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of Cλ.

Input-Hiding Obfuscation The intuition of input-hiding is that given the
obfuscated Boolean function, it should be inefficient for any PPT algorithm to
find an element in the fiber of 1. We call elements of the fiber of 1 of a Boolean
function accepting inputs.

Definition 2 (Input-Hiding [1]). Let C = {Cλ}λ∈N be a circuit collection and
D be a class of distribution ensembles D = {Dλ}λ∈N, where Dλ is a distribution
on Cλ. A probabilistic polynomial time (PPT) algorithm O is an input-hiding
obfuscator for the family C and the distribution D if the following three condi-
tions are met.

1. Functionality Preserving: There is some negligible function µ(λ) such that
for all n ∈ N and for all circuits C ∈ C with input size n we have

Pr[∀x ∈ {0, 1}n : C(x) = C ′(x) | C ′ ← O(1λ, C)] ≥ 1− µ(λ),

where the probability is over the coin tosses of O.

2. Polynomial Slowdown: For every n, every circuit C ∈ C, and every possible
sequence of coin tosses for O, there exists a polynomial p such that the circuit
O(C) runs in time at most p(|C|), i.e., |O(C)| ≤ p(|C|), where |C| denotes the
size of the circuit C.

3. Input-hiding Property: For every PPT adversary A, for every λ ∈ N and
for every auxiliary input α ∈ {0, 1}poly(λ) to A, there exists a negligible function
µ(λ) such that

Pr
C←Dλ

[C(A(O(C), α)) = 1] ≤ µ(λ),

where the probability is taken over the random sampling of Dλ and the coin
tosses of A and O.

4

Note that input-hiding is particularly defined for evasive functions. This is
because non-evasive functions always leak accepting inputs. Also note that input-
hiding is incomparable with VBB [1].

Virtual Black-Box Obfuscation The intuition of VBB obfuscation is that
anything one can efficiently compute from the obfuscated function, one should
be able to efficiently compute given just oracle access to the function [2]. It
attempts to hide everything about a circuit without affecting the usage of the
function it computes. We use the following variant of VBB.

Definition 3 (Distributional Virtual Black-Box Obfuscator (DVBB)
[20]). Let C = {Cλ}λ∈N be a family of polynomial size circuits. Let D be a class
of distribution ensembles D = {Dλ}λ∈N, where Dλ is a distribution on Cλ and
some polynomial size auxiliary information α. Let λ ∈ N be the security pa-
rameter. A PPT algorithm O is a VBB obfuscator for the distribution class D
over the circuit family C if it satisfies the functionality preserving and polyno-
mial slowdown properties in Definition 2 and the following property: For every
(non-uniform) polynomial size adversary A, there exists a (non-uniform) PPT
simulator S, such that for every distribution ensemble D = {Dλ}λ∈N ∈ D, and
every (non-uniform) polynomial size predicate ϕ : C → {0, 1}, there exists a
negligible function µ(λ) such that:∣∣∣∣ Pr

(C,α)←Dλ

[A(O(C), α) = ϕ(C)]− Pr
(C,α)←Dλ

[SC(1λ, π, α) = ϕ(C)]

∣∣∣∣ ≤ µ(λ), (1)

where the first probability is taken over the coin tosses of A and O, the second
probability is taken over the coin tosses of S, π is a set of parameters associated
to C (e.g., input size, output size, circuit size, etc.) which we are not required to
hide, and SC has black-box access to the circuit C.

Note that black-box access to evasive functions is useless. Hence it makes
sense to consider a definition that does not give the simulator black-box access
to the circuit C.

Definition 4 (Distributional-Indistinguishability [20]). An PPT algorithm
O for the distribution class D over a family of circuits C, satisfies distributional-
indistinguishability, if there exists a (non-uniform) PPT simulator S, such that
for every distribution ensemble D = {Dλ}λ∈N ∈ D, where Dλ is a distribution
on Cλ × {0, 1}poly(λ), we have that

(O(1λ, C), α)
c
≈ (S(1λ, π), α),

where (C,α) ← Dλ, and α is some auxiliary information. I.e., there exists a
negligible function µ(λ) such that:∣∣∣∣ Pr

(C,α)←Dλ

[B(O(1λ, C), α) = 1]− Pr
(C,α)←Dλ

[B(S(1λ, π), α) = 1]

∣∣∣∣ ≤ µ(λ), (2)

where the first probability is taken over the coin tosses of B and O, the second
probability is taken over the coin tosses of B and S.

5

Distributional-indistinguishability with auxiliary information α′ = (α, ϕ(C))
implies DVBB with auxiliary information α [20], where ϕ(C) is an arbitrary 1-bit
predicate of the circuit. To state the theorem, we need the following definition
of predicate augmentation, which allows to add an arbitrary 1-bit predicate of
the circuit to the auxiliary information.

Definition 5 (Predicate Augmentation [3,20]). For a distribution class D,
we define its augmentation under predicates, denoted aug(D), as follows. For
any (non-uniform) polynomial-time predicate ϕ : {0, 1}∗ → {0, 1} and any D =
{Dλ} ∈ D the class aug(D) indicates the distribution ensemble D′ = {D′λ} where
D′λ samples (C,α)← Dλ, computes α′ = (α, ϕ(C)) and outputs (C,α′).

Theorem 1 (Distributional-Indistinguishability implies DVBB [20]).
For any family of circuits C and a distribution class D over C, if an obfus-
cator O satisfies distributional-indistinguishability for the class of distributions
D′ = aug(D), i.e., if there exists a (non-uniform) PPT simulator S, such that for
every PPT distinguisher B, for every distribution ensemble D′ = {D′λ} where
D′λ samples (C,α) ← Dλ with C ∈ C, computes α′ = (α, ϕ(C)) and outputs
(C,α′),∣∣∣∣ Pr

(C,α′)←D′
λ

[B(O(1λ, C), α′) = 1]− Pr
(C,α′)←D′

λ

[B(S(1λ, π), α′) = 1]

∣∣∣∣ ≤ µ(λ), (3)

then it also satisfies DVBB security for the distribution class D (Definition 3).

Note that the auxiliary informations α in input-hiding is some global infor-
mation for the whole function family, while the α in DVBB and distributional-
indistinguishability are some local information about the specific function being
sampled. The other commonly used names for global and local auxiliary infor-
mation are independent and dependent auxiliary information, respectively.

3 Small Superset and Big Subset Functions

3.1 Function Definition

We define small superset and big subset functions in the following.

Definition 6 (Small Superset Function, SSF). Let x ∈ {0, 1}n be a char-
acteristic vector of a subset of {1, . . . , n}. A small superset function with respect
to x is a function fx : {0, 1}n → {0, 1}, y 7→ fx(y) such that fx(y) = 1 if and
only if y − x ∈ {0, 1}n and |y| ≤ t, where t ∈ N with 0 ≤ t ≤ n is a threshold
indicating “small”.

Definition 7 (Big Subset Function, BSF). Let x ∈ {0, 1}n be a character-
istic vector of a subset of {1, . . . , n}. A big subset function with respect to x is
a function fx : {0, 1}n → {0, 1}, y 7→ fx(y) such that fx(y) = 1 if and only if
x− y ∈ {0, 1}n and |y| ≥ t, where t ∈ N with 0 ≤ t ≤ n is a threshold indicating
“big”.

6

Note that we only need to study SSF obfuscation since BSF obfuscation can
be reduced to SSF obfuscation. To see this, let fx with threshold t be a BSF.
Then fx̄ with threshold n − t is an SSF, where x̄ is the complement of x. So if
we can obfuscate SSF we can also obfuscate BSF by firstly converting BSF to
SSF.

Also, for simplicity and to simplify the security analysis, we consider function
families where the sets have the same size. I.e., all x in the function family have
the same Hamming weight.

3.2 Evasive Function Family

Denote by Bn,w the set of binary strings of length n and Hamming weight w.
Denote by Un,w the uniform distribution on Bn,w.

Only “evasive” SSF are interesting to obfuscate since x is immediately leaked
once a small superset y of x is leaked. The attack is as follows. Let y be a small
superset of x. The attacker flips the 1’s of y one by one and queries the obfuscated
function of fx. If the y with a 1-position flipped is still a small superset of x,
then the corresponding position of x is a 0; otherwise it is 1. Running through
all 1’s in y the attacker learns x. In particular, if all the flipped y’s are rejected,
then the attacker learns that x = y.

We define evasive SSF families in the following.

Definition 8 (Evasive SSF Family). Let λ be the security parameter and
n, t, w with t ≤ n, w ≤ n be polynomial in λ. Let {Xn}n∈N be an ensemble of
distributions over Bn,w. The corresponding SSF family is said to be evasive if
there exists a negligible function µ(λ) such that for every λ ∈ N, and for every
y ∈ {0, 1}n:

Pr
x←Xn

[fx(y) = 1] ≤ µ(λ). (4)

Now we consider parameters for evasive function family. Let us start with
uniform distributions {Xn}n∈N = {Un,w}, remembering that n and w are poly-
nomials in λ.

If |y| < w or |y| > t, then y will never be a small superset of any x with
Hamming weight w hence Inequality (4) always holds. If w ≤ |y| ≤ t, then there
are at most

(
t
w

)
many x with Hamming weight |x| = w such that y is a superset

of x, Inequality (4) holds if and only if(
t

w

)
/#Bn,w =

(
t

w

)
/

(
n

w

)
≤ 1/2λ. (5)

An asymptotic way to see this inequality is tw/nw ≤ 1/2λ. Also note that this is
the most basic requirement for t in the sense that it is obtained under the best
possible (i.e., highest entropy) distributions.

Now we consider general distributions {Xn}n∈N. We first define the following
entropy.

7

Definition 9 (Conditional Small Superset Min-Entropy). Let 0 ≤ t ≤
n ∈ N. The small superset min-entropy of a random variable X conditioned on
a correlated variable Y is defined as

HSup,∞(X | Y) = − ln
(
Ey←Y [max

y∈{0,1}n
Pr[y −X ∈ {0, 1}n, |y| ≤ t | Y = y]]

)
.

Now let us see what exactly Inequality (4) means. In words, it means that
for every y ∈ {0, 1}n, an x sampled from the distribution Xn has negligible
probability to have y as a small superset. Intuitively, this requires that in the
space {0, 1}n, the number of points x representing SSF is large enough and at the
same time they are “well spread out” in the sense that small superset relations
between points occur sparsely and evenly in the space. Rigorously, the following
requirement implies Inequality (4). where we now include auxiliary information.

Definition 10 (Small Superset Evasive Distribution). Let X = {(Xn, αn)
}n∈N be an ensemble of distributions on Bn,w×{0, 1}poly(λ). We denote a sample
from Xn as (x, α) where α ∈ {0, 1}poly(λ) is considered to be auxiliary informa-
tion about x. We say that X is small superset evasive if the conditional small
superset min-entropy of x conditioned on α (as in Definition 9) is at least λ.

Note that asking for a small superset is a stronger question than asking for a
“close” set. Hence the above requirement is somehow looser than the evasiveness
requirement for fuzzy Hamming distance matching. Intuitively, in the case of
fuzzy Hamming distance matching, we require that the points in the Hamming
space are spread out such that their Hamming balls do not overlap too seriously;
while in the case of SSF, the Hamming balls can overlap more seriously. For
example, let x = (01||c) and y = (10||c) be two strings with only the first two
bits different, where c ∈ {0, 1}n−2. We can see that x and y have very small
Hamming distance |x⊕ y| = 2, but neither of them is a superset of the other.

This means that in the same space {0, 1}n, there are more evasive SSF dis-
tributions than evasive fuzzy Hamming distance matching distributions.

Nonetheless, our obfuscation for SSF has to work under the stronger require-
ment of evasive Hamming distance matching. This is because an attacker can
always recover the secret x in our scheme by merely finding a “close” set and
not necessarily a small superset. We therefore use the following definition 12 for
evasiveness of SSF.

Definition 11 (Conditional Hamming Ball Min-Entropy [13,12]). The
Hamming ball min-entropy of random variables X conditioned on a correlated
variable Y is

HHam,∞(X | Y) = − ln
(
Ey←Y [max

y∈{0,1}n
Pr[|X ⊕ y| ≤ r | Y = y]]

)
,

where r < n ∈ N.

Definition 12 (Hamming Distance Evasive Distribution [13]). Let λ be
the security parameter and n, t, w with t ≤ n, w ≤ n be polynomial in λ. Let X =

8

{Xn}n∈N be an ensemble of distributions on Bn,w × {0, 1}poly(λ). We say that
the distribution Xn is Hamming distance evasive if for all λ ∈ N, the conditional
Hamming ball min-entropy of x conditioned on α (as in Definition 11 with r :=
t− w) is at least λ.

4 Subset Product Problem

This section is about the computational problem that our obfuscation is based
on.

Let us keep in mind that all parameters are functions in λ with λ ≤ n. The
subset product problem is the following.

Definition 13 (Subset Product Problem, SP [13]). Given n + 1 distinct
primes p1, . . . , pn, q and an integer X ∈ Z∗q , find a vector (x1, . . . , xn) ∈ {0, 1}n
(if it exists) such that X =

∏n
i=1 p

xi
i (mod q).

The decisional version is the following.

Definition 14 (Decisional Subset Product Problem, d-SP [13]). Given
n+ 1 distinct primes p1, . . . , pn, q and an integer X ∈ Z∗q , decide if there exists
a vector (x1, . . . , xn) ∈ {0, 1}n such that X =

∏n
i=1 p

xi
i (mod q).

In order to define hard SP, we avoid parameters that will make the problem
trivial.

If q ≥
∏n

i=1 p
xi
i , then xi is immediately leaked by checking whether pi | X.

Hence we require q <
∏n

i=1 p
xi
i . In particular, we can set q to lie between a

length r prime product and a length r + 1 prime product, for some suitably
chosen r < n.

Now if r ≥ n/2, the problem is still trivial. One can just sample a uniform
y ∈ {0, 1}n and decode x from XY −1 (mod q) using the naive and improved
attacks discussed in Section 7, where Y =

∏n
i=1 p

yi

i (mod q). The naive attack
works when the Hamming distance between x and y is ≤ r. Note that a uniform
y is expected to be n/2 away from x. Hence if r ≥ n/2, the naive attack is
expected to work. To avoid this, we require negligible probability of y being
r-close to x. I.e., Pry←{0,1}n [|x ⊕ y| ≤ r] ≤ 1/2λ, where ⊕ denotes the XOR
operation. For uniformly sampled x and y, this gives

r ≤ n

2
−
√
λn ln 2. (6)

For a proof of this, see Lemma 2 in [13].
Again, if x is from a low entropy distribution, finding a point y close to x is

easy. For example, suppose all points cluster together. Then one can just find
y by searching in the cluster. To avoid this, we require the distribution of x to
have conditional Hamming ball min-entropy (as defined by Definition 11) λ.

Now we are ready to define the hard SP distribution.

9

Definition 15 ((n, r,B,Xn)-SP Distribution). Let λ, n, r,B be positive inte-
gers with n ≥ λ polynomial in λ, r satisfies Inequality (6), and B larger than
the n-th prime. Let Xn be a distribution over {0, 1}n with Hamming ball min-
entropy λ. Let (x1 . . . , xn) ← Xn. Let p1, . . . , pn be distinct primes uniformly
sampled from the primes in {2, . . . , B}. Let q be a uniformly sampled safe prime
in {Br, . . . , (1 + o(1))Br}. Then we call the distribution (p1, . . . , pn, q,X) with
X =

∏n
i=1 p

xi
i (mod q) the (n, r,B,Xn)-SP distribution.

The hard SP and hard d-SP are the following.

Assumption 2 (Hard SP) Let λ, n, r,B,Xn satisfy the conditions in Defini-
tion 15. Then for every PPT algorithm A and every λ ∈ N, there exists a
negligible function µ(λ) such that the probability that A solves SP of instances
sampled from the (n, r,B,Xn)-SP distribution is not greater than µ(λ).

Assumption 3 (Hard d-SP) Let λ, n, r,B,Xn satisfy the conditions in Defi-
nition 15. Let D0 = (p1, . . . , pn, q,X) be the (n, r,B,Xn)-SP distribution and let
D1 be D0 with X =

∏n
i=1 p

xi
i (mod q) replaced by a random element in Z∗q . Then

for every PPT algorithm A and every λ ∈ N, there exists a negligible function
µ(λ) such that ∣∣∣∣ Pr

d0←D0

[A(d0) = 1] − Pr
d1←D1

[A(d1) = 1]

∣∣∣∣ ≤ µ(λ). (7)

By the search-to-decision reductions in [16] and [18], one can show that d-SP
is at least as hard as SP. In the following we show that SP is at least as hard
as DLP for certain parameter ranges. This gives evidence that SP is hard. An
informal statement of this result for high density SP was given in [13], where the
density of an SP instance is defined as d := n/ log2 q. In the following we give a
rigorous proof for both high and low density SP.

Definition 16 (Discrete Logarithm Problem, DLP). Let G be a finite
group of order N written in multiplicative notation. The discrete logarithm prob-
lem is given g, h ∈ G to find a (if it exists) such that h = ga.

Assumption 4 (Hard DLP) Let Z∗q be the multiplicative group of integers

modulo q, where q = 2p + 1 ≥ 2λ is a safe prime for some prime p. If g is
sampled uniformly from Z∗q and a is sampled uniformly from {0, . . . , q−2}, then
for every PPT algorithm A and every λ ∈ N, there exists a negligible function
µ(λ) such that the probability that A solves the DLP (g, ga) is not greater than
µ(λ).

Two heuristics are needed for the reduction.

Heuristic 5 The number of elements X ∈ Z∗q being a subset product
∏n

i=1 p
xi
i

(mod q) over the (n, r,B, Un)-SP distribution (p1, . . . , pn, q,X) with q ≤ 2np(n)
is ≥ q/p(n), for polynomial p(n), where Un is the uniform distribution.

10

This means that if q is not larger than polynomial times 2n, then a uniformly
chosen X from Zn

q is a subset product with noticeable probability. Also notice
that the requirement q ≤ 2np(n) captures both high and low density SP.

Heuristic 6 The number of random DLP group elements ga needed for getting
polynomially many SP solutions x that span Zn

` for each prime factor ` of q− 1
is polynomial, where x ∈ {0, 1}n is such that ga =

∏n
i=1 p

xi
i (mod q) and SP and

DLP are as defined in Assumption 2 and 4.

This means that when writing different DLP group elements ga in terms of
subset products

∏n
i=1 p

xi
i (mod q) with respect to some random primes p1, . . . , pn,

the exponent vectors x = (x1, . . . , xn) ∈ {0, 1}n have high probability to give a
full rank matrix over Z`, for each prime factor ` of q− 1. This makes sense if we
think about the randomness of the primes p1, . . . , pn.

Also note that q is a safe prime, i.e., q− 1 = 2p has only two prime factors 2
and p. Hence it is not a serious requirement since there are only two spaces Zn

2

and Zn
p needed to satisfy.

Theorem 7. Assuming Heuristic 5 and 6, if there exists a PPT algorithm to
solve SP (as defined in Assumption 2, with q ≤ 2np(n)) with overwhelming
probability in time T , then there exists an algorithm to solve DLP (as defined in
Assumption 4) in expected time O(t(λ)T), for some polynomial t(λ).

Proof. Let (g, h) be a DLP instance as defined in Assumption 4. Let A be a PPT
algorithm that solves SP as defined in Assumption 2, with the same q as the DLP.
We solve the DLP as follows. Sample a uniform a from {0, . . . , q − 2}, then call
A to solve (p1, . . . , pn, q, g

a). If ga is a subset product, then with overwhelming
probability A can solve for an x ∈ {0, 1}n such that ga =

∏n
i=1 p

xi
i (mod q).

Since q ≤ 2np(n), by Heuristic 5 we have that nSP ≥ q/p(n), where nSP is the
number of subset products in Z∗q . Hence the probability that ga being a subset
product is ≥ 1/p(n). We therefore expect that after np(n) samples of a, we can
solve for n vectors x ∈ {0, 1}n such that a ≡

∑n
i=1 xi logg(pi) (mod q − 1) .

Also by Heuristic 6, with at most np(n)p′(n) samples of a, we expect to be
able to choose n vectors x ∈ {0, 1}n to span Zn

` for each prime factor ` of q − 1,
for some polynomial p′(n). We therefore have n relations a ≡

∑n
i=1 xi logg(pi)

(mod `) whose coefficient matrix is full rank, for each prime factor ` of q − 1.
Then we can solve the systems of equations for different ` respectively and
use the Chinese remainder theorem to lift the solutions to Zq−1, obtaining
logg(pi) (mod q − 1) for all i ∈ {1, . . . , n}.

Lastly we sample b ← {1, . . . , q − 1}, compute hgb (mod q), and call A to
solve it. With at most p(n) extra samples of b, we expect one more relation
logg(h) + b ≡

∑n
i=1 xi logg(pi) (mod q − 1) with x ∈ {0, 1}n. Then logg(h) =∑n

i=1 xi logg(pi)− b (mod q − 1). ut

5 Obfuscation

The obfuscator is the following.

11

Algorithm 1 SSF Obfuscator

Input: n, t, r, w ∈ N, x ∈ {0, 1}n with r := t− w ≤ n/2−
√
λn ln 2

Output: ((p1, . . . , pn) ∈ Nn, q ∈ N, X ∈ Z∗
q)

1: sample distinct primes p1, . . . , pn from {2, . . . , B} where B = 3n lnn
2: sample safe prime q from {Br, . . . , 3Br}
3: compute X =

∏n
i=1 p

xi
i mod q

4: return ((p1, . . . , pn), q,X)

Note that in Algorithm 1 we require r ≤ n
2 −
√
λn ln 2 due to Inequality (6).

The following factoring algorithm (Algorithm 2) is a sub-procedure of the
evaluation algorithm (Algorithm 3).

Algorithm 2 Factor

Input: n ∈ N, (p1, . . . , pn) ∈ Nn, a ∈ N
Output: 0 or 1

1: for i = 1, . . . , n do
2: if pi | a then a← a/pi
3: end for
4: return 1 if a = 1 else 0

The evaluation algorithm is the following.

Algorithm 3 SSF Evaluation (with embedded data (p1, . . . , pn) ∈ Nn, q ∈
N, X ∈ Z∗q)
Input: y ∈ {0, 1}n
Output: 0 or 1

1: F ← 0
2: if w ≤ |y| ≤ t then
3: compute Y =

∏n
i=1 p

yi
i (mod q)

4: compute E = Y X−1 (mod q)
5: compute F ← Factor(n, (p1, . . . , pn), E)
6: end if
7: return 1 if F = 1 else 0

5.1 Correctness

Note that the inputs y with |y| < w or |y| > t will always be correctly rejected.
We therefore only discuss the case where w ≤ |y| ≤ t.

Let E = Y X−1 (mod q) =
∏n

i=1 p
ei
i (mod q) with e = (e1, . . . , en) = y− x ∈

{−1, 0, 1}n. If y is a small superset of x, then e ∈ {0, 1}n and |e| ≤ r, hence

12

∏n
i=1 p

ei
i < Br < q. This means E is a product of primes in {p1, . . . , pn} hence

will be reduced to 1 in Factor and y will be correctly accepted by Algorithm 3.
If y is not a small superset of x, then it will either (1) result in some E which

contains a prime factor not in {p1, . . . , pn} or e /∈ {0, 1}n; or (2) result in some
E such that E is still a product of primes in {p1, . . . , pn}. The former case will
be correctly rejected by Algorithm 3. The latter case will be falsely accepted.
We therefore call a y ∈ {0, 1}n a false positive if it is not a small superset of x
but is accepted by Algorithm 3.

Avoiding False Positives Using Lattice Arguments Now we discuss how
to avoid false positives.

Let y be a false positive. We have that E =
∏n

i=1 p
yi−xi

i (mod q) =
∏n

i=1 p
ei
i

(mod q) with
∏n

i=1 p
ei
i < q and e = (e1, . . . , en) ∈ {0, 1}n. I.e.,

∏n
i=1 p

yi−xi−ei
i =

1 (mod q) with y−x−e 6= 0. This implies a nonzero short vector z ∈ {−2,−1, 0, 1
}n of length ≤ 2

√
n in the lattice

L =

{
z ∈ Zn

∣∣∣∣∣
n∏

i=1

pzii = 1 (mod q)

}
.

To avoid false positives, it is sufficient that the shortest vector in the above lattice
is longer than 2

√
n. If the primes p1, . . . , pn are sufficiently random, which means

that the lattice is sufficiently random, then we can employ the Gaussian heuristic
to estimate the length of the shortest vector as

λ1 ∼
√

n

2πe
vol(L)

1
n .

Also, by the first isomorphism theorem, the volume of the lattice vol(L) is
given by the size of the image |im φ| of the group morphism

φ : Zn → Z∗q ,

(x1, . . . , xn) 7→
n∏

i=1

pxi
i (mod q)

whose kernel defines L. Hence

vol(L) ≤ ϕ(q) = q − 1,

where ϕ is the Euler totient function. The equality holds if and only if {p1, . . . , pn}
generates Z∗q . So

λ1 ∼
√

n

2πe
vol(L)

1
n ≤

√
n

2πe
(q − 1)

1
n <

√
n

2πe
q

1
n .

If we take λ1 =
√

n
2πeq

1
n and q ∼ (n lnn)r, for λ1 > 2

√
n we require that

r >
n ln(2

√
2πe)

ln(n lnn)
. (8)

If we satisfy this condition on r then heuristically there are no false positives.

13

Evidence for the Gaussian Heuristic in These Lattices To provide evi-
dence for the Gaussian heuristic on the relation lattice L, we give some experi-
mental results. Due to the limitation of computational resources, we only work
with small parameters such as n = 20 or 30 or 40, r = b n

lnnc (which is an ap-
propriate choice as we will be discussing in the later section about parameters),
and B = 3n lnn.

Let λ1 denote the length of the shortest vector in a lattice and let γ denote
the Gaussian heuristic. For each n = 20 or 30 or 40, we create 1000 lattices L
from random subset products, calculate the proportion of lattices that λ1/γ falls
into the 20 intervals [0.0, 0.1), [0.1, 0.2), . . . , [1.9, 2.0], respectively. The results are
as follows.

When n = 20, r = b n
lnnc, B = 3n lnn, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
9

20
,
11

20
, 0, 0, 0, 0, 0, 0, 0, 0).

When n = 30, r = b n
lnnc, B = 3n lnn, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0,
2

1000
,

26

1000
,
399

1000
,
557

1000
,

16

1000
, 0, 0, 0, 0, 0, 0, 0).

When n = 40, r = b n
lnnc, B = 3n lnn, the sequence of proportions is:

(0, 0, 0, 0, 0, 0, 0, 0, 0,
29

1000
,
702

1000
,
269

1000
, 0, 0, 0, 0, 0, 0, 0, 0).

We can see that for most cases λ1/γ ∈ [1.0, 1.2], which means that the Gaus-
sian heuristic is quite close to the true length of the shortest vectors most of
the time. Also λ1 tends to be larger than γ, which gives more confidence in
Inequality (8) to avoid false positives.

Dealing with False Positives by Hashing Another way to deal with false
positives is to use a hash function or a point function obfuscator. Let us take
hash as an example. To avoid false positives, all we need to do is to compute and
output an extra value h = H(x) in Algorithm 1, where H is a collision resistant
hash function modeled as a random oracle; and in Factor, store the factors of
E in a list F and replace “return 1” with “return F”; also in Algorithm 3, add
process to recover x from F and compare its hash value against H(x). If y is a
small superset of x, then the factors of E will tell the positions of the distinct
bits between x and y, then one can recover x by flipping y at those positions.
Otherwise if y is a false positive, then doing so will give a wrong x′ 6= x which
can be detected by comparing the hash values.

5.2 Parameters For Secure Obfuscation

Restrictions for the parameters λ, n, t, r, and q are as follows.

(1) For evasiveness, the basic requirement is Inequality (5).

14

(2) For the hardness of finding a y close to x such that it decodes (which will
recover x), we require r to be small enough, i.e., the Hamming ball of any
x should be small enough. This requires r(n) ≤ n/2−

√
λn ln 2. (Inequality

(6)).
(3) To avoid false positives without using a hash function or a point function

obfuscator, we require r > n ln(2
√
2πe)

ln(n lnn) (Inequality (8)).

From (2) and (3) we have that

n ln(2
√
2πe)

ln(n lnn)
< r(n) ≤ n

2
−
√
nλ ln 2.

Notice that
n ln(2

√
2πe)

ln(n lnn)
≺ n

lnn
≺ n

ln lnn
≺ n

2
−
√
nλ ln 2,

both r(n) ∼ n
lnn and r(n) ∼ n

ln lnn are possible functions for r, where by f ∼ g

we mean limn→∞
f(n)
g(n) = 1 and by f ≺ g we mean limn→∞

f(n)
g(n) = 0.

We take r(n) = b n
lnnc. Then the condition r ≤ n

2 −
√
nλ ln 2 gives

√
nλ ln 2 ≤ n

(
1

2
− 1

lnn

)
⇐⇒ λ ≤ n

ln 2

(
1

2
− 1

lnn

)2

⇐= λ ≤ n

6
,

where for the last line we assume n ≥ 1024.
Hence a possible function family for the uniform distribution Bn,w is (n =

6λ, r = bn/ ln(n)c). In terms of t, it is (n = 6λ, t = w + bn/ ln(n)c). A concrete
setting is: λ = 128; n = 1024; t = 659; w = 512; B = 8161 (the 1024-th prime,
13 bits); q ≈ 2Br (about 1912 bits); Xn has conditional Hamming ball min-
entropy λ. Note that this requirement on Xn is easy to achieve with the settings
of n,w and t, because n is much larger than λ and there is a big gap between a λ
min-entropy distribution and the uniform distribution. Even when we consider
auxiliary information which reduces the entropy a little bit, it is still easy to
have a λ min-entropy distribution conditioned on the auxiliary information.

Note that an elementary requirement is that w > r since otherwise the
encoding of x, namely

∏n
i=1 p

xi
i (mod q) will always be factorable and x will

be exposed immediately. Also notice that r(n) ∼ n/ ln(n) ∼ π(n), namely the
function for r is the prime counting function.

6 Security Proofs

The security is based on hardness assumptions that are slightly different from
Assumption 2 and 3. We consider SP and d-SP over points x ∈ {0, 1}n with
fixed Hamming weight w ≈ n/2 and with auxiliary information given.

15

The following assumption serves the proof of input-hiding, which involves
some global auxiliary information α ∈ {0, 1}poly(λ) about the whole function
family.

Assumption 8 (Hard SP with Global Auxiliary Information) Let Xn be
a distribution on Bn,w where n/2− n/8 ≤ w ≤ n/2 + n/8. Let α ∈ {0, 1}poly(λ)
be auxiliary information. For every PPT algorithm A, for every λ ∈ N, there
exists a negligible function µ(λ) such that the probability that A, provided with α,
solves an SP sampled from the (n, r,B,Xn)-SP distribution is not greater than
µ(λ).

We then state the hard d-SP assumption which serves the proof of DVBB.
Different from Assumption 8 where there is only one α for the entire func-
tion family, the following Assumption 9 assumes that d-SP is hard even given
auxiliary information α about the specific x sampled from Xn. Furthermore,
for convenience in proving distributional-indistinguishabiliy, we define the d-SP
problem in the “predicate-augmentation” style (as in Definition 5), namely to
define it over a distributionD′b which outputs α′ = (α, ϕ(x)) instead of just α, for
any (non-uniform) polynomial size predicate ϕ : Xn → {0, 1}, where b ∈ {0, 1}.

Assumption 9 (Hard d-SP with Local Auxiliary Information) Fix a
(non-uniform) polynomial time predicate ϕ : {0, 1}n → {0, 1}. Let Xn be a
distribution on Bn,w × {0, 1}poly(λ) which samples (x, α) with α some auxil-
iary information about x that satisfies Definition 12 (i.e., the conditional Ham-
ming ball min-entropy of the distribution Xn conditioned on α is still at least
λ). Let X ′n = (x, α′) be a distribution on Bn,w × {0, 1}poly(λ) × {0, 1}, where
α′ = (α, ϕ(x)). Let D′0 = (p1, . . . , pn, q,X, α′) be the (n, r,B,Xn)-SP distribu-
tion corresponding to X ′n. Let D

′
1 be D′0 with X =

∏n
i=1 p

xi
i (mod q) replaced by

uniformly sampled X ′ ← Z∗q , but all other terms the same. Then for every PPT
algorithm A, for every λ ∈ N, there exists a negligible function µ(λ) such that∣∣∣∣ Pr

d0←D′
0

[A(d0) = 1]− Pr
d1←D′

1

[A(d1) = 1]

∣∣∣∣ ≤ µ(λ). (9)

6.1 Input-Hiding

Now we show input-hiding from the hardness of SP.

Theorem 10. Let n, t, r, B satisfy Definition 15, the Gaussian Heuristic and
Inequality (8). Then assuming the hardness of SP (Assumption 8), the SSF
obfuscator given by Algorithm 1 is input-hiding.

Proof. Let (p1, . . . , pn, q,X) with X =
∏n

i=1 p
xi
i (mod q) for some unknown

x = (x1, . . . , xn) ∈ {0, 1}n be an SP instance defined in Assumption 8, and
aux ∈ {0, 1}poly(λ) be some auxiliary information. Let A be a PPT algorithm
that breaks input-hiding of the obfuscation given by Algorithm 1-3. Then we
solve the SP as follows. We directly call A on input ((p1, . . . , pn, q,X), aux). Since

16

r satisfies Inequality (6), i.e., there are no false positives, A will return a small
superset y of x such that E = Y X−1 (mod q) =

∏n
i=1 p

yi−xi

i (mod q) =
∏n

i=1 p
ei
i

with e = (e1, . . . , en) ∈ {0, 1}n. Then we can factor E to get e and recover x by
flipping y at the positions i such that ei = 1. ut

6.2 DVBB

We show DVBB from the hardness of d-SP.

Theorem 11. Let Xn be a distribution over Bn,w × {0, 1}poly(λ) with condi-
tional (on α) Hamming ball min-entropy λ. Then assuming Assumption 9, the
obfuscation given by Algorithm 1 - 3 is DVBB (with heuristic correctness if we
use the lattice technique to avoid false positives).

Proof. Functionality preservation and polynomial slowdown are shown in the
proof of Theorem 10. Now we show distribuional VBB. We show distributional-
indistinguishability, which implies DVBB by Theorem 1. Fix a predicate ϕ. For
every circuit C ← Cλ (which contains the secret x ← Xn), let O(1λ, C) =
(p1, . . . , pn, q,X) be the obfuscated function of C. We define a simulator S
which works as follows: S takes π = (n, t, B) samples n primes p′1, . . . , p

′
n and

a modulus q′ in the same way as O, and samples X ′ ← Zq. Denote S(1λ, π) =
(p′1, . . . , p

′
n, q
′, X ′). We will show that the two probabilities in Inequality (3)

equal to the two probabilities in Inequality (9) respectively.
For the first equality, we have that for every PPT distinguisher A, for every

λ ∈ N,

Pr
(x,α′)←X′

n

[A(p1, . . . , pn, q,X, α′) = 1] = Pr
d0←D′

0

[A(d0) = 1],

where d0 = (p1, . . . , pn, q,X, α′) and both probabilities are over the randomness
of x, p1, . . . , pn, q and α′. This holds simply from the definition of D′0 (as in
Assumption 9).

Replace x with C, X ′n with D′λ, and p1, . . . , pn, q,X with O(1λ, C) we have
that

Pr
(C,α′)←D′

λ

[A(O(1λ, C), α′) = 1] = Pr
d0←D′

0

[A(d0) = 1], (10)

where the first and the second probabilities are the first probabilities of Inequality
(3) and Inequality (9) respectively.

For the second equality, we have that for every PPT distinguisher A, for
every λ ∈ N,

Pr
(x,α′)←X′

n

[A(p′1, . . . , p′n, q′, X ′, α′) = 1] = Pr
d1←D′

1

[A(d1) = 1],

where d1 = (p′1, . . . , p
′
n, q
′, X ′, α′) and the probability is over the randomness of

x, p′1, . . . , p
′
n, q
′, X ′ and α′. This holds from the definition of D′1 (as in Assump-

tion 9). Note that the α′ in both probabilities are the same α′ as in Equation

17

(10), which is the auxiliary information about the unique real x sampled at
the beginning of the game. In particular the α′ in d1 is not generated by the
simulator but copied from the left hand side.

Replace x with C, X ′n with D′λ, and p′1, . . . , p
′
n, q
′, X ′ with S(1λ, π) we have

that

Pr
(C,α′)←D′

λ

[A(S(1λ, π), α′) = 1] = Pr
d1←D′

1

[A(d1) = 1], (11)

where the first and the second probabilities are the second probabilities of In-
equality (3) and Inequality (9) respectively.

By Assumption 9, there exists a negligible function µ(λ) such that the dif-
ference between the right hand sides of Equation (10) and Equation (11) is not
greater that µ(λ). Therefore the difference between the left hand sides of Equa-
tion (10) and Equation (11) is not greater that µ(λ). I.e., Inequality (3) holds.
This completes the proof. ut

7 Attacks

As we mentioned earlier, having an accepting y that is not a false positive one
can recover x by flipping the corresponding bits of y according to the factors
of E. And to recover x, it is not necessary to find a small superset of x, but a
“close” set. Hence we discuss an attack based on the following theorem.

Theorem 12 (Diophantine Approximation [15]). Let α ∈ R then there
exist fractions a/b ∈ Q such that

∣∣α − a
b

∣∣ < 1√
5b2

. If, on the other hand, there

exists a/b ∈ Q such that
∣∣α− a

b

∣∣ < 1
2b2 , then a/b is a convergent of α.

The attack based on Theorem 12 is as follows. Having an input y such that
the Hamming distance between x and y is bounded by r, we compute E =
XY −1 (mod q) =

∏
i p

xi−yi

i (mod q) = UV −1 (mod q), where UV −1 is the
lowest terms of XY −1 modulo q with U =

∏n
i=1 p

ui
i and V =

∏n
i=1 p

vi
i , for

ui, vi ∈ {0, 1}. We have that EV − kq = U hence
∣∣E
q −

k
V

∣∣ = U
qV . By Theorem

12, if UV < q
2 , then

k
V is a convergent of E

q . Finding this convergent from the

continued fraction of E
q is efficient. So we have V and k, and thus U = EV −kq.

We then factor U and V to find all different bits between x and y, and recover
x by flipping y accordingly.

Moreover, the following theorem shows a way to push the continued fraction
algorithm beyond the naive limits given by Theorem 12.

Theorem 13 (Extended Legendre Theorem [11]). Let α be an irrational
number, let the fractions pi

qi
∈ Q be its continued fraction, and let a, b be coprime

nonzero integers satisfying the inequality
∣∣α − a

b

∣∣ < c
b2 , where c is a positive

real number. Then (a, b) = (rpm+1 ± spm, rqm+1 ± sqm), for some nonnegative
integers m, r and s such that rs < 2c.

By Theorem 13 one can always find a and b by tuning c, which gets rid of
the limitation of

∣∣α− a
b

∣∣ < 1
2b2 . But this adds exponential overhead so does not

greatly improve the attack.

18

8 Conclusion

We obfuscate small superset and big subset functions using the subset product
problem, which is a more trustworthy assumption than the previous works. Our
construction is very simple and highly efficient. The correctness is simply based
on the uniqueness of integer factoring. We give security proofs for both input-
hiding and DVBB.

Acknowledgement

We thank the Marsden Fund of the Royal Society of New Zealand for funding
this research, and the reviewers for suggestions.

References

1. Barak, B., Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O., Sahai, A.: Obfusca-
tion for evasive functions. In: Lindell, Y. (ed.) Theory of Cryptography. pp. 26–51.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Annual International Cryp-
tology Conference (CRYPTO). pp. 1–18. Springer (2001)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) Advances
in Cryptology — CRYPTO 2001. pp. 1–18. Springer Berlin Heidelberg, Berlin,
Heidelberg (2001)

4. Bartusek, J., Carmer, B., Jain, A., Jin, Z., Lepoint, T., Ma, F., Malkin, T., Mal-
ozemoff, A.J., Raykova, M.: Public-key function-private hidden vector encryption
(and more). In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology – ASI-
ACRYPT 2019. pp. 489–519. Springer International Publishing, Cham (2019)

5. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New techniques for obfuscating
conjunctions. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EURO-
CRYPT 2019. pp. 636–666. Springer International Publishing, Cham (2019)

6. Beullens, W., Wee, H.: Obfuscating simple functionalities from knowledge assump-
tions. In: Lin, D., Sako, K. (eds.) Public-Key Cryptography – PKC 2019. pp.
254–283. Springer International Publishing, Cham (2019)

7. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A simple
obfuscation scheme for pattern-matching with wildcards. In: Annual International
Cryptology Conference (CRYPTO). pp. 731–752. Springer (2018)

8. Bishop, A., Kowalczyk, L., Malkin, T., Pastro, V., Raykova, M., Shi, K.: A sim-
ple obfuscation scheme forpattern-matching with wildcards. In: Shacham, H.,
Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp. 731–752.
Springer International Publishing, Cham (2018)

9. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) Advances in Cryptology — CRYPTO ’97. pp.
455–469. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

10. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership.
In: Theory of Cryptography Conference (TCC). pp. 72–89. Springer (2010)

19

11. Dujella, A.: A variant of Wieners attack on RSA. Computing 85(1-2), 77–83 (2009)

12. Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? In: Cheon,
J.H., Takagi, T. (eds.) Advances in Cryptology – ASIACRYPT 2016. pp. 277–306.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

13. Galbraith, S.D., Zobernig, L.: Obfuscated fuzzy Hamming distance and conjunc-
tions from subset product problems. In: Hofheinz, D., Rosen, A. (eds.) Theory of
Cryptography. pp. 81–110. Springer International Publishing, Cham (2019)

14. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS). pp. 612–621
(2017)

15. Hurwitz, A.: Über die angenäherte darstellung der irrationalzahlen durch rationale
brüche. Mathematische Annalen 39(2), 279–284 (1891)

16. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. Journal of cryptology 9(4), 199–216 (1996)

17. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfus-
cation. In: Cachin, C., Camenisch, J.L. (eds.) Advances in Cryptology - EURO-
CRYPT 2004. pp. 20–39. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

18. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity
of LWE search-to-decision reductions. In: Annual Cryptology Conference. pp.
465–484. Springer (2011)

19. Wee, H.: On obfuscating point functions. In: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing. pp. 523–532. ACM (2005)

20. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS). pp. 600–611. IEEE (2017)

A Proof of Input-hiding of [5] from DLP

Here we prove input-hiding of the conjunction obfuscation in [5] from the hard-
ness of DLP. This security property is not studied in [5].

Definition 17. (Bartusek et al.’s Scheme [5]). The conjunction obfuscation in
[5] is as follows:

– Setup(n). Let G be a group of prime order q > 2n with generator g. Let
B := Bn+1,2n,q, where

Bn+1,2n,q =

1 2 . . . 2n
1 22 . . . (2n)2

...
...

...
...

1 2n+1 . . . (2n)n+1

 (12)

– Obf(pat ∈ {0, 1, ∗}n). Set e ∈ Z2n×1
q such that e2i−1 = e2i = 0 if pati = ∗,

or e2i−b ← Zq and e2i−(1−b) = 0 if pati = b, for b ∈ {0, 1}. Output

v = gB·e ∈ Gn+1.

20

– Eval(B ∈ Z(n+1)×(2n), v ∈ Gn+1, x ∈ {0, 1}n). Define Bx according to x to
be the (n + 1) × n matrix with column j set as (Bx)j := (B)2j−xj

. Solve

tBx = 0 for a non-zero vector t ∈ Z1×(n+1)
q . Compute

w =

n+1∏
i=1

vtii

and accept if and only if w = 1.

Correctness For an input (B,Obf(pat), x) of Eval, Eval outputs w =
∏n+1

i=1 (Obf(
pat))ti , which equals 1 if x satisfies pat.

Theorem 14. Suppose the Discrete Logarithm Problem (DLP) is hard (As-
sumption 4). Then the conjunction obfuscation in Definition 17 is input-hiding.

Proof. Let (B, v = gB·e) be defined as in Definition 17. We show that if there
exists an algorithm A that given (B, v = gB·e) returns an accepting input x ∈
{0, 1}n with probability µ(n), then there exists an algorithm A′ that solves DLP.

For a DLP instance (g, h = ga) with g a generator of a group G and a ∈
{0, . . . , |G| − 1}, A′ first generates matrix B as Equation (12) shows, samples
s1, . . . , sn+1 ← {0, . . . , |G| − 1} and computes

u = (gs1 , . . . , gsn+1).

A′ then samples ri ← {0, . . . , |G| − 1} for all i ∈ [n+ 1] and computes

u′ = (hr1gs1 , . . . , hrn+1gsn+1),

and invokes A with (B, u′) to get x′ such that

Pr
[n+1∏

i=1

(hrigsi)t
′
i = 1

]
= µ(n)

for some function µ(n) and for any t′ = (t′1, . . . , t
′
n+1) 6= 0 computed as follows:

A′ first creates Bx′ according to x′, then solves t′Bx′ = 0 for a non-zero t′.
Note that

n+1∏
i=1

(hrigsi)t
′
i = 1

⇐⇒ ga·
∑n+1

i=1 rit
′
i · g

∑n+1
i=1 sit

′
i = 1.

A′ then solves the DLP (g, h = ga) for a as

a′ =
−
∑n+1

i=1 sit
′
i∑n+1

i=1 rit′i
.

Note that ri are independent of all other parameters during the process. In
particular, ri are independent of t

′
i. Hence

∑n+1
i=1 rit

′
i 6= 0 with probability (|G|−

1)/|G| for some polynomial p. Therefore the probability of solving the DLP is
µ′(n) = µ(n) · (|G| − 1)/|G|. By the hardness of DLP, µ′(n) is negligible. Hence
µ(n) is negligible.

21

B New Obfuscation for Conjunctions

We now show how to use the techniques for BSF and SSF obfuscation to obfus-
cate conjunctions in a highly efficient way. Compared with [13], the advantage
of the obfuscation in this paper is that it does not rely on continued fractions
hence is much simpler and more efficient.

B.1 New Definition of Conjunctions

Conjunctions are also called pattern matching with wildcards. Typically they are
defined as functions fn,r,x(y) that, holding a secret string x ∈ {0, 1, ∗}n with
r < n ∈ N wildcards, take as input binary strings y ∈ {0, 1}n and output 1 if y
matches all non-wildcard positions of x, or output 0 otherwise. We define |x| to
be the number of 1’s in the string.

We give an equivalent definition based on the big subset and small superset
functionalities. The intuition is to do both big subset and small superset tests
so that any unmatched bit at the non-wildcard positions will be exposed.

Our new definition is as follows.

Definition 18. A conjunction (or pattern matching with wildcards function) is
a function fn,r,x(y) which holds a secret string x ∈ {0, 1, ∗}n with r < n ∈ N
wildcards, takes as input a binary string y ∈ {0, 1}n and outputs 1 if y is a subset
of x with all wildcards being replaced by 1 and at the same time y is a superset
of x with all wildcards being replaced by 0, or outputs 0 otherwise.

By this new definition, we generically reduce the conjunction obfuscation
problem to the BSF and SSF obfuscation problems. However, the catch is that
the two instances are “correlated” and the previous security analysis is not suf-
ficient.

B.2 Evasiveness

Let w ∈ {0, 1}n be x with the wildcard positions set to 0, and z ∈ {0, 1}n be x
with the wildcard positions set to 1. We use two functions to define the pattern
matching with wildcards function fn,r,x(y), which are the SSF fn,t,w(y) with
|w| = |x|, t = |x| + r, and the BSF fn,t′,z(y) with |z| = |x| + r, t′ = |x|. If we
further convert the BSF into an SSF, it is the SSF fn,t̄′,z̄(ȳ) with |z̄| = n− |z| =
n− |x| − r and t̄′ := n− t′, where z̄ is the complement of z. For convenience, in
the following we denote the two SSF as f1 and f2 respectively, and denote t and
t̄′ as t1 and t2 respectively.

Suppose w and z are uniform. By the approximation form of Inequality

(5), for evasivenesses of both f1 and f2, we require both t
|w|
1 /n|w| ≤ 1/2λ and

t
|z̄|
2 /n|z̄| ≤ 1/2λ. Plug in |w| = |x|, |z̄| = n− |x| − r, t1 = |x|+ r and t2 = n− |x|
we have [(|x|+r)/n]|x| ≤ 1/2λ and [(n−|x|)/n]n−|x|−r ≤ 1/2λ. Suppose λ ≤ n/2
and |x| = n/2, the second inequality gives r ≤ n/2 − λ. This also satisfies the
first inequality if we plug in λ ≤ n/2 and |x| = n/2. Hence for an intuitive
impression of the evasive parameters, we can think of λ ≤ n/2, |x| ≈ n/2 and
r ≤ n/2− λ.

22

B.3 Construction

We first explain our obfuscation at a high level.

Let n, r,B ∈ N with r < n/2 and B ∈ O(n lnn). Let fn,r,x(y) be a pattern
matching with wildcards function with x ∈ {0, 1, ∗}n the pattern and r the
number of wildcards.

To obfuscate, we derive two binary strings w, z ∈ {0, 1}n from x, where w is
x with the wildcard positions set to 0, and z is x with the wildcard positions set
to 1. We then choose two sequences of small primes, (p1, . . . , pn) and (l1, . . . , ln),
from {2, . . . , B}, and two primes q and s from {Br, . . . , (1 + o(1))Br}. Then we
encode w and z into two different subset products as:

X1 =

n∏
i=1

pwi
i (mod q),

X2 =

n∏
i=1

lzii (mod s).

Then we output (p1, l1, . . . , pn, ln, q, s,X1, X2) as the obfuscated function. The
obfuscating algorithm is as follows.

Algorithm 4 Conjunction Obfuscator

Input: n ∈ N, r ∈ N, x ∈ {0, 1, ∗}n
Output: ((p1, l1, . . . , pn, ln) ∈ N2n, q, s ∈ N, X1, X2 ∈ Z∗

q)

1: set w as x with ∗ ← 0, set z as x with ∗ ← 1, and set z̄ as the complement of z
2: sample distinct primes p1, l1, . . . , pn, ln from {2, . . . , B} where B ∈ O(n lnn)
3: sample safe primes q, s from {Br, . . . , (1 + o(1))Br}
4: compute X1 =

∏n
i=1 p

wi
i mod q and X2 =

∏n
i=1 l

z̄i
i mod s

5: return (p1, l1, . . . , pn, ln, q, s,X1, X2)

To evaluate with an input y ∈ {0, 1}n, we compute

Y1 =

n∏
i=1

pyi

i (mod q),

Y2 =

n∏
i=1

lȳi

i (mod s),

and E1 = Y1X
−1
1 (mod q), E2 = Y2X

−1
2 (mod s). We then use Algorithm 2 to

factor E1 using the primes p1, . . . , pn, and factor E2 using l1, . . . , ln. If both E1

and E2 factor successfully, then output 1, otherwise output 0. The evaluation
algorithm is as follows.

23

Algorithm 5 Conjunction Evaluation (with embedded data (p1, l1, . . . , pn, ln) ∈
N2n, q, s ∈ N, X1, X2 ∈ Z∗q
Input: y ∈ {0, 1}n
Output: 0 or 1

1: compute Y1 =
∏n

i=1 p
yi
i (mod q) and Y2 =

∏n
i=1 l

ȳi
i (mod s)

2: compute E1 = Y1X
−1
1 (mod q) and E2 = Y2X

−1
2 (mod s)

3: compute F1 ← Factor(n, (p1, . . . , pn), E1) and F2 ← Factor(n, (l1, . . . , ln), E2)
4: return 1 if F1 = F2 = 1 else 0

Correctness For convenience, let us denote U1 =
∏n

i=1 p
wi
i , U2 =

∏n
i=1 l

z̄i
i ,

V1 =
∏n

i=1 p
yi

i , and V2 =
∏n

i=1 l
ȳi

i as the pure products without modular reduc-
tion. Then E1 = V1/U1 (mod q), E2 = V2/U2 (mod s). The correctness of our
obfuscation is as follows.

If x and y match at all non-wildcard positions, then y is a small superset of
w and a big subset of z (i.e., y is a small superset of w and ȳ is a small superset
of z̄), so E1 = V1/U1 is an integer < q, and E2 = V2/U2 is an integer < s, then
both the factorings of E1 and E2 will succeed and the obfuscation will output 1
correctly. Otherwise if there is any non-wildcard position at which x and y do
not match, then at least one of V1/U1 and V2/U2 is a proper rational. With high
probability the corresponding E will not factor over the original list of primes.
Then the factoring will fail and the obfuscation will output 0 correctly. Notice
that false positives are possible. In the following we discuss them.

Avoiding False Positives Using Lattice Arguments We define a false
positive to be a y ∈ {0, 1}n such that y is not a matching pattern to x yet both
V1/U1 < q and V2/U2 < s factor successfully.

Note that a false positive y ∈ {0, 1}n gives a short vector u = y − w − e1 ∈
{−2,−1, 0, 1}n in the lattice

L1 =

{
u ∈ Zn

∣∣∣∣∣
n∏

i=1

pui
i = 1 (mod q)

}
,

and a short vector v = ȳ − z̄ − e2 ∈ {−2,−1, 0, 1}n in the lattice

L2 =

{
v ∈ Zn

∣∣∣∣∣
n∏

i=1

`vii = 1 (mod s)

}
,

where e1, e2 ∈ {0, 1}n are “good” error vectors meaning that the corresponding
products E1, E2 factor successfully.

In other words, a false positive means that the same y gives short vectors
in the two lattices L1, L2 simultaneously. To avoid false positives, it is sufficient
(more than enough) to avoid short vectors in both lattices. Notice that this is
implied by the lattice analysis for SSF in Section 5. Hence the restriction to r is
the same as Inequality 8.

24

Efficiency It is not hard to see that the obfuscation and the evaluation are
just about twice those of the SSF obfuscation (i.e., Algorithm 1 and Algorithm
3, respectively). In particular, our obfuscation is more efficient than the scheme
in [13]. A drawback of [13] is that it uses continued fractions, which makes the
evaluation process complicated. Our scheme cuts off the procedures that deal
with continued fractions, resulting in a very simple algorithm.

Security We prove input-hiding security of our scheme. The security is based
on the following new computational problem.

Definition 19 (Twin Subset Product Problem (TSP)). The twin subset
product problem is defined as the following. Given two instances (p1, . . . , pn, q,X)
and (l1, . . . , ln, s,X

′) of SP (as in Definition 13) from two Hamming close points
x ∈ {0, 1}n and x′ ∈ {0, 1}n, respectively, to find any one of x and x′.

The new hardness assumption is as follows.

Assumption 15 (Hard TSP) Let r < n/2 ∈ N and ((p1, . . . , pn, q,X), (l1,
. . . , ln, s,X

′)) be a TSP with two SPs as in Assumption 8 with |x⊕x′| < r. Then
for every PPT algorithm A, for every λ ∈ N, there exists a negligible function
µ(λ) such that the probability that A solves any one of the SP is not greater than
µ(λ).

Now we prove input-hiding security.

Theorem 16 (Input-hiding of Conjunction Obfuscation). Assuming the
hardness of TSP (Assumption 15), the conjunction obfuscation given by Algo-
rithm 4 - 5 is input-hiding.

Proof. Let ((p1, . . . , pn, q,X), (l1, . . . , ln, s,X
′)) be a TSP with respect to the

secret sets x and x′, respectively. Without loss of generality, let x be a superset
of x′. Let A be a PPT algorithm that solves the obfuscation given Algorithm 4 -
5. We solve the TSP as follows. We query A on the TSP above. Since the TSP is
exactly an obfuscation instance, A can solve for a y ∈ {0, 1}n which is a subset
of x and a superset of x′. We then compute and factor E = XY −1 (mod q) =∏n

i=1 p
xi−yi

i (mod q) to obtain the error vector e = x−y ∈ {0, 1}n. Then we can
recover x by flipping y at the positions i such that ei = 1. ut

25

	Small Superset and Big Subset Obfuscation

