
RANDCHAIN: Decentralised Randomness Beacon
from Sequential Proof-of-Work

Runchao Han∗†, Jiangshan Yu∗¶, Haoyu Lin‡§
∗Monash University, {runchao.han, jiangshan.yu}@monash.edu

†CSIRO-Data61
‡Bytom Foundation, chris.haoyul@gmail.com

§ZenGo X

Abstract— Decentralised Randomness Beacon (DRB) is a ser-
vice that generates publicly verifiable randomness. Constructing
DRB protocols is challenging. Existing DRB protocols suffer from
either strong network synchrony assumptions, high communica-
tion complexity or various attacks.

In this paper, we propose RANDCHAIN, a new family of
(permissioned) DRB protocols. To construct RANDCHAIN, we first
introduce Sequential Proof-of-Work (SeqPoW), a Proof-of-Work
(PoW) variant that is sequential, i.e., the work can only be done
by a single processor. In RANDCHAIN, nodes jointly maintain
a blockchain, i.e., a chain of blocks, and each block derives a
random output. Each node derives a unique SeqPoW puzzle from
the last block and its identity, and keeps mining, i.e., solving
the SeqPoW puzzle, to append a block to the blockchain. This
makes mining non-parallelisable. RANDCHAIN applies Nakamoto
consensus so that nodes agree on a unique blockchain.

While inheriting simplicity and scalability from Nakamoto con-
sensus, RANDCHAIN produces strongly unpredictable random-
ness and remains energy-efficient and decentralised. RANDCHAIN
does not allow nodes to input local entropy, thus giving no
opportunity to bias randomness. Solutions of SeqPoW puzzles
are unpredictable, so nodes cannot predict randomness. As
each node can use at most a single processor for mining,
RANDCHAIN remains energy-efficient. SeqPoW mining can only
be accelerated by increasing processors’ clock rate, which is
bound by processors’ voltage limit. Therefore, powerful nodes
can only achieve limited speedup compared to normal nodes,
leading to a high degree of mining power decentralisation.

1. INTRODUCTION

Randomness beacon (RB) is a service that periodically gen-
erates publicly verifiable randomness – an essential building
block for various cryptographic primitives. RB is not always
reliable: malicious RBs may generate biased randomness
to compromise the security and/or fairness of randomness-
based cryptographic primitives. To make RB trustworthy, a
promising approach is the decentralised randomness beacon
(DRB). In a DRB, a group of participants (aka. nodes) generate
randomness that they agree on. No party can fully control the
generated randomness, so biasing or predicting the randomness
can be hard. DRBs have been integrated into various protocols,
especially blockchains [1]–[4].

However, constructing secure and scalable DRBs is chal-
lenging, mainly due to four obstacles. First, DRBs may execute
in rounds so rely on the lock-step synchrony, where all
messages are delivered at the end of each round. Lock-step

¶ Corresponding author.

synchrony is a strong assumption, and is considered unrealistic
in real-world networks with delays [5], [6]. Second, DRBs
may suffer from high communication complexity of no less
than O(n2), where n is the number of nodes [1], [7]–[9].
Third, DRBs can be vulnerable [2], [10]–[12], including
being biasible, i.e., the adversary can choose its preferred
random outputs, and being predictable, i.e., the adversary can
predict randomness in the future. Last, DRBs may rely on
trustworthy components such as full-fledged blockchains and
smart contracts [11]–[15], which are not always reliable.

In this paper, we propose RANDCHAIN– a new family of
DRB protocols. RANDCHAIN is constructed from Sequential
Proof-of-Work (SeqPoW) and Nakamoto consensus [16]. Se-
quential Proof-of-Work (SeqPoW) is a Proof-of-Work (PoW)
variant that is sequential, i.e., the work can only be done by
a single processor. In RANDCHAIN, nodes jointly maintain
a blockchain, i.e., a chain of blocks, and each block derives
a random output. Each node derives a unique SeqPoW puz-
zle from its identity and the last block, and keeps mining,
i.e., solving the SeqPoW puzzle, to append a block to the
blockchain. This fixes each node’s SeqPoW puzzle and makes
mining non-parallelisable. RANDCHAIN applies Nakamoto
consensus so that nodes agree on a unique blockchain.

While inheriting simplicity and scalability from PoW-based
consensus, RANDCHAIN produces secure randomness and
remains energy-efficient and decentralised. RANDCHAIN does
not allow nodes to input local entropy, thus giving no oppor-
tunity to bias randomness. Solutions of SeqPoW puzzles are
unpredictable, so nodes cannot predict randomness. As each
node can use at most a single processor for mining, RAND-
CHAIN remains energy-efficient. SeqPoW mining can only
be accelerated by increasing processors’ clock rate, which is
bound by processors’ voltage limit. Therefore, powerful nodes
can only achieve limited speedup compared to normal nodes,
leading to a high degree of mining power decentralisation.

Compared to existing DRBs, RANDCHAIN makes three
unique design choices. First, nodes in RANDCHAIN are com-
petitive, i.e, each node tries to produce the next random
output before other nodes, whereas nodes in existing DRBs
are usually collaborative, i.e., nodes contribute their local
random inputs and combine them to a unique output. Second,
RANDCHAIN reuses random entropy from bootstrap, whereas
existing DRBs usually allow nodes to sample new random

entropy for every round. Last, RANDCHAIN uses uncontrol-
lable random entropy such as nodes’ Byzantine behaviours and
network delay, whereas existing DRBs usually allow nodes to
choose their own inputs. Concretely, we make the following
contributions.

Sequential Proof-of-Work (SeqPoW). We propose SeqPoW,
a PoW [17] variant that is sequential, i.e., the work can
only be done by a single processor. To solve a PoW puzzle,
the prover should find a string (aka. nonce) that makes the
PoW output to satisfy a difficulty parameter. The prover’s
only strategy is to brute-force search all possible nonces. The
searching process can be parallelised using multiple proces-
sors. Meanwhile in SeqPoW, the prover keeps incrementing
an iteratively sequential function with a given nonce as input,
until finding an intermediate output that satisfies the difficulty
parameter. Given the iteratively sequential function, the prover
cannot accelerate solving SeqPoW by parallelism. Instead, the
prover can only accelerate solving SeqPoW by increasing the
processor’s clock rate, which gives little optimisation space.

We formalise SeqPoW and propose two SeqPoW construc-
tions, one is from Verifiable Delay Functions (VDFs) [18]
and the other is from the Sloth hash function [19]. We
formally analyse the security and efficiency of both SeqPoW
constructions. We also implement them and evaluate their
performance. Of independent interest, SeqPoW is a powerful
primitive and can be applied to various protocols. We discuss
potential applications of SeqPoW, including leader election
and Proof-of-Stake (PoS)-based consensus.

RANDCHAIN– DRB from SeqPoW and Nakamoto con-
sensus. We then construct RANDCHAIN from SeqPoW and
Nakamoto consensus. RANDCHAIN works in a permissioned
network: there is a fixed group of nodes, and each node has
a pair of secret key and public key. Nodes jointly maintain a
blockchain, i.e., a chain of blocks, and each block derives a
random output. Similar to PoW-based blockchains, new blocks
are generated via mining. To append a block, a node should
solve a SeqPoW puzzle. Each node derives its SeqPoW puzzle
from the last block and its identity in the system. This makes
each node’s SeqPoW unique. Given a unique SeqPoW puzzle,
mining in RANDCHAIN is non-parallelisable. Nodes follow
Nakamoto consensus in order to agree on a unique blockchain.

We present the detailed construction of RANDCHAIN and
analyse its security. Our analysis shows that RANDCHAIN im-
plements a DRB protocol and produces strongly unpredictable
randomness. In addition, we show that RANDCHAIN achieves
energy-efficiency and high mining power decentralisation. We
also discuss several security concerns of deploying RAND-
CHAIN in the real world.

Paper organisation. Section 2 describes the background.
Section 3 introduces SeqPoW, including definitions, construc-
tions and analysis. Section 4 and 5 describe the construction
and security analysis of RANDCHAIN, respectively. Section 6
discusses other security concerns in RANDCHAIN. Section 7
compares RANDCHAIN with existing RBs. Section 8 con-

TABLE I: Summary of notations. The first section includes
frequently used notations. The second and the last sections
include notations for Sequential Proof-of-Work and RAND-
CHAIN, respectively.

Notation Description

H(·), H′(·) Hash functions mapping {0, 1}∗ to {0, 1}κ
X ,Y Domains
pp Public parameter
t Time parameter of VDFs (t ∈ N+)
π Proof

ψ Step parameter of SeqPoW (ψ ∈ N+)
T Difficulty parameter of (Seq)PoW (T ∈ (1,∞))

sk, pk Secret key and public key
G, g Cyclic group and its generator

HG(·) Hash function mapping {0, 1}∗ to an element on G
Si, bi The i-th SeqPoW solution and its validity
πi Proof of i-th SeqPoW solution

{p1, . . . , pn} Nodes in RANDCHAIN

skk, pkk Secret key and public key of node pk
Ck The local blockchain of node pk

MCk The the main chain of node pk
B` The `-th block

α, β ∈ (0, 1) Mining power portion of Byzantine and correct nodes

cludes this paper and discusses future work. We defer some
security proofs of our SeqPoW constructions to Appendix A.

2. PRELIMINARIES

Notations. Table I summarises notations in this paper.

PoW and PoW-based consensus. Proof-of-Work (PoW) is
a computationally intensive puzzle. To solve a PoW puzzle, a
prover should finish an amount of computation. Given a PoW’s
solution, the verifier can verify whether the prover has finished
that amount of computation with negligible overhead. PoW
can be constructed from hash functions. As shown in Figure 1,
the prover needs to find a nonce x which makes H(in‖x) ≤
2κ

T , where H : {0, 1}∗ → {0, 1}κ is a cryptographic hash
function, in is the puzzle, and T ∈ (1,∞) is the difficulty
parameter. As hash functions produce pseudorandom outputs,
brute-force searching is the prover’s only strategy. Statistically,
with a larger T , the prover needs to try more nonces.

PoW-based consensus – first introduced in Bitcoin [16] –
has become a practical and scalable alternative of traditional
Byzantine Fault Tolerant (BFT) consensus. In PoW-based con-
sensus, nodes jointly maintain a blockchain. To append a block
to the blockchain, a node should solve a computationally hard
PoW puzzle [20]. Given the latest block, each node derives its
own PoW puzzle then keeps trying to solve it. Once solving
the puzzle, the node appends its block to the blockchain. PoW
specifies the amount of work needed by a difficulty parameter.
By adaptively adjusting the PoW’s difficulty parameter, PoW-
based consensus ensures only one node solves the puzzle for
each time period with high probability. Nodes in PoW-based
consensus are known as miners, the process of solving PoW

2

puzzles is known as mining, and the computation power used
for mining is known as mining power.

Work on

Prover

PoW puzzle

Verifier

...

Fig. 1: Proof-of-Work.

Iteratively sequential functions. A sequential function g(·)
is that, one cannot accelerate computing g(·) by parallelism.
An iteratively sequential function f(t, x) is implemented by
composing a sequential function g(x) for a number t of times,
denoted as gt(x). The iteratively sequential function f(·)
inherits the sequentiality of g(·): the fastest way of computing
f(t, x) is to iterate g(x) for t times. In addition, f(·) preserves
a useful property called self-composability: for any x and
(t1, t2), let y ← f(x, t1), we have f(x, t1 + t2) = f(y, t2).
Commonly used iteratively sequential functions include re-
peated squaring [21], [22] and repeated square rooting [19]
on cyclic groups.

Time-based cryptography and VDFs. Iteratively sequential
functions are the key ingredient of time-based cryptographic
primitives. Rivest, Shamir and Wagner first introduce the time-
lock puzzle and constructs it from repeated squaring on RSA
groups [23]. Proofs of Sequential Work (PoSW) [24] allow
to prove he has finished an amount of sequential computation
with succinct proof. Verifiable Delay Functions (VDFs) [18]
can be seen as PoSW with uniqueness. After finishing the
sequential computation, the prover in addition produces an
output that is unique, i.e., it’s computationally hard to find
two inputs that give the same output. Formally,

Definition 1 (Verifiable Delay Function). A Verifiable Delay
Function VDF is a tuple of four algorithms

VDF = (Setup,Eval,Prove,Verify)

Setup(λ)→ pp : On input security parameter λ, outputs pub-
lic parameter pp. Public parameter pp specifies an input
domain X and an output domain Y . We assume X is
efficiently sampleable.

Eval(pp, x, t)→ y : On input public parameter pp, input x ∈
X , and time parameter t ∈ N+, produces output y ∈ Y .

Prove(pp, x, y, t)→ π : On input public parameter pp, input
x, and time parameter t, outputs proof π.

Verify(pp, x, y, π, t)→ {0, 1} : On input public parameter pp,
input x, output y, proof π and time parameter t, produces
1 if correct, otherwise 0.

VDF satisfies the following properties
• Completeness: For all λ, x and t,

Pr

 Verify(pp, x, y,
π, t) = 1

∣∣∣∣∣∣
pp← Setup(λ)
y ← Eval(pp, x, t)

π ← Prove(pp, x, y, t)

 = 1

• Soundness: For all λ and adversary A,

Pr

[
Verify(pp, x, y, π, t) = 1
∧Eval(pp, x, t) 6= y

∣∣∣∣ pp← Setup(λ)
(x, y, π, t)← A(pp)

]
≤ negl(λ)

• σ-Sequentiality: For any λ, x, t, A0 which runs in time
O(poly(λ, t)) and A1 which runs in parallel time σ(t),

Pr

 Eval(x, y, t) = y

∣∣∣∣∣∣
pp← Setup(λ)
A1 ← A0(λ, t, pp)

y ← A1(x)

≤ negl(λ)

VDFs can be constructed from two ingredients: 1) an
iteratively sequential function f(·), and 2) a succinct proof
on f(·)’s execution results. For example, two prevalent
VDFs [21], [22] employ repeated squaring as the iteratively
sequential function. Such VDFs inherit the self-composability
from iteratively sequential functions, and are known as self-
composable VDFs [25].

Definition 2 (Self-Composability). A VDF
(Setup,Eval,Prove,Verify) satisfies self-composability if
for all λ, x, (t1, t2),

Pr

[
Eval(pp, x, t1 + t2)
= Eval(pp, y, t2)

∣∣∣∣ pp← Setup(λ)
y ← Eval(pp, x, t1)

]
= 1

Lemma 1. If a VDF (Setup,Eval,Prove,Verify) satisfies self-
composability, then for all λ, x, (t1, t2),

Pr

 Verify(pp, x, y′,
π, t1 + t2) = 1

∣∣∣∣∣∣∣∣
pp← Setup(λ)

y ← Eval(pp, x, t1)
y′ ← Eval(pp, y, t2)

π ← Prove(pp, x, y′, t1 + t2)

 = 1

3. SEQUENTIAL PROOF-OF-WORK

In this section, we introduce Sequential Proof-of-Work
(SeqPoW), a variant of PoW that is sequential and cannot be
solved faster by parallelism. We formalise SeqPoW, provide
two constructions, analyse their security and evaluate their
performance and efficiency.

1. Intuition and applications

Figure 2 gives the intuition of SeqPoW. Given an initial
SeqPoW puzzle S0, the solver keeps solving the puzzle by
incrementing an iteratively sequential function. Each solving
attempt takes the last output Si−1 as input to produce a new
output Si. For each output Si, the prover checks whether Si
satisfies a difficulty parameter T . If yes, then Si is a valid

3

Work on

Prover

SeqPoW puzzle

Verifier

...

Diff checkDifficulty
parameter T Diff check Diff check

Iteratively
Sequential
Function

Fig. 2: Sequential Proof-of-Work.

solution of this SeqPoW puzzle. The prover can generate a
proof πi on a valid solution Si, and the verifier with Si and
πi can check Si’s correctness without solving the puzzle again.
Due to the data dependency, the prover cannot solve a SeqPoW
puzzle in parallel.

SeqPoW is the main ingredient of RANDCHAIN. Of in-
dependent interest, SeqPoW can also be applied to other
protocols, such as leader election and PoS-based consensus.

Leader election. In PoW-based consensus, PoW mining can
be seen as a way of electing leaders: given a set of nodes,
the first node proposing a valid PoW solution becomes the
leader and proposes a block. As a drop-in replacement of PoW,
SeqPoW can be used for leader election. Compared to PoW-
based leader election, SeqPoW-based leader election is much
fairer and energy-efficient. Each node can run at most a single
processor, which prevents mining marketisation and gives little
optimisation space of mining speed. Later in §5-D we will
discuss this in detail.

PoS-based consensus. In Proof-of-Stake (PoS)-based consen-
sus [26], each node’s chance of mining the next block is in
proportion to its stake, e.g, the node’s balance. In some PoS-
based consensus designs [27], each node solves a VDF with
time parameter inversely proportional to its stake, and the first
node solving its VDF proposes the next block. However, such
designs suffer from the “winner-takes-all” problem, where
the node with most stake always solves VDFs faster than
others. A way of addressing the “winner-takes-all” problem
is to randomise VDFs’ time parameters, so that the node
with most stake does not always win, but only with a higher
chance [28], [29]. SeqPoW provides an alternative approach
that, one can replace VDF with SeqPoW and specify the
difficulty parameter in inverse proportion to each node’s stake.
This also randomises the time of solving puzzles.

2. Definition

We formally define SeqPoW as follows.

Definition 3 (Sequential Proof-of-Work (SeqPoW)). A Se-
quential Proof-of-Work SeqPoW is a tuple of algorithms

SeqPoW = (Setup,Gen, Init,Solve,Verify)

Setup(λ, ψ, T)→ pp : On input security parameter λ, step
ψ ∈ N+ and difficulty T ∈ (1,∞), outputs public
parameter pp. Public parameter pp specifies an input
domain X , an output domain Y , and a cryptographically
secure hash function H : Y → X . We assume X is
efficiently sampleable.

Gen(pp)→ (sk, pk) : Probabilistic. On input public parame-
ter pp, produces a secret key sk ∈ X and a public key
pk ∈ X .

Init(pp, sk, x)→ (S0, π0) : On input public parameter pp,
secret key sk, and input x ∈ X , outputs initial solution
S0 ∈ Y and proof π.

Solve(pp, sk, Si)→ (Si+1, bi+1) : On input public parameter
pp, secret key sk, and i-th solution Si ∈ Y , outputs (i+
1)-th solution Si+1 ∈ Y and result bi+1 ∈ {0, 1}.

Prove(pp, sk, i, x, Si)→ πi : On input public parameter pp,
secret key sk, i, input x, and i-th solution Si, outputs
proof πi.

Verify(pp, pk, i, x, Si, πi)→ {0, 1} : On input pp, public key
pk, i, input x, i-th solution Si, and proof πi, outputs
result {0, 1}.

We define honest tuples and valid tuples as follows.

Definition 4 (Honest tuple). A tuple (pp, sk, i, x, Si, πi) is
(λ, ψ, T)-honest if and only if for all λ, ψ, T and pp ←
Setup(λ, ψ, T), the following holds:
• i = 0 and (S0, π0)← Init(pp, sk, x), and
• i ∈ N+, (Si, bi) ← Solve(pp, sk, Si−1) and πi ←
Prove(pp, sk, i, x, Si), where (pp, sk, i−1, x, Si−1, πi−1)
is (λ, ψ, T)-honest.

Definition 5 (Valid tuple). For all λ, ψ, T , and pp ←
Setup(λ, ψ, T), a tuple (pp, sk, i, x, Si, πi) is (λ, ψ, T)-valid
if
• (pp, sk, i, x, Si, πi) is (λ, ψ, T)-honest, and
• Solve(pp, sk, Si−1) = (·, 1)

SeqPoW should satisfy completeness, soundness, hardness
and sequentiality, plus an optional property uniqueness. We
start from completeness and soundness.

Definition 6 (Completeness). A SeqPoW scheme satisfies
completeness if for all λ, ψ, T ,

Pr

 Verify(pp, pk, i,
x, Si, πi) = 1

∣∣∣∣∣∣
(sk, pk)← Gen(pp)
(pp, pk, i, x, Si, πi)
is (λ, ψ, T)-valid

 = 1

Definition 7 (Soundness). A SeqPoW scheme satisfies sound-
ness if for all λ, ψ, T ,

Pr

 Verify(pp, pk, i,
x, Si, πi) = 1

∣∣∣∣∣∣
(sk, pk)← Gen(pp)
(pp, pk, i, x, Si, πi)

is not (λ, ψ, T)-valid

 ≤ negl(λ)

4

Then, we define hardness that, each attempt of Solve(·) has
the success rate of 1

T .

Definition 8 (Hardness). A SeqPoW scheme satisfies hardness
if for all (λ, ψ, T)-honest tuple (pp, sk, i, x, Si, πi),

Pr

[
bi+1 = 1

∣∣∣∣ (Si+1, bi+1)←
Solve(pp, sk, Si, πi)

]
≤ 1

T
+ negl(λ)

Similar to VDF, we define sequentiality that, the fastest
way of computing Si is honestly incrementing Solve(·) for
i times, which takes time σ(ψi). Sequentiality in SeqPoW
also captures the unpredictability that, the adversary A1 cannot
predict Si’s value before finishing computing Si.

Definition 9 (σ-Sequentiality). A SeqPoW scheme satisfies
σ-sequentiality if for all λ, ψ, T , i, x, A0 which runs in less
than time O(poly(λ, ψ, i)) and A1 which runs in less than
time σ(ψi),

Pr

 (pp, sk, i, x, Si, πi)
is (λ, ψ, T)-honest

∣∣∣∣∣∣∣∣∣∣
pp← Setup(λ, ψ, T)
(sk, pk)← Gen(pp)
A1 ← A0(pp, sk)
Si ← A1(i, x)

πi ← Prove(pp, sk, i, x, Si)

≤ negl(λ)

In addition, we define an optional property uniqueness that,
each SeqPoW puzzle only has a single valid solution Si.
Before finding Si each Solve(·) attempt follows the hardness
definition, but after finding Si no Solve(·) attempt leads to a
valid solution. Uniqueness implies that, once finding a valid
solution Si, the prover stops incrementing Solve(·).

Definition 10 (Uniqueness). A SeqPoW scheme satis-
fies uniqueness if for any two (λ, ψ, T)-valid tuples
(pp, sk, i, x, Si, πi) and (pp, sk, i, x, Sj , πj), i = j holds.

3. Constructions

We formally propose two SeqPoW constructions and discuss
other possible constructions. Let H : {0, 1}∗ → {0, 1}κ be a
cryptographic hash function. Let G be a cyclic group. Let
HG(·) be a hash function that takes an arbitrarily long string
{0, 1}∗ to a point on G. Let g be a generator of G.

SeqPoW from VDFs. We first present a SeqPoW construction
SeqPoWVDF based on self-composable VDFs. Let ψ be a step
parameter, x be the input, and T be the difficulty parameter.
Let the initial solution S0 ← HG(pk‖x). We take each of
Si = f(iψ, S0) = VDF.Evali(pp, S0, ψ) as an intermediate
output. The prover keeps calculating each Si, and checks if

Si satisfies the difficulty T by calculating H(pk‖Si)
?
≤ 2κ

T . If
true, then Si is a valid solution.

Once finding the valid solution Si, the prover runs running
VDF.Prove(ppVDF, S0, Si, iψ) to compute proof πi that Si =
VDF.Evali(pp, S0, ψ). Note that VDF.Evali(pp, S0, ψ) =
VDF.Eval(pp, S0, iψ) for self-composable VDFs. With pk,
i, x, Si, and πi, the verifier can run S0 ← HG(pk‖x)
and VDF.Verify(ppVDF, S0, Si, πi, iψ) to check whether 1)

Si satisfies the difficulty T , and 2) Si = Evali(pp, S0, ψ).
Figure 3 describes our SeqPoWVDF construction in detail.

Unique SeqPoW from Sloth. SeqPoWVDF does not provide
uniqueness: the prover can keep incrementing the iteratively
sequential function to find as many valid solutions as possi-
ble. We present SeqPoWSloth – a SeqPoW construction with
uniqueness. SeqPoWSloth is based on Sloth [19], a slow-timed
hash function. In Sloth, the prover square roots (on a cyclic
group G) the input for t times to get the output. Given an
output, the verifier squares the output for t times to recover
the input and checks if the input is same as the one from
the prover. Verification in Sloth can be fast: on cyclic group
G, squaring is O(log |G|) times faster than square rooting. In
addition, Sloth is reversible [30]: given an output and t, the
verifier can recover all intermediate results and the input.

Same as in SeqPoWVDF, SeqPoWSloth takes each of Si =
f(iψ, S0) as an intermediate output and checks if H(pk‖Si) ≤
2κ

T . In addition, SeqPoWSloth only treats the first solution satis-
fying the difficulty as valid, which makes the solution unique.
Figure 4 describes the detailed construction of SeqPoWSloth.

Other possible constructions. The main ingredient of Se-
qPoW is the succinct proof of execution results of iteratively
sequential functions. In addition to VDFs and Sloth, Incremen-
tal Verifiable Computation (IVC) [31] can also provide such
proofs. IVC is a powerful primitive that, a prover can produce
a succinct proof on the correctness of any historical execution,
and for any further step of computation, the prover can obtain
the proof by only updating the last step’s proof rather than
computing it from scratch.

The advantage of IVC-based SeqPoW is that it supports
any iteratively sequential functions. This means IVC-based
SeqPoW can be more egalitarian by using iteratively sequential
functions that are more hard to parallelise and optimise.
However, IVC is usually constructed from complicated cryp-
tographic primitives, such as SNARKs [31]–[35]. This makes
the construction inefficient and implementation challenging. In
addition, when generating proofs in IVC takes non-negligible
time, IVC-based SeqPoW may not be fair, as miners with pow-
erful hardware can take advantage of mining by accelerating
SeqPoW.Prove(·).

4. Security and efficiency analysis

Security. We defer full security proofs to Appendix A. Proofs
of completeness and soundness directly follow the complete-
ness, soundness and self-composability of Sloth and VDFs.
By pseudorandomness of HG(·) and sequentiality of Sloth
and VDFs, Solve(·) outputs unpredictable solutions. Then, by
H(·)’s pseudorandomness and Solve(·)’s unpredictability, the
probability that the solution satisfies the difficulty is 1

T , leading
to hardness. Sequentiality directly follows the sequentiality
and self-composability of Sloth and VDFs.

The underlying VDFs in SeqPoWVDF may use cyclic groups
that require trusted setup. For example, Wesolowski’s VDF
(Wes19) [22] and Pietrzak’s VDF (Pie19) [21] – which are
two commonly used VDFs – use RSA groups. In this case,

5

SeqPoWVDF.Setup(λ, ψ, T)

1 : ppVDF = ({0, 1}∗, G, g)
← VDF.Setup(λ)

2 : pp← (ppVDF, ψ, T)

3 : return pp

SeqPoWVDF.Gen(pp)

1 : ({0, 1}∗, G, g, ψ, T)← pp

2 : Sample random sk ∈ N
3 : pk ← gsk ∈ G
4 : return (sk, pk)

SeqPoWVDF.Init(pp, sk, x)

1 : ({0, 1}∗, G, g, ψ, T)← pp

2 : pk ← gsk ∈ G
3 : S0 ← HG(pk‖x)
4 : return S0

SeqPoWVDF.Solve(pp, sk, Si)

1 : (ppVDF, ψ, T)← pp

2 : ({0, 1}∗, G, g)← ppVDF

3 : pk ← gsk ∈ G
4 : Si+1 ← VDF.Eval(ppVDF, Si, ψ)

5 : bi+1 ← H(pk‖Si+1) ≤
2κ

T
? 1 : 0

6 : return (Si+1, bi+1)

SeqPoWVDF.Prove(pp, sk, i, x, Si)

1 : (ppVDF, ψ, T)← pp

2 : ({0, 1}∗, G, g)← ppVDF

3 : pk ← gsk ∈ G
4 : S0 ← HG(pk‖x)
5 : πVDF ← VDF.Prove(ppVDF, S0, Si, iψ)

6 : return πVDF

SeqPoWVDF.Verify(pp, pk, i, x, Si, πi)

1 : (ppVDF, ψ, T)← pp

2 : ({0, 1}∗, G, g)← ppVDF

3 : S0 ← HG(pk‖x)
4 : if VDF.Verify(ppVDF, S0, Si, πi, iψ) = 0

5 : return 0

6 : if H(pk‖Si) >
2κ

T
then return 0

7 : return 1

Fig. 3: Construction of SeqPoWVDF.

SeqPoWVDF.Setup(λ, ψ, T)

1 : pp← ({0, 1}∗, G, g, ψ, T)
2 : return pp

SeqPoWVDF.Gen(pp)

1 : ({0, 1}∗, G, g, ψ, T)← pp

2 : Sample random sk ∈ N
3 : pk ← gsk ∈ G
4 : return (sk, pk)

SeqPoWSloth.Init(pp, sk, x)

1 : ({0, 1}∗, G, g, ψ, T)← pp

2 : pk ← gsk ∈ G
3 : S0 ← HG(pk‖x)
4 : return S0

SeqPoWSloth.Solve(pp, sk, Si)

1 : ({0, 1}∗, G, g, ψ, T)← pp

2 : pk ← gsk ∈ G

3 : Si+1 ← S
1

2ψ

i

4 : bi+1 ← H(pk‖Si+1) ≤
2κ

T
? 1 : 0

5 : return (Si+1, bi+1)

SeqPoWSloth.Prove(pp, sk, i, x, Si)

1 : return ⊥
SeqPoWSloth.Verify(pp, pk, i, x, Si, πi)

1 : ({0, 1}∗, G, g, ψ, T)← pp

2 : y ← Si

3 : if H(pk‖y) > 2κ

T
, then return 0

4 : repeat i times

5 : y ← y2
ψ

6 : if H(pk‖y) ≤ 2κ

T
then return 0

7 : g ← HG(pk‖x)
8 : if g 6= y then return 0

9 : return 1

Fig. 4: Construction of SeqPoWSloth.

TABLE II: Efficiency of two SeqPoW constructions. ISF
stands for iteratively sequential function.

Construction Efficiency

ISF Proof Solve(·) Prove(·) Verify(·) Proof size
(Bytes)

SeqPoWVDF
Repeated SQ.

Wes19 [22]
O(ψ) O(ψT) O(logψT) s

Pie19 [21] O(ψ) O(
√
ψT logψT) O(logψT) s log2 ψT

SeqPoWSloth Repeated
SQRT.

Repeated
SQ.

O(ψ) 0 O(ψT) 0

we assume the underlying VDFs are securely bootstrapped. In
practice, one can either employ a trusted third party, or use
specialised multi-party protocols [36], [37] for trusted setup.
Efficiency. Table II summarises the efficiency analysis of two
SeqPoW constructions. For iteratively sequential functions,
SeqPoWVDF and SeqPoWSloth employ repeated squaring on

an RSA group and repeated square rooting on a prime-order
group, respectively. Let s be the size (in Bytes) of an element
on the group, and ψ be the step parameter. Each Solve(·)
executes ψ steps of the iteratively sequential function. By
hardness and uniqueness, a node attempts Solve(·) for T times
to find a valid solution on average. Thus, Prove(·) generates
proofs on ψT steps, and Verify(·) verifies proofs of ψT steps.

We analyse the efficiency of SeqPoWVDF with two prevalent
VDF constructions, namely Wesolowski’s VDF (Wes19) [22]
and Pietrzak’s VDF (Pie19) [21]. According to the existing
analysis [38], the proving complexity, verification complexity
and proof size of Wes19 are O(ψT), O(logψT) and s
Bytes, respectively; and the proving complexity, verification
complexity and proof size of Pie19 are O(

√
ψT logψT),

O(logψT) and s log2 ψT , respectively. There have been tech-
niques for optimising and parallelising VDF.Prove(·) for both

6

VDFs [21], [22], [39]. The proof sizes of both SeqPoWVDF

constructions are acceptable: when ψT = 240 and s = 32
Bytes, the proof sizes of SeqPoWVDF with Wes19 [22] and
with Pie19 [21] are 32 and 1280 Bytes, respectively.
SeqPoWSloth does not have proofs: the verifier keeps squar-

ing the solution to recover the input and checks whether the
recovered input equals to the real one. This leads to verification
complexity of O(ψT).

5. Performance evaluation

We evaluate the performance of our two SeqPoW construc-
tions. We implement both SeqPoWVDF and SeqPoW.Sloth
without optimisation, and the code is available at Github [40].
For SeqPoWVDF, Pie19 [21] is a better candidate compared to
Wes19 [22], given Pie19’s efficient proof generation and verifi-
cation and acceptable proof size. For SeqPoW.Sloth, verifying
puzzles is approximately five times faster than solving puzzles.
Although far from the theoretically optimal value (i.e., 1024
in our case), the verification efficiency is acceptable.

Implementation. We implement the two SeqPoW construc-
tions in Rust programming language. We use the rug [41]
crate for big integer arithmetic. With big integer arithmetic, we
implement the RSA group with 1024-bit keys and the group of
prime order. We implement the two SeqPoWVDF constructions
based on the RSA group, and SeqPoW.Sloth based on the
group of prime order. Our implementations strictly follow their
original papers [19], [21], [22] without any optimisation.

Experimental setup. We benchmark Solve(·), Prove(·)
and Verify(·) for each SeqPoW construction. We test ψ ∈
[1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 256000]
and assume i = 1. Note that SeqPoWSloth does not
have Prove(·). We benchmark the performance using
Rust’s native benchmarking suite cargo-bench [42]
and criterion [43]. We sample ten executions for
each configuration, i.e., a function with a unique group
of parameters. We specify O3-level optimisation when
compiling. All experiments were conducted on a MacBook
Pro with a 2.2 GHz 6-Core Intel Core i7 Processor and a 16
GB 2400 MHz DDR4 RAM.

Results (Figure 5). For all SeqPoW constructions, the
running time of Solve(·) increases linearly with time param-
eter t. This is as expected as Solve(·) is dominated by the
iteratively sequential function. For SeqPoWVDF with Wes19,
Prove(·) takes more time than Solve(·), as our implementation
follows the original algorithm rather than considering other
optimisations (such as [39]). SeqPoWVDF with Pie19 achieves
ideal performance: Prove(·) and Verify(·) takes negligible
time compared to Solve(·). In addition, according to the
efficiency analysis, the proof size of Pie19 is also acceptable.
Thus, without optimisation, SeqPoWVDF with Pie19 is more
practical than with Wes19. For SeqPoWSloth, Solve(·) is ap-
proximately five times slower than Verify(·). Although this is
far from theoretically optimal value, i.e, log2 |G| = 1024 in
our case [30], the verification overhead is acceptable when
random outputs are not generated frequently.

0.0 0.5 1.0 1.5 2.0 2.5
Time parameter t 1e5

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

Solve
Prove
Verify

(a) SeqPoWVDF + Wes19 [22].

0.0 0.5 1.0 1.5 2.0 2.5
Time parameter t 1e5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Ti
m

e
(s

)

Solve
Prove
Verify

(b) SeqPoWVDF + Pie19 [21].

0.0 0.5 1.0 1.5 2.0 2.5
Time parameter t 1e5

0
2
4
6
8

10
12
14

Ti
m

e
(s

)

Solve
Verify

(c) SeqPoWSloth.

Fig. 5: Evaluation of SeqPoW constructions.

4. RANDCHAIN: DRB FROM SEQPOW

Based on Sequential Proof-of-Work (SeqPoW), we con-
struct RANDCHAIN, a new family of Decentralised Random-
ness Beacons (DRBs). Figure 6 describes the full construction
of RANDCHAIN.
System setting. Let H,H ′ : {0, 1}∗ → {0, 1}κ be two dif-
ferent hash functions. RANDCHAIN works in a permissioned
system. Nodes P = {p1, . . . , pn} register themselves into
the system through an identity management service such as
a Public Key Infrastructure. The identity management service
assigns each registered node pk ∈ P with a pair of secret
key skk and public key pkk. Each node is identified by its
public key in the system. Given a public key, any node in
the system can verify whether the node is in the system by
querying the identity management service. There can be an
unlimited number of registered nodes. Each node does not
know the exact number of nodes in the system, and is only
directly connected to a subset of peers.
Structure (Figure 7a). All nodes jointly maintain a
blockchain. Each block B is of the format (h−, h, i, S, pk, π),
where h− is the previous block ID, h is the current block ID,
i is the SeqPoW solution index, S is the SeqPoW solution,
pk is the public key of this block’s creator, and π is the proof
that S is a valid SeqPoW solution on input h−. The block ID
B.h is calculated as B.h = H(pk‖S). The block’s random
output B.rand is calculated as B.rand = H ′(pk‖S).

Each node pk has its local view Ck of the blockchain. The
local view Ck may have forks: there may be multiple blocks
following the same block. RANDCHAIN applies Nakamoto
consensus that, nodes considers the longest chain among all
forks as valid. As described in mainChain(·) of Figure 6, node
pk considers the longest fork of Ck as the main chain MCk.
Process (Figure 7b). We describe the process of RAND-
CHAIN from a node pk’s perspective. Node pk runs two

7

mainChain(Ck)

1 : MCk ← ε

2 : foreach Ctk ∈ Ck
3 : MCk ← max(Ctk,MCk)
4 : returnMCk

MainProcedure(pp, skk, pkk)

1 : Synchronise chain as Ck
2 : MineRoutine(pp, skk, pkk, Ck) in a thread
3 : SyncRoutine(pp, Ck) in a thread

SyncRoutine(pp, C)
1 : while True

2 : Wait for a new block as B

3 : (h−, h, i, S, pk, π)← B

4 : if h− /∈ Ck then Discard B
5 : if h 6= H(pk‖S) then Discard B

6 : if SeqPoW.Verify(pp, pk, i, h−, S, π) = 0

7 : Discard B

8 : Append B to Ck after block with hash h−

9 : Propagate B

MineRoutine(pp, skk, pkk, Ck)

1 : while True

2 : MCk ← mainChain(Ck)
3 : B− ←MCk[−1]
4 : i← 0

5 : S ← SeqPoW.Init(pp, skk, B
−.h)

6 : while True

7 : S, b← SeqPoW.Solve(pp, skk, S)

8 : if b = 1 then Break

9 : i+ = 1

10 : MC′k ← mainChain(Ck)
11 : if MCk 6=MC′k
12 : MCk ←MC′k
13 : Repeat line 3-5
14 : h← H(pkk‖S)
15 : π ← SeqPoWVDF.Prove(pp, sk, i, B

−.h, S)

16 : B ← (B−.h, h, i, S, pkk, π)

17 : New random output B.rand← H ′(pkk||S)
18 : Append B to MCk after B−

19 : Propagate B

Fig. 6: Construction of RANDCHAIN.

routines: the synchronisation routine SyncRoutine(·) and the
mining routine MineRoutine(·). In SyncRoutine(·), node pk
synchronises its local blockchain Ck with other nodes. The
synchronisation process is the same as in other blockchains:
node pk keeps receiving blocks from other nodes, verifying
them, and adding valid blocks to its local blockchain Ck.

In MineRoutine(·), node pk keeps mining, i.e., adding new
blocks, on the main chain MCk. To append a block to
the blockchain, node pk should solve a SeqPoW puzzle. In
particular, node pk finds its latest main chain MCk, and
derives a SeqPoW puzzle from MCk’s last block. Then,
node pk executes SeqPoW.Init(·) to find the starting point
of mining. Node pk keeps solving SeqPoW by iterating
SeqPoW.Solve(·) until finding a solution S satisfying the
difficulty. As SeqPoW.Init(·) takes each node’s secret key as
input, nodes’ SeqPoW puzzles start from different points and
take different steps to solve. With a valid solution S, node
pk constructs a block B consisting of a random output, and
appends B to MCk.

As RANDCHAIN employs Nakamoto consensus, RAND-
CHAIN’s blockchain may have forks, and it’s possible that
B is committed then reverted by a longer chain. If a block
has a sufficient number of succeeding blocks, then B is
considered stable, i.e., cannot be reverted, except for negligible
probability [44]. The fork rate can be reduced by applying a
high difficulty parameter T . With a high T , the average time
of mining a new block can be long, giveing nodes sufficient
time to propagate new blocks. We analyse RANDCHAIN’s

consistency guarantee in §5, and discuss how to achieve
finality, i.e., make blocks irreversible in §6-B.

5. SECURITY AND EFFICIENCY OF RANDCHAIN

In this section, we analyse the security and efficiency of
RANDCHAIN. We define the notion of Decentralised Random-
ness Beacon (DRB), and prove that RANDCHAIN implements
a DRB and produces strongly unpredictable randomness. In
addition, we show that while inheriting simplicity and scalabil-
ity from PoW-based consensus, RANDCHAIN remains energy-
efficient and decentralised.

1. Security model

We consider the network is synchronous: all messages are
delivered within a known time bound ∆. We do not assume
rounds or lock-step synchrony [44]. The network consists of
n nodes, each of which controls the same amount of mining
power. We consider an adaptive Byzantine adversary who can
corrupt any of αn nodes at any time, where α ∈ [0, 1].
The adversary can coordinate its corrupted nodes in real-time
without delay, and can arbitrarily delay, drop, forge and modify
messages sent from its corrupted nodes. Let β = 1−α be the
percentage of correct nodes.

2. Defining Decentralised Randomness Beacon

We start from defining security properties of DRB. First,
similar to Nakamoto consensus, DRB should satisfy consis-
tency and liveness. We follow existing papers [5], [45]–[47]
for defining consistency and liveness. Consistency requires

8

Blockchain

Random outputs

(a) Beacon structure.

Blockchain

Random outputs

Miners with their own
SeqPoW puzzles

...

...

...

...

Puzzle solved

Construct
block

 Commit and propagate block

(b) Process of mining.

Fig. 7: Illustration of RANDCHAIN beacon.

nodes to have a consistent view on the blockchain. Without
consistency, nodes may revert random outputs arbitrarily.

Definition 11 (Consistency). Parametrised by ` ∈ N. A DRB
satisfies `-consistency if for any two correct nodes at any time,
their chains can differ only in the last ` blocks, except for
negligible probability.

The parameter ` defines the degree of consistency guarantee.
Some based applications require RB to have finality, i.e., at
any time, correct nodes do not have conflicted views on the
blockchain. The finality here is equivalent to 0-consistency. In
§6 we discuss how to add finality to RANDCHAIN.

Liveness requires DRB to produce no less than bτ · tc
random outputs for every time period of t. Without liveness,
DRB may stop producing randomness forever. Existing pa-
pers usually define termination [7], [10], [48] or Guaranteed
Output Delivery (G.O.D.) [8], [49]–[51] that, for every round,
there will always be a new random output. We do not follow
their definitions, as RANDCHAIN neither iterates single-shot
DRG protocols nor uses the concept of rounds. In §7 we will
compare RANDCHAIN with existing DRBs in detail.

Definition 12 (Liveness). Parametrised by t, τ ∈ R+. A DRB
satisfies (t, τ)-liveness if for any time period t, every correct
node receives at least bτ · tc new outputs.

Then, as a DRB, each output should be pseudorandom, i.e.,
uniformly distributed.

Definition 13 (Uniform distribution). A DRB satisfies uni-
form distribution if every output is indistinguishable with a
uniformly random string with the same length, except for
negligible probability.

Last, each output should be unpredictable: given the current
blockchain, no one can learn any knowledge of the next output.
If one can predict the next output, it may take advantage in
protocols based on the DRB. From a node’s perspective, this
includes two scenarios: 1) the next output is generated by
itself, and 2) the next output is generated by other nodes.
Some papers [9], [50]–[52] refers unpredictability in the
first scenario as bias-resistance. We follow the IND1-secrecy
(Indistinguishability of secrets) notion in SCRAPE [8] to
define unpredictability. IND1-secrecy requires that each node
cannot learn anything about the final output before finishing
the protocol.

Definition 14 (Unpredictability). A DRB satisfies unpre-
dictability if no adversary can obtain non-negligible advantage
on the following game. Assuming all messages are delivered
instantly and nodes agree on a blockchain of length `. Before
the (`+ 1)-th block is mined (either by other nodes or by the
adversary), the adversary makes a guess on the random output
in the (` + 1)-th block. Let r be the guessed random output,
and r′ be the real random output. The adversary’s advantage
is quantified as Pr[r = r′].

3. Security analysis

Consistency, liveness and uniform distribution. RAND-
CHAIN’s consistency and liveness are guaranteed by Nakamoto
consensus. There have been extensive works [5], [44]–[46],
[53]–[56] analysing and proving consistency and liveness
guarantee of Nakamoto consensus. As RANDCHAIN works
in the same system model as that of Ren [5], RANDCHAIN
at least satisfies the consistency and liveness bound proved by
Ren [5]. Uniform distribution is guaranteed by hash functions.
For every block B, B.rand is produced by the hash function
H ′(·). By pseudorandomness of hash functions, B.rand in-
distinguishable with a uniformly random κ-bit string.

Unpredictability. Assuming all messages are delivered in-
stantly, and nodes agree on a blockchain of length `. In the
prediction game, the (` + 1)-th block is either produced by
correct nodes or the adversary’s nodes. If the adversary’s
advantage is negligible for both cases, then RANDCHAIN
satisfies unpredictability. We prove the adversary’s advantage
for both cases. For the first case that the (` + 1)-th block
is produced by correct nodes, the adversary’s best strategy is
guessing, leading to negligible advantage.

9

Generates

I like this output;
publish before B4

Fig. 8: Unpredictability game.

Lemma 2. Assuming all messages are delivered instantly and
nodes agree on a blockchain of length `. If the (`+1)-th block
is produced by a correct node, then the adversary’s advantage
on the prediction game is 1

2κ .

We then consider the next output is produced by the adver-
sary’s nodes. By sequentiality, the adversary cannot predict its
SeqPoW solutions. As shown in Figure 8, the adversary’s best
strategy is to produce as many blocks before the next honest
block as possible. With more blocks, the adversary has more
random outputs to choose, leading to higher advantage. We
first analyse RANDCHAIN using SeqPoW without uniqueness,
e.g., SeqPoWVDF.

Lemma 3. Consider RANDCHAIN using SeqPoW without
uniqueness. Assuming all messages are delivered instantly and
nodes agree on a blockchain of length `. If the (`+1)-th block
is produced by the adversary, then the adversary’s advantage
on the prediction game is k

2κ with αkβ probability, where
k ≤ αn.

Proof. The adversary controls αn nodes, and k ≤ αn. Let Vk
be the event that “the adversary mines k blocks before correct
nodes mine the first block”. By hardness, each node can find
unlimited valid SeqPoW solutions given a fixed input. Then,
we have

Pr[Vk] = αkβ

When Vk happens, the adversary’s advantage is k
2κ .

Therefore, with the probability αkβ, the adversary mines
k blocks before correct nodes mine a block, leading to the
advantage of k

2κ (where k ≤ αn).

We then analyse RANDCHAIN with unique SeqPoW, e.g.,
SeqPoWSloth. In RANDCHAIN with unique SeqPoW, given the
latest blockchain with height `, each node can only mine a
single block at height `+1. Thus, the chance that the adversary
mines blocks at height ` + 1 decreases while mining more
blocks at height `+ 1. In addition, the adversary can mine at
most αn blocks at height `+ 1.

Lemma 4. Consider RANDCHAIN using SeqPoW with
uniqueness. Assuming all messages are delivered instantly and
nodes agree on a blockchain of length `. If the (`+1)-th block

is produced by the adversary, then the adversary’s advantage
on the prediction game is

∏k−1
i=0

αn−i
n−i ·β with αkβ probability.

Proof. The adversary controls αn nodes, and k ≤ αn. Let
V ′k be the event that “the adversary mines k blocks before
correct nodes mine the first block”. By uniqueness, each node
can find only one valid SeqPoW solutions given a fixed input.
Let αk be the mining power of the adversary’s k-th node, and∑
αk = α. Then, we have

Pr[V ′0] = β (1)
Pr[V ′1] = αβ (2)

Pr[V ′2] =
αn− 1

n− 1
αβ (3)

Pr[V ′3] =
αn− 2

n− 2
· αn− 1

n− 1
αβ (4)

. . . (5)

Pr[V ′k] =

k−1∏
i=0

αn− i
n− i

· β (6)

When V ′k happens, the adversary’s advantage is k
2κ .

Therefore, with less than the probability
∏k−1
i=0

αn−i
n−i ·β, the

adversary mines k blocks before correct nodes mine a block,
leading to the advantage of k

2κ (where k ≤ αn).

Remark 1. Note that the probability that the adversary
achieves a certain advantage in RANDCHAIN with unique
SeqPoW is always smaller than in RANDCHAIN with non-
unique SeqPoW. In particular, for every k, Pr[V ′k] ≤ Pr[Vk].
Given k, we have

Pr[V ′k] =

k−1∏
i=0

αn− i
n− i

· β (7)

=

k−1∏
i=0

[
α · αn− i

αn− αi

]
· β (8)

As i ≤ 0 and α ∈ [0, 1], αn−i
αn−αi ≤ 1. Thus,

Pr[V ′k] ≤
k−1∏
i=0

α · β (9)

= αkβ = Pr[Vk] (10)

4. Efficiency

Mining in RANDCHAIN is non-parallelisable: 1) SeqPoW
is sequential, and 2) given the last block, each node’s input
of SeqPoW is fixed. Thanks to non-parallelisable mining,
RANDCHAIN is more energy-efficient and decentralised than
PoW-based consensus.

Parallelisable PoW mining has led to mining power cen-
tralisation and huge energy consumption. In order to max-
imise mining reward, miners have been employing specialised
mining hardware such as GPUs, FPGAs and ASICs for PoW
mining. Currenlty, PoW mining has been marketised: people
manufacture, invest and trade high-end mining hardware for

10

profit. Mining power marketisation leads to mining power
centralisation: most blocks are mined only by several powe-
ful miners. Mining power centralisation weakens PoW-based
consensus’ security, as powerful miners can perform various
attacks, e.g., 51% attacks to break PoW-based consensus. In
addition, mining enforces hardware to fully operate all the
time. As miners deploy powerful mining hardware, mining
costs a great amount of electricity. For example, in 2019,
Bitcoin cost 58.93 KWh electricity – more than Switzerland
which cost 58.46 KWh [57].

Compared to PoW-based consensus, RANDCHAIN remains
energy-efficient and decentralised. As RANDCHAIN does not
allow nodes to choose their own entropy and SeqPoW is
sequential, SeqPoW mining is non-parallelisable: each miner
can only use a single processor for mining. Compared to
powerful specialised hardware in PoW mining, a single fully
operating processor costs negligible electricity. In addition,
high-end mining hardware can only achieve limited speedup
on running SeqPoW.Solve(·). SeqPoW.Solve(·) can only be
accelerated by using processors with higher clock rate. The
highest clock rate achieved by processors is 8.723 GHz,
while laptops’ clock rate is usually more than 2 GHz [58].
Given the voltage limit of processors, the current clock rate
is hard to improve further [59]. This means one can speed
up SeqPoW.Solve(·) for less than five times. The limited
speedup is also evidenced by the recent VDF Alliance FPGA
Contest [60]–[62], where optimised VDF implementations are
approximately four times faster than the baseline implementa-
tion. Compare to PoW mining where powerful nodes can mine
thousands of times faster than normal nodes, RANDCHAIN
achieves a high degree of mining power decentralisation.

6. DISCUSSION

1. Other security issues in Nakamoto consensus

RANDCHAIN employs Nakamoto consensus, so inherits
most security issues from Nakamoto consensus. Nonetheless,
RANDCHAIN is a DRB rather than a transaction ledger, and
security issues for transaction ledgers may not be critical for
DRB. For example, RANDCHAIN is immune to all attacks on
Nakamoto consensus’ incentive mechanisms [63]–[66], as it
works in permissioned networks. In addition, RANDCHAIN
can resist some attacks in Nakamoto consensus. SeqPoW
can be used for detecting withholding behaviours. If a node
broadcasts a valid block with solution index i after another
valid block with solution index j < i, other nodes can know
that the node withholds the block with i.

2. Adding finality

Finality [67] is a property for Byzantine consensus that,
previously agreed proposals cannot be reverted. RANDCHAIN
does not satisfy finality due to the probabilistic consensus
guarantee of Nakamoto consensus. In some scenarios, we
require a DRB to satisfy finality. For example, considering
a leader election scheme where a group of nodes elect a
leader with a random output from RANDCHAIN as input, if
the used random output is reverted before the end of leader

election, then nodes may stop working and lose liveness. RAN-
DAO [12] and Proofs-of-Delay [15] bypass this by replacing
H ′(·) with a VDF, of which the execution time is longer than
generating ` blocks, where ` is the degree of `-consistency.
Nodes can reveal every random output only after the block
deriving this random output becomes stable. However, this
enables frontrunning – nodes with fast processors always learn
random outputs earlier than normal nodes – which may lead
to serious fairness issues in time-sensitive applications such as
decentralised exchanges [68].

We consider principled approaches for adding finality.
Adding finality is equivalent to achieve 0-consistency: correct
nodes decide the same block at every height. This is further
equivalent to making RANDCHAIN to execute in rounds, in
each of which nodes execute a Byzantine agreement [69]
to agree on a block. RANDCHAIN satisfies validity and ter-
mination, but provides eventual consistency rather than the
agreement property of Byzantine agreement, as nodes may
temporarily agree on different blocks at the same height. We
discuss two approaches to achieve agreement, namely the
quorum-based approach and the herding-based consensus.

Quorum-based approach. In Byzantine agreement, quo-
rum [70] is the minimum number of votes that a proposal
has to obtain for being agreed by nodes. If a proposal obtains
a quorum of votes in a view, then this means that nodes have
reached an agreement on this proposal. The quorum size is
n−f , where n and f be the number of nodes and faulty nodes
in the system, respectively. Existing research [70], [71] shows
that n ≥ 3f + 1 is required to achieve agreement in partially
synchronous networks, and n ≥ 2f + 1 is required to achieve
agreement in synchronous networks. A quorum certificate of
a proposal is a quorum of votes on this proposal. A vote is
usually represented as a digital signature on the proposal, view
ID and other metadata.

To achieve agreement in RANDCHAIN, we can apply the
quorum mechanism as follows. The system should additionally
assume n ≥ 3f + 1. A node signs a block to vote this block.
The node’s view is represented as the previous block hash,
which is inside the signed block. Nodes actively propagate
their votes – i.e., signatures on blocks – the same way as prop-
agating blocks. Each node keeps received votes locally, and
considers a block as finalised if collecting a quorum certificate,
i.e., no less than 2f+1 signatures on this block. RANDCHAIN
still keeps Nakamoto consensus as a fallback solution. If
there are multiple forks without quorum certificates, nodes
mine on the longest fork. A block can be considered finalised
with a sufficiently long sequence of succeeding blocks, even
without a quorum certificate. This resembles the Streamlet
blockchain [47].

Herding-based consensus. There have been a family of
consensus protocols based on herding. Herding is a social
phenomenon where people make choices according to other
people’s preference. In herding-based consensus, nodes keep
exchanging their votes with each other and decide the proposal
with most votes. Existing research [72], [73] shows that,

11

with overwhelming probability, nodes will eventually agree
on a proposal by herding in a short time period. In addition,
herding-based consensus introduces much less communication
overhead than traditional Byzantine consensus.

To achieve agreement in RANDCHAIN, we can apply the
herding-based consensus as follows. Upon a new block, nodes
execute a herding-based consensus on it. If a block is the only
block in a long time period, then nodes will agree on this block
directly. If there are multiple blocks within a short time period,
then nodes will agree on the most popular block among them
with overwhelming probability. This approach has also been
discussed in Bitcoin Cash community, who seeks to employ
Avalanche [73] as a finality layer for Bitcoin Cash [74].

3. Making SeqPoW mining non-outsourceable

RANDCHAIN does not prevent outsourcing: the adversary
can solve others’ SeqPoW puzzles. If the adversary controls
massive processors with high clock rate, then it can mine for
all nodes simultaneously and know SeqPoW solutions of all
nodes earlier than others. Such adversary can always frontrun
other nodes, or even bias random outputs by selectively
publishing its preferred ones.

To prevent outsourcing, we can adopt the idea of VRF-based
mining [75]. Verifiable Random Function (VRF) – which can
be seen as a public key version of hash functions – takes
the prover’s secret key sk and an input x, and outputs a
random string y. The prover can also generates a proof π
that, 1) y is a valid output of x, and 2) y is generated
by the owner of sk. We replace H(pk‖Si+1) ≤ 2κ

T with
VRFHash(sk, Si+1) ≤ 2κ

T in SeqPoW’s difficulty mechanism,
where VRFHash(·) is a VRF [76]. As correct nodes do not
share their secret keys to others, the adversary cannot execute
VRFHash(·) for others. While this modification adds negli-
gible overhead to SeqPoWVDF, it greatly increases the proof
size of SeqPoWSloth, as the proof should carry all VRF outputs
and proofs for proving no prior solution satisfies the difficulty.
More efficient SeqPoW constructions with uniqueness are
considered as future work.

4. Dynamic difficulty

PoW-based blockchains employ difficulty adjustment mech-
anism for stabilising the block rate, i.e., the average number
of new blocks in a time unit. This is particularly useful
when churn [77] is high and/or the network size is frequently
changing. Although we analyse RANDCHAIN while assuming
a fixed difficulty and a fixed set of nodes, RANDCHAIN
can support dynamic difficulty adjustment with little change.
First, similar to PoW-based blockchains, RANDCHAIN can
include a timestamp to each block, so that RANDCHAIN
can infer historical block rate using timestamps. In addition,
RANDCHAIN includes the number i of iterations running
SeqPoW.Solve(·), and i can also infer the historical block
rate. If historical values of i are large, then this means that
mining is too hard and the difficulty should be reduced, and
vice versa.

7. COMPARISON WITH EXISTING DRB PROTOCOLS

In this section, we compare RANDCHAIN with existing
DRB protocols. There are three paradigms of constructing
Decentralised Randomness Beacons (DRBs), namely 1) DRB
from external randomness source, 2) DRB from Distributed
Randomness Generation (DRG), and 3) DRB from iteratively
sequential functions. RANDCHAIN– which is constructed from
SeqPoW and Nakamoto consensus – does not belong to any
of them. Compared to existing paradigms, RANDCHAIN is
simple, secure, scalable, energy-efficient and decentralised
while relying on weak assumptions.
DRBs from external randomness source. Some DRBs
extract randomness from real-world randomness source, in-
cluding financial data [13] and public blockchains [11], [14],
[15]. Such DRBs introduce little communication overhead.
However, these DRB protocols’ security relies on the random-
ness source’s security. For example, if the randomness source
is biasible, then these DRB protocols are likely to be biasible
as well. In addition, clients and/or servers should access the
randomness source from trustworthy communication channels.
Otherwise, an adversary who hijacks the channels can bias the
randomness arbitrarily.
DRG-based DRBs. A large number of DRB protocols are
constructed by executing a Distributed Randomness Gener-
ation (DRG) protocol in rounds. DRG allows a group of
nodes to generate a random output or a batch of random
outputs. It has a well-known variant called multi-party coin
tossing/flipping [78]–[81], where the random output is only
a binary bit. DRG can be constructed from various crypto-
graphic primitives, such as commitments [12], [82], threshold
signatures [3], [7], [48], VRFs [2], [10], [83]–[85], secret shar-
ing [1], [8], [9], [49], [52] and homomorphic encryption [50].

There are some issues in DRG-based DRBs. First, if the
DRG relies on a leader, then a leader should be elected
for every round. The leader is elected either by a trusted
third party or running a leader election protocol. Existing
research [86] shows that constructing leader election protocols
is challenging. Boneh et al. [87] propose two leader election
constructions, which however rely on an RB in return. Second,
if the network is not synchronous, then the DRG-based DRB
should rely on a pacemaker [88] for liveness. The pacemaker is
responsible to inform nodes when to start a new round. With-
out synchrony and pacemaker, a node cannot know whether
other nodes have received its message, and nodes may not
agree on the round number. When this happens, the system will
lose liveness. Last, a DRG-based DRB inherits the assumption,
security and performance from its used DRG. If the DRG does
not scale, then DRBs based on this DRG cannot scale as well.
Existing research [9], [89] shows that existing DRG protocols
either rely on strong assumptions, fail to be unpredictable,
or suffer from high communication complexity of more than
O(n2). This makes DRG-based DRBs hard to scale.
DRBs from iteratively sequential functions. DRBs can
also be constructed from iteratively sequential functions f(·).
Given a random seed, f(·) can produce random outputs

12

continuously. As f(·) is deterministic, no one can bias random
outputs. As f(·) is sequential, no one can obtain outputs
without computing f(·) honestly. Lenstra and Wesolowski [19]
and Ephraim et. al. [90] construct DRBs from Sloth and
Continuous VDFs, respectively.

The main challenge of this paradigm is frontrunning, where
some nodes always learn random outputs earlier than oth-
ers. In time-sensitive applications such as decentralised ex-
changes [68], nodes may frontrun for gaining extra profit,
which compromises fairness. In this paradigm of DRBs, two
scenarios lead to frontrunning behaviours. First, if one can
learn the random seed earlier than others, then it can pre-
compute and learn random outputs earlier than others. This can
be solved by a trusted setup, e.g., the Sapling ceremony for
Zcash [91]. Second, nodes with faster processors learn random
outputs earlier than others. This is challenging to solve given
the deterministic nature of iteratively sequential functions.

RandRunner [51] extends this paradigm by allowing nodes
to execute iterations of f(·) in turn. RandRunner does not
prevent frontrunning either: for each round, the leader always
learns the random output earlier than other nodes. In addition,
RandRunner relies on a leader election, which as discussed
can be challenging in dynamic networks.

8. CONCLUSION AND FUTURE WORK

In this paper, we propose RANDCHAIN, a new family
of Decentralised Randomness Beacon (DRB) protocols that
are simple, secure and scalable. To construct RANDCHAIN,
we introduced Sequential Proof-of-Work (SeqPoW), a variant
of Proof-of-Work that is sequential, i.e., non-parallelisable.
For SeqPoW, we provided concrete constructions of SeqPoW,
and showed that SeqPoW is practical and useful for various
cryptographic protocols. For RANDCHAIN, we showed that
while inheriting simplicity and scalability from PoW-based
consensus, RANDCHAIN remains energy-efficient and decen-
tralised. Compared to existing DRBs, RANDCHAIN explores a
new direction with several unique design choices, which may
inspire new research in designing secure DRBs.

Competitive nodes v.s. collaborative nodes. In RAND-
CHAIN, nodes are competitive with each other: each node
tries to propose the next random output earlier than others.
Meanwhile, in most existing DRBs – especially DRG-based
DRBs – nodes are collaborative: nodes contribute their local
random outputs and combine them to a unique one.

Compared to collaborative DRBs, competitive DRBs intro-
duce less communication overhead. In competitive DRBs, each
random output is generated by a single node, and a single
message, i.e., a block, needs to be propagated for each random
output. Meanwhile in collaborative DRBs, the majority of
nodes should contribute to the randomness, and all of these
nodes need to broadcast some messages. This introduces non-
negligible communication overhead.

Reusing entropy v.s. regenerating entropy. Consider
RANDCHAIN works in an ideal setting, where all nodes
mine at the same speed and are correct, and all messages

are delivered instantly. Given the latest block, who solves
SeqPoW first is deterministic. Given the SeqPoW puzzle,
the solution and the random output are also deterministic.
Thus, in this ideal setting, RANDCHAIN resembles a DRB
based on iteratively sequential functions: it takes the genesis
block as the random seed and nodes in turn increments the
iteratively sequential function. As analysed in §7, DRBs based
on iteratively sequential functions are strongly unpredictable,
but suffer from frontrunning attacks.
Uncontrollable entropy v.s. node-chosen entropy. Then,
consider RANDCHAIN works in real-world settings where
nodes can be Byzantine and messages are delivered with
random latency. Given the latest block, the next output are no
longer determined. First, the node A that should have found
the first SeqPoW solution may be offline or crashed. Second,
A may propagate its block slower than another node B who
finds a SeqPoW solution a bit later than A.

This means that in addition to the genesis block, nodes’
Byzantine behaviours and network delay also affect the outputs
of RANDCHAIN. The adversary cannot control both entropy
sources, so frontrunning won’t always succeed. This makes
RANDCHAIN even more secure than DRBs based on itera-
tively sequential functions.

ACKNOWLEDGEMENT

We thank Jieyi Long for discussions on the “winner-takes-
all” problem, and Omer Shlomovtis for insightful comments.

REFERENCES

[1] A. Kiayias, A. Russell, B. David, and R. Oliynykov,
“Ouroboros: A provably secure proof-of-stake
blockchain protocol,” in Annual International
Cryptology Conference, Springer, 2017, pp. 357–388.

[2] B. David, P. Gaži, A. Kiayias, and A. Rus-
sell, “Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain,” in Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 2018, pp. 66–
98.

[3] T. Hanke, M. Movahedi, and D. Williams, “Dfinity
technology overview series, consensus system,” arXiv
preprint arXiv:1805.04548, 2018.

[4] G. Wood et al., “Ethereum: A secure decentralised
generalised transaction ledger,” Ethereum project yellow
paper, vol. 151, no. 2014, pp. 1–32, 2014.

[5] L. Ren, “Analysis of nakamoto consensus.,” IACR Cryp-
tol. ePrint Arch., vol. 2019, p. 943, 2019.

[6] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin,
“Sync hotstuff: Simple and practical synchronous state
machine replication,” IACR Cryptology ePrint Archive,
vol. 2019, p. 270, 2019.

[7] C. Cachin, K. Kursawe, and V. Shoup, “Random ora-
cles in constantinople: Practical asynchronous byzantine
agreement using cryptography,” Journal of Cryptology,
vol. 18, no. 3, pp. 219–246, 2005.

13

[8] I. Cascudo and B. David, “Scrape: Scalable randomness
attested by public entities,” in International Confer-
ence on Applied Cryptography and Network Security,
Springer, 2017, pp. 537–556.

[9] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl,
“Hydrand: Efficient continuous distributed random-
ness,” in 2020 IEEE Symposium on Security and Pri-
vacy (SP), pp. 32–48.

[10] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N.
Zeldovich, “Algorand: Scaling byzantine agreements for
cryptocurrencies,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017, pp. 51–68.

[11] J. Bonneau, J. Clark, and S. Goldfeder, “On bitcoin
as a public randomness source.,” IACR Cryptol. ePrint
Arch., vol. 2015, p. 1015, 2015.

[12] Randao: A dao working as rng of ethereum, last ac-
cessed on 02/08/2020. [Online]. Available: https : / /
github.com/randao/randao.

[13] J. Clark and U. Hengartner, “On the use of financial
data as a random beacon.,” EVT/WOTE, vol. 89, 2010.

[14] M. Andrychowicz and S. Dziembowski, “Distributed
cryptography based on the proofs of work.,” IACR
Cryptol. ePrint Arch., vol. 2014, p. 796, 2014.

[15] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-
delay and randomness beacons in ethereum,” IEEE
Security and Privacy on the blockchain (IEEE S&B),
2017.

[16] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic
cash system,” 2008.

[17] M. Jakobsson and A. Juels, “Proofs of work and bread
pudding protocols,” in Secure information networks,
Springer, 1999, pp. 258–272.

[18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifi-
able delay functions,” in Annual international cryptol-
ogy conference, Springer, 2018, pp. 757–788.

[19] A. K. Lenstra and B. Wesolowski, “A random zoo:
Sloth, unicorn, and trx.,” IACR Cryptol. ePrint Arch.,
vol. 2015, p. 366, 2015.

[20] C. Dwork and M. Naor, “Pricing via processing or com-
batting junk mail,” in Annual International Cryptology
Conference, Springer, 1992, pp. 139–147.

[21] K. Pietrzak, “Simple verifiable delay functions,” in 10th
innovations in theoretical computer science conference
(itcs 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2018.

[22] B. Wesolowski, “Efficient verifiable delay functions,”
in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2019, pp. 379–407.

[23] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” 1996.

[24] M. Mahmoody, T. Moran, and S. Vadhan, “Publicly
verifiable proofs of sequential work,” in Proceedings
of the 4th conference on Innovations in Theoretical
Computer Science, 2013, pp. 373–388.

[25] N. Döttling, S. Garg, G. Malavolta, and P. N. Vasude-
van, “Tight verifiable delay functions.,” IACR Cryptol.
ePrint Arch., vol. 2019, p. 659, 2019.

[26] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake,” self-published paper, Au-
gust, vol. 19, p. 1, 2012.

[27] Pos based on synthetic pow using vdf and vrf, last
accessed on 01/08/20. [Online]. Available: https : / /
ethresear. ch / t / pos - based - on - synthetic - pow - using -
vdf-and-vrf/7271.

[28] Nakamoto consensus with vdf and vrf, last accessed on
01/08/20. [Online]. Available: https : / / ethresear. ch / t /
nakamoto-consensus-with-vdf-and-vrf/5671.

[29] J. Long and R. Wei, “Nakamoto consensus with veri-
fiable delay puzzle,” arXiv preprint arXiv:1908.06394,
2019.

[30] H. Abusalah, C. Kamath, K. Klein, K. Pietrzak, and
M. Walter, “Reversible proofs of sequential work,” in
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2019, pp. 277–291.

[31] P. Valiant, “Incrementally verifiable computation or
proofs of knowledge imply time/space efficiency,” in
Theory of Cryptography Conference, Springer, 2008,
pp. 1–18.

[32] M. Naor, O. Paneth, and G. N. Rothblum, “Incremen-
tally verifiable computation via incremental pcps,” in
Theory of Cryptography Conference, Springer, 2019,
pp. 552–576.

[33] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer,
“Recursive composition and bootstrapping for snarks
and proof-carrying data,” in Proceedings of the forty-
fifth annual ACM symposium on Theory of computing,
2013, pp. 111–120.

[34] S. Bowe, J. Grigg, and D. Hopwood, “Halo: Recur-
sive proof composition without a trusted setup.,” IACR
Cryptol. ePrint Arch., vol. 2019, p. 1021, 2019.

[35] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner, “Proof-
carrying data from accumulation schemes.,” IACR Cryp-
tol. ePrint Arch., vol. 2020, p. 499, 2020.

[36] M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Miccian-
cio, T. Riviere, A. Shelat, M. Venkitasubramaniam, and
R. Wang, “Diogenes: Lightweight scalable rsa modulus
generation with a dishonest majority.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 374, 2020.

[37] M. Chen, R. Cohen, J. Doerner, Y. Kondi, E. Lee, S.
Rosefield, and A. Shelat, “Multiparty generation of an
rsa modulus.,” IACR Cryptol. ePrint Arch., vol. 2020,
p. 370, 2020.

[38] D. Boneh, B. Bünz, and B. Fisch, “A survey of two
verifiable delay functions.,” IACR Cryptol. ePrint Arch.,
vol. 2018, p. 712, 2018.

[39] V. Attias, L. Vigneri, and V. Dimitrov, “Implementation
study of two verifiable delayfunctions.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 332, 2020.

14

[40] “Randchain,” [Online]. Available:
ANONYMISEDFORSUBMISSION.

[41] “Crates/rug,” last accessed on 01/08/20. [Online]. Avail-
able: https://crates.io/crates/rug.

[42] “Cargo-bench,” last accessed on 01/08/20. [Online].
Available: https://doc.rust- lang.org/cargo/commands/
cargo-bench.html.

[43] “Criterion.rs,” last accessed on 01/08/20. [Online].
Available: https://github.com/bheisler/criterion.rs.

[44] J. Garay, A. Kiayias, and N. Leonardos, “The bit-
coin backbone protocol: Analysis and applications,” in
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2015, pp. 281–310.

[45] R. Pass, L. Seeman, and A. Shelat, “Analysis of the
blockchain protocol in asynchronous networks,” in An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Springer, 2017,
pp. 643–673.

[46] J. A. Garay, A. Kiayias, and N. Leonardos, “Full analy-
sis of nakamoto consensus in bounded-delay networks.,”
IACR Cryptol. ePrint Arch., vol. 2020, p. 277, 2020.

[47] B. Y. Chan and E. Shi, “Streamlet: Textbook stream-
lined blockchains.,” IACR Cryptol. ePrint Arch.,
vol. 2020, p. 88, 2020.

[48] E. Kokoris-Kogias, A. Spiegelman, D. Malkhi, and
I. Abraham, “Bootstrapping consensus without trusted
setup: Fully asynchronous distributed key generation.,”
IACR Cryptol. ePrint Arch., vol. 2019, p. 1015, 2019.

[49] I. Cascudo and B. David, “Albatross: Publicly attestable
batched randomness based on secret sharing,”

[50] A. Cherniaeva, I. Shirobokov, and O. Shlomovits, “Ho-
momorphic encryption random beacon.,” IACR Cryptol.
ePrint Arch., vol. 2019, p. 1320, 2019.

[51] P. Schindler, A. Judmayer, M. Hittmeir, N. Stifter, and
E. Weippl, Randrunner: Distributed randomness from
trapdoor vdfs with strong uniqueness, Cryptology ePrint
Archive, Report 2020/942, https://eprint.iacr.org/2020/
942, 2020.

[52] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L.
Gasser, I. Khoffi, M. J. Fischer, and B. Ford, “Scalable
bias-resistant distributed randomness,” in 2017 IEEE
Symposium on Security and Privacy (SP), Ieee, 2017,
pp. 444–460.

[53] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin
backbone protocol with chains of variable difficulty,” in
Annual International Cryptology Conference, Springer,
2017, pp. 291–323.

[54] L. Kiffer, R. Rajaraman, and A. Shelat, “A better
method to analyze blockchain consistency,” in Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 729–744.

[55] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P.
Viswanath, X. Wang, and O. Zeitouni, “Everything
is a race and nakamoto always wins,” arXiv preprint
arXiv:2005.10484, 2020.

[56] P. Gazi, A. Kiayias, and A. Russell, “Tight consistency
bounds for bitcoin,” 2020.

[57] “Bitcoin’s energy consumption ’equals that of switzer-
land’,” last accessed on 01/08/20. [Online]. Available:
https://www.bbc.com/news/technology-48853230#:∼:
text=Bitcoin%20uses%20as%20much%20energy,the%
20University%20of%20Cambridge%20shows .&text=
Currently%2C%20the%20tool%20estimates%20that,0.
21%25%20of%20the%20world’s%20supply..

[58] Amd breaks 8ghz overclock with upcoming fx processor,
sets world record, last accessed on 01/08/20. [Online].
Available: http://hothardware.com/News/AMD-Breaks-
Frequency-Record-with-Upcoming-FX-Processor/.

[59] “Why has cpu frequency ceased to grow?,” last accessed
on 01/08/20. [Online]. Available: https://software.intel.
com/content/www/us/en/develop/blogs/why-has-cpu-
frequency-ceased-to-grow.html.

[60] “Supranational/vdf-fpga-round1-results,” last accessed
on 01/08/20. [Online]. Available: https: / /github.com/
supranational/vdf-fpga-round1-results.

[61] “Supranational/vdf-fpga-round2-results,” last accessed
on 01/08/20. [Online]. Available: https: / /github.com/
supranational/vdf-fpga-round2-results.

[62] “Supranational/vdf-fpga-round3-results,” last accessed
on 01/08/20. [Online]. Available: https: / /github.com/
supranational/vdf-fpga-round3-results.

[63] I. Eyal and E. G. Sirer, “Majority is not enough: Bit-
coin mining is vulnerable,” in International conference
on financial cryptography and data security, Springer,
2014, pp. 436–454.

[64] J. Bonneau, E. W. Felten, S. Goldfeder, J. A. Kroll, and
A. Narayanan, “Why buy when you can rent? bribery
attacks on bitcoin consensus,” 2016.

[65] K. Liao and J. Katz, “Incentivizing blockchain forks
via whale transactions,” in International Conference on
Financial Cryptography and Data Security, Springer,
2017, pp. 264–279.

[66] A. Judmayer, N. Stifter, A. Zamyatin, I. Tsabary, I.
Eyal, P. Gazi, S. Meiklejohn, and E. R. Weippl, “Pay-
to-win: Incentive attacks on proof-of-work cryptocur-
rencies.,” IACR Cryptol. ePrint Arch., vol. 2019, p. 775,
2019.

[67] V. Buterin and V. Griffith, “Casper the friendly finality
gadget,” arXiv preprint arXiv:1710.09437, 2017.

[68] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I.
Bentov, L. Breidenbach, and A. Juels, “Flash boys
2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability,” in 2020
IEEE Symposium on Security and Privacy (SP), 2020,
pp. 566–583.

[69] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduc-
tion to reliable and secure distributed programming.
Springer Science & Business Media, 2011.

[70] D. Malkhi and M. Reiter, “Byzantine quorum systems,”
Distributed computing, vol. 11, no. 4, pp. 203–213,
1998.

15

[71] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in
the presence of partial synchrony,” Journal of the ACM
(JACM), vol. 35, no. 2, pp. 288–323, 1988.

[72] T.-H. H. Chan, R. Pass, and E. Shi, “Consensus through
herding,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
Springer, 2019, pp. 720–749.

[73] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse,
and E. G. Sirer, “Scalable and probabilistic leaderless
bft consensus through metastability,” arXiv preprint
arXiv:1906.08936, 2019.

[74] “Bch avalanche transactions show finality speeds 10x
faster than ethereum,” last accessed on 01/08/20. [On-
line]. Available: https : / / news . bitcoin . com / bch -
avalanche - transactions - show - finality - speeds - 10x -
faster-than-ethereum/.

[75] “Vrf-based mining: Simple non-outsourceable cryp-
tocurrency mining,” last accessed on 01/08/20. [Online].
Available: https://github.com/DEX- ware/vrf- mining/
blob/master/paper/main.pdf.

[76] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random
functions,” in 40th Annual Symposium on Foundations
of Computer Science (Cat. No. 99CB37039), IEEE,
1999, pp. 120–130.

[77] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, ACM,
2006, pp. 189–202.

[78] M. Blum, “Coin flipping by telephone a protocol for
solving impossible problems,” ACM SIGACT News,
vol. 15, no. 1, pp. 23–27, 1983.

[79] T. Moran, M. Naor, and G. Segev, “An optimally
fair coin toss,” in Theory of Cryptography Conference,
Springer, 2009, pp. 1–18.

[80] A. Beimel, E. Omri, and I. Orlov, “Protocols for mul-
tiparty coin toss with dishonest majority,” in Annual
Cryptology Conference, Springer, 2010, pp. 538–557.

[81] K.-M. Chung, Y. Guo, W.-K. Lin, R. Pass, and E. Shi,
“Game theoretic notions of fairness in multi-party coin
toss,” in Theory of Cryptography Conference, Springer,
2018, pp. 563–596.

[82] B. Awerbuch and C. Scheideler, “Robust random num-
ber generation for peer-to-peer systems,” in Interna-
tional Conference On Principles Of Distributed Sys-
tems, Springer, 2006, pp. 275–289.

[83] Y. Dodis, “Efficient construction of (distributed) verifi-
able random functions,” in International Workshop on
Public Key Cryptography, Springer, 2003, pp. 1–17.

[84] V. Kuchta and M. Manulis, “Unique aggregate signa-
tures with applications to distributed verifiable random
functions,” in International Conference on Cryptology
and Network Security, Springer, 2013, pp. 251–270.

[85] D. Galindo, J. Liu, M. Ordean, and J.-M. Wong, “Fully
distributed verifiable random functions and their appli-
cation to decentralised random beacons.,” IACR Cryptol.
ePrint Arch., vol. 2020, p. 96, 2020.

[86] C. Gómez-Calzado, A. Lafuente, M. Larrea, and M.
Raynal, “Fault-tolerant leader election in mobile dy-
namic distributed systems,” in 2013 IEEE 19th Pacific
Rim International Symposium on Dependable Comput-
ing, IEEE, 2013, pp. 78–87.

[87] D. Boneh, S. Eskandarian, L. Hanzlik, and N. Greco,
“Single secret leader election.,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 25, 2020.

[88] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, “Hotstuff: Bft consensus with linearity
and responsiveness,” in Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[89] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok:
Sharding on blockchain,” in Proceedings of the 1st ACM
Conference on Advances in Financial Technologies,
2019, pp. 41–61.

[90] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass,
“Continuous verifiable delay functions,” in Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 2020, pp. 125–
154.

[91] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox,
“Zcash protocol specification,” GitHub: San Francisco,
CA, USA, 2016.

APPENDIX

1. Security proof of two SeqPoW constructions

We formally prove security guarantee of two SeqPoW
constructions. We start from SeqPoWVDF.

Lemma 5. SeqPoWVDF satisfies completeness.

Proof. Assuming there is an (λ, ψ, T)-valid tuple
(pp, sk, i, x, Si, πi). By completeness and Lemma 1,
VDF.Verify(·) will pass. As hash functions are deterministic,
difficulty check will pass. Therefore,

SeqPoWVDF.Verify(pp, pk, i, x, Si, πi) = 1

Lemma 6. SeqPoWVDF satisfies soundness.

Proof. We prove this by contradiction. Assuming there exists
a tuple (pp, sk, i, x, Si, πi) that is not (λ, ψ, T)-valid such that

SeqPoWVDF.Verify(pp, pk, i, x, Si, πi) = 1

By soundness and Lemma 1, if (y, y+, π+, ψ) is generated
by A, VDF.Verify(·) will return 0. As hash functions are
deterministic, if Si > 2κ

T , difficulty check will return 0. Thus,
if (pp, sk, i, x, Si, πi) is not (λ, ψ, T)-valid, then the adversary
should break soundness. Thus, this assumption contradicts
soundness.

Lemma 7. SeqPoWVDF satisfies hardness.

16

Proof. We prove this by contradiction. Assuming

Pr

[
bi+1 = 1

∣∣∣∣ Si+1, bi+1 ←
Solve(pp, sk, T, Si)

]
>

1

T

By sequentiality, the value of Si+1 is unpredictable before
finishing Solve(·). By pseudorandomness of hash functions,
H(pk‖Si+1) is uniformly distributed, and the probability that
H(pk‖Si+1) ≤ 2κ

T is 1
T with negligible probability. This

contradicts the assumption.

Lemma 8. SeqPoWVDF does not satisfy uniqueness.

Proof. By hardness, each of Si has the probability 1
T to

be a valid solution. As i can be infinite, with overwhelm-
ing probability, there exists more than one honest tuple
(pp, sk, i, x, Si, πi) such that H(pk‖Si) ≤ 2κ

T .

Lemma 9. If the underlying VDF satisfies σ-sequentiality,
then SeqPoWVDF satisfies σ-sequentiality.

Proof. We prove this by contradiction. Assuming there exists
A1 which runs in less than time σ(ψi) such that

Pr

 (pp, sk, i, x, Si, πi)
∈ H

∣∣∣∣∣∣∣∣∣∣

pp← Setup(λ, ψ, T)

(sk, pk)
R← Gen(pp)

A1 ← A0(λ, pp, sk)
Si ← A1(i, x)

πi ← Prove(pp, sk, i, x, Si)

By σ-sequentiality, A1 cannot solve VDF.Eval(ppVDF, y, ψ)
within σ(ψ). By Lemma 1, Si can and only can be com-
puted by composing VDF.Eval(ppVDF, y, ψ) for i times, which
cannot be solved within σ(ψi). This contradicts the assump-
tion.

The completeness, soundness, hardness and sequentiality
proofs of SeqPoWSloth are identical with SeqPoWVDF’s. We
prove SeqPoWSloth satisfies uniqueness below.

Lemma 10. SeqPoWSloth satisfies uniqueness.

Proof. We prove this by contradiction. Assuming there
exists two (λ, ψ, T)-valid tuples (pp, sk, i, x, Si, πi)
and (pp, sk, i, x, Si, πi) where j < i. According
to SeqPoWSloth.Solve(·), we have H(pk‖Si) ≤ 2κ

T

and H(pk‖Sj) ≤ 2κ

T , and initial difficulty check in
SeqPoWSloth.Verify(·) will pass. However, in the for loop
of SeqPoWSloth.Verify(·), if Si is valid, then verification of
Sj will fail. Then, SeqPoWSloth.Verify(·) returns 0, which
contradicts the assumption.

17

