
Polynomial IOPs for Linear Algebra Relations

Alan Szepieniec Yuncong Zhang
alan@nervos.org shjdzhangyuncong@sjtu.edu.cn

Nervos Foundation Shanghai Jiao Tong University

Abstract. This paper proposes new Polynomial IOPs for arithmetic cir-
cuits. They rely on the monomial coefficient basis to represent the matri-
ces and vectors arising from the arithmetic constraint satisfaction system,
and build on new protocols for establishing the correct computation of
linear algebra relations such as matrix-vector products and Hadamard
products. Our protocols give rise to concrete proof systems with succinct
verification when compiled down with a cryptographic compiler whose
role is abstracted away in this paper. Depending only on the compiler,
the resulting SNARKs are either transparent or rely on a trusted setup.

Keywords: SNARK · Polynomial IOP · Zero-Knowledge · Succinct Ver-
ification

1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) enable a resource-
constrained verifier to cryptographically verify the authentic computations of an
untrusted prover. The technology is particularly well-suited to the cryptocur-
rency setting, where participants are typically anonymous, untrusted, and where
the success of the network depends on the capability of lightweight nodes to ver-
ify the network’s consensus (however that is defined). In this setting, there is a
large monetary incentive for malicious behavior.

Despite the flurry of rapid related and unrelated developments by diverse
parties, two trends are emerging as good practice in this domain.

1. Functional separation in the compilation pipeline. The compilation process
for general purpose zero-knowledge proofs is separated into multiple steps
with clear boundaries. At the input of this pipeline is a computation, rep-
resented either as program source code or as a circuit. A technique called
arithmetization turns this computation into a constraint system involving
native operations over a finite field. The next step transforms this constraint
system into an abstract proof system between two parties, prover P and
verifier V, that are interactive Turing machines with access to unrealistic
or unrealizable resources such as PCP oracles. These abstract proof sys-
tems in this step are called interactive oracle proofs (IOPs) and typically
achieve statistical or even perfect security. In the last step, the cryptographic
compilation, the unrealistic resources are replaced by cryptographic approx-
imations that achieve the same functionality at the expense of introducing
computational hardness assumptions for security.

2. Polynomial IOP formalism. The abstract information-theoretical proof sys-
tem in the step before cryptographic compilation could in principle rely on
a variety of unrealistic resources, and build a sound proof system from their
mathematical properties. However, for the purpose of establishing sound-
ness, the Schwartz-Zippel lemma is an indispensable tool. The strategy is to
reduce the satisfaction of arithmetic constraints arising from the constraint
system to series of identities of low-degree polynomials. By evaluating these
polynomials in random points, their equality is tested probabilistically. If
the left and right hand sides of an equation represent identical polynomi-
als, they are identical everywhere, but if they are unequal they are different
almost everywhere. The Schwartz-Zippel lemma provides an exact concrete
quantification of the security lost due to this probabilistic approximation.
A Polynomial IOP is the abstract proof system tailored to this strategy. In
this formalism, the prover sends low degree polynomials to the verifier, and
rather than reading the entire list of coefficients, the verifier queries these
polynomials in a given point through an oracle interface. The cryptographic
compiler uses a polynomial commitment scheme to simulate this unrealistic
resource.

These trends are visible in the rise of universal SNARKs with universal and
updatable structured reference strings (SRS’s) such as Sonic [11], PLONK [8],
and Marlin [7]. The common idea here is to use the cryptographic pairing-based
mathematics only to realize polynomial commitment scheme, typically the KZG
scheme [10]. Since the SRS is used only for the KZG scheme, it is independent of
the preceding abstract proof system and the circuit it encodes; this independence
is precisely what enables updates to the SRS and its adaptation to any circuit.
PLONK and Marlin independently formalize this abstraction and introduce the
terms Polynomial Protocol and Algebraic Holographic Proof (AHP), respectively.
This paper adopts the terminology of Bünz et al. [6], who introduce a new
polynomial commitment scheme (and hence a cryptographic compiler) based on
groups of unknown order and in the process explore the landscape of protocols
it can apply to.

These trends are also visible in the rise of IOPs based on Reed-Solomon
codes [1,4,3]. The underlying abstract protocols here are not explicitly Poly-
nomial IOPs. However, their common feature is the reliance on Reed-Solomon
codewords as the proof oracles. Since Reed-Solomon codewords are obtained by
evaluating polynomials in a domain of points whose cardinality is larger than
the polynomials’ degree, these proof oracles uniquely identify the originating
low-degree polynomials. As a result, a Reed-Solomon IOP is a Polynomial IOP
in disguise.

Despite the spontaneous convergence onto Polynomial IOPs as a useful for-
malism, there seems to be little agreement about the optimal interface between
Polynomial IOPs and the arithmetic constraint systems that they realize. Arith-
metic constraint systems typically express constraints using matrix algebra: in
terms of vectors, and matrix multiplication, but also Hadamard products, which
is a fancy word for the element-wise products of pairs of equal-length vectors. The

2

set of operations that Polynomial IOPs natively offer are somewhat different. As
a result, how the Polynomial IOP represents the objects in the arithmetic con-
straint system and how it simulates the equations that constrain them, are the
key questions in the design process of Polynomial IOPs. The various answers to
these questions are what set the various Polynomial IOPs for arithmetic circuits
apart.

– Marlin and Aurora represent the objects of the arithmetic constraint system as
the Reed-Solomon codewords of polynomials. Standard techniques establish
the correct computation of a Hadamard product of such codewords. The
computation of a linear transform applied to such a codeword is reduced to
checking the sum of a related codeword.

– PLONK represents the vector of wire values as the values of a polynomial
in a domain of points. A permutation argument establishes the assignment
of wires to gates and the standard techniques for Reed-Solomon codewords
establish the consistency of inputs and outputs to addition and multiplication
gates.

– Sonic represents the vectors of left, right, and output wires of a series of
multiplication gates as the coefficient vectors of three polynomials. The con-
sistency of these multiplication gates, and of a linear transform, is established
by checking several properties of bivariate polynomials. The paper further-
more explains under which conditions these bivariate polynomials can be
simulated with univariate ones.

Contributions. In this paper we propose a new Polynomial IOP for arithmetic
circuits, called Claymore1. Succinct verification is achieved with a trusted pre-
processing phase. When compiled with any polynomial commitment scheme, the
result is a concrete zk-SNARK with universal updatable structured reference
string, or transparent setup, depending only on the nature of the polynomial
commitment scheme.

The arithmetic constraint system chosen to represent the arithmetic circuit
is the Hadamard Product Relation (HPR), in which the witness consists of three
vectors representing the left, right, and output wires of a list of multiplication
gates. We note that Sonic realizes a similar constraint satisfaction relation by re-
ducing both the multiplication and linear constraints into one large equation. In
Claymore, the multiplication gate consistency and linear consistency are achieved
in two separate steps, both of which rely on a collection of subprotocols for lin-
ear algebra relations that we develop along the way. The separate steps are later
merged as an explicit optimization.

Like Sonic but unlike Marlin and PLONK, Claymore opts for the monomial
coefficient basis to represent the vectors of the arithmetic constraint system.
DenseClaymore represents the linear transform as a dense matrix in the monomial
coefficient basis and this choice results in the smallest number of polynomials in
the transcript across all Polynomial IOPs. The price to pay for this brevity is
the O(n2) scaling of the polynomials’ degree, where n is the size of the circuit.

1 A type of Scottish sword.

3

A question that naturally arises when using this basis, is whether it is also
equipped to deal with the sparse linear transformations that typically come
from long-winded computations. We answer this question positively by providing
methods for dealing with sparse linear algebra relations, culminating in a sparse
variant of Claymore. This variant concretely outperforms Marlin and Sonic in
terms of the number of polynomials in the transcript. While this number is
smaller still for PLONK, one notes that PLONK does not support arbitrary fan-
in for linear constraints, whereas Marlin and Claymore (both variants) do.

Additionally, we compare the new and existing Polynomial IOPs both ab-
stractly and concretely. In the abtract comparison we determine how the key
performance-driving parameters of the Polynomial IOP evolve as a function of
the circuit size. In the concrete comparison, we transform the various Polynomial
IOPs with three different cryptographic compilers into concrete zk-SNARKs in
order to compare the size of the resulting proofs. In this comparison, all proofs
establish the integrity of the same benchmark computation.

Motivation and applications. The motivation for this work is chiefly theoretical.
We study the interface between arithmetic circuits and Polynomial IOPs in iso-
lation of other constraints and demands. As a result of this focus, our protocol
is arguably simpler than other protocols that achieve nominally the same thing.
Complexity is the friend of mistakes, and our protocol may therefore be the pre-
ferred option for this reason even in circumstances where it is inferior in terms
of performance.

The dense variant of Claymore performs extremely well for shallow arithmetic
circuits, such as the verification circuits of lattice-based and MQ-based signature
schemes, which typically involve operations on large matrices and vectors over
a small finite field. As a result, a DenseClaymore-SNARK is an outstanding can-
didate for achieving post-quantum signature aggregation, or signature schemes
with various fancy properties that zero-knowledge proofs enable.

Using SNARKs in combination with other cryptographic tools points to a
useful property that SNARKs frequently lack — they typically require a fi-
nite field with a particular structure, such as a large multiplicative subgroup of
smooth order. Marlin and PLONK have this property, while Sonic is defined for
arbitrary fields. Using the SNARK in combination with a different cryptosys-
tem that requires an incompatible field, requires the SNARK to simulate the
cryptosystem’s field operations using the arithmetic constraint system of the
SNARK. In contrast, Claymore (like Sonic) induces no such costly simulation
overhead as it works for any large enough finite field.

The protocols proposed here promote simplicity through modularity. How-
ever, we observe that once the basic protocol has been composed, there are
available optimizations that improve its characteristics at the cost of violating
the boundaries between modules. This observation highlights the utility of sepa-
rating design from optimization considerations. Note that it is only the optimized
SparseClaymore protocol that outperforms Marlin in the target metric, number
of polynomials. The unoptimized version is inferior in all respects. Furthermore,
the proof of zero-knowledge relies on a batching-related optimization that ap-

4

plies to both variants of Claymore; without this optimization the proof is tricky
and complex. Lastly, the optimizations stand on their own, and can possibly
improve other Polynomial IOPs beyond Claymore.

2 Preliminaries

2.1 Indexed Relations

Owing to their convenience, we use indexed relations [7]. An indexed relation
is a set R of tuples (i,x,w), whose three components are called the index, in-
stance, and witness, respectively. The separation between index and instance
captures the intuition that some properties of concrete proofs for R should be
computable from i even before x is known. For instance, i can be the descrip-
tion of an arithmetic circuit, x the values of the output wires, and w an assign-
ment of values to all wires that makes the all gates consistent. The projection
{(i,x) | (i,x,w) ∈ R} of triples inR onto the first two components is the indexed
language corresponding to R and is denoted by L(R).

2.2 Constraint Systems

A constraint system is a representation of a computation in terms of equations
with unknown variables. When there is an assignment to the unknown variables
that satisfies all equations, we say the constraint system is satisfiable, and this
assignment is the witness. The index determines all fixed constants in the equa-
tions, and the instance determines known variables that can vary independently
of the index but are ultimately known by all parties involved.

The following constraint system is adapted from Bootle et al. [5].

Definition 1 (Hadamard Product Relation (HPR)). Let F be a finite
field. A triple (i, x, w) where i = (m,n,M) with m,n ∈ N, and M ∈ Fm×(1+3n),
where x = x ∈ Fm, and where w = (wl,wr,wo) ∈ Fn × Fn × Fn; satisfies the
Hadamard Product Relation iff both

x = M

1
wl

wr

wo

 (1)

and

wl ◦wr = wo , (2)

where ◦ denotes the Hadamard (i.e., entry-wise) product; and in this case we
write (i,x,w) ∈ RHPR.

5

2.3 Interactive Proof Systems

Definition 2 (Interactive Proof System). Let R be an indexed relation
with corresponding relation language L(R). An interactive proof system is a
pair (P,V) of stateful interactive Turing machines such that: the input to P is
(i,x,w), the input to V is (i,x); P and V exchange r = r(|i|) messages in total;
and in the last step of the protocol V outputs a single bit b ∈ {>,⊥}. The system
satisfies two more properties:

– Completeness — V accepts members of L(R): (i,x) ∈ L(R)⇒ b = >.
– Soundness (with soundness error σ) — V rejects non-members of L(R) ex-

cept with probability at most σ taken over the all random coins involved:
Pr[(i,x) 6∈ L(R)⇒ b = ⊥] ≥ 1− σ.

Soundness becomes a moot point when for the given index i every instance x
has a matching witness w such that (i,x,w) ∈ R. In this case a stronger notion
called knowledge soundness [2] is preferred, which informally requires that any
adversary that successfully convinces the verifier can be made to leak a witness
by an extractor machine that has the same interface as the verifier but can
additionally reset the adversary to an earlier point in time without forgetting
the observed transcripts. In our context, all witnesses are encoded into oracles,
and the prover displays knowledge of them simply by providing the oracles to
the verifier. As a result, at our level of abstraction, knowledge soundness follows
automatically from soundness. When the oracles are simulated by a concrete
cryptographic tool, knowledge soundness becomes an important consideration
that is not automatically satisfied. However, this cryptographic instantiation is
beyond the scope of this paper.

A proof system is zero-knowledge [9] if, informally, an authentic transcript
could have been produced by an adversary who is ignorant of the witness. More
formally, the distribution of authentic transcripts must be sampleable with public
information only.

Definition 3 (Honest-Verifier Zero-Knowledge). Let R be an indexed re-
lation and let (P,V) be a proof system for R. Let tr ← 〈P(i,x,w),V(i,x)〉 denote
the assignment to the variable tr of the transcript arising from the interaction
between P with input (i,x,w) and V with input (i,x). The proof system (P,V) is
honest-verifier zero-knowledge if there exists a polynomial-time Turing machine
S such that the distribution D0 of authentic transcripts tr ← 〈P(i,x,w),V(i,x)〉,
is identical to the distribution D1 of simulated transcripts tr ← S(i,x). When
D0 and D1 are distinct, we consider the statistical distance and use the term
Statistical Honest-Verifier Zero-Knowledge.

2.4 Polynomial IOP

Informally, a Polynomial IOP is an abstract proof system, where the prover
sends polynomials and the verifier, instead of reading the polynomials in their
entirety, is allowed to query the polynomial as oracles in select points.

6

Definition 4 (Polynomial IOP). Let R be an indexed relation with corre-
sponding indexed language L(R), F some finite field, and d ∈ N a degree bound.
A Polynomial IOP for R with degree bound d is a pair of interactive machines
(P,V), satisfying the following description.

– (P,V) is an interactive proof for L(R) with r rounds, and with soundness
error σ.

– P sends polynomials fi(X) ∈ F[X] of degree at most d to V.

– V is an oracle machine with access to a list of oracles, which contains one
oracle for each polynomial it has received from the prover.

– When an oracle associated with a polynomial fi(X) is queried on a point
zj ∈ F, the oracle responds with the value fi(zj).

– V sends challenges αk ∈ F to P.

– V is public coin.

Definition 4 stipulates one global degree bound d for all polynomials. In Ap-
pendix A we offer this alternative definition that stipulates individual degree
bounds di for each polynomial fi(X). The same appendix presents a transfor-
mation between definitions to establish their equivalence. This transformation
does lose some generality: queries in zj = 0 are not allowed, the global-bound
protocol has one polynomial more, and the soundness error increases by at most
2p+d−1
|F|−1 , where p is the original number of polynomials. However, these restric-

tions are not significant for typical applications of Polynomial IOPs, where the
field F is large. Therefore, without too much loss of generality, we may assume
for the sake of a simpler presentation that the polynomials come with individual
degree bounds.

With a minor extension, Polynomial IOPs can appropriately capture pre-
processing. This extension introduces third machine, the indexer I. As its name
suggest, I reads only i, and it outputs a list of polynomials to which V has oracle
access.

Definition 5 (Polynomial IOP with Preprocessing). Let R be an indexed
relation with corresponding language L(R). A Polynomial IOP with Preprocess-
ing is a tuple of interactive machines (I,P,V) such that (P,V) is a Polynomial
IOP for L(R) and such that

– I takes i for input and outputs a list of polynomials of degree at most d;

– V has oracle access to these polynomials in addition to the polynomials it
receives from P.

Some of the Polynomial IOPs in this paper are designed for modular com-
position. As a result, V does not begin with an empty list of polynomial oracles.
In order to define the relations that these Polynomial IOPs realize, we denote
by [fi(X)] a polynomial fi(X) that was sent to V by I or P at some earlier stage
and to which V has oracle access.

7

3 Dense Linear Algebra Relations

3.1 Inner Product

Bünz et al. [6] are the first to sketch a Polynomial IOP that realizes an inner
product relation between two vectors. It relies on the fact that the inner product
of the coefficient vectors of fa(X) and fb(X) is the middle coefficient of fa(X) ·
Xd ·fb(X−1), assuming that both fa(X) and fb(X) are of degree d. To verify the
middle coefficient is indeed the claimed inner product c, V needs two polynomials:
the left half l(X) and the right half r(X), both of degree d−1. Then the identity
fa(X) ·Xd · fb(X−1) = l(X) + Xd · c + Xd+1 · r(X) cannot hold in more than
2d points unless c is the correct inner product.

Our variant of this protocol achieves the same result with the same number
of queries but with one polynomial oracle less. This trade-off induces a doubling
of the polynomial’s degree and an increase-by-one in the number of distinct
evaluation points. To see how this is achieved, observe that the coefficient on
Xd of the polynomial fa(X) · Xd · fb(X−1) − c · Xd is zero. The same is true
for h(X) = h̄(X) · γd − h̄(γX) for any h̄(X) and any γ with a large enough

multiplicative order. If fa(X) · Xd · fb(X−1) =
∑2d
i=0 ciX

i (with cd = c), then
P can obtain h̄(X) by setting its ith coefficient to ci/(γ

d − γi) when i 6= d, or
uniformly at random when i = d. The verifier V tests that the coefficient of Xd is
indeed zero by sampling the left and right hand sides of the polynomial identity

h̄(X) · γd − h̄(γ ·X) = fa(X) ·Xd · fb(X−1)− c ·Xd (3)

in a uniformly random point z
$←− F\{0}. The multiplicative order of γ must be

larger than 2d for this h̄(X) to exist; for simplicity set γ to the smallest element
that generates F\{0},×.

Formally, the relation realized by inner product protocols is

Rip =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = d
x = ([fa(X)], [fb(X)], c)
w = (fa(X), fb(X))

fa(X) =
∑d
i=0 aiX

i

fb(X) =
∑d
i=0 biX

i

c =
∑d
i=0 aibi

. (4)

Theorem 1 (Security of InnerProduct). Protocol InnerProduct of Protocol 2 is
a Polynomial IOP for L(Rip) with completeness and soundness with soundness
error σ = 2d

|F|−1 .

Proof. The protocol revolves around the polynomial identity of Equation (3).
The verifier tests this identity by sampling left and right hand sides in a random
point z. Since this is an identity whenever c = aTb, completeness follows. For
soundness, observe that when c 6= aTb then the coefficient of Xd on the right
hand side of (3) is nonzero whereas the matching coefficient of the left hand side

8

description: decides L(Rip)
inputs: i : d
inputs: x : ([fa(X)], [fb(X)], c)
inputs: w : (fa(X), fb(X))
begin

P computes fc(X) =
∑2d
i=0 ciX

i ← fa(X) ·Xd · fb(X−1)

P computes h̄(X) =
∑2d
i=0 h̄iX

i with h̄i ← ci
γd−γi for all i 6= d and h̄d

$←− F
P sends h̄(X) of degree at most 2d to V

V samples z
$←− F\{0} and queries ([fa(X)], [fb(X)], [h̄(X)], [h̄(X)]) in

(z, z−1, z, γ · z)
V receives ya = fa(z), yb = fb(z

−1), yh = h̄(z), and y∗h = h̄(γ · z)
V tests yh · γd − y∗h

?
= ya · yb · zd − c · zd

Protocol 1: InnerProduct

is zero. There are at most 2d points z where left and right hand sides are equal,
since both hands are bounded by this degree. By the Schwartz-Zippel lemma,
the probability of a false accept is σ = 2d

|F|−1 . ut

3.2 Batched Inner Product

We can batch multiple invocations of protocol InnerProduct into a single proto-
col that requires the prover to send only one polynomial oracle. Formally, the
relation is given by

Rbip =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (m, d)
x = {([fai

(X)], [fbi(X)], ci)}mi=1

w = {(fai
(X), fbi(X))}mi=1

∀i ∈ {0, . . . ,m− 1} . fai
(X) =

∑d
j=0 aijX

i

∀i ∈ {0, . . . ,m− 1} . fbi(X) =
∑d
j=0 bijX

i

∀i ∈ {0, . . . ,m− 1} . ci =
∑d
j=0 aijbij

. (5)

Theorem 2 (Security of BatchedInnerProduct). Protocol BatchedInnerProduct
of Protocol 2 is a Polynomial IOP for L(Rbip) with completeness and soundness
with soundness error σ = 2d+m−1

|F|−1 .

Proof. Let
∑2d
j=0 ci,jX

j = fai
(X) · fbi(X−1) · Xd for all i ∈ {1, . . . ,m}. Fur-

thermore, let H̄(X,Y) =
∑m
i=1

∑2d
j=0 hi,jX

jY i−1 with hi,j =
ci,j
γd−γj for j 6= d,

arbitrary hi,d for i > 0, and h0,d such that h̄(X) = H̄(X,α).
The protocol revolves around the bivariate polynomial identity

H̄(X,Y) · γd − H̄(γ · X,Y) = Xd ·
m∑
i=1

(fai
(X) · fbi(X−1) − ci) · Y i−1 . (6)

9

description: decides L(Rbip)
inputs: i : (m, d)
inputs: x : {([fai(X)], [fbi(X)], ci)}mi=1

inputs: w : {(fai(X), fbi(X))}mi=1

begin

P computes fci(X)← fai(X) · fbi(X
−1) ·Xd for i from 1 to m

V samples α
$←− F\{0} and sends α to P

P computes fc(X)←
∑m
i=1 fci(X) · αi−1

P computes h̄(X) =
∑2d
i=0 h̄iX

i with h̄i ← ci
γd−γi for all i 6= d and h̄d

$←− F
P sends h̄(X) of degree at most 2d to V

V samples z
$←− F\{0} and queries

({([fai(X)], [fbi(X)])}mi=1, [h̄(X)], [h̄(X)]) in ({z, z−1}mi=1, z, γ · z)
V receives ya,i = fai(z), yb,i = fbi(z

−1) for i from 1 to m, and yh = h̄(z),
y∗h = h̄(γ · z)

V tests yh · γd − y∗h
?
= zd ·

∑m
i=1(ya,i · yb,i − ci) · αi−1

Protocol 2: BatchedInnerProduct

The verifier tests this identity by sampling left and right hand sides in a
random point (z, α). Since this is an identity whenever ci = aT

i bi for all i from 1
to m, completeness follows. For soundness, consider when for some i, ci 6= aT

i bi.
Then left and right hand sides of (6) are unequal. There are at most 2d +m− 1
points (z, α) in which left and right hand sides are equal, since both hands are
bounded by this total degree. By the (two-dimensional) Schwartz-Zippel lemma,
the probability of a false accept is σ = 2d+m−1

|F|−1 . ut

This inner product protocol and its batched version are convenient for zero-
knowledge. The verifier V makes two queries to the polynomial h̄(X): one in z
and one in γ · z. Since h̄(X) has one uniformly random coefficient, one of the
responses is uniformly random. The other one is such that the tested equality is
true. So the honest verifier learns no new information from h̄(X).

3.3 Modular Reduction

We start with a protocol that will be used as a subprotocol in the sequel. This
protocol establishes that one polynomial, r(X), is the remainder after division of
a second polynomial f(X), by a third, d(X). This third polynomial is assumed
to be known, but the protocol can be naturally amended to allow V only oracle
access to [d(X)]. Formally, the relation is given by

Rreduce =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = (df , dr)
x = ([f(X)], [r(X)], d(X))
w = (f(X), r(X))
∃q(X) ∈ F[X] . f(X) = q(X) · d(X) + r(X)
deg(f) ≤ df
deg(r) ≤ dr

. (7)

10

description: decides L(Rreduce)
inputs: i : (df , dr)
inputs: x : ([f(X)], [r(X)], d(X))
inputs: w : (f(X), r(X))
begin

P computes q such that f(X) = q(X) · d(X) + r(X)
P sends q(X) of degree at most df − deg(d) to V

V samples z
$←− F\{0} and queries [f(X)], [q(X)], and [r(X)] in z

V receives yf = f(z), yq = q(z), and yr = r(z)

V tests yf
?
= yq · d(z) + yr

Protocol 3: ModReduce

Theorem 3 (Security of ModReduce). Protocol ModReduce of Protocol 3 is a
Polynomial IOP for L(Rreduce) with completeness and soundness with soundness
error σ = df/|F|.

Proof. Completeness follows from construction: dividing f(X) by d(X) gives
quotient q(X) and remainder r(X). Therefore, f(X) = q(X) · d(X) + r(X) is
an identity of polynomials and guaranteed to hold everywhere including in the
point z.

For soundness, observe that when r(X) 6≡ f(X) mod d(X) then d(X) does
not divide f(X)− r(X). As a result, f(X) 6= q(X) ·d(X) + r(X) is an inequality
of polynomials with degree deg(d) + deg(q) = df . Due to the Schwartz-Zippel
lemma, the left and right hand sides can evaluate to the same value in at most
df choices for z. The probability of V accepting when r(X) 6≡ f(X) mod d(X) is
therefore σ = df/|F|.

What is left to argue is that P fails to convince V when the congruence
r(X) ≡ f(X) mod d(X) holds, but r(X) is not equal to the remainder after
division of f(X) by d(X). The representatives of the congruence class of r(X) are
apart by polynomials of degree at least deg(d), there is only one representative
of degree at most dr < deg(d). The index value dr therefore already constrains
r(X) to a unique polynomial. ut

3.4 Matrix-Vector Product

The next protocol involves two polynomials that represent vectors in the mono-
mial coefficient basis. It establishes that the one vector is the result of applying
a linear transformation to the other. This linear transformation itself can be
known and computed explicitly by the verifier. However, for succinct verifiers it
is more appealing to encode this matrix into a polynomial oracle. Depending on
the context, either the protocol’s preprocessing phase produces this oracle, or
another external protocol does.

Specifically, let a ∈ Fn and b ∈ Fm and M ∈ Fm×n with the element in row i
and column j (both indices starting at zero) indexed as M[i,j]. These objects are
represented as polynomials with a[i] being ith element of a and simultaneously

11

the coefficient of the monomial Xi in fa(X), and similarly for b, b[i], and fb(X).
When encoded into polynomial form, the matrix is encoded in row-first order,
specifically fM (X) =

∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j . The protocol establishes that
b = Ma. Formally, the relation is given by

Rmvp =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = (m,n,M)
x = ([fa(X)], [fb(X)])
w = (fa(X), fb(X))

fa(X) =
∑n−1
i=0 a[i]X

i for somea ∈ Fn

fb(X) =
∑m−1
i=0 b[i]X

i for some b ∈ Fm
b = Ma

. (8)

description: decides L(Rmvp)
inputs: i : (m,n,M)
inputs: x : ([fa(X)], [fb(X)])
inputs: w : (fa(X), fb(X))
// pre-processing
begin

I computes fM (X)←
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j

I sends fM (X) of degree at most mn− 1 to P and V

begin

V samples α
$←− F and sends α to P

P computes r(X)← fM (X)modXn − α
P sends r(X) of degree at most n− 1 to V
P and V run ModReduce with i

(1) = (mn− 1, n− 1),
x
(1) = ([fM (X)], [r(X)], Xn − α), and w

(1) = (fM (X), r(X))
V queries [fb(X)] in α and receives yαTb = fb(α)
P and V run InnerProduct with i

(2) = n− 1, x(2) = ([r(X)], [fa(X)], yαTb),
and w

(2) = (r(X), fa(X))

Protocol 4: DenseMVP

Theorem 4 (Security of DenseMVP). Protocol DenseMVP of Protocol 4 is a
Polynomial IOP for L(Rmvp) with completeness and soundness with soundness
error σ = mn+m+2n−4

|F|−1 .

12

Proof. Let αT = (α0, α1, · · ·) and rT = αTM , and consider the equations

b = Ma (9)

αTb = αTMa (10)

m−1∑
i=0

αib[i] = rTa (11)

fb(α) =

n−1∑
i=0

r[i]a[i] (12)

yαTb = coeffs(r(X)) · coeffs(fa(X)) (13)

(i(2),x(2)) = (n− 1, ([r(X)], [fa(X)], yαTb)) ∈ L(Rip) , (14)

where coeffs : F[X] → Fn is the function that returns the vector of coefficients
of its argument. Observe that coeffs(r(X)) = r, by substituting Xn by α in the
expression for fM (X):

m−1∑
i=0

n−1∑
j=0

M[i,j]X
in+j Xn 7→α−−−−→ r(X) =

m−1∑
i=0

n−1∑
j=0

M[i,j]α
iXj (15)

=

n−1∑
j=0

(
m−1∑
i=0

M[i,j]α
i

)
Xj (16)

=

n−1∑
j=0

r[j]X
j . (17)

Completeness follows from the implications (9) ⇒ (10) ⇔ (11) ⇔ (12) ⇒ (13)
⇒ (14).

For soundness, there are 3 events that can cause V to accept despite b 6= Ma:

1. (9) 6⇐ (10). The probability of this event is at most m−1
|F|−1 due to the Schwartz-

Zippel lemma.
2. (12) 6⇐ (13) because r(X) is not the remainder of fM (X) after division by
Xn − α. The probability of this event is at most mn−1

|F| , the soundness error

of ModReduce.
3. (13) 6⇐ (14), because yαTb is not the inner product of the coefficient vectors of
r(X) and fa(X). The probability of this event is at most 2n−2

|F| , the soundness

error of InnerProduct.

By the union bound, the soundness error of DenseMVP is bounded by σ =
mn+m+2n−4
|F|−1 . ut

Note that after unrolling, the verifier the DenseMVP protocol tests two poly-
nomial identities. One arises from expanding ModReduce, and the other arises
from InnerProduct. Both polynomial identities involve the polynomial r(X), and

13

as a result it can be eliminated and the identities merged. We present the un-
rolled and optimized version in Appendix C.1.

To see that this merger has no effect on soundness, observe that the inequality
lhs1 6= lhs2 implies r(X) 6= lhs1 or r(X) 6= lhs2. The verifier therefore accepts
this false instance with a probability bounded by the same soundness error as
the unoptimized protocol. This optimization strategy translates more generally
to (some) other Polynomial IOPs: to eliminate a polynomial that is common to
two identities, move it to the right hand side and then equate both left hand
sides.

3.5 Hadamard Product

The next protocol establishes that the Hadamard (or component-wise) product
of two vectors is equal to a third. These vectors are represented as the coefficient
vectors of polynomials fa(X), fb(X), and fc(X) such that c = a◦b and a, b, c ∈
Fd+1. The protocol relies on the fact that c = a ◦ b implies αT(a ◦ b) = αTc for

all vectors α. In other words, one can simply sample a random scalar α
$←− F,

and check the inner product of α ◦ a with b against the inner product αTc.
Note that the right hand side of this check amounts to fc(α) and the operands
in the left hand side amount to the coefficient vectors of fa(αX) and fb(X),
respectively. Formally, the relation is given by

Rhadamard =

(i,x,w)

∣∣∣∣∣∣∣∣
i = d
x = ([fa(X)], [fb(X)], [fc(X)])
w = (fa(X), fb(X), fc(X))
∀i ∈ {0, . . . , d} . aibi = ci

 . (18)

description: decides L(Rhadamard)
inputs: i: d
inputs: x: [fa(X)], [fb(X)], [fc(X)]
inputs: w: fa(X), fb(X), fc(X)
begin

V samples α
$←− F\{0} and sends α to P

P evaluates y ← fc(α)
V queries [fc(X)] in α and receives y = fc(α)
P and V run InnerProduct with i

(1) = d, x(1) = ([fa(αX)], [fb(X)], y),
w

(1) = (fa(αX), fb(X)), where V simulates [fa(αX)] using [fa(X)] and
the scalar α

Protocol 5: Hadamard

Theorem 5 (Security of Hadamard). Protocol Hadamard of Protocol 9 is a
Polynomial IOP for L(Rhadamard) with completeness and soundness with sound-
ness error σ = 3d/(|F| − 1).

14

Proof. Consider the following sequence of equations.

a ◦ b = c (19)

αT · (a ◦ b) = αT · c (20)

d∑
i=0

(αia[i])b[i] =

d∑
i=0

αic[i] (21)

coeffs(fa(αX)) · coeffs(fb(X)) = fc(α) (22)

coeffs(fa(αX)) · coeffs(fb(X)) = y (23)

(i,x) = (d, ([fa(αX)], [fb(X)], y)) ∈ L(RInnerProduct) (24)

Completeness follows from the sequence of implications (19) ⇒ (20) ⇔ (21)
⇔ (22) ⇔ (23) ⇒ (24).

For soundness, consider when the reverse implications fail.

– (19) 6⇐ (20). This event happens with probability at most d/(|F|− 1) due to
the Schwartz-Zippel lemma.

– (23) 6⇐ (24). This event happens with probability at most 2d/(|F| − 1), the
soundness error of InnerProduct.

Therefore, the probability that V accepts even though a ◦ b 6= c is bounded by
σ = 3d/(|F| − 1). ut

4 Sparse Linear Algebra Relations

The purpose of this section is to present an analogue of the DenseMVP Polyno-
mial IOP but that works when the matrix M is represented sparsely, i.e., as a
list of nonzero coefficients and their coordinates. The full, formal presentation of
this protocol is rather lengthy, and so we defer it to Appendix B. Here we present
an intuitive, high-level overview with just enough detail so that the reader could
reconstruct the deferred formal presentation.

4.1 High-Level Overview

Let M ∈ Fm×n be a matrix with only K nonzero elements, such that it can be
represented as M =

∑K−1
k=0 erow(k)e

T
col(k) · val(k), where ei is the ith unit vector,

where row, col : N → N indicate the column and row of the kth element, and
where val : N → F indicates its value. We detail a protocol to establish that
y = Mx. We first explain the steps from a high level point of view.

From MVP to bivariate polynomial evaluation. A key component of the
dense matrix-vector multiplication protocol is the evaluation of (fM (X) mod Xn−
α) at the point z, where fM (X) is the polynomial associated with the matrix

15

M , i.e., fM (X) =
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j . This step can equivalently be inter-

preted as the evaluation of the bivariate polynomial fM (X,Y) =
∑m−1
i=0

∑n−1
j=0 M[i,j]X

iY j

in the point (α, z). In other words, if we can achieve sparse bivariate polynomial
evaluation, then we can achieve sparse matrix-vector products.

From bivariate polynomials to univariate monomial vectors. The re-
duction goes one step further: it is possible to achieve sparse bivariate poly-
nomial evaluation given a procedure that establishes that the vector of coef-
ficients of a dense polynomial is the same as the vector of monomials of a
sparse univariate polynomial when evaluated in a given point. To see this,
observe that a sparse bivariate polynomial f(X,Y) =

∑K−1
k=0 ckX

akY bk can

be evaluated in a point (x, y) using the polynomials fc(X) =
∑K−1
k=0 ckX

k,

fx(X) =
∑K−1
k=0 xakXk, and fy(X) =

∑K−1
k=0 ybkXk, simply by performing one

Hadamard and one InnerProduct subprotocol. This reduction does introduce a
problem, namely fx(X) and fy(X) cannot be known before V supplies x and y.
So how does P commit to them, and how does V verify that the received oracles
match with the commitment?

From univariate monomial vector to bit matrix. Let’s focus on fx(X), as
fy(X) proceeds analogously. This polynomial can be represented by a bit matrix
B, which takes the value 1 in cells (ak, k) and 0 elsewhere. Let H denote the
largest such ak, i.e., H = maxk ak. Let furthermore x = (x0, x, x2, . . . , xH−1)T,
and z = (z0, z, z2, . . . , zK−1)T. Then B represents the polynomial fx(X) since
fx(z) = xBz.

From bit matrix to Lagrange and Vandermonde matrices. The idea is
to decompose the matrix B ∈ FH×K as the product of two matrices, L ∈ FH×H
and R ∈ FH×K . Let H ⊂ F be a set of H distinct elements of F and ϕ : N→ H
a canonical mapping from {0, . . . ,H−1} to H. L is the Lagrange matrix, whose
hth row is the coefficient vector of Lh(X), which is the Lagrange polynomial
taking the value 1 in ϕ(h) and 0 in all other points of H. Symbolically:

Lh(X) =

H−1∑
i=0

L[h,i]X
i =

H−1∏
i = 0
i 6= h

X − ϕ(i)

ϕ(h)− ϕ(i)
. (25)

R is the Vandermonde matrix, whose rows are the (Hadamard) powers of (ϕ(ak))K−1k=0 .
Specifically:

R =

1 1 · · · 1

ϕ(a0) ϕ(a1) · · · ϕ(aK−1)
ϕ(a0)2 ϕ(a1)2 · · · ϕ(aK−1)2

...
... · · ·

...
ϕ(a0)H−1 ϕ(a1)H−1 · · · ϕ(aK−1)H−1

 . (26)

16

To verify that LR = B, observe that the inner product between L[h,:] and R[:,k]

is equal to Lh(ϕ(ak)). When V provides (x, z) hoping to obtain xTBz, P will
respond with [xTL] and [Rz] (in polynomial form), and both proceed to an
InnerProduct protocol. We will refer to these vectors as the Lagrange and Van-
dermonde vectors, respectively. The next question is, how and against what does
V verify them?

Verifying the Lagrange vector. After sending x and receiving the vector
(encoded as a polynomial oracle) [xTL], V sends γ to P, who responds with the
vector [Lγ], where γ = (1, γ, γ2, . . . , γH−1)T. Let ZH(X) be the unique monic
polynomial of degree H − 1 that vanishes on H. By repeating the equation

Lh(γ) · (γ − ϕ(h)) =
ZH(γ)∏H−1

i = 0
i 6= h

(ϕ(h)− ϕ(i))
(27)

for every h, V can check Lγ using a Hadamard subprotocol, assuming that P
or I previously committed to oracles for fϕ(X) =

∑H−1
h=0 ϕ(h)Xh and fH(X) =∑H−1

h=0

(∏
i∈{0...H−1}\{h}(ϕ(h)− ϕ(i))

)−1
· Xh. The next step is to query the

oracles [xL] and [Lγ] in γ and x, respectively and verify that the responses
match.

Verifying the Vandermonde Vector. A similar technique allows V to verify
the Vandermonde vector. After sending z and receiving [Rz] back, V sends δ,
and P responds with [δTR]. Next, V checks that for every k ∈ {0, . . . ,K − 1},(

H−1∑
i=0

(δ · ϕ(ak))i

)
· (δϕ(ak)− 1) = (δϕ(ak))

H − 1 (28)

using another Hadamard protocol and the precommitted oracle fa(X) =
∑K−1
k=0 ϕ(ak)Xk.

Lastly, V queries [Rz] in δ to see if the response matches with [δR] when queried
in z.

Batching Lagrange and Vandermonde Vectors. In order to establish the
correct evaluation of the bivariate polynomial, the prover must establish the
correct production of two univariate monomial vectors. A näıve implementation
invokes the Lagrange vector and the Vandermonde vector procedure twice. How-
ever, it turns out to be possible to merge these two invocations, and save a total
of 4 polynomials. We treat this optimization explicitly in Appendix C.

5 A Polynomial IOP for Arithmetic Circuits

5.1 The Protocol

The next protocol, Protocol 6 puts many of the previously developed tools to-
gether into a Polynomial IOP (with preprocessing) for arithmetic circuits as

17

captured by the HPR. To differentiate our protocol from other similar ones, we
name it Claymore.

description: realizes Rhpr

inputs: i: (m,n,M) with M ∈ Fm×(3n+1)

inputs: x: x ∈ Fn
inputs: w: (wl,wr,wo) ∈ Fn × Fn × Fn
// preprocessing
begin

I runs MVP.I on i
(1) = (m, 3n+ 1,M)

// online
begin

P computes fwl ←
∑n−1
j=0 wl[j]X

j , fwr ←
∑n−1
j=0 wr[j]X

j , and

fwo ←
∑n−1
j=0 wo[j]X

j

P sends fwl(X), fwr(X), and fwo(X), all of degrees at most n− 1, to V
P computes f1w(X)← 1 +Xfwl(X) +Xn+1fwr(X) +X2n+1fwo(X)
P computes fx(X), whose coefficient vectors correspond to
x = M (1|wl

T|wr
T|wo

T)T

P and V run MVP with i
(1) = (m, 3n+ 1,M) , x(1) = ([f1w(X)], [fx(X)]),

w
(1) = (f1w(X), fx(X)) where V simulates [f1w(X)] using

f1w(X) = 1 +Xfwl(X) +Xn+1fwr(X) +X2n+1fwo(X), [fwl(X)],
[fwr(X)], and [fwo(X)]; and where V computes [fx(X)] locally using
x = x

P and V run Hadamard with i
(2) = n− 1,

x
(2) = ([fwl(X)], [fwr(X)], [fwo(X)]), w(2) = (fwl(X), fwr(X), fwo(X))

Protocol 6: Claymore

Theorem 6 (Security of Claymore). Protocol Claymore of Protocol 6 is a Poly-
nomial IOP for RHPR with completeness and soundness error σ ≤ σHadamard +
σMVP.

Proof. Completeness follows from construction. Since the arguments are com-
puted honestly, the subprotocols succeed and guarantee equalities (1) and (2),
respectively.

Soundness. If the HPR instance is a false instance, then x 6= M(1|wl
T|wr

T|wo
T)T

or wl◦wr 6= wo. As a result either the Hadamard protocol succeeds despite being
run on a false instance, or the MVP protocol succeeds despite being run on a
false instance. The probabilities of these events are respectively at most σHadamard

and at most σMVP. ut

5.2 The Role of Preprocessing

The preprocessing phase can be omitted. In this case, V must compute fM (X)
locally. This task requires O(mn) work, or only O(K) if the matrix M has only

18

K nonzero elements and is represented as such. When this phase is omitted,
Claymore should be compared to the Polynomial IOP underlying Aurora [4].

When used with preprocessing, Claymore achieves fast verification. Specif-
ically, the matrix M which determines the circuit being proved, is processed
by the indexer. For long and drawn-out computations, this matrix is typically
sparse and the SparseMVP is suitable. However, for short or shallow computa-
tions, DenseMVP is the better option. Depending on the choice of MVP protocol,
the matching soundness error should be considered.

5.3 Optimizations

Reuse α Across Hadamard Protocols. DenseClaymore has only one invo-
cation of the Hadamard subprotocol, but the (partially unrolled) SparseClaymore
has many more. It is worth reusing the same α for all these invocations as this
reduces the number of unique evaluation points.

First, observe that all invocations to Hadamard can be shuffled around until
they can all be run simultaneously – none of the inputs to any of the Hadamard
protocols depend on the outputs of any other. Second, we can concatenate all
the Hadamard relations and prove one batched relation

a0‖a1‖ · · · ‖ak−1 ◦ b0‖b1‖ · · · ‖bk−1 = c0‖c1‖ · · · ‖ck−1 (29)

instead of k individual relations separately. This batching comes with no sound-
ness degradation.

The batched equation can be verified with k separate InnerProduct protocols
that prove the same inner product relations as would be proved without batching
– except that α is now the same everywhere. So neither P nor any other observer
can determine whether V is verifying Equation 29 or k separate equations.

Batch the Inner Product Protocols. The unrolled SparseClaymore protocol
consists of 10 invocations of InnerProduct protocol, and the unrolled DenseClaymore
protocol consists of 2. We can replace these InnerProduct protocols by the Batched
InnerProduct protocol presented in Protocol 2. To see that this replacement does
not affect the soundness, note that the InnerProduct subprotocols do not in-
volve any verifier randomness and we can safely postpone them to the end of
the Claymore protocol. Next, we replace them with a BatchedInnerProduct, uni-
fying the degrees by the maximal degree of these polynomials. The negligible
soundness degradation of this modification is captured concretely by Lemma 2
of Appendix A.

Batch the Sparse Vector Protocols. We also present an alternative version
of SparseBiEval by batching the two instances of VandermondeVector and the two
LagrangeVector protocols. This optimization eliminates four polynomial oracles
at the cost of doubling the polynomial degrees. We present the protocol details
and security proofs in Appendix C.2.

19

Concatenate Left and Right Wire Vectors. Instead of sending three wit-
ness polynomials (fwl(X), fwr(X), fwo(X)), the prover can get away with send-
ing only two: (fwi(X), fwo(X)) where fwi(X) = fwl(X) + Xn · fwr(X). This
concatenation is already implicit in the matrix-vector product subprotocol. The
input to the Hadamard subprotocol should be x = ([fwi(X)], [Xn ·fwi(X)], [Xn ·
fwo(X)]). The subprotocol then establishes thatwl

wr

0n

 ◦
0n

wl

wr

 =

0n
wo

0n

 , (30)

which is clearly equivalent to the original Hadamard relation. With this tech-
nique, the polynomials are of degree 3n − 1, and so the soundness error is
(9n− 3)/(|F| − 1) instead of (3n− 3)/(|F| − 1).

This optimization also preserves zero knowledge. To see this, observe that
any distinguisher D that uses fwi(X) can be simulated with a distinguisher D′

that uses fwl(X) and fwr(X). As a result, the optimized protocol lacks zero
knowledge only if the protocol before applying the optimization also lacks it.

6 Zero-Knowledge

The strategy for achieving zero-knowledge consists of appending 3q coefficients
to the initial wire vectors wl, wr, and wo such that each new vector has q
uniformly random coefficients and such that their Hadamard relation remains.
The randomizers will make the witness polynomials q-wise independent, meaning
that no distinguisher restricted to at most q queries will obtain any information
about the witness.

description: realizes RHPR

inputs: i: (m,n,M) with M ∈ Fm×n
inputs: x: x ∈ Fn
inputs: w: (wl,wr,wo) ∈ Fn × Fn × Fn
inputs: additional parameters: q
offline preprocessing:

I runs Claymore.I on i
(1) = (m,n+ 3q,M ′ =(

M[:,0:(n+1)] 0m×3q M[:,(n+1):(2n+1)] 0m×3q M[:,(2n+1):(3n+1)] 0m×3q

)
)

online phase:
// compute witness polynomial with randomizers

P samples r
(l)

[0:q], r
(r)

[q:2q], r
(o)

[2q:3q]

$←− Fq and sets r
(l)

[q:2q] = r
(r)

[0:q] = 0q×1,

r
(o)

[0:2q] = 02q×1, r
(l)

[2q:3q] = 1q×1, and r
(r)

[2q:3q] = r
(o)

[4:6] // r(l) ◦ r(r) = r(o)

P and V run Claymore with i
(1) = (m,n+ 3q,M ′), x(1) = x,

w
(1) = ((wl

T|r(l)T), (wr
T|r(r)T), (wo

T|r(o)T))

Protocol 7: ZKClaymore

20

It is tricky to define zero knowledge the context of Polynomial IOPs. The
distinguisher D can always query the received oracles in enough points to inter-
polate and then extract the witness. The notion is only meaningful when the
number of queries bounded by some parameter. We furthermore restrict the dis-
tinguisher’s queries to be distributed identically to that of an honest verifier; this
restriction therefore corresponds to honest-verifier zero knowledge. As a result,
we are not concerned with finding a complete description of the polynomials that
make up the transcript. Instead, we are only concerned with the verifier’s view
of the transcript. This view corresponds to the list of queries and responses to
the various oracles.

Theorem 7. When q ≥ 2, the Polynomial IOP ZKClaymore of protocol 7 has
statistical honest-verifier zero-knowledge if all the InnerProduct subprotocols are
replaced by a single invocation of BatchedInnerProduct. Concretely, the statistical
distance between the verifier’s view of authentic transcript versus the verifier’s
view of simulated transcript is bounded by 3

|F|−1 , which is negligible in the field
size.

Proof. We show how S produces the verifier view for (i,x) without knowledge
of w. In the process, we establish that this view is indistinguishable from that
of an authentic protocol execution.

The protocol ZKClaymore consists of an invocation to Hadamard protocol
and an invocation to either the dense or sparse variant of MVP. Note that both
protocols DenseMVP and SparseMVP consists of:

1. a query to fx(X) at uniformly random α
$←− F\{0};

2. a protocol invocation (ModReduce in DenseMVP, or SparseBiEval in SparseMVP)
with inputs that are independent of wl,wr,wo;

3. an invocation of InnerProduct on input f1w(X) and another polynomial (r(X)
in DenseMVP or fαTM (X) in SparseMVP), denoted by ft(X) hereafter, that
is also independent of wl,wr,wo.

Since S knows M and x, S can compute all polynomials that do not depend on
witnesses honestly, i.e., as the honest P would. We therefore restrict attention
to polynomials that depend on the witness.

What remains is to demonstrate how to sample the verifier view for InnerProduct
on input f1w(X) and ft(X), and for Hadamard on input fwl(X), fwr(X) and
fwo(X). These two subprotocols contribute two polynomial pairs each to the
BatchedInnerProduct protocol. It suffices to sample the verifier view for the
BatchedInnerProduct protocol just for these two polynomial pairs, because the
remaining pairs are independent of the witness.

This verifier view consists of several elements, namely:

1. Uniformly random z, α∗ (the symbol α∗ is used for batching the various inner
product relations into one)

2. yh = h̄(z), y∗h = h̄(γ · z)
3. The verifier view contributed by the InnerProduct protocol in MVP:

21

(a) yl1 = fwl(z)
(b) yr1 = fwr(z)
(c) yo1 = fwo(z)
(d) yt = ft(z

−1) (S samples this one honestly)
4. The verifier view contributed by the top-level Hadamard protocol:

(a) Uniformly random β
(b) yo2 = fwo(β)
(c) yl2 = fwl(βz)
(d) yr2 = fwr(z

−1)

In the verifier view of an honest run, the above values satisfy:

yh · γ3n+3q − y∗h = (y1w · yt − fx(α)) · z3n+3q

+ α∗ ·
(
(yl2 · yr2 − yo2) · zn+q−1

)
+ α∗2 · (· · ·) , (31)

where the ellipses omit terms that are independent of the witness and thus
already known to S, and where y1w = 1 + z−1yl1 + z−n−q−1yr1 + z−2n−2q−1yo1 .

S samples uniformly random α∗, z, β
$←− F\{0} and computes yt honestly.

Consider the matrices

Zl =

(
1 z z2 · · · zn+3q−1

1 βz (βz)2 · · · (βz)n+3q−1

)
(32)

Zr =

(
1 z z2 · · · zn+3q−1

1 z−1 z−2 · · · z−n−3q+1

)
(33)

Zo =

(
1 z z2 · · · zn+3q−1

1 β β2 · · · βn+3q−1

)
(34)

which satisfy (yl1 , yl2)T = Zl (w
T
l |r(l)T)T, (yr1 , yr2)T = Zr (wT

r |r(r)T)T, and
(yo1 , yo2)T = Zo (wT

o |r(o)T)T. Capture the relation between polynomials’ values
and randomizers into a single equation:

yl1
yl2
yr1
yr2
yo1
yo2

 =

zn zn+1 0 0 0 0

(βz)n (βz)n+1 0 0 0 0
0 0 zn+q zn+q+1 zn+2q zn+2q+1

0 0 z−n−q z−n−q−1 z−n−2q z−n−2q−1

0 0 0 0 zn+2q zn+2q+1

0 0 0 0 βn+2q βn+2q+1

r
(l)
[0]

r
(l)
[1]

r
(r)
[q]

r
(r)
[q+1]

r
(o)
[2q]

r
(o)
[2q+1]

+ c ,

(35)
where c ∈ F6 is a constant vector independent of the randomizers.

Let Z?l , Z
?
r , Z

?
o be the 2 × 2 submatrices of Zl, Zr, Zo whose columns are

multiplied by r
(l)
[0:2], r

(r)
[q:q+2] and r

(o)
[2q:2q+2], respectively; or equivalently, the 2× 2

submatrices on the diagonal of Equation 35. If these 2 × 2 submatrices are all
invertible, then (yl1 , yl2 , yr1 , yr2 , yo1 , yo2) are uniform because the randomizers

22

r
(l)
[0:q], r

(r)
[q:2q], r

(o)
[2q:3q] are. So S samples (yl1 , yl2 , yr1 , yr2 , yo1 , yo2) uniformly at ran-

dom from F6.

The 2× 2 submatrices of Z?l , Z
?
r , Z

?
o are not all invertible if z = 1, if β = 1,

or if β = z. The probability of this event is 3/(|F| − 1).

Since we can solve for one of yh, y
∗
h given the other, we only need to show that

yh is uniformly random over F. This is where the convenient arbitrary coefficient
h̄d of h̄(X) comes into play. This coefficient is chosen uniformly at random, and

so S samples yh
$←− F. Lastly, S solves Eqn. (31) for y∗h.

To complete the argument, except with a negligible failure probability cor-
responding to the 2 × 2 submatrices Z?l , Z?r , Z?o being singular, S samples a
verifier view from a distribution that is identical to the distribution of verifier
views of an authentic protocol execution. The distinguishing advantage of any
distinguisher D is bounded by the S’s failure probability, which is 3/(|F| − 1).
This number also bounds the statistical distance in distributions of the view of
the verifier of authentic transcripts versus simulated transcripts. ut

7 Comparison

7.1 Abstract Comparison

We compare both variants of Claymore to some other Polynomial IOPs from
the literature, namely Sonic, PLONK, Marlin, and Aurora. Of these Polynomial
IOPs, the first three give rise to SNARKs after cryptographic compilation. In
contrast, Aurora gives rise to a proof system generating short proofs but whose
verifier complexity is linear in the size of the witness. Importantly, Claymore is
comparable to both types of proof system: with preprocessing, it gives rise to a
SNARK; when preprocessing is omitted, the proofs remain short at the expense
of linear verifier complexity.

Table 1 contains an overview of the comparison. It considers the following
key performance indicators for Polynomial IOPs.

– The number of polynomials sent by I during the offline preprocessing phase.
This number determines the size of the universal or structured reference
strings. While this number contributes to the complexity of I, this complexity
is generally speaking not a make or break factor.

– The number of polynomials sent by P during the online proving phase. This
number contributes to the size of the proof and to the complexity of both P
and V.

– The number of evaluations. This number contributes to the size of the proof,
as well as indirectly to the complexity of P and V.

– The number of distinct points for evaluation. Some cryptographic compilers
(e.g., [6]) enable the merger of two polynomial evaluations provided that
they are being evaluated in the same point. This number limits the number
of times this optimization can be applied.

23

– The maximum degree of all polynomials. This number contributes to indexer
and prover complexity in two ways. First, before cryptographic compilation,
I and P operate on polynomials of this degree and their complexity is affected
accordingly. The exception is if the polynomials are sparse, or otherwise ex-
hibit a structure that enables fast computation. Second, some cryptographic
compilers induce overheads that are superlinear in this degree.

Table 1. Comparison between Claymore and other Polynomial IOPs from the literature,
with respect to key performance indicators.

polynomials
evaluations # distinct points max. degree

offline / online

Sonic [11] 12M/3M + 7 11M + 3 9M + 2 O(n)
PLONK [8] 8 / 6 7 2 12(n+ a)
Marlin [7] 9 / 12 18 3 6k + 6
Aurora [4] - / 7 8 2 max(m,n)

DenseClaymore 1 / 4 10 6 m(3n+ 1)− 1
SparseClaymore 8 / 10 30 10 3K − 1

For Sonic, n refers to the number of multiplication gates and the degree
of the largest polynomial is 7n. However, due to their technique for simulating
bivariate polynomials, the addition gates have fan-in bounded by a parameterM ,
corresponding to having at most M nonzero elements in every row of the linear
transform matrix. The same bound applies to the number of nonero elements in
every column. As a result of converting the original circuit into one with this
property, a number of multiplication gates may have to be added, thus explaining
the Landau notation.

For PLONK, n refers to the number of multiplication gates and a refers to
the number of addition gates, all of which have fan-in 2. We note that there is
a variant of PLONK with larger proofs and smaller prover time, which is not
shown in the table.

Aurora does not have a preprocessing phase and as a result the verifier’s com-
plexity is linear in the number of nonzero elements in the matrices A,B,C from
the R1CS tuple. Marlin uses the same mechanics but uses preprocessing to shrink
the verifier’s workload for the matrix multiplication; this technique requires 9
polynomials in the uniform or structured reference string (3 per matrix) and a
few more in the online protocol. The parameter k denotes the largest number of
nonzero elements of {A,B,C}.

For Claymore the linear transform is either represented densely as an m× n
matrix, or sparsely as a list of K nonzero coefficients in this matrix.

Marlin, PLONK, and Aurora work in the Reed-Solomon codeword basis and
crucially rely on the structure of the field or of its multiplicative group. In con-
trast, Sonic and Claymore work for any field.

24

7.2 Concrete Comparison

To make the comparison more concrete, we compile the various Polynomial IOPs
into concrete SNARKs with various compilers. In the following we use P to
denote the number of polynomials, Q for the number of queries, U for the number
of unique points, |F| for the size of a field element, and |G| for the size of a group
element.

For the benchmark computation we choose the following: to prove the mem-
bership of an element in a set by verifying the Merkle tree authentication path
in zero knowledge. The set holds 1024 elements and its Merkle root is known,
as is the member element. The witness consists of the element’s position in
the tree, and the authentication path. The Merkle tree is constructed using the
zero-knowledge-proof-friendly Rescue-Prime hash function [?] with m = 3 state
elements, rate equal to r = 2, over a prime field with p > 2256 elements, with
N = 18 rounds, targeting a security level of λ = 128 bits against collisions.

After arithmetization, this computation can be cast into one of three con-
straint systems for arithmetic circuits.

– The computation can be represented as a PLONK-relation, in which case
there are a = 13021 additions, m = 17101 multiplications, and 31234 distinct
wires in total.

– The computation can be represented as a Hadamard Product Relation (HPR)
with n = 4631 multiplications and m = 7571 linear relations with arbitrary
fan-in. After coercing the constraint system to one whose matrix has at
most M = 3 nonzero elements on every row and on every column, there are
n = 23850 multiplications and m = 26790 linear relations.

– The computation can be represented as a Rank-1 Constraint Satisfaction
System (R1CS) with 12202 rank-1 constraints and no more than k = 38694
nonzero elements in {A,B,C}.

The various cryptographic compilers differ in how they simulate evaluation
queries. A polynomial oracle [f(X)] is represented by a cryptographic commit-
ment. When V queries it in z and obtains the response y, one option is to simply
run the polynomial commitment’s evaluation protocol to prove that f(z) = y.
Another option is for V to use the commitment to f(X) to derive the commit-

ment to f(X)−y
X−z , and for P to prove that this polynomial has an appropriately

bounded degree. The point is that degree bound checks might be simpler to
combine than evaluation queries, depending on the nature of the polynomial
commitment.

– KZG polynomial commitments. A commitment to a polynomial f(X) is a
single group element. When V queries its value in z, P responds with its value

y = f(z) along with another group element, a commitment to f(X)−y
X−z . Note

that the zerofier X−z must divide f(X)−f(z). One pairing evaluation allows
V to verify the correct relation between the received commitments. Evalua-
tion queries in the same point z but to different polynomials can be batched
using random weights supplied by V. However, the scheme does not support

25

batching evaluations in distinct points, at least in terms of communication
cost. To establish the proper degree bounds, P must supply a commitment to
a degree bound check polynomial F (X) =

∑
i ω

2i·fi(X)+ω2i+1·Xd−δ(i)·fi(X)
where the sum ranges over all prior polynomials fi(X), where δ(i) is its de-
gree bound, and where ω is a random challenge supplied by V. One more
batch-evaluation is necessary to establish that the commitment to F (X)
is well formed. So the total size of a Polynomial IOP compiled with this
KZG-based compiler is

(P + 1)× |G|+ (U + 1)× (|F|+ |G|) . (36)

Using the BLS-384 pairing group, we can represent group elements with
|G| = 385 bits and scalar field elements with |F| = 256 bits.

– DARK polynomial commitments. Evaluation queries to the same polynomial
in distinct points can be batched, and evaluation queries to distinct poly-
nomials in the same point can be batched. Evaluation queries to distinct
polynomials in distinct points cannot be batched.2 We choose to batch all
queries into one evaluation proof for each polynomial, as opposed to batching
all polynomials for each distinct point. Every evaluation protocol consists of
at most blog2 dc rounds where d is the global degree bound. In every round
except the last, P sends two group elements and at most U field elements,
where U is the number of unique evaluation points. In the last round, P
sends an integer of blog2 dc × λ+ |F| bits. So the total size of a Polynomial
IOP proof compiled with this DARK strategy is

P × blog2 dc × (2|G|+ U |F|) + blog2 dc × λ+ |F| . (37)

Concretely we use 2000 bit class group elements, so |G| = 2000. The field
elements are integers modulo p, a 2λ = 256 bit prime, so |F| = blog2 pc = 256.

– FRI polynomial commitments. A FRI commitment is a Merkle root of a
Reed-Solomon codeword, obtained by evaluating the polynomial in a domain
that is ρ times larger than its degree, where ρ is known as the expansion
factor. The FRI protocol establishes the bounded degree by opening Merkle
leafs. As a result, the technique for dividing out the zerofier applies even
without supplying a new commitment. The Reed-Solomon codeword of the

polynomial f(X)−y
X−z can be computed given the Reed-Solomon codeword of

the polynomial f(X). So every query generates one field element. The FRI
protocol is run on the degree bound check polynomial F (X) =

∑
i ω

2i ·
2 There is a natural method for this type of batching that relies on dividing out

the zerofier. In response to queries z1 to [f(X)] and z2 to [g(X)], P supplies y1 =

f(z1), y2 = g(z2) and commitments to the polynomials f(X)−y1
X−z1

and g(X)−y2
X−z2

. At
this point, V can verify that the new commitments are correctly related to the old,
and he can use all commitments to derive a new commitment to “zero” polynomial.
Precisely speaking, this commitment is to an integer polynomial whose coefficients
are multiples of p. Then one evaluation protocol suffices to establish that y1 = f(z1)
and y2 = g(z2). This batching method has not been formally analyzed and such an
analysis is out of the scope of this paper.

26

fi(X) + ω2i+1 · Xd−δ(i) · fi(X) where the sum ranges over all polynomials
after dividing out the zerofiers. In this expression, δ(i) is its updated degree
bound, i.e., after dividing out the zerofiers, and ω is a random challenge
supplied by V. The evaluations of this degree bound check polynomial on
the codeword domain can be computed from evaluations of the constituent
polynomials. The FRI protocol consists of blog2 dc rounds where d is the
global degree bound. In every round, P supplies a new Merkle root along
with s field elements and as many authentication paths of length at most
blog2 ρ · dc. The protocol bounds the polynomial’s degree with soundness
error conjecturally approximately ρ−s when F is large enough. So the total
size of a Polynomial IOP compiled with FRI is less than

P × 2 · λ+Q× |F|+ blog2 dc × s× (blog2 ρ · dc × 2 · λ+ |F|) . (38)

Concretely, we set ρ = 16, s = 32, and use |F| = 256. Note that the hash
function with which the FRI Merkle trees are built, must have at least 2 ·λ =
256 bit outputs.

Table 2 summarizes the results. It shows the size of the SNARK in bytes
obtained from the given Polynomial IOP and compiled with the given compiler.
The computation whose integrity is proved, is the Merkle tree membership rela-
tion described above. The source code for reproducing these numbers is available
at https://github.com/aszepieniec/claymore-benchmark.

Table 2. Comparison of concrete SNARK size.

KZG DARK FRI

Sonic
3 222 388 720 384 640

P = 16, Q = 36, U = 20, M = 3, d = 166950

PLONK
578 61 232 424 352

P = 6, Q = 7, U = 2, d = 361464

Marlin
947 121 888 383 936

P = 12, Q = 18, U = 3, d = 232170

DenseClaymore
802 72 416 825 792

P = 4, Q = 10, U = 6, d = 105327751

SparseClaymore
1 411 139 704 384 256

P = 10, Q = 30, U = 10, d = 158951

8 Conclusion

The protocols proposed in this paper challenge the notion that the Reed-Solomon
codeword basis is the appropriate basis for representing objects from the arith-
metic constraint system in a Polynomial IOP. Instead, the monomial coefficient
basis provides a natural and intuitive representation for these objects. In this

27

https://github.com/aszepieniec/claymore-benchmark

basis, the native operations on polynomials are identifiable with the matrix oper-
ations in the arithmetic constraint system. Moreover, this basis does not impose
any restrictions on the structure of the field. The resulting Polynomial IOP for
arithmetic constraint systems outperforms similar constructions based on the
Reed-Solomon codeword basis, at least as far as the number of polynomials in
the transcript is concerned.

The modular approach followed in this paper admits a piece by piece presen-
tation and analysis that benefits simplicity and accessibility. Nevertheless, some
optimizations violate the boundaries implicit in this modular structure. These
optimizations are of independent interest as they may also apply elsewhere;
perhaps they have straightforward analogues in the Reed-Solomon codeword
domain. Some of the more important optimizations are summarized as follows.

– In some cases it is possible to eliminate polynomials. In particular, when a
polynomial is queried exactly twice and is involved in exactly two polynomial
identities. By moving this polynomial to the left hand side, and equating the
right hand sides, the polynomial identities are merged and the polynomial
in question is eliminated, all without impacting soundness.

– After unrolling a Polynomial IOP, InnerProduct subprotocols appear in great
numbers and many places. They can all be batched. In addition to saving
polynomials, this batching facilitates a simpler and more direct proof of
zero-knowledge that would not be possible otherwise.

– Batching may apply in more places still. For instance, the sparse MVP pro-
cedure benefits from two invocations of a subprotocol that establishes that
a given vector is a Lagrange vector, and two more that another vector is
a Vandermonde vector. The Lagrange and Vandermonde vector protocols
can be merged in order to save polynomials. In fact, this merger extends to
multivariate polynomials in more than two variables.

– Concatenating the vectors of left and right wires saves one polynomial, but
only if the Hadamard subprotocol can be made to work with the concatenated
vector. In particular, this adaptation requires shifting the protocol’s second
and third arguments. Performing this shift in either basis is possible, but
this shift highlights an interesting difference. In the Reed-Solomon codeword
basis, the query to the polynomial oracle is multiplied by a constant factor; in
the monomial coefficient basis, however, it is the response that is multiplied
by a factor that depends on the query.

One of the questions that led to the present line of research was to find
the Polynomial IOP with the smallest possible number of polynomials in the
transcript. In this respect, we report a mitigated success: DenseClaymore has
only four polynomials, down 33% from runner-up PLONK; and when restricting
to polynomials whose degrees grow linearly with the size of the circuit, then
SparseClaymore achieves two polynomials less than Marlin, the only competitor
that also admits arbitrary fan-in for linear gates.

However, the concrete comparison shows that we were optimizing the wrong
metric. Contrary to our expectation, the number of polynomials in the transcript
is not the dominant factor of proof size. Indeed, this comparison highlights the

28

importance of balancing a Polynomial IOP’s number of polynomials against its
other parameters.

Acknowledgements. Both authors are supported by the Nervos Foundation.

References

1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight Sub-
linear Arguments Without a Trusted Setup. In: Thuraisingham, B.M., Evans,
D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM (2017),
https://doi.org/10.1145/3133956.3134104

2. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992s. Lecture Notes in Computer Science, vol. 740, pp. 390–420.
Springer (1992), https://doi.org/10.1007/3-540-48071-4_28

3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
III. Lecture Notes in Computer Science, vol. 11694, pp. 701–732. Springer (2019).
https://doi.org/10.1007/978-3-030-26954-8 23

4. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: Transparent Succinct Arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019 , Part I. Lecture Notes in Computer Science, vol. 11476, pp.
103–128. Springer (2019), https://doi.org/10.1007/978-3-030-17653-2_4

5. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient Zero-Knowledge
Arguments for Arithmetic Circuits in the Discrete Log Setting. In: Fischlin,
M., Coron, J. (eds.) EUROCRYPT 2016, Part II. Lecture Notes in Computer
Science, vol. 9666, pp. 327–357. Springer (2016), https://doi.org/10.1007/

978-3-662-49896-5_12

6. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK Compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020 Part I. Lecture Notes in
Computer Science, vol. 12105, pp. 677–706. Springer (2020), https://eprint.

iacr.org/2019/1229.pdf

7. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: Pre-
processing zksnarks with universal and updatable SRS. In: Canteaut, A., Ishai, Y.
(eds.) EUROCRYPT 2020 Part I. Lecture Notes in Computer Science, vol. 12105,
pp. 738–768. Springer (2020), https://eprint.iacr.org/2019/1047.pdf

8. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
Cryptology ePrint Archive 2019, 953 (2019), https://eprint.iacr.org/2019/
953

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Sedgewick, R. (ed.) ACM STOC. pp. 291–
304. ACM (1985). https://doi.org/10.1145/22145.22178

10. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to poly-
nomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. Lecture
Notes in Computer Science, vol. 6477, pp. 177–194. Springer (2010), https:

//doi.org/10.1007/978-3-642-17373-8_11

11. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: Cavallaro,

29

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2111–2128. ACM
(2019), https://eprint.iacr.org/2019/099.pdf

A Definitional Equivalence: Polynomial IOPs with and
without Individual Degree Bounds

Definition 4 presents one possible definition for the notion that is Polynomial
IOP, namely where there is one degree bound d that applies to all polynomials.
However, all the protocols presented in this paper provide individual degree
bounds for each polynomial, corresponding to another possible definition. The
discussion following Definition 4 argues that no generality is lost by switching
between the two options. We now formalize this intuition.

Definition 6 (Polynomial IOP with Individual Degree Bounds). Let R
be an indexed relation with corresponding indexed language L(R), F some finite
field, and δ : N→ N a function that maps polynomial indices to their respective
degree bounds. A Polynomial IOP for R with individual degree bounds δ is a
pair of interactive machines (P,V), satisfying the following description.

– (P,V) is an interactive proof for L(R) with r rounds, and with soundness
error σ.

– P sends polynomials fi(X) ∈ F[X] of degree at most δ(i) to V.
– V is an oracle machine with access to a list of oracles, which contains one

oracle for each polynomial it has received from the prover.
– When an oracle associated with a polynomial fi(X) is queried on a point
zj ∈ F, the oracle responds with the value fi(zj).

– V sends challenges αk ∈ F to P.
– V is public coin.

Showing the equivalence in one direction turns out to be trivial. The next
lemma establishes that a Polynomial IOP with individual degree bounds (6) can
simulate a Polynomial IOP with a single degree bound (4).

Lemma 1 ((4)⇒ (6)). Let (P,V) be a Polynomial IOP with degree bound d for
a relation R with soundness error σ according to Definition 4. Then (P,V) is
a Polynomial IOP with individual degree bounds δ(i) = d for R with soundness
error σ according to Definition 6.

Proof. The difference between the two definitions is that the ith polynomial
fi(X) is guaranteed to be of degree at most δ(i) rather than d. In this particular
case, δ(i) = d, so there is no difference at all. ut

The other direction of the equivalence is more involved as it requires a com-
piler and comes with a (negligible) soundness degradation as well as one extra
polynomial oracle. Let C(P) and C(V) denote the compiled prover and verifier, re-
spectively. The compiler starts by computing d = maxiδ(i). The compiled prover
and verifier then mimick the original prover and verifier, and finalize with the
following steps:

30

https://eprint.iacr.org/2019/099.pdf

– C(V) sends a random scalar ω
$←− F\{0}.

– C(P) sends a single polynomial called the degree bound check polynomial
F (X) =

∑
i

(
ω2i · fi(X) + ω2i+1 ·Xd−δ(i) · fi(X)

)
of degree at most d.

– C(V) samples all polynomial oracles in a random point z
$←− F\{0} and tests

F (z)
?
=
∑
i

(
ω2i · fi(z) + ω2i+1 · zd−δ(i) · fi(z)

)
.

Lemma 2 ((6) ⇒ (4)). Let (P,V) be a Polynomial IOP with individual degree
bounds δ(i) for a relation R with soundness error σ and q queries to p polynomi-
als in t distinct points from F\{0} according to Definition 6. Then (C(P),C(V))
is a Polynomial IOP with global degree bound d = maxiδ(i) for R with soundness
error at most σ + 2p+d−1

|F|−1 and q + p + 1 queries to p + 1 polynomials in t + 1

distinct points from F\{0} according to Definition 4.

Proof. The numbers of polynomials, queries, and unique points are trivial. Com-
pleteness follows from construction. The degree of F (X) is at most d = maxi δ(i)
and this polynomial is tested against its definition.

In terms of soundness, we distinguish two cases. Case one: all the polynomials
fi(X) satisfy their individual degree bounds. The C(V) accepts a false instance
with probability σ. Case two: some or all of the polynomials fi(X) do not satisfy
their individual degree bounds bounds. In this case, there is a Y for which the
equation

F (X,Y) =
∑
i

(
Y 2i · fi(X) + Y 2i+1 ·Xd−δ(i) · fi(X)

)
(39)

is not a univariate polynomial identity. Therefore, Equation 39 is not a bivariate
polynomial identity either. There are at most 2p − 1 + d points (X,Y) where
left and right hand sides are equal. By the (two-dimensional) Schwartz-Zippel
lemma, the probability of sampling one of these points is 2p+d−1

|F|−1 . By the union

bound, the probability of false accept in either case is bounded by σ + 2p+d−1
|F|−1 .

ut

B Sparse Matrix-Vector Product

B.1 Formal Presentation

The formal presentation of the sparse matrix-vector multiplication protocol,
which follows, builds the protocol hierarchically. We therefore follow the high-
level overview but in reverse order.

31

Vandermonde Vector. The VandermondeVector protocol realizes the following
relation

Rvv =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (H,K,ϕ(h), {ak}K−1k=0)
x = (z, [fẑ(X)])
w = fẑ(X)

R =

ϕ(a0)0 ϕ(a1)0 · · ·
ϕ(a0)1 ϕ(a1)1 · · ·

...
...

. . .

fẑ(X) =

∑H−1
i=0 ẑiX

i

z = (1 , z , z2 , · · · , zK−1)T

ẑ = Rz

. (40)

description: decides L(Rvv)
inputs: i: H,K,ϕ(h), {ak}K−1

k=0

inputs: x: z, [fẑ(X)]
inputs: w: fẑ(X)
// pre-processing
begin

I computes fϕ(ak)(X)←
∑K−1
k=0 ϕ(ak)Xk and

fϕ(ak)H (X)←
∑K−1
k=0 ϕ(ak)HXk

I sends fϕ(ak)(X) and fϕ(ak)H (X), both of degree at most K − 1, to P and
V

// online
begin

V samples δ
$←− F\{0} and sends δ to P

P computes δ ← (δ0, δ1, . . . , δH−1)T, δ̂ ← RTδ, and fδ̂(X)←
∑K−1
i=0 δ̂iX

i

P sends fδ̂(X) of degree at most K − 1 to V
V queries [fδ̂(X)] in z and receives y0 = fδ̂(z)
V queries [fẑ(X)] in δ and receives y1 = fẑ(δ)

V checks y1
?
= y0

P and V run Hadamard with i
(1) = H − 1,

x
(1) = ([fδ̂(X)], [δ · fϕ(ak)(X)− fI(X)], [δ · fϕ(ak)H (X)− fI(X)]),

w
(1) = (fδ̂(X), δH · fϕ(ak)(X)− fI(X), δH · fϕ(ak)H (X)− fI(X)), where

V simulates [δ · fϕ(ak)(X)− fI(X)], [δH · fϕ(ak)H (X)− fI(X)] using the
oracles [fϕ(ak)(X)], [fϕ(ak)H (X)] and the known scalar δ, in combination

with computing fI(X) =
∑K−1
k=0 Xk locally

Protocol 8: VandermondeVector

Theorem 8 (Security of VandermondeVector). Protocol VandermondeVector
is a Polynomial IOP for Rvv with completeness and soundness with soundness
error σ ≤ H+5K−5

|F|−1 .

32

Proof. Consider the following sequences of equations.

ẑ = Rz (41)

δTẑ = δTRz (42)

fẑ(δ) = fδ̂(z) (43)

y1 = y0 , (44)

and

∀k ∈ {0, . . . ,K − 1} .

(
H−1∑
h=0

(δ · ϕ(k))h

)
· (1− δ · ϕ(ak)) = 1− (δ · ϕ(ak))

H

(45)(
δTR

)
◦ (1− δ · ϕ(ak))

K−1
k=0 =

(
1− (δ · ϕ(ak))

H
)K−1
k=0

(46)

fδ̂(X) ◦
(
δ · fϕ(ak)(X)− fI(X)

)
= δH · fϕ(ak)H (X)− fI(X) (47)

(i(1),x(1)) = (48)

(K − 1, [fδ̂(X)], [δ · fϕ(ak)(X)− fI(X)], [δH · fϕ(ak)H (X)− fI(X)]) ∈ L(Rhadamard) .

Completeness follows from the sequences of implications a) (41) ⇒ (42) ⇔
(43) ⇔ (44), and b) (45) ⇔ (46) ⇔ (47) ⇒ (48). Sequence (a) holds for any
matrix R. Sequence (b) starts with the equation for a geometric sum derived
from the matrix R as defined as in Eqn. 26.

For soundness, consider when the reverse implications fail. There are two
such cases:

– (41) 6⇐ (42). By the Schwartz-Zippel lemma, the probability of this event is
bounded by H−1

|F|−1 .

– (47) 6⇐ (48). The probability of this event is captured by the soundness error
of Hadamard, σHadamard ≤ 5K−4

|F|−1 .

By the Union Bound, the soundness error of VandermondeVector is bounded by
σ ≤ H+5K−5

|F|−1 . ut

Lagrange Vector. The LagrangeVector protocol realizes the following relation

Rlv =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (H,ϕ(h))
x = (x, [fx̂(X)])
w = fx̂(X)

L =

Lϕ(0),0 Lϕ(0),1 · · ·Lϕ(1),0 Lϕ(1),1 · · ·
...

...
. . .

fx̂(X) =

∑H−1
i=0 x̂iX

i

x = (1 , x , x2 , · · · , xH−1)T

x̂ = xTL

. (49)

33

34 A. Szepieniec and Y. Zhang

description: decides L(Rlv)
inputs: i: H,ϕ(h)
inputs: x: x, [fx̂(X)]
inputs: w: fx̂(X)
// pre-processing
begin

I computes fϕ(h)(X)←
∑H−1
h=0 ϕ(h)Xh, ZH(X)←

∏H−1
h=0 (X − ϕ(h)) and

fH(X)←
∑H−1
h=0

(∏
i∈{0...H−1}\{h}(ϕ(h)− ϕ(i))

)−1

·Xh

I sends fϕ(h)(X), fH(X), both of degree at most H − 1, and ZH(X) of
degree at most H, to P and V

// online
begin

V samples γ
$←− F\{0} and sends γ to P

P computes γ ← (γ0, γ1, . . . , γH−1)T, γ̂ ← Lγ, and fγ̂(X)←
∑H−1
i=0 γ̂iX

i

P sends fγ̂(X) of degree at most H − 1 to V
V queries [fγ̂(X)] in x and receives y0 = fγ̂(x)
V queries [fx̂(X)] in γ and receives y1 = fx̂(γ)

V checks y1
?
= y0

V queries [ZH(X)] in γ and receives u = ZH(γ)
P and V run Hadamard with i

(1) = H − 1,
x
(1) = ([fγ̂(X)], [γfI(X)− fϕ(h)(X)], [ufH(X)]),

w
(1) = (fγ̂(X), γfI(X)− fϕ(h)(X), ufH(X)), where V simulates

[γfI(X)− fϕ(h)(X)], [ufH(X)] using the oracles [fϕ(h)(X)], [fH(X)] and

the known scalar γ, in combination with computing fI(X) =
∑H−1
h=0 X

h

locally

Protocol 9: LagrangeVector

Theorem 9 (Security of LagrangeVector). Protocol LagrangeVector is a Poly-
nomial IOP for Rlv with completeness and soundness with soundness error
σ ≤ 6H−5

|F|−1 .

Proof. Consider the following sequences of equations.

x̂T = xTL (50)

x̂Tγ = xTLγ (51)

fx̂(γ) = fγ̂(x) (52)

y1 = y0 , (53)

and

∀h ∈ {0, . . . ,H − 1} .Lh(γ) =

H−1∏
i = 0
i 6= h

γ − ϕ(i)

ϕ(h)− ϕ(i)
(54)

∀h ∈ {0, . . . ,H − 1} .Lh(γ) · (γ − ϕ(h)) =
ZH(γ)∏H−1

i = 0
i 6= h

(ϕ(h)− ϕ(i))
(55)

(Lγ) ◦ (γ − ϕ(h))
H−1
h=0 = ZH(γ)

 ∏
i∈{0...H−1}\{h}

(ϕ(h)− ϕ(i))

−1

H−1

h=0

(56)

fγ̂(X) ◦ (γfI(X)− fϕ(X)) = ufH(X) (57)

(i(1),x(1)) = (58)

(H − 1, [fγ̂(X)], [γfI(X)− fϕ(h)(X)], [ufH(X)]) ∈ L(Rhadamard) .

Completeness follows from the sequences of implications a) (50) ⇒ (51) ⇔
(52) ⇔ (53), and b) (54) ⇔ (55) ⇔ (56) ⇔ (57) ⇒ (58). Sequence (a) holds
for any matrix L. Sequence (b) starts with the definition of Lagrange basis
polynomials, and holds when the rows of L are exactly the coefficient vectors of
the Lagrange basis polynomials. Recall that Lagrange basis polynomial indexed
by h takes the value 1 in ϕ(h) and 0 in all other points of H.

For soundness, consider when the reverse implications fail. There are two
such cases:

– (50) 6⇐ (51). By the Schwartz-Zippel lemma, the probability of this event is
bounded by H−1

|F|−1 .

– (57) 6⇐ (58). The probability of this event is captured by the soundness error
of Hadamard, σHadamard ≤ 5H−4

|F|−1 .

By the Union Bound, the soundness error of LagrangeVector is bounded by σ ≤
6H−5
|F|−1 . ut

35

Sparse Univariate Polynomial Evaluation. In terms of sparse univariate
polynomial evaluation, we actually achieve something more generic. Let f(X) =∑K−1
k=0 Xak . The next protocol establishes that fz(X) =

∑K−1
k=0 zakXk is indeed

the polynomial whose vector of coefficients corresponds to the monomials of
f(X) when evaluated in z. By evaluating fz(X) in X = 1, one obtains the
evaluation f(z).

The protocol SparseMonomialVector realizes the following relation.

Rsmv =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣
i = (H,K, {ak}K−1k=0)
x = (z, [fz(X)])
w = (fz(X))

fz(X) =
∑K−1
k=0 zakXk

H = maxk ak

 (59)

description: decides L(Rsmv)
inputs: i: H,K, {ak}K−1

k=0

inputs: x: z, [fz(X)]
inputs: w: fz(X)
// pre-processing
begin

I selects any mapping ϕ : N→ F such that {0, . . . , H − 1} are mapped to
distinct elements

I runs VandermondeVector.I with i
(1) = (H,K,ϕ(h), {ak}K−1

k=0)
I runs LagrangeVector.I with i

(2) = (H,ϕ(h))

// online
begin

P computes fẑ(X) =
∑H−1
h=0 z

hLh(X) where Lh(X) is the unique monic
polynomial that evaluates to 1 in ϕ(h) and to 0 in all other points of H

P sends fẑ(X) of degree at most H − 1 to V
P and V run LagrangeVector with i

(2) = (H,ϕ(h)), x(2) = (z, [fẑ(X)]), and
w

(2) = fẑ(X)

V samples y
$←− F\{0} and sends y to P

V queries [fz(X)] in y and receives x = fz(y)

P computes fŷ(X)←
∑H−1
h=0

(∑K−1
k=0 ϕ(ak)hyh

)
Xh, whose coefficient

vector corresponds to Ry with y = (1, y, . . . , yK−1)T ∈ FK
P sends fŷ(X) of degree at most H − 1 to V
P and V run VandermondeVector with i

(1) = (H,K,ϕ(h), {ak}K−1
k=0),

x
(1) = (y, [fŷ(X)]), and w

(1) = fŷ(X)
P and V run InnerProduct with i

(3) = H − 1, x(3) = ([fẑ(X)], [fŷ(X)], x),
and w

(3) = (fẑ(X), fŷ(X))

Protocol 10: SparseMonomialVector

36

Theorem 10. (Security of SparseMonomialVector) Protocol SparseMonomialVector
is a Polynomial IOP for Rsmv with completeness and soundness with soundness
error σ ≤ 11H+6K−14

|F|−1 .

Proof. Consider the following sequence of equations.

fz(X) =

K−1∑
k=0

zakXk (60)

fz(y) =

K−1∑
k=0

zakyk (61)

fz(y) = zTBy (62)

fz(y) = zTLRy (63)

fz(y) = ẑTRy (64)

fz(y) = ẑTŷ (65)

(i,x) = (H − 1, ([fẑ(X)], [fŷ(X)], x)) ∈ Rip (66)

In these formulae, we define ẑ and ŷ as the vectors of coefficients of fẑ(X) and
fŷ(X), respectively.

Completeness follows from the sequence of implications (60) ⇒ (61) ⇔
(62) ⇔ (63) ⇒ (64) ⇒ (65) ⇒ (66). For soundness, consider when the reverse
implications fail.

– (60) 6⇐ (61). This event happens with probability at most K−1
|F|−1 due to the

Schwartz-Zippel lemma.

– (63) 6⇐ (64). This event implies that LagrangeVector succeeded despite being
run on a false instance. This happens with probability at most equal to the
soundness error of that protocol, σLagrangeVector ≤ 6H−5

|F|−1 .

– (64) 6⇐ (65). This event implies that VandermondeVector succeeded despite
being run on a false instance. This happens with probability at most equal
to the soundness error of that protocol, σVandermondeVector ≤ H+5K−5

|F|−1 .

– (65) 6⇐ (66). This event implies that InnerProduct succeeded despite being
run on a false instance. This happens with probability at most equal to the
soundness error of that protocol, σInnerProduct ≤ 4H−3

|F|−1 .

By the Union Bound, the probability that any one of these events occurs is
bounded by σ ≤ 11H+6K−14

|F|−1 . ut

An important class of sparse univariate polynomials are those that represent
permutation matrices. As a consequence, protocol SparseMonomialVector can
be used to establish that two polynomials have the same coefficients, except
permuted according to a committed permutation. We omit the details of this
digression.

37

Sparse Bivariate Polynomial Evaluation. The relation realized by the pro-
tocol SparseBiEval is given as follows.

Rsbe =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣

i = (H,K, {ak}K−1k=0 , {bk}
K−1
k=0 , {ck}

K−1
k=0)

x = (u, v, w)
w = ∅
H = max(maxk{ak},maxk{bk})
f(X,Y) =

∑K−1
k=0 ckX

akY bk

f(u, v) = w

(67)

description: decides L(Rsbe)
inputs: i: H,K, {ak}K−1

k=0 , {bk}
K−1
k=0 , {ck}

K−1
k=0

inputs: x: u, v, w
inputs: w: ∅
// pre-processing
begin

I selects any mapping ϕ : N→ F such that {0, . . . , H − 1} are mapped to
distinct elements

I runs SparseMonomialVector.I with i
(1) = (H,K, {ak}K−1

k=0)
I runs SparseMonomialVector.I with i

(2) = (H,K, {bk}K−1
k=0)

I computes fc(X)←
∑K−1
k=0 ckX

k

I sends fc(X) of degree at most K − 1 to P and V

// online
begin

P computes fu(X)←
∑K−1
k=0 uakXk, fv(X)←

∑K−1
k=0 vbkXk, and

fuv(X)←
∑K−1
k=0 uakvbkXk

P sends fu(X), fv(X), and fuv(X), all of degree at most K − 1, to V
P and V run SparseMonomialVector with i

(1) = (H,K, {ak}K−1
k=0),

x
(1) = (u, [fu(X)]), and w

(1) = fu(X)
P and V run SparseMonomialVector with i

(2) = (H,K, {bk}K−1
k=0),

x
(2) = (v, [fv(X)]), and w

(2) = fv(X)
P and V run Hadamard with i

(3) = K − 1,
x
(3) = ([fu(X)], [fv(X)], [fuv(X)]), and w

(3) = (fu(X), fv(X), fuv(X))
P and V run InnerProduct with i

(4) = K − 1, x(4) = ([fuv(X)], [fc(X)], w),
and w

(4) = (fuv(X), fc(X))

Protocol 11: SparseBiEval

Theorem 11 (Security of SparseBiEval). Protocol SparseBiEval is a Polyno-
mial IOP for Rsbi with completeness and soundness with soundness error σ =
22H+21K−35
|F|−1 .

38

Proof. Consider the following sequence of equations.

f(u, v) = w (68)

K−1∑
k=0

cku
akvbk = w (69)

coeffs(fuv(X)) · coeffs(fc(X)) = w (70)

(coeffs(fu(X)) ◦ coeffs(fv(X))) · coeffs(fc(X)) = w (71)

(coeffs(fu(X)) ◦ coeffs(fv(X))) · (ck)
K−1
k=0 = w (72)(

coeffs(fu(X)) ◦
(
vbk
)K−1
k=0

)
· (ck)

K−1
k=0 = w (73)(

(uak)
K−1
k=0 ◦

(
vbk
)K−1
k=0

)
· (ck)

K−1
k=0 = w (74)

Completeness follows from the sequence of implications (68) ⇔ (69) ⇒
(70) ⇒ (71) ⇔ (72) ⇒ (73) ⇒ (74). For soundness, consider when the reverse
implications fail.

– (69) 6⇐ (70). This event happens with probability at most equal to the
soundness error of InnerProduct, σInnerProduct ≤ 4K−3

|F|−1 .

– (70) 6⇐ (71). This event happens with probability at most equal to the
soundness error of Hadamard, σHadamard ≤ 5K−4

|F|−1 .

– (72) 6⇐ (73). This event happens with probability at most equal to the
soundness error of SparseMonomialVector, σSparseMonomialVector ≤ 11H+6K−14

|F|−1 .

– (73) 6⇐ (74). This event happens with probability at most equal to the
soundness error of SparseMonomialVector, σSparseMonomialVector ≤ 11H+6K−14

|F|−1 .

By the Union Bound, the soundness error of SparseBiEval is bounded by σ ≤
22H+21K−35
|F|−1 . ut

Sparse Matrix-Vector Product. The relation that is realized by the sparse
matrix-vector product protocol is essentially the same as the one realized by the
regular (dense) matrix-vector product protocol. However, we restate this relation
in such a way so as to stress that the matrix is represented sparsely, i.e., as a
list of position-coefficient tuples rather than an array of coefficients.

Rsmvp =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (m,n, {ak}K−1k=0 , {bk}
K−1
k=0 , {ck}

K−1
k=0)

x = ([fa(X)], [fb(X)])
w = (fa(X), fb(X))

fa(X) =
∑n−1
i=0 a[i]X

i for somea ∈ Fn

fb(X) =
∑m−1
i=0 b[i]X

i for some b ∈ Fm

M =
∑K−1
k=0 cke

T
ak

ebk
b = Ma

. (75)

39

description: decides L(Rsmvp)
inputs: i: m,n, {ak}K−1

k=0 , {bk}
K−1
k=0 , {ck}

K−1
k=0

inputs: x: [fa(X)], [fb(X)]
inputs: w: fa(X), fb(X)
// pre-processing
begin

I computes H ← max(m,n)
I runs SparseBiEval.I with i

(1) = (H,K, {ak}K−1
k=0 , {bk}

K−1
k=0 , {ck}

K−1
k−1)

// online
begin

V samples α
$←− F\{0} and sends α to P

P computes fαTM (X)←
∑K−1
k=0 ckα

akXbk

P sends fαTM (X) of degree at most n− 1 to V
P computes s← fb(α)
V queries [fb(X)] in α and receives s = fb(α)
P and V run InnerProduct with i

(2) = n− 1, x(2) = ([fa(X)], [fαTM (X)], s),
and w

(2) = (fa(X), fαTM (X))

V samples β
$←− F\{0}

P computes w ← fαTM (β)
V queries [fαTM (X)] in β and receives w = fαTM (β)
P and V run SparseBiEval with i

(1) = (H,K, {ak}K−1
k=0 , {bk}

K−1
k=0 , {ck}

K−1
k=0),

x
(1) = (α, β, w), and w

(1) = ∅

Protocol 12: SparseMVP

Theorem 12 (Security of SparseMVP). Protocol SparseMVP is a Polyno-
mial IOP for Rsmvp with completeness and soundness with soundness error
σ ≤ 5m+22H+21K−39

|F|−1 .

Proof. Consider the following sequence of equations.

b = Ma (76)

αTb = αTMa (77)

fb(α) = αTMa (78)

s = coeffs(fαTM (X)) · coeffs(fa(X)) (79)

s = coeffs(fM (α,X)) · coeffs(fa(X)) (80)

Completeness follows from the sequence of implications (76) ⇒ (77) ⇔
(78) ⇒ (79) ⇒ (80). For soundness, consider when the reverse implications
fail.

– (76) 6⇐ (77). Due to the Schwartz-Zippel lemma, this event occurs with
probability m−1

|F|−1 .

– (78) 6⇐ (79). This event occurs with probability bounded by the soundness
error of InnerProduct, σInnerProduct ≤ 4m−3

|F|−1 .

40

– (79) 6⇐ (80). This event implies that fαTM (X) and fM (α,X) are distinct
polynomials. The probability that this distinction is not caught by the SparseBiEval
protocol is bounded by that protocol’s soundness error, σSparseBiEval ≤ 22H+21K−35

|F|−1 .

By the Union Bound, the soundness error of SparseMVP is bounded by σ ≤
5m+22H+21K−39

|F|−1 . ut

C Alternative and Optimized Protocols

C.1 DenseMVP

The protocol DenseMVP admits one merger of polynomial identities after un-
rolling. We present the optimized protocol in several steps to simplify their ver-
ification by the reader.

description: decides L(Rmvp)
inputs: i : (m,n,M)
inputs: x : ([fa(X)], [fb(X)])
inputs: w : (fa(X), fb(X))
// pre-processing
begin

I computes fM (X)←
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j

I sends fM (X) of degree at most mn− 1 to P and V

begin

V samples α
$←− F and sends α to P

P computes r(X)← fM (X)modXn − α
P sends r(X) of degree at most n− 1 to V
P and V run ModReduce with i

(1) = (mn− 1, n− 1),
x
(1) = ([fM (X)], [r(X)], Xn − α), and w

(1) = (fM (X), r(X))
V queries [fb(X)] in α and receives yαTb = fb(α)
P and V run InnerProduct with i

(2) = n− 1, x(2) = ([r(X)], [fa(X)], yαTb),
and w

(2) = (r(X), fa(X))

Protocol 13: DenseMVP, original

41

42 A. Szepieniec and Y. Zhang

description: decides L(Rmvp)
inputs: i : (m,n,M)
inputs: x : ([fa(X)], [fb(X)])
inputs: w : (fa(X), fb(X))
// pre-processing
begin

I computes fM (X)←
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j

I sends fM (X) of degree at most mn− 1 to P and V

begin

V samples α
$←− F and sends α to P

P computes r(X)← fM (X)modXn − α
P sends r(X) of degree at most n− 1 to V
P and V run ModReduce with i

(1) = (mn− 1, n− 1),
x
(1) = ([fM (X)], [r(X)], Xn − α), and w

(1) = (fM (X), r(X))
V queries [fb(X)] in α and receives yαTb = fb(α)
// InnerProduct
begin

P computes h(X)← r(X) · fa(X−1) ·Xn−1

P computes h̄(X) =
∑2n−1
i=0 h̄iX

i with h̄i ← hi
γn−1−γi for i 6= n− 1 and

h̄n−1
$←− F

P sends h̄(X) of degree at most 2n− 1 to V

V samples z
$←− F\{0} and queries ([r(X)], [fa(X)], [h̄(X)], [h̄(X)]) in

(z, z−1, z, γ · z)
V receives yr = f(z), ya = fa(z−1), yh = h̄(z), and y∗h = h̄(γ · z)
V tests yh · γn−1 − y∗h

?
= yr · ya · zn−1 − yαTb

Protocol 14: DenseMVP, unrolled InnerProduct

Polynomial IOPs for Linear Algebra Relations 43

description: decides L(Rmvp)
inputs: i : (m,n,M)
inputs: x : ([fa(X)], [fb(X)])
inputs: w : (fa(X), fb(X))
// pre-processing
begin

I computes fM (X)←
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j

I sends fM (X) of degree at most mn− 1 to P and V

begin

V samples α
$←− F and sends α to P

P computes r(X)← fM (X)modXn − α
P sends r(X) of degree at most n− 1 to V
// ModReduce
begin

P computes q(X) such that fM (X) = q(X) · (Xn − α) + r(X)
P sends q(X) of degree at most (m− 1)n to V

V samples z
$←− F\{0} and queries [fM (X)], [q(X)], and [r(X)] in z

V receives yf = fM (z), yq = q(z), and yr = r(z)

V tests yf
?
= yq · (zn − α) + yr

V queries [fb(X)] in α and receives yαTb = fb(α)
// InnerProduct
begin

P computes h(X)← r(X) · fa(X−1) ·Xn−1

P computes h̄(X) =
∑2n−1
i=0 h̄iX

i with h̄i ← hi
γn−1−γi for i 6= n− 1 and

h̄n−1
$←− F

P sends h̄(X) of degree at most 2n− 1 to V

V samples z
$←− F\{0} and queries ([r(X)], [fa(X)], [h̄(X)], [h̄(X)]) in

(z, z−1, z, γ · z)
V receives yr = f(z), ya = fa(z−1), yh = h̄(z), and y∗h = h̄(γ · z)
V tests yh · γn−1 − y∗h

?
= yr · ya · zn−1 − yαTb

Protocol 15: DenseMVP, unrolled ModReduce

44 A. Szepieniec and Y. Zhang

description: decides L(Rmvp)
inputs: i : (m,n,M)
inputs: x : ([fa(X)], [fb(X)])
inputs: w : (fa(X), fb(X))
// pre-processing
begin

I computes fM (X)←
∑m−1
i=0

∑n−1
j=0 M[i,j]X

in+j

I sends fM (X) of degree at most mn− 1 to P and V

begin

V samples α
$←− F and sends α to P

P computes r(X)← fM (X)modXn − α
// ModReduce
begin

P computes q(X) such that fM (X) = q(X) · (Xn − α) + r(X)
P sends q(X) of degree at most (m− 1)n to V

V samples z
$←− F\{0} and queries [fM (X)] and [q(X)] in z

V receives yf = fM (z), and y = q(z)
V sets yr ← yf − yq · (zn − α)

V queries [fb(X)] in α and receives yαTb = fb(α)
// InnerProduct
begin

P computes h(X)← r(X) · fa(X−1) ·Xn−1

P computes h̄(X) =
∑2n−1
i=0 h̄iX

i with h̄i ← hi
γn−1−γi for i 6= n− 1 and

h̄n−1
$←− F

P sends h̄(X) of degree at most 2n− 1 to V
V queries ([fa(X)], [h̄(X)], [h̄(X)]) in (z−1, z, γ · z)
V receives ya = fa(z−1), yh = h̄(z), and y∗h = h̄(γ · z)
// Merged test

V tests yh · γn−1 − y∗h
?
= yr · ya · zn−1 − yαTb

Protocol 16: DenseMVP, eliminated r(X); optimized

C.2 Batched SparseBiEval

BiVandermonde Vector. We batch two VandermondeVector protocols into
a single protocol for efficiency. The BiVandermondeVector protocol realizes the
following relation

Rbvv =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (H,K,ϕ(h), {ak}K−1k=0 , {bk}
K−1
k=0)

x = (z, [fẑ(X)])
w = fẑ(X)

Ra =

ϕ(a0)0 ϕ(a1)0 · · ·
ϕ(a0)1 ϕ(a1)1 · · ·

...
...

. . .

Rb =

ϕ(b0)0 ϕ(b1)0 · · ·
ϕ(b0)1 ϕ(b1)1 · · ·

...
...

. . .

R =

(
Ra 0
0 Rb

)
fẑ(X) =

∑2H−1
i=0 ẑiX

i

z = (1 , z , z2 , · · · , z2K−1)T

ẑ = Rz

. (81)

Theorem 13 (Security of BiVandermondeVector). Protocol BiVandermondeVector
is a Polynomial IOP for Rbvv with completeness and soundness with soundness
error σ ≤ 2H+10K−5

|F|−1 .

Proof. Consider the following sequences of equations.

ẑ = Rz (82)

δTẑ = δTRz (83)

fẑ(δ) = fδ̂(z) (84)

y1 = y0 , (85)

and

∀k ∈ {0, . . . ,K − 1} .

(
H−1∑
h=0

(δ · ϕ(ak))h

)
· (1− δ · ϕ(ak)) = 1− (δ · ϕ(ak))

H
(86)(

H−1∑
h=0

δH+h · ϕ(ak)h

)
· (1− δ · ϕ(bk)) = δH ·

(
1− (δ · ϕ(bk))

H
)

(
δTR

)
◦
(

(1− δ · ϕ(ak))
K−1
k=0 ‖ (1− δ · ϕ(bk))

K−1
k=0

)
=(

1− (δ · ϕ(ak))
H
)K−1
k=0

∥∥∥∥(1− (δ · ϕ(bk))
H
)K−1
k=0

· δH (87)

45

46 A. Szepieniec and Y. Zhang

description: decides L(Rbvv)
inputs: i: H,K,ϕ(h), {ak}K−1

k=0 , {bk}
K−1
k=0

inputs: x: z, [fẑ(X)]
inputs: w: fẑ(X)
// pre-processing
begin

I computes fϕ(ak)(X)←
∑K−1
k=0 ϕ(ak)Xk, fϕ(ak)H (X)←

∑K−1
k=0 ϕ(ak)HXk,

fϕ(bk)(X)←
∑K−1
k=0 ϕ(bk)Xk and fϕ(bk)H (X)←

∑K−1
k=0 ϕ(bk)HXk

I sends fϕ(ak)(X), fϕ(ak)H (X), fϕ(bk)(X) and fϕ(bk)H (X), all of degree at
most K − 1, to P and V

// online
begin

V samples δ
$←− F\{0} and sends δ to P

P computes δ ← (δ0, δ1, . . . , δ2H−1)T, δ̂ ← RTδ, and fδ̂(X)←
∑2K−1
i=0 δ̂iX

i

P sends fδ̂(X) of degree at most 2K − 1 to V
V queries [fδ̂(X)] in z and receives y0 = fδ̂(z)
V queries [fẑ(X)] in δ and receives y1 = fẑ(δ)

V checks y1
?
= y0

P and V run Hadamard with i
(1) = 2K − 1,

x
(1) = ([fδ̂(X)], [δ · fϕ(ak)(X)− fI(X) + (δ · fϕ(bk)(X)− fI(X)) · δH ·XK],

[δH · fϕ(ak)H (X)− fI(X) + (δH · fϕ(bk)H (X)− fI(X)) · δH ·XK]),

w
(1) = (fδ̂(X), δH · fϕ(ak)(X)− fI(X) + (δH · fϕ(bk)(X)− fI(X)) · δH ·XK ,

δH · fϕ(ak)H (X)− fI(X) + (δH · fϕ(bk)H (X)− fI(X)) · δH ·XK), where V

simulates [fϕ(ak)(δX)− fI(X) + (fϕ(bk)(δX)− fI(X)) · δH ·XK] and
[fϕ(ak)H (δX)− fI(X) + (fϕ(bk)H (δX)− fI(X)) · δH ·XK] using the
oracles [fϕ(ak)(X)], [fϕ(ak)H (X)], [fϕ(bk)(X)], [fϕ(bk)H (X)] and the known

scalar δ, in combination with computing fI(X) =
∑2K−1
k=0 Xk locally

Protocol 17: BiVandermondeVector

fδ̂(X) ◦
(
δ · fϕ(ak)(X)− fI(X) + (δ · fϕ(bk)(X)− fI(X)) · δH ·XK

)
=

δH · fϕ(ak)H (X)− fI(X) +
(
δH · fϕ(bk)H (X)− fI(X)

)
· δH ·XK (88)

(i(1),x(1)) = (2K − 1, [fδ̂(X)],

[δ · fϕ(ak)(X)− fI(X) + (δ · fϕ(bk)(X)− fI(X)) · δH ·XK],

[δH · fϕ(ak)H (X)− fI(X) + (δH · fϕ(bk)H (X)− fI(X)) · δH ·XK)]

∈ L(Rhadamard) . (89)

Completeness follows from the sequences of implications a) (82) ⇒ (83) ⇔
(84) ⇔ (85), and b) (86) ⇔ (87) ⇔ (88) ⇒ (89). Sequence (a) holds for any
matrix R. Sequence (b) starts with the equation for two geometric sums derived
from the matrix Ra and Rb as defined as in Eqn. 26.

For soundness, consider when the reverse implications fail. There are two
such cases:

– (82) 6⇐ (83). By the Schwartz-Zippel lemma, the probability of this event is
bounded by 2H−1

|F|−1 .

– (88) 6⇐ (89). The probability of this event is captured by the soundness error
of Hadamard, σHadamard ≤ 10K−4

|F|−1 .

By the Union Bound, the soundness error of BiVandermondeVector is bounded
by σ ≤ 2H+10K−5

|F|−1 . ut

BiLagrange Vector. We batch two instances of LagrangeVector protocol into a
single protocol for efficiency. The BiLagrangeVector protocol realizes the following
relation

Rlv =

(i,x,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i = (H,ϕ(h))
x = (u, v, [fûv(X)])
w = fûv(X)

L =

Lϕ(0),0 Lϕ(0),1 · · ·Lϕ(1),0 Lϕ(1),1 · · ·
...

...
. . .

fûv(X) =

∑H−1
i=0 ûiX

i +
∑H−1
i=0 v̂iX

H+i

u = (1 , u , u2 , · · · , uH−1)T

v = (1 , v , v2 , · · · , vH−1)T

û = uTL v̂ = vTL

. (90)

Theorem 14 (Security of BiLagrangeVector). Protocol BiLagrangeVector is a
Polynomial IOP for Rblv with completeness and soundness with soundness error
σ ≤ 7H−5

|F|−1 .

47

48 A. Szepieniec and Y. Zhang

description: decides L(Rblv)
inputs: i: H,ϕ(h)
inputs: x: u, v, [fûv(X)]
inputs: w: fûv(X)
// pre-processing
begin

I computes fϕ(h)(X)←
∑H−1
h=0 ϕ(h)Xh, ZH(X)←

∏H−1
h=0 (X − ϕ(h)) and

fH(X)←
∑H−1
h=0

(∏
i∈{0...H−1}\{h}(ϕ(h)− ϕ(i))

)−1

·Xh

I sends fϕ(h)(X), fH(X), both of degree at most H − 1, and ZH(X) of
degree at most H, to P and V

// online
begin

V samples γ
$←− F\{0} and sends γ to P

P computes γ ← (γ0, γ1, . . . , γH−1)T, γ̂ ← Lγ, and fγ̂(X)←
∑H−1
i=0 γ̂iX

i

P sends fγ̂(X) of degree at most H − 1 to V
V queries [fγ̂(X)] in u, v and receives y0 = fγ̂(u), y1 = fγ̂(v)
V queries [fûv(X)] in γ and receives y2 = fûv(γ)

V checks y2
?
= y0 + γH · y1

V queries [ZH(X)] in γ and receives w = ZH(γ)
P and V run Hadamard with i

(1) = H − 1,
x
(1) = ([fγ̂(X)], [γfI(X)− fϕ(h)(X)], [wfH(X)]),

w
(1) = (fγ̂(X), γfI(X)− fϕ(h)(X), wfH(X)), where V simulates

[γfI(X)− fϕ(h)(X)], [wfH(X)] using the oracles [fϕ(h)(X)], [fH(X)] and

the known scalar γ, in combination with computing fI(X) =
∑H−1
h=0 X

h

locally

Protocol 18: BiLagrangeVector

Proof. Consider the following sequences of equations.

ûT = uTL v̂T = vTL (91)

ûTγ + v̂Tγ · γH = uTLγ + vTLγ · γH (92)

fûv(γ) = fγ̂(u) + fγ̂(v) · γH (93)

y2 = y0 + γH · y1 , (94)

and

∀h ∈ {0, . . . ,H − 1} .Lh(γ) =

H−1∏
i = 0
i 6= h

γ − ϕ(i)

ϕ(h)− ϕ(i)
(95)

∀h ∈ {0, . . . ,H − 1} .Lh(γ) · (γ − ϕ(h)) =
ZH(γ)∏H−1

i = 0
i 6= h

(ϕ(h)− ϕ(i))
(96)

(Lγ) ◦ (γ − ϕ(h))
H−1
h=0 = ZH(γ)

 ∏
i∈{0...H−1}\{h}

(ϕ(h)− ϕ(i))

−1

H−1

h=0

(97)

fγ̂(X) ◦ (γfI(X)− fϕ(X)) = wfH(X) (98)

(i(1),x(1)) = (99)

(H − 1, [fγ̂(X)], [γfI(X)− fϕ(h)(X)], [wfH(X)]) ∈ L(Rhadamard) .

Completeness follows from the sequences of implications a) (91) ⇒ (92) ⇔
(93) ⇔ (94), and b) (95) ⇔ (96) ⇔ (97) ⇔ (98) ⇒ (99). Sequence (a) holds
for any matrix L. Sequence (b) starts with the definition of Lagrange basis
polynomials, and holds when the rows of L are exactly the coefficient vectors of
the Lagrange basis polynomials. Recall that Lagrange basis polynomial indexed
by h takes the value 1 in ϕ(h) and 0 in all other points of H.

For soundness, consider when the reverse implications fail. There are two
such cases:

– (91) 6⇐ (92). By the Schwartz-Zippel lemma, the probability of this event is
bounded by 2H−1

|F|−1 .

– (98) 6⇐ (99). The probability of this event is captured by the soundness error
of Hadamard, σHadamard ≤ 5H−4

|F|−1 .

By the Union Bound, the soundness error of BiLagrangeVector is bounded by
σ ≤ 7H−5

|F|−1 . ut

Batched SparseBiEval Using the above two protocols, we obtain an improved
version of the SparseBiEval protocol that saves four polynomial oracles at the
relatively minor expense of doubling their degree. Protocol 19 verifies the relation
Rsbi defined by Eqn. 67.

49

50 A. Szepieniec and Y. Zhang

description: decides L(Rsbe)
inputs: i: H,K, {ak}K−1

k=0 , {bk}
K−1
k=0 , {ck}

K−1
k=0

inputs: x: u, v, w
inputs: w: ∅
// pre-processing
begin

I selects any mapping ϕ : N→ F such that {0, . . . , H − 1} are mapped to
distinct elements

I runs BiVandermondeVector.I with i
(1) = (H,K, {ak}K−1

k=0 , {bk}
K−1
k=0)

I runs BiLagrangeVector.I with i
(2) = (H,ϕ(h))

I computes fc(X)←
∑K−1
k=0 ckX

k

I sends fc(X) of degree at most K − 1 to P and V

// online
begin

P computes fu‖v(X)←
∑K−1
k=0 uakXk +

∑K−1
k=0 vbkXk+K and

fuv(X)←
∑K−1
k=0 uakvbkXk

P sends fu‖v(X) of degree at most 2K − 1 and fuv(X) of degree at most
K − 1, to V

Batched Lagrange vector:

P computes u← (1, u, u2, · · · , uH−1)T, û← uTL,
v← (1, v, v2, · · · , vH−1)T, v̂← vTL

P computes fûv(X)←
∑H−1
i=0 ûiX

i +
∑H−1
i=0 v̂iX

i+H

P sends fûv(X) of degree at most 2H − 1 to V
P and V run BiLagrangeVector with i

(2) = (H,ϕ(h)),
x
(2) = (u, v, [fûv(X)]), and w

(2) = fûv(X)

Batched Vandermonde vector:

V samples y
$←− F\{0} and sends y to P

P computes y← (1, y, y2, · · · , y2K−1), ŷ← Ry where R is as defined
in Eqn. 81

P computes fŷ(X)←
∑2K−1
i=0 ŷiX

i

P sends fŷ(X) of degree at most 2K − 1 to V
P and V run BiVandermondeVector with
i
(1) = (H,K, {ak}K−1

k=0 , {bk}
K−1
k=0), x(1) = (y, [fŷ(X)]), and

w
(1) = fŷ(X)

V queries [fu‖v(X)] in y and receives s = fu‖v(y)

P and V run InnerProduct with i
(3) = 2H − 1, x(3) = ([fûv(X)], [fŷ(X)], s),

and w
(3) = (fûv(X), fŷ(X))

P and V run Hadamard with i
(4) = 3K − 1,

x
(4) = ([fu‖v(X)], [fu‖v(X) ·XK], [fuv(X) ·XK]), and

w
(4) = (fu‖v(X), fu‖v(X) ·XK , fuv(X) ·XK) where V simulates

[fu‖v(X) ·XK] and [fuv(X) ·XK] using [fu‖v(X)] and [fuv(X)]
respectively

P and V run InnerProduct with i
(5) = K − 1, x(5) = ([fuv(X)], [fc(X)], w),

and w
(5) = (fuv(X), fc(X))

Protocol 19: BatchedSparseBiEval

Theorem 15 (Security of BatchedSparseBiEval). Protocol BatchedSparseBiEval
is a Polynomial IOP for Rsbi with completeness and soundness with soundness
error σ = 17H+31K−21

|F|−1 .

Proof. Consider the following sequences of equations.

fu‖v(X) =

K−1∑
k=0

uakXk +

K−1∑
k=0

vbkXk+K (100)

fu‖v(y) =

K−1∑
k=0

uakyk +

K−1∑
k=0

vbkyk+K (101)

fu‖v(y) = uT(ea0 , · · · , eaK−1
)y[0:K] + vT(eb0 , · · · , ebK−1

)y[K:2K] (102)

fu‖v(y) = uTLRay[0:K] + vTLRby[K:2K] (103)

fu‖v(y) = ûTRay[0:K] + v̂TRby[K:2K] (104)

fu‖v(y) = (ûT‖v̂T)Ry (105)

fu‖v(y) = (ûT‖v̂T) · ŷ (106)

(i,x) = (2H − 1, ([fûv(X)], [fŷ(X)], s)) ∈ Rip (107)

and

f(u, v) = w (108)

K−1∑
k=0

cku
akvbk = w (109)

coeffs(fuv(X)) · coeffs(fc(X)) = w (110)(
coeffs(fu‖v(X)) ◦ coeffs(fu‖v(X) ·XK)

)
[K:2K]

· coeffs(fc(X)) = w (111)(
coeffs(fu‖v(X)) ◦ coeffs(fu‖v(X) ·XK)

)
[K:2K]

· (ck)
K−1
k=0 = w (112)(

(uak)
K−1
k=0 ◦

(
vbk
)K−1
k=0

)
· (ck)

K−1
k=0 = w (113)

Completeness follows from the sequences of implications: a) (100)⇒ (101)⇔
(102) ⇔ (103) ⇒ (104) ⇔ (105) ⇒ (106) ⇒ (107) and b) (108) ⇔ (109) ⇒
(110) ⇒ (111) ⇔ (112) ⇔ (113). For soundness, consider when the reverse
implications fail.

– (100) 6⇐ (101). This event happens with probability at most 2K−1
|F|−1 due to

the Schwartz-Zippel lemma.
– (103) 6⇐ (104). This event implies that BiLagrangeVector succeeded despite

being run on a false instance. This happens with probability at most equal
to the soundness error of that protocol, σBiLagrangeVector ≤ 7H−5

|F|−1 .

– (105) 6⇐ (106). This event implies that BiVandermondeVector succeeded de-
spite being run on a false instance. This happens with probability at most
equal to the soundness error of that protocol, σBiVandermondeVector ≤ 2H+10K−5

|F|−1 .

51

– (106) 6⇐ (107). This event implies that InnerProduct succeeded despite being
run on a false instance. This happens with probability at most equal to the
soundness error of that protocol, σInnerProduct ≤ 8H−3

|F|−1 .

– (109) 6⇐ (110). This event happens with probability at most equal to the
soundness error of InnerProduct, σInnerProduct ≤ 4K−3

|F|−1 .

– (110) 6⇐ (111). This event happens with probability at most equal to the
soundness error of Hadamard, σHadamard ≤ 15K−4

|F|−1 .

By the Union Bound, the soundness error of BatchedSparseBiEval is bounded by
σ ≤ 17H+31K−21

|F|−1 . ut

D Call Graphs and Statistics

Table 3. Callgraph Statistics for Hadamard

protocol preprocessed input new oracles queried queried in

Hadamard fa, fb, fc
fc α

- InnerProduct fa, fb h̄0

- h̄0 z1, γz1
- fa αz1
- fb (z1)−1

total: 0 3 1 5 5

Table 4. Callgraph Statistics for DenseMVP

protocol preprocessed input new oracles queried queried in

DenseMVP fM fa, fb q
fb α0

- InnerProduct q, fM , fa h̄1

- h̄1 z2, γz2
- q z2
- l z2
- fM z2
- fa (z2)−1

total: 1 2 2 6 4

52

Polynomial IOPs for Linear Algebra Relations 53

Table 5. Callgraph Statistics for DenseClaymore

protocol preprocessed input new oracles queried queried in

DenseClaymore fM fx fwl, fwr, fwo
- DenseMVP fM fwl, fwr, fwo, fx q
- fx α0

- - InnerProduct q, fM , fwl, fwr, fwo h̄1

- - h̄1 z2, γz2
- - q z2
- - l z2
- - fM z2
- - fwl (z2)−1

- - fwr (z2)−1

- - fwo (z2)−1

- Hadamard fwl, fwr, fwo
- fwo α

- - InnerProduct fwl, fwr h̄3

- - h̄3 z4, γz4
- - fwl αz4
- - fwr (z4)−1

total: 1 1 6 13 9

with BatchedInnerProduct: 1 1 5 11 6

and witness concatenation: 1 1 4 10 6

Table 6. Callgraph Statistics for VandermondeVector

protocol preprocessed input new oracles queried queried in

VandermondeVector fϕ(ak), fϕ(ak)H fx̂ fδ̂
fx̂ δ0
fδ̂ z1

- Hadamard fδ̂, fϕ(ak), fϕ(ak)H
- fϕ(ak)H δH0 α
- fI α

- - InnerProduct fδ̂, fϕ(ak) h̄2

- - h̄2 z3, γz3
- - fδ̂ αz3
- - fϕ(ak) (δ0z3)−1

- - fI (z3)−1

total: 2 1 2 7 7

Table 7. Callgraph Statistics for LagrangeVector

protocol preprocessed input new oracles queried queried in

LagrangeVector fϕ(h), fH, ZH fx̂ fγ̂
fx̂ γ0
fγ̂ z1
ZH γ0

- Hadamard fγ̂ , fϕ(h), fH
- fH α

- - InnerProduct fγ̂ , fϕ(h) h̄2

- - h̄2 z3, γz3
- - fγ̂ αz3
- - fI (z3)−1

- - fϕ(h) (z3)−1

total: 3 1 2 8 7

54 A. Szepieniec and Y. Zhang

Table 8. Callgraph Statistics for SparseMonomialVector

protocol preprocessed input new oracles queried queried in

SparseMonomialVector fx̂ fẑ, fŷ
fx̂ x0

- VandermondeVector fϕ(ak), fϕ(ak)H fŷ fδ̂
- fŷ δ1
- fδ̂ z2
- - Hadamard fδ̂, fϕ(ak), fϕ(ak)H
- - fϕ(ak)H δH1 α
- - fI α

- - - InnerProduct fδ̂, fϕ(ak) h̄3

- - - h̄3 z4, γz4
- - - fδ̂ αz4
- - - fϕ(ak) (δ1z4)−1

- - - fI (z4)−1

- LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- fẑ γ5
- fγ̂ z6
- ZH γ5
- - Hadamard fγ̂ , fϕ(h), fH
- - fH α

- - - InnerProduct fγ̂ , fϕ(h) h̄7

- - - h̄7 z8, γz8
- - - fγ̂ αz8
- - - fI (z8)−1

- - - fϕ(h) (z8)−1

- InnerProduct fẑ, fŷ h̄9

- h̄9 z10, γz10
- fẑ z10
- fŷ (z10)−1

total: 5 1 7 20 18

Polynomial IOPs for Linear Algebra Relations 55

Table 9. Callgraph Statistics for SparseBiEval

protocol preprocessed input new oracles queried queried in

SparseBiEval fc fu, fv, fuv
- SparseMonomialVector fu fẑ, fŷ
- fu x0
- - VandermondeVector fϕ(ak), fϕ(ak)H fŷ fδ̂
- - fŷ δ1
- - fδ̂ z2
- - - Hadamard fδ̂, fϕ(ak), fϕ(ak)H
- - - fϕ(ak)H δH1 α
- - - fI α

- - - - InnerProduct fδ̂, fϕ(ak) h̄3

- - - - h̄3 z4, γz4
- - - - fδ̂ αz4
- - - - fϕ(ak) (δ1z4)−1

- - - - fI (z4)−1

- - LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- - fẑ γ5
- - fγ̂ z6
- - ZH γ5
- - - Hadamard fγ̂ , fϕ(h), fH
- - - fH α

- - - - InnerProduct fγ̂ , fϕ(h) h̄7

- - - - h̄7 z8, γz8
- - - - fγ̂ αz8
- - - - fI (z8)−1

- - - - fϕ(h) (z8)−1

- - InnerProduct fẑ, fŷ h̄9

- - h̄9 z10, γz10
- - fẑ z10
- - fŷ (z10)−1

- SparseMonomialVector fv fẑ, fŷ
- fv x11
- - VandermondeVector fϕ(bk), fϕ(bk)H fŷ fδ̂
- - fŷ δ12
- - fδ̂ z13
- - - Hadamard fδ̂, fϕ(bk), fϕ(bk)H
- - - fϕ(bk)H δH12α
- - - fI α

- - - - InnerProduct fδ̂, fϕ(bk) h̄14

- - - - h̄14 z15, γz15
- - - - fδ̂ αz15
- - - - fϕ(bk) (δ12z15)−1

- - - - fI (z15)−1

- - LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- - fẑ γ16
- - fγ̂ z17
- - ZH γ16
- - - Hadamard fγ̂ , fϕ(h), fH
- - - fH α

- - - - InnerProduct fγ̂ , fϕ(h) h̄18

- - - - h̄18 z19, γz19
- - - - fγ̂ αz19
- - - - fI (z19)−1

- - - - fϕ(h) (z19)−1

- - InnerProduct fẑ, fŷ h̄20

- - h̄20 z21, γz21
- - fẑ z21
- - fŷ (z21)−1

- Hadamard fu, fv, fuv
- fuv α

- - InnerProduct fu, fv h̄22

- - h̄22 z23, γz23
- - fu αz23
- - fv (z23)−1

- InnerProduct fuv, fc h̄24

- h̄24 z25, γz25
- fuv z25
- fc (z25)−1

total: 8 0 19 49 42

56 A. Szepieniec and Y. Zhang

Table 10. Callgraph Statistics for SparseMVP

protocol preprocessed input new oracles queried queried in

SparseMVP fa, fb fαTM

fb αsmvp
fαTM βsmvp

- InnerProduct fa, fαTM h̄0

- h̄0 z1, γz1
- fa z1
- fαTM (z1)−1

- SparseBiEval fc fu, fv, fuv
- - SparseMonomialVector fu fẑ, fŷ
- - fu x2
- - - VandermondeVector fϕ(ak), fϕ(ak)H fŷ fδ̂
- - - fŷ δ3
- - - fδ̂ z4
- - - - Hadamard fδ̂, fϕ(ak), fϕ(ak)H
- - - - fϕ(ak)H δH3 α
- - - - fI α

- - - - - InnerProduct fδ̂, fϕ(ak) h̄5

- - - - - h̄5 z6, γz6
- - - - - fδ̂ αz6
- - - - - fϕ(ak) (δ3z6)−1

- - - - - fI (z6)−1

- - - LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- - - fẑ γ7
- - - fγ̂ z8
- - - ZH γ7
- - - - Hadamard fγ̂ , fϕ(h), fH
- - - - fH α

- - - - - InnerProduct fγ̂ , fϕ(h) h̄9

- - - - - h̄9 z10, γz10
- - - - - fγ̂ αz10
- - - - - fI (z10)−1

- - - - - fϕ(h) (z10)−1

- - - InnerProduct fẑ, fŷ h̄11

- - - h̄11 z12, γz12
- - - fẑ z12
- - - fŷ (z12)−1

- - SparseMonomialVector fv fẑ, fŷ
- - fv x13
- - - VandermondeVector fϕ(bk), fϕ(bk)H fŷ fδ̂
- - - fŷ δ14
- - - fδ̂ z15
- - - - Hadamard fδ̂, fϕ(bk), fϕ(bk)H
- - - - fϕ(bk)H δH14α
- - - - fI α

- - - - - InnerProduct fδ̂, fϕ(bk) h̄16

- - - - - h̄16 z17, γz17
- - - - - fδ̂ αz17
- - - - - fϕ(bk) (δ14z17)−1

- - - - - fI (z17)−1

- - - LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- - - fẑ γ18
- - - fγ̂ z19
- - - ZH γ18
- - - - Hadamard fγ̂ , fϕ(h), fH
- - - - fH α

- - - - - InnerProduct fγ̂ , fϕ(h) h̄20

- - - - - h̄20 z21, γz21
- - - - - fγ̂ αz21
- - - - - fI (z21)−1

- - - - - fϕ(h) (z21)−1

- - - InnerProduct fẑ, fŷ h̄22

- - - h̄22 z23, γz23
- - - fẑ z23
- - - fŷ (z23)−1

- - Hadamard fu, fv, fuv
- - fuv α

- - - InnerProduct fu, fv h̄24

- - - h̄24 z25, γz25
- - - fu αz25
- - - fv (z25)−1

- - InnerProduct fuv, fc h̄26

- - h̄26 z27, γz27
- - fuv z27
- - fc (z27)−1

total: 8 2 21 55 47

Polynomial IOPs for Linear Algebra Relations 57

Table 11. Callgraph Statistics for SparseClaymore

protocol preprocessed input new oracles queried queried in

SparseClaymore fx fwl, fwr, fwo
- SparseMVP fwl, fwr, fwo, fx fαTM

- fx αsmvp
- fαTM βsmvp
- - InnerProduct fwl, fwr, fwo, fαTM h̄0

- - h̄0 z1, γz1
- - fwl z1
- - fwr z1
- - fwo z1
- - fαTM (z1)−1

- - SparseBiEval fc fu, fv, fuv
- - - SparseMonomialVector fu fẑ, fŷ
- - - fu x2
- - - - VandermondeVector fϕ(ak), fϕ(ak)H fŷ fδ̂
- - - - fŷ δ3
- - - - fδ̂ z4
- - - - - Hadamard fδ̂, fϕ(ak), fϕ(ak)H
- - - - - fϕ(ak)H δH3 α
- - - - - fI α

- - - - - - InnerProduct fδ̂, fϕ(ak) h̄5

- - - - - - h̄5 z6, γz6
- - - - - - fδ̂ αz6
- - - - - - fϕ(ak) (δ3z6)−1

- - - - - - fI (z6)−1

- - - - LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- - - - fẑ γ7
- - - - fγ̂ z8
- - - - ZH γ7
- - - - - Hadamard fγ̂ , fϕ(h), fH
- - - - - fH α

- - - - - - InnerProduct fγ̂ , fϕ(h) h̄9

- - - - - - h̄9 z10, γz10
- - - - - - fγ̂ αz10
- - - - - - fI (z10)−1

- - - - - - fϕ(h) (z10)−1

- - - - InnerProduct fẑ, fŷ h̄11

- - - - h̄11 z12, γz12
- - - - fẑ z12
- - - - fŷ (z12)−1

- - - SparseMonomialVector fv fẑ, fŷ
- - - fv x13
- - - - VandermondeVector fϕ(bk), fϕ(bk)H fŷ fδ̂
- - - - fŷ δ14
- - - - fδ̂ z15
- - - - - Hadamard fδ̂, fϕ(bk), fϕ(bk)H
- - - - - fϕ(bk)H δH14α
- - - - - fI α

- - - - - - InnerProduct fδ̂, fϕ(bk) h̄16

- - - - - - h̄16 z17, γz17
- - - - - - fδ̂ αz17
- - - - - - fϕ(bk) (δ14z17)−1

- - - - - - fI (z17)−1

- - - - LagrangeVector fϕ(h), fH, ZH fẑ fγ̂
- - - - fẑ γ18
- - - - fγ̂ z19
- - - - ZH γ18
- - - - - Hadamard fγ̂ , fϕ(h), fH
- - - - - fH α

- - - - - - InnerProduct fγ̂ , fϕ(h) h̄20

- - - - - - h̄20 z21, γz21
- - - - - - fγ̂ αz21
- - - - - - fI (z21)−1

- - - - - - fϕ(h) (z21)−1

- - - - InnerProduct fẑ, fŷ h̄22

- - - - h̄22 z23, γz23
- - - - fẑ z23
- - - - fŷ (z23)−1

- - - Hadamard fu, fv, fuv
- - - fuv α

- - - - InnerProduct fu, fv h̄24

- - - - h̄24 z25, γz25
- - - - fu αz25
- - - - fv (z25)−1

- - - InnerProduct fuv, fc h̄26

- - - h̄26 z27, γz27
- - - fuv z27
- - - fc (z27)−1

- Hadamard fwl, fwr, fwo
- fwo α

- - InnerProduct fwl, fwr h̄28

- - h̄28 z29, γz29
- - fwl αz29
- - fwr (z29)−1

total: 8 1 25 62 51

with BatchedInnerProduct: 8 1 16 48 17

and witness concatenation: 8 1 15 46 17

Table 12. Callgraph Statistics for BiVandermondeVector

protocol preprocessed input new oracles queried queried in

BiVandermondeVector fϕ(ak), fϕ(ak)H , fϕ(bk), fϕ(bk)H fx̂ fδ̂
fx̂ δ0
fδ̂ z1

- Hadamard fδ̂, fϕ(ak), fϕ(bk), fϕ(ak)H , fϕ(bk)H
- fϕ(ak)H α
- fI α
- fϕ(bk)H α

- - InnerProduct fδ̂, fϕ(ak), fϕ(bk) h̄2

- - h̄2 z3, γz3
- - fδ̂ αz3
- - fϕ(ak) (z3)−1

- - fI (z3)−1

- - fϕ(bk) (z3)−1

total: 4 1 2 9 7

Table 13. Callgraph Statistics for BiLagrangeVector

protocol preprocessed input new oracles queried queried in

BiLagrangeVector fϕ(h), fH, ZH fx̂ fγ̂
fx̂ γ0
fγ̂ z1
ZH γ0

- Hadamard fγ̂ , fϕ(h), fH
- fH α

- - InnerProduct fγ̂ , fϕ(h) h̄2

- - h̄2 z3, γz3
- - fγ̂ αz3
- - fI (z3)−1

- - fϕ(h) (z3)−1

total: 3 1 2 8 7

58

Table 14. Call graph statistics for BatchedSparseBiEval

protocol preprocessed input new oracles queried queried in

BatchedSparseBiEval fc fu‖v, fuv, fûv, fŷ
fu‖v y8

- BiLagrangeVector fϕ(h), fH, ZH fûv fγ̂
- fûv γ0
- fγ̂ z1
- ZH γ0
- - Hadamard fγ̂ , fϕ(h), fH
- - fH α

- - - InnerProduct fγ̂ , fϕ(h) h̄2

- - - h̄2 z3, γz3
- - - fγ̂ αz3
- - - fI (z3)−1

- - - fϕ(h) (z3)−1

- BiVandermondeVector fϕ(ak), fϕ(ak)H , fϕ(bk), fϕ(bk)H fŷ fδ̂
- fŷ δ4
- fδ̂ z5
- - Hadamard fδ̂, fϕ(ak), fϕ(bk), fϕ(ak)H , fϕ(bk)H
- - fϕ(ak)H α
- - fI α
- - fϕ(bk)H α

- - - InnerProduct fδ̂, fϕ(ak), fϕ(bk) h̄6

- - - h̄6 z7, γz7
- - - fδ̂ αz7
- - - fϕ(ak) (z7)−1

- - - fI (z7)−1

- - - fϕ(bk) (z7)−1

- InnerProduct fûv, fŷ h̄9

- h̄9 z10, γz10
- fûv z10
- fŷ (z10)−1

- Hadamard fu‖v, fu‖v, fuv
- fuv α

- - InnerProduct fu‖v, fu‖v h̄11

- - h̄11 z12, γz12
- - fu‖v (z12)−1

- InnerProduct fuv, fc h̄13

- h̄13 z14, γz14
- fuv z14
- fc (z14)−1

total: 8 0 11 30 23

59

60 A. Szepieniec and Y. Zhang

Table 15. Call graph statistics for SparseMVP but with BatchedSparseBiEval

protocol preprocessed input new oracles queried queried in

BiSparseMVP fa, fb fαTM

fb αsmvp
fαTM βsmvp

- InnerProduct fa, fαTM h̄0

- h̄0 z1, γz1
- fa z1
- fαTM (z1)−1

- BatchedSparseBiEval fc fu‖v, fuv, fûv, fŷ
- fu‖v y10
- - BiLagrangeVector fϕ(h), fH, ZH fûv fγ̂
- - fûv γ2
- - fγ̂ z3
- - ZH γ2
- - - Hadamard fγ̂ , fϕ(h), fH
- - - fH α

- - - - InnerProduct fγ̂ , fϕ(h) h̄4

- - - - h̄4 z5, γz5
- - - - fγ̂ αz5
- - - - fI (z5)−1

- - - - fϕ(h) (z5)−1

- - BiVandermondeVector fϕ(ak), fϕ(ak)H , fϕ(bk), fϕ(bk)H fŷ fδ̂
- - fŷ δ6
- - fδ̂ z7
- - - Hadamard fδ̂, fϕ(ak), fϕ(bk), fϕ(ak)H , fϕ(bk)H
- - - fϕ(ak)H α
- - - fI α
- - - fϕ(bk)H α

- - - - InnerProduct fδ̂, fϕ(ak), fϕ(bk) h̄8

- - - - h̄8 z9, γz9
- - - - fδ̂ αz9
- - - - fϕ(ak) (z9)−1

- - - - fI (z9)−1

- - - - fϕ(bk) (z9)−1

- - InnerProduct fûv, fŷ h̄11

- - h̄11 z12, γz12
- - fûv z12
- - fŷ (z12)−1

- - Hadamard fu‖v, fu‖v, fuv
- - fuv α

- - - InnerProduct fu‖v, fu‖v h̄13

- - - h̄13 z14, γz14
- - - fu‖v (z14)−1

- - InnerProduct fuv, fc h̄15

- - h̄15 z16, γz16
- - fuv z16
- - fc (z16)−1

total: 8 2 13 36 28

Polynomial IOPs for Linear Algebra Relations 61

Table 16. Call graph statistics for SparseClaymore but with batched
BatchedSparseBiEval

protocol preprocessed input new oracles queried queried in

BiSparseClaymore fx fwl, fwr, fwo
- BiSparseMVP fwl, fwr, fwo, fx fαTM

- fx αsmvp
- fαTM βsmvp
- - InnerProduct fwl, fwr, fwo, fαTM h̄0

- - h̄0 z1, γz1
- - fwl z1
- - fwr z1
- - fwo z1
- - fαTM (z1)−1

- - BatchedSparseBiEval fc fu‖v, fuv, fûv, fŷ
- - fu‖v y10
- - - BiLagrangeVector fϕ(h), fH, ZH fûv fγ̂
- - - fûv γ2
- - - fγ̂ z3
- - - ZH γ2
- - - - Hadamard fγ̂ , fϕ(h), fH
- - - - fH α

- - - - - InnerProduct fγ̂ , fϕ(h) h̄4

- - - - - h̄4 z5, γz5
- - - - - fγ̂ αz5
- - - - - fI (z5)−1

- - - - - fϕ(h) (z5)−1

- - - BiVandermondeVector fϕ(ak), fϕ(ak)H , fϕ(bk), fϕ(bk)H fŷ fδ̂
- - - fŷ δ6
- - - fδ̂ z7
- - - - Hadamard fδ̂, fϕ(ak), fϕ(bk), fϕ(ak)H , fϕ(bk)H
- - - - fϕ(ak)H α
- - - - fI α
- - - - fϕ(bk)H α

- - - - - InnerProduct fδ̂, fϕ(ak), fϕ(bk) h̄8

- - - - - h̄8 z9, γz9
- - - - - fδ̂ αz9
- - - - - fϕ(ak) (z9)−1

- - - - - fI (z9)−1

- - - - - fϕ(bk) (z9)−1

- - - InnerProduct fûv, fŷ h̄11

- - - h̄11 z12, γz12
- - - fûv z12
- - - fŷ (z12)−1

- - - Hadamard fu‖v, fu‖v, fuv
- - - fuv α

- - - - InnerProduct fu‖v, fu‖v h̄13

- - - - h̄13 z14, γz14
- - - - fu‖v (z14)−1

- - - InnerProduct fuv, fc h̄15

- - - h̄15 z16, γz16
- - - fuv z16
- - - fc (z16)−1

- Hadamard fwl, fwr, fwo
- fwo α

- - InnerProduct fwl, fwr h̄17

- - h̄17 z18, γz18
- - fwl αz18
- - fwr (z18)−1

total: 8 1 17 43 32

with BatchedInnerProduct: 8 1 11 31 10

and witness concatenation: 8 1 10 30 10

	Polynomial IOPs for Linear Algebra Relations

