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This note describes several attacks on the MALICIOUS framework for cre-
ating backdoored tweakable block ciphers [3]. It is shown that, although the
embedded malicious tweak pair itself is hard to recover, it is feasible to find
additional weak tweak pairs that can be used to mount key-recovery attacks.
Full-round attacks on most instances of LowMC-M are given. Our attacks are
far from optimized and significant future improvements are to be expected.

We focus on low-data attacks, since these are the most relevant for typical use-
cases of LowMC. In addition, this implies that our attacks can not be prevented
by limiting the amount of data that can be encrypted using the weak tweak pair.

Despite our findings, we believe that the MALICIOUS framework can be
used to create backdoored variants of LowMC provided that the parameters are
modified.

1 Malicious and Weak Tweak Pairs

Let n denote the block size in bits, k the key size, s the size of the nonlinear
part, and r the number of rounds. Peyrin and Wang [3] argue that, since the
malicious round tweak difference is unique with overwhelming probability, find-
ing a malicious tweak pair costs roughly 2(n+(r−1)s)/2 evaluations of the XOF
which is used as the tweak-schedule (assuming the tweak is long enough).

As noted by the authors, this reasoning does not take into account the exis-
tence of tweak pairs which might be a backdoor for a different input difference.
In the following section, we compute the probability that this is the case for a
random round-tweak difference. It will be argued that some weak tweak pair can
be found at a cost of roughly 2(rs−n)/2 XOF evaluations. Although this is a much
lower cost than for finding the backdoor itself, it does not allow an attacker to
find a malicious tweak pair in time lower than the security level of 2k for any of
the LowMC-M instances because rs− n� 2k.

Nevertheless, it is feasible to find ‘weak’ tweak pairs such that a probability
one related-tweak differential exists for some smaller number of rounds. It will
be shown in Section 2 how such a pair can be used to set up a key-recovery
attack on full-round instances of LowMC-M.

1.1 Counting Weak Round Tweak Differences

A round-tweak difference (∆t0, ∆t1, . . .) will be called weak if there exists a
differential characteristic with input difference ∆1 ∈ Fn

2 such that the nonlinear
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part of the state is inactive in the first r rounds. Note that ∆ti ∈ Fn
2 , but the

bottom n − s coordinates are zero when i > 0. The difference before the S-box
layer in round i+ 1 > 1 is given by ∆i+1 = Li∆i +∆ti where Li ∈ Fn×n

2 is the
linear layer of round i. Consequently,

∆i = (LiLi−1 · · ·L1)∆1 +

i∑
j=0

(LjLj−1 · · ·L1)∆tj .

Let b·cs denote the first s coordinates of some vector. The tweak difference
(∆t0, ∆t1, . . .) does not activate the nonlinear part in the first r rounds if

l∑
j=0

⌊
(LlLl−1 · · ·Lj+1)∆tjcs = b(LlLl−1 · · ·L1)∆1cs,

for any l ∈ {1, . . . , r}. For any fixed choice of the tweak difference variables, this
results in a system of s × r linear equations in n unknowns. For random linear
layers, and assuming s × r � n, such a system will be inconsistent with high
probability. More precisely, the probability that a random choice of the first r
round tweaks results in a right hand side that makes the system consistent, will
be 2n−rs. Indeed, the column space of the coefficient matrix of the linear system
is of dimension n in an ambient space of dimension r × s [3, p. 21-22].

1.2 Finding Weak Round Tweak Differences

A tweak pair such that the round-tweak differences (∆t0, . . . ,∆tr−1) result in a
consistent linear system can be found by using collision search methods at the
cost of roughly 2(rs−n)/2 XOF evaluations, and including the cost of a multipli-
cation by a (rs−n)×rs matrix to account for the checking of the consistency of
the system of equations above. The amount of memory required depends on the

input size of the XOF H : F`
2 → Fn+(r−1)s

2 . It will be assumed that ` ≥ (rs−n)/2,
which will be the case throughout this note.

Specifically, let A ∈ Frs×(rs−n)
2 be a matrix with column space the orthogo-

nal complement of the column space of the coefficient matrix of the system of

equations. Let B ∈ Frs×[n+(r−1)s]
2 be the matrix mapping the round tweak to the

right-hand side of the equations. The goal is to find a collision for the function
f : F`

2 → Frs−n
2 defined by f(t) = A> ×B ×H(t).

If `� (rs−n)/2, then a parallel collision search using Van Oorschot-Wiener
collision search costs roughly 2(rs−n)/2 extended (by a single matrix-vector mul-
tiplication) XOF evaluations with little memory [5]. If ` ≈ (rs − n)/2, then a
golden collision search with a cost of O(23`/2/

√
M) evaluations and M memory

can be used.
To conclude, a weak tweak pair can be found with a computational cost

of 2(rs−n)/2 extended XOF evaluations. We assume the attacker is capable of
2c ≤ 2k such evaluations. Note that a small constant factor in the collision
search cost is neglected here, which can be justified by arguing that an extended
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XOF evaluation takes significantly less time than a single LowMC-M evaluation.
The memory cost depends on `, which we assume to be at least as large as the
security level k.

2 Key-Recovery Attacks

This section describes two key-recovery approaches that exploit weak round-
tweak differences: a simple differential-linear attack and a difference-enumeration
attack. The latter attack is simply an adaptation of the attack by Rechberger et
al. [4]. Both attacks can be used in the low-data setting.

2.1 Simple Differential-Linear Attack

By the results in the previous section, an adversary capable of 2c extended
XOF evaluations can find a weak tweak pair such that there exists a differential
characteristic with probability one over the first r1 = b(2c + n)/sc rounds of
LowMC-M. Denote this first part of the cipher by F1.

By choosing an appropriate input mask u and output mask v, one can always
find a linear trail over r2 = bn/sc rounds of LowMC which does not activate
any S-boxes. This approximation over the second part of the cipher, F2, can be
combined with the deterministic differential ∆1 → ∆2 over F1. Indeed,

v>(F2 ◦ F1)(x+∆1) = v>(F2 ◦ F1)(x) + u>∆2.

Consequently, one obtains a differential-linear distinguisher for r1 + r2 ≈ 2(c +
n)/s rounds of LowMC-M. The data requirements of the distinguisher are min-
imal.

Finally, we can set up a key-recovery attack based on this distinguisher.
Following observations by Banik et al. [2], the last r3 rounds of LowMC can be
linearized (more precisely, can be made affine) by guessing r3 × s/3 bits. For
each such guess, the attacker can proceed as follows:

1. Partially ‘decrypt’ the ciphertext pairs through the last r3 rounds. Although
these rounds are now an affine function, the decryption will be up to a con-
stant offset that depends on the unknown key bits in the last r3 rounds.
The decryption operation requires one unstructured and one highly struc-
tured matrix multiplication per round. When the number of tested pairs is
small, the total time-complexity of this computation does not exceed that of
a single LowMC-M evaluation.

2. On average, three pairs will suffice to discard a wrong candidate lineariza-
tion. Note that two pairs do not suffice on average, because the sign of the
correlation depends on the unknown offset introduced by partial decryption.

Once the last r3 rounds have been linearized, the attacker may proceed to lin-
earize the remaining rounds in a round-by-round manner. To ensure that the
candidate linearization is likely to be unique in each step, r3s/3 + 1 plaintext
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pairs suffice. In this case, the memory usage is low and the time requirements
are dominated by the first step, which has a total computational complexity of
less than 2r3s/3 LowMC-M evaluations. As shown in Table 1, a full-round attack
is possible for most instances of LowMC-M.

Table 1. Cost of the basic differential-linear attack assuming n = k, and for several
values of c. Only instances for which a full-round attack is possible are shown. The
data requirements could be reduced (but not below 6) at a modest increase in time
complexity.

Key-recovery
s r r1 r2 r3 log2(Time) Data

n = 128

c = 128

3 208 128 42 38 38 77
6 104 64 21 19 38 77
9 70 42 14 14 42 85

30 23 12 4 7 70 141

c = 96

3 208 106 42 60 60 121
6 104 53 21 30 60 121
9 70 35 14 21 63 127

30 23 10 4 9 90 181

c = 64

3 208 85 42 81 81 163
6 104 42 21 41 82 165
9 70 28 14 28 84 169

30 23 8 4 11 110 221

n = 256

c = 256

3 384 256 85 43 43 87
9 129 85 28 16 48 97

60 21 12 4 5 100 201
120 14 6 2 6 240 481

c = 196
3 384 170 85 129 129 259
9 129 56 28 45 135 271

60 21 8 4 9 180 361

c = 128
3 384 128 85 171 171 343
9 129 42 28 59 177 355

60 21 6 4 11 220 441

The number of rounds covered by this attack is at most

r1 + r2 + r3 ≤
⌊2c+ k

s

⌋
+
⌊n
s

⌋
+
⌊3k

s

⌋
.

If c = k, then the above simplifies to bn/sc + 2b3k/sc. For k = n = 128 and
s = 3, this is nearly 300 rounds. The proposed number of rounds for this instance
is 208.
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2.2 Modified Difference Enumeration Attack

This section gives a better attack by slightly modifying the difference-enumeration
attacks from Rechberger et al. [4]. For simplicity, we consider only the case d = 1.

The attack covers the first r1 rounds of the cipher using a deterministic
difference. In LowMC without a tweak, the largest possible choice of r1 is1

rLowMC
1 =

⌊n
s

⌋
.

In LowMC-M, however, this number of rounds can be significantly increased by
choosing a good weak tweak pair. Finding a weak tweak pair can be done in time
2(rs−n)/2. For an attacker with the capability of 2c extended XOF evaluations,
the number of rounds r1 thus increases to

r1 =

⌊
2c+ n

s

⌋
.

Let δ denote the average number of possible output differences over the S-box
layer for a uniform random input difference. Recall that we have δ = (29/8)s/3

for LowMC [4, Sect. 3.1.3]. In the next r2 rounds, all δr2 possible differences
in the forward direction are enumerated. In the final r3 rounds, the differences
are enumerated in the backward direction. The differences are matched in the
middle, which means that δr2+r3 < 2n should hold in order to avoid random
collisions. That is, r2 + r3 < n/ log2 δ must hold. The complexity of this dis-
tinguisher is dominated by the list creation, which amounts to max{δr2 , δr3}
memory accesses.

For key-recovery, one also has to compute the characteristic (which is likely
to be unique) followed by the inputs. This can be done in roughly δr2 + δr3 time
for each input pair using a meet-in-the-middle approach. Due to the fact that
the LowMC S-box is differentially 2-uniform, the key-recovery step requires only
two plaintext pairs. The time-complexity of the entire attack is thus dominated
by 2(δr2 + δr3) storage operations. The storage requirements are n(δr2 + δr3)
bits. To optimize the time-complexity, we set r2 ≈ r3. Specifically,

r2 =

⌊
r − r1

2

⌋
and r3 =

⌈
r − r1

2

⌉
.

The complexities for full-round LowMC-M are given in Table 2. For all instances
except those with the largest value of s (for n = 128, s = 90 and for n = 256,
s = 120), one can find a weak tweak pair in less than 2k time such that the
attack improves over brute-force.

2.3 Other Strategies

The attacks described above both apply to the low-data setting. In principle, the
LowMC-M specification allows for up to 264 chosen plaintexts. To exploit this

1 A few extra rounds may be possible if s does not divide n, but this will be ignored
for simplicity.
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Table 2. Cost of the difference-enumeration attack assuming n = k, and for several
values of c. Only instances for which a full-round attack is more efficient than brute
force are listed. Memory requirements are listed in bits.

Key-recovery

s r r1 r2 r3 log2(Time) log2(Memory) Data†

n = 128

c = 128

3 208 128 40 40 76.32 82.32 4
6 104 64 20 20 76.32 82.32 4
9 70 42 14 14 80.04 86.04 4

30 23 12 5 6 112.48 118.48 4

c = 96
3 208 106 51 51 96.76 102.76 4
6 104 53 25 26 97.72 103.72 4
9 70 35 17 18 101.36 107.36 4

c = 64
3 208 85 61 62 116.55 122.55 4
6 104 42 31 31 117.19 123.19 4
9 70 28 21 21 119.05 125.05 4

n = 256

c = 256
3 384 256 64 64 120.91 127.91 4
9 129 85 22 22 124.63 131.63 4

60 21 12 4 5 186.80 193.80 4

c = 196
3 384 213 85 86 161.14 168.14 4
9 129 71 29 29 163.64 170.64 4

60 21 10 5 6 223.96 230.96 4

c = 128
3 384 170 107 107 200.80 207.80 4
9 129 56 36 37 207.27 214.27 4

† As noted by Rechberger et al. [4, §4.2.1], it might be necessary to use slightly more
than two pairs to ensure distinct differences over the S-boxes are available.

data, it would be natural to consider a standard differential attack. Based on the
calculations in the original LowMC paper [1] related to differential characteris-
tics, one would conclude that full-round attacks are possible. Nevertheless, the
estimates in [1] – coming from the design point of view – are very conservative. A
more detailed investigation seems to be necessary to obtain good cost estimates.

Similarly, the differential-linear attack could be significantly improved by
adding a statistical part.
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