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Abstract
This paper presents RANDCHAIN, a Decentralised Random-
ness Beacon (DRB) that is the first to achieve both scalability
(i.e., a large number of participants can join) and fairness
(i.e., each participant controls comparable power on deciding
random outputs). Unlike existing DRB protocols where
participants are collaborative, i.e., contributing local entropy
and aggregating them into a single output, participants in
RANDCHAIN are competitive: they compete with each other
to generate the next random output. The competitive design
reduces the communication complexity from at least O(n2)
to O(n) without any trusted party, breaking the scalability
limit in existing DRBs.

To achieve scalability and fairness while preserving all
properties of DRBs, we introduce a new primitive Sequential
Proof-of-Work (SeqPoW), a Proof-of-Work variant that
cannot be solved faster by using parallel processors. SeqPoW
serves as the core building block of RANDCHAIN, and is
of independent interest for other applications. We formalise
SeqPoW, propose two constructions based on Verifiable
Delay Functions (VDFs) and Sloth, and analyse their security
and efficiency. We then provide the formal specification of
RANDCHAIN and analyse its security and performance.

We implement RANDCHAIN and evaluate its performance
on computer clusters consisting of 1024 nodes (each as a
participant) across 13 geographical regions, demonstrating its
superiority (1.3 seconds per random output with a constant
bandwidth of 200KB/s per node) compared to state-of-the-art
DRBs RandHerd (S&P’18) and HydRand (S&P’20).

1 Introduction
Randomness is a key building block for various protocols and
applications. Decentralised Randomness Beacon (DRB) al-
lows a set of participants to jointly generates random outputs
periodically. It has been a promising approach to provide
secure randomness. To support security-critical protocols
and applications with high financial stake such as public
blockchains [1]–[4] and voting protocols [5]–[7], DRBs have
to be 1) scalable: even with a large number of participants, the
DRB produces random outputs with an expected rate, and 2)
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fair: each participant controls comparable power on deciding
random outputs. Without scalability, the DRB can be main-
tained only by a small set of participants. Without fairness,
the DRB can be dominated by a small subset of powerful
participants out of the entire set. When the DRB is dominated
by a small set of participants, they can collude and manipulate
the randomness in order to take advantage in protocols and
applications supported by the DRB. However, designing a
DRB that is both scalable and fair remains an open challenge.

Existing DRBs do not scale. Most DRB protocols are
constructed from periodically executing a Distributed
Randomness Generation (DRG) protocol, where participants
contribute their local entropy and aggregate them into a
single random output. Commonly used DRG protocols in
DRBs are based on threshold cryptosystems [3], [8], [9],
Verifiable Random Functions (VRFs) [2], [10], [11], and/or
Publicly Verifiable Secret Sharing (PVSS) [1], [12]–[16].

While DRG-based DRBs are fair given their “one-man-
one-vote” design, they are not scalable, as they suffer from
either at least O(n2) communication complexity. DRG-based
DRBs usually involve all-to-all broadcast primitives, leading
to at least O(n2) communication complexity. To overcome the
communication complexity bound, DRG-based DRBs have to
employ a central point that relays messages. The central point
is either a dealer [8], [9], [11], [13], [15] or a leader elected
by a leader election protocol [1]–[3], [10], [12]. A dealer is ei-
ther implemented as a trusted party or in a distributed manner
which introduces extra communication overhead [17]. If the
elected leader is corrupted, then it can bias random outputs by
withholding messages and can compromise the liveness by
sending messages to and advancing rounds for only a subset of
participants [18], [19]. To tolerate corrupted leaders, the DRB
has to employ an extra round synchronisation protocol [19],
which allows participants to re-synchronise and replace the
corrupted leader with a new leader to start a new round. How-
ever, round synchronisation protocols introduce extra commu-
nication complexity [18], [19] and/or increase latency [20].

The scalability crux: participants are collaborative. We
attribute these limitations to the design that participants
are collaborative: participants contribute their local inputs
and aggregate them into a single output. The collaborative
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process ensures that no participant can fully control random
outputs, making them hard to bias or predict. However,
in order to collaborate, participants should continuously
broadcast messages to and synchronise with each other. The
former incurs at least O(n2) communication complexity, and
the latter requires round synchronisation. All extra designs
incorporated with DRG – e.g., using dealers [8], [9], [13],
[15], leader election [1]–[3], [10]–[12], sharding [3], [12],
cryptographic sortition [10], Byzantine consensus [10], [14],
and erasure coding [13], [15] – aim at reducing the impact
of the above two limitations. However, since all of them are
in the collaborative design, they inherently suffer from the
two limitations and cannot address them completely.

Competitive DRBs: a new design space. To address the
inherent limitations in the collaborative design, we consider
a new design space for DRBs called competitive DRBs.
Unlike existing DRBs where participants are collaborative,
participants in competitive DRBs compete to solve cryp-
tographic puzzles, whose solutions are unpredictable. The
participant who first solves the puzzle becomes the leader,
and broadcasts the puzzle solution to other participants.
Upon a new puzzle solution, participants execute Nakamoto
consensus [21] to agree on and append it to the sequence
of puzzle solutions, ensuring consistency and liveness. A
random output is extracted from each puzzle solution by
using a Verifiable Delay Function (VDF) [22] which takes
longer time than the puzzle solution becoming irreversible
in the sequence. The time delay prevents the adversary from
withholding its puzzle solution and biasing the random output
to its own advantage, as discussed in Section 5.5.

RANDCHAIN: the first DRB with scalability and fairness.
We propose RANDCHAIN, the first competitive DRB. RAND-
CHAIN works in permissioned settings identical to all existing
DRBs, and is the first to achieve both scalability and fairness:
it allows an unbounded number of participants to participate
and restricts their voting power to be comparable. To achieve
scalability, RANDCHAIN employs Nakamoto consensus [21]
with linear communication complexity. To achieve fairness,
RANDCHAIN realises non-parallelisable mining [23], where
more processors do not give any advantage in solving a puz-
zle. As no existing primitive can provide non-parallelisable
mining, we introduce Sequential Proof-of-Work (SeqPoW),
a Proof-of-Work (PoW) variant that is sequential, i.e., cannot
be solved faster by using parallel processors. SeqPoW is also
of independent interest for other protocols such as leader
election and Proof-of-Stake (PoS)-based consensus.

Our contributions are summarised as follows.

• We identity and formalise a new design space for DRBs,
namely competitive DRBs, which break the scalability
limit in existing DRB designs.

• As existing primitives lack the properties desired by
the competitive DRBs (given the analysis in §3), we

introduce and formalise the concept of SeqPoW that
satisfies these properties. We provide two constructions
based on VDFs [24], [25] and Sloth [26], and analyse
their security and efficiency (§4).

• We provide RANDCHAIN as a concrete instantiation
of competitive DRBs, and provide an analysis on its
security and performance (§5).

• We provide an implementation of SeqPoW and
RANDCHAIN and evaluate their performance (§6). The
implementation adds/changes about 4500 Rust lines
of code (LoCs) on top of parity-bitcoin [27]. The
evaluation results show that RANDCHAIN is indeed
scalable and fair: with 1024 nodes (each as a participant),
RANDCHAIN can produce a random output every 1.3
seconds; utilise constant bandwidth of about 200 KB/s
per node; and provide nodes with comparable chance
of producing random outputs.

• We establish a unified evaluation framework of DRBs,
and compare RANDCHAIN with existing DRBs under
this framework (§7). Our comparison shows that
RANDCHAIN is the only DRB that is secure, scalable
and fair, without relying on any trusted third party.

We conclude the paper in §8, and provide additional details
in the appendix. Appendix A provides preliminary definitions
on VDFs. Appendix B, C and D provide formal definitions,
security proofs of constructions, and applications for SeqPoW,
respectively. Appendix E provides formal security proofs for
RANDCHAIN. Appendix F provides the details of existing
DRBs. Appendix G discusses three limitations and the
corresponding resolutions of RANDCHAIN, namely the
energy efficiency, churn tolerance and finality.

2 Model of DRBs
Decentralised Randomness Beacons (DRBs) allow a set of
participants to produce random outputs periodically. In this
section, we define the model for DRBs, including the system
model, correctness properties and performance metrics.

2.1 System model
The system model specifies the environment and adversary
capacity during the execution of a DRB.
System setting. We consider the system setting common in
most DRBs [1]–[3], [8]–[16]. In particular, a DRB contains
a set of n participants P = {p1, ... , pn}. Each participant
pk∈P has a pair of secret key skk and public key pkk, and is
uniquely identified by pkk. A Public Key Infrastructure (PKI)
in the system keeps track of participants’ public keys. Each
participant is only directly connected to a subset of peers in
the system. Participants jointly maintain a unique sequence
of random outputs. Participants continuously execute the
DRB protocol to agree on new random outputs and append
them to the sequence.
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Network model. Network model specifies the timing
guarantee of messages sent between participants. There are
three network models, namely synchronous where messages
are delivered within a known finite time bound ∆; partially
synchronous [28] where messages are delivered within
a known finite time-bound ∆ after an unknown Global
Stabilisation Time (GST); or asynchronous where messages
are delivered without a known time bound.
Adversary model. Let α ∈ [0,1] be the fraction of voting
power controlled by the adversary, and β = 1 − α be the
voting power of all correct participants. The adversary is
adaptive in the sense that it can corrupt any set of participants
with at most α voting power at any time. The adversary can
coordinate corrupted participants without delay; and can
arbitrarily delay, drop, forge and modify messages from its
corrupted participants.

2.2 Correctness properties
DRBs commonly consider five properties: consistency, live-
ness, uniform distribution, unpredictability and unbiasibility.
Consistency and liveness. Similar to consensus, DRBs
should satisfy consistency and liveness. Consistency ensures
that participants agree on a unique sequence of random
outputs, and liveness ensures that participants produce
new random outputs at an admissible rate. We adapt the
common-prefix and chain-growth definitions from Nakamoto
consensus protocols [29]–[32] rather than the agreement
and termination definitions from BFT-style consensus
protocols [33], as we consider a streamlined execution rather
than a single-shot execution.

Consistency ensures that participants can only have
different views on the latest ϒ random outputs. Some
randomness-based applications require RB to have final-
ity [34], i.e., at any time, correct participants do not have
conflicted views on the random output, which is equivalent
to 0-consistency or agreement in Byzantine consensus [35].

Definition 1 (ϒ-Consistency). A DRB satisfies ϒ-consistency
if for any two correct participants at any time, their sequences
can differ only in the last ϒ∈N random outputs.

Liveness ensures that the DRB produces random outputs at
a certain speed. If the speed does not reach the lowest speed,
then the DRB cannot satisfy the requirement of real-world
applications. Papers formalising a single-shot execution of
DRBs refer liveness as termination [8], [10], [16] or Guar-
anteed Output Delivery (G.O.D.) [9], [13], [15], [36] where,
for every round, a new random output will be produced.

Definition 2 ((t,τ)-Liveness). A DRB satisfies (t,τ)-liveness
if for any time period of length t, every correct participant
learns at least t ·τ new random outputs, where t,τ∈R+.

Uniform distribution. Uniform distribution ensures that
every random output in the DRB is statistically close to a
uniformly random string.

Definition 3 (Uniform distribution). A DRB satisfies uni-
form distribution if every random output is indistinguishable
from a random string of the same length, except for negligible
probability.

Unpredictability. Unpredictability ensures that the ad-
versary cannot predict random outputs that have not been
produced yet. Otherwise, if the adversary can predict
future random outputs, then it can take advantage in
randomness-based applications.

Definition 4 (Unpredictability). A DRB satisfies unpre-
dictability if any adversary can only obtain negligible
advantage on the following game. Assuming participants
in the DRB agree on an `-long sequence of random outputs.
Before the (`+ 1)-th random output R`+1 is produced, the
adversary makes a guess R′`+1 on R`+1. The adversary’s
advantage is quantified as Pr

[
R′`+1=R`+1

]
.

Unbiasibility. Unbiasibility ensures that the adversary
cannot influence the produced random output to another value
to its own advantage [9], [12], [14], [36]. Otherwise, if the
adversary can bias random outputs, then it can take advantage
in randomness-based applications. Unbiasibility can be
achieved by the output-independent-abort property [37]:
the adversary has to decide to proceed or abort the protocol
before learning the protocol’s outcome. In the context of an
ϒ-consistent DRB, output-independent-abort ensures that,
participants learn a random output only after it becomes
ϒ-deep in a correct participant’s view.

Definition 5 (Unbiasibility). Assuming a DRB satisfies
ϒ-consistency, and participants in the DRB agree on an `-long
sequence of random outputs. The DRB satisfies unbiasibility
if the adversary learns the (`+1)-th random output R`+1 only
after (`+ϒ+1) consecutive random outputs are recorded in
the sequence of at least one correct participant, except for
negligible probability.

2.3 Performance metrics
DRBs have two performance metrics, namely communication
complexity and latency.
Communication complexity. Communication complexity
is the total amount of communication required to complete
a protocol [38]. In the context of DRBs, the communication
complexity is quantified as the amount of communication
(in bits) all participants take to generate a random output. For
example, for a DRB that includes n participants and achieves
O(n) (aka linear) communication complexity, each participant
handles a constant amount of communication for generating a
random output, leading to the total amount of communication
proportional to n. A protocol may have different communi-
cation complexity in the best-case and worst-case executions.
Latency. Latency is the time required to complete a protocol.
In the context of DRBs, the latency is quantified as the time
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participants take to generate a random output. Similarly, a
protocol may have different latencies in the best-case and
worst-case executions. If the protocol’s latency only depends
on the actual network delay δ but not the delay upper bound
∆, then the protocol is responsive [39].

3 Design goals and strawman designs
In this section, we describe our two design goals, namely
scalability and fairness, and analyse two strawman designs
towards them. The analysis reveals the need for a crypto-
graphic puzzle with two properties, namely sequentiality and
hardness. As no existing puzzle achieves these two properties
simultaneously, we are motivated to propose a new primitive
named Sequential Proof-of-Work (SeqPoW, §4) that satisfies
both properties, allowing us to construct RANDCHAIN (§5).

3.1 Design goals: scalability and fairness
Our goal is to design a DRB that can serve security-critical
protocols and applications with high financial stake, such as
public blockchains and voting protocols. To ensure that the
DRB can be trusted by such protocols and applications, we
demand two additional requirements on the DRB atop the
model in §2, namely scalability and fairness.

Scalability. Scalability specifies that the DRB can produce
random outputs regularly even in the presence of a large set
of n participants. Having a large set of participants reduces
the trust needed on each participant, making the DRB more
resilient to malicious parties. Otherwise, if the DRB is
maintained by a small set of participants, then they can
collude to bias and/or predict random outputs and thus take
advantage in the randomness-based applications.

To produce random outputs regularly when n is large, the
DRB has to minimise the communication complexity and
latency. For communication complexity, O(n) is considered
scalable as each participant handles a constant amount of com-
munication independent with n, while O(n2) is not as each
node handles overwhelming communication overhead when
n is large. For latency, demand it to be as small as possible.

Fairness. Fairness specifies that each participant controls
comparable voting power on deciding random outputs,
regardless of their financial stake or hardware resource. The
voting power of a node is quantified as the amount of its
contributed entropy in collaborative DRBs, and as its chance
of producing the next block in competitive DRBs. Without
fairness, few powerful participants among all participants
will control the randomness generation process of the DRB.
This is not desirable as the powerful participants can collude
to compromise the DRB, similar to the scalability case.

Unlike DRG-based DRBs that satisfy fairness immediately
given the “one-man-one-vote” nature, participants in
competitive DRBs may have different voting power, leading
to weak fairness. We define fairness as the maximum voting
power difference among participants in the DRB. In the

context of competitive DRBs, fairness is the maximum
difference of nodes’ chances of producing the next block.

Definition 6 (µ-Fairness). A DRB satisfies µ-fairness if the
following holds for the largest possible µ∈(0,1]. Assuming
all messages are delivered instantly and participants in a
DRB agree on an `-long sequence of random outputs. Let
X(pk) be the event that participant pk produces the (`+1)-th
random output earlier than other participants. For any two
participants pi and p j,

µ= min
∀i, j∈[n]

Pr [X(pi)]

Pr [X(p j)]

When µ = 1, the DRB achieves ideal fairness and the
network is fully decentralised, and vice versa when µ→0. As
a design goal, we demand µ to be as close to 1 as possible.
Non-goals. The DRB assumes permissioned networks, and
thus is not expected to prevent Sybil attacks in permissionless
networks. Sybil attacks are an orthogonal problem, and
can be prevented with an extra Sybil-resistance mechanism,
such as Proof-of-Work (PoW) which prices memberships
with computational power, Proof-of-Stake (PoS) which
prices memberships with financial stake, and Decentralised
Identity (DID) [40] where participants obtain verifiable and
Sybil-resistant memberships from external services.

The participants’ incentive compatibility is also an orthog-
onal problem. Making the DRB incentive compatible requires
an extra incentive mechanism that encourages participants to
maintain the DRB. For example, one can reward participants
with tokens in proportion to their contributions.

3.2 Strawman designs
We analyse two strawman designs towards the two goals.
The analysis reveals the need for a cryptographic puzzle
satisfying two properties, namely sequentiality and hardness.
No existing puzzle satisfies both of them simultaneously.
Strawman#1: Nakamoto-style DRBs. The scalability goal
requires the DRB to achieve O(n) communication complexity.
We have shown in §1 that no existing DRB achieves it
without a trusted third party, motivating us to propose the
competitive DRB approach. A natural choice is building
upon the Nakamoto-style consensus, where each participant
solves a PoW puzzle to become the leader, and a random
output is extracted from the PoW solution deterministically.

Such design satisfies scalability but not fairness, as
participants with more mining hardware have more chance
of mining blocks than others. To achieve fairness, the DRB
has to prevent participants from investing more mining
resource to take advantage in mining. A possible solution
is the non-parallelisable mining [23], where a participant
can only use a single processor for mining and cannot speed
up mining by using multiple parallel processors. To realise
non-parallelisable mining, the puzzle has to be sequential: it
cannot be solved faster by using multiple parallel processors.
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Strawman#2: Applying time-sensitive cryptography.
Sequentiality has been formalised and achieved in time-
sensitive cryptographic primitives. For example, Verifiable
Delay Functions (VDFs) [22] enforce a parameterisable
time delay on generating outputs and allow to verify outputs
fast. Recent proposals [41], [42] apply VDFs to construct
Nakamoto-style consensus: each participant derives a random
output y from the latest system state, maps y to a random
time parameter t in a designated interval, and solves a VDF
with time parameter t. The first participant solving the VDF
derives the next random output from its VDF output.

However, Nakamoto-style consensus with existing time-
sensitive primitives achieves weaker fairness and consistency
guarantee. All existing time-sensitive primitives have a fixed
time delay. Nakamoto-style consensus with such puzzles is lo-
cally predictable [43]: given the input x, each participant can
learn the time parameter t immediately, and thus can predict
when it will propose the next random output. The adversary
can apply such prediction to amplify its advantage in selfish
mining [44] and double-spending [21], weakening the sys-
tem’s fairness and consistency guarantee, respectively [43].

To make the mining process unpredictable, the puzzle
has to take a random and unpredictable number of attempts
to solve. PoW satisfies such requirement by providing the
hardness property [45]: upon each attempt on solving the
puzzle, the solver has probability 1

T to solve the puzzle,
where T is a hardness parameter. However, none of existing
primitives satisfies both sequentiality and hardness.

4 Sequential Proof-of-Work
Motivated by the two strawman designs in §3, we introduce
Sequential Proof-of-Work (SeqPoW), a PoW variant that
satisfies both sequentiality and hardness. SeqPoW serves
as the key building block of RANDCHAIN, and is also
of independent interest for other protocols. We formalise
SeqPoW, provide two constructions, and formally analyse
their security and efficiency.

4.1 Preliminaries on VDFs
Verifiable Delay Function (VDF) [22], [24], [25] allows a
prover to evaluate an input, and produce a unique output
deterministically with a succinct proof attesting the output’s
correctness. The evaluation process takes non-negligible
and parameterisable time to execute, even with parallelism.
Appendix A provides its formal definition. A VDF is a tuple
of four algorithms VDF=(Setup,Eval,Prove,Verify):

Setup(λ)→ pp: On input security parameter λ, outputs
public parameter pp.

Eval(pp,x,t)→y: On input pp, input x and time parameter
t∈N+, produces output y.

Prove(pp,x,y,t)→π: On input pp, x, y and t, outputs proof π.

Prover SeqPoW
puzzle

Verifier

...

Diff checkDifficulty
T

Diff check Diff check

Iteratively
Sequential
Function

Figure 1: Sequential Proof-of-Work.

Verify(pp,x,y,π,t)→{0,1}: On input pp, x, y, π and t,
outputs 1 if y is a correct evaluation, otherwise 0.

VDF satisfies three properties, namely completeness that
all outputs from honest evaluations can pass the verification,
soundness that all outputs from malicious evaluations cannot
pass the verification, and σ-sequentiality that Eval(·, ·, t)
cannot be evaluated in less than time σ(t) even with an
unbounded amount of parallel processors. Sequentiality also
implies unpredictability: before finishing Eval(·), the prob-
ability of making a correct guess on its output is negligible.

VDFs are usually constructed from an iteratively sequen-
tial function (ISF) and a succinct proof attesting the ISF’s
execution results [24], [25]. ISF f (t,x)=gt(x) is a function
that composes a sequential function g(x) for t times. The
fastest way of computing ISF f (t, x) is to iterate g(x) for
t times, as g(·) is sequential. Squaring and squaring root
over cyclic groups are two sequential functions with proven
sequentiality [26], [46], [47]. Their repeated versions –
repeated squaring [24], [25] and repeated squaring root [26]
over cyclic groups – are two widely used ISFs.

ISF f (·) usually provides the self-composability property:
for any x and (t1,t2), let y← f (x,t1), we have f (x,t1+t2)=
f (y, t2). VDFs usually inherit the self-composability from
ISFs, i.e., for all λ, t1, t2, let pp ← Setup(λ) and y ←
Eval(pp,x,t1), it holds that Eval(pp,x,t1+t2)=Eval(pp,y,t2).
Such VDFs are known as self-composable VDFs [48].

4.2 Basic idea of SeqPoW
SeqPoW is a PoW that cannot be solved faster by using
multiple processors in parallel. As shown in Figure 1, given
an initial SeqPoW puzzle S0, the prover keeps solving it by
incrementing an ISF. Each iteration takes the last output Si−1
as input and produces a new output Si. For each output Si,
the prover checks whether it satisfies a difficulty parameter T .
If yes, then Si is a valid solution, and the prover can generate
a proof πi on it. Given Si and πi, the verifier can check Si’s
correctness without solving the puzzle again.
Comparisons with relevant primitives (Table 1). SeqPoW
is the first primitive that satisfies both sequentiality and
hardness, and therefore can be used for constructing RAND-
CHAIN. SeqPoW differs from VDFs and other time-sensitive
cryptographic primitives, e.g., Timelock Puzzle (TLP) [49]
and Proofs of Sequential Work (PoSW) [50], [51] in that,
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Table 1: SeqPoW v.s. relevant primitives.

Primitive Execution Output

Seq
uen

tia
l

# Step
s

Bott
len

eck

Unique

Veri
fiab

le

Time-
sensitive

TLP 3 Fixed Proc. freq. 3 7
PoSW 3 Fixed Proc. freq. 7 3
VDF 3 Fixed Proc. freq. 3 3

Resource-
consuming

MHF 3or 7 Fixed Mem. bandw. 3 3

PoW 7 Random
Proc. freq. +
# of procs. 7 3

Our work SeqPoWVDF 3 Random Proc. freq. 7 3
SeqPoWSloth 3 Random Proc. freq. 3 3

the SeqPoW prover iterates an ISF for a randomised (rather
than given) number of times. In addition, compared to TLP,
SeqPoW provides publicly verifiable outputs. Compared
to PoSW, SeqPoW allows outputs to be unique. SeqPoW
differs from PoW in that SeqPoW is sequential. SeqPoW
differs from memory-hard functions (MHFs) [52]–[54] in
that, SeqPoW is bottlenecked by the processor’s frequency,
whereas MHF is bottlenecked by the memory bandwidth.

Two concurrent works [41], [55] propose ways to ran-
domise the number of iterations in VDFs, without formal
treatment. We are the first to formally study such primitives,
including formal definitions, concrete constructions with secu-
rity proofs, implementation and evaluation. We also provide
SeqPoW with uniqueness that both of them cannot achieve.

Applications. Given the unpredictability and hardness prop-
erties, SeqPoW can be of independent interest for other proto-
cols. In Appendix D, we analyse the applications of SeqPoW
in leader election and Proof-of-Stake (PoS)-based consensus.

4.3 Definition
We provide formal definitions of SeqPoW in Appendix B.
The syntax of SeqPoW is as follows.

Setup(λ,ψ,T )→ pp: On input security parameter λ, step
ψ ∈ N+ and difficulty T ∈ [1, ∞), outputs public
parameter pp.

Gen(pp)→(sk,pk): A probabilistic function, which on
input pp, produces a secret key sk and a public key pk.

Init(pp,sk,x)→(S0,π0): On input pp, sk and input x, outputs
initial solution S0 and proof π0. Some constructions
may use pk rather than sk. This also applies to Solve(·)
and Prove(·).

Solve(pp,sk,Si)→(Si+1,bi+1): On input pp, sk and i-th
solution Si, outputs (i+ 1)-th solution Si+1 and result
bi+1∈{0,1}.

Prove(pp,sk,i,x,Si)→πi: On input pp, sk, i, x and Si,
outputs proof πi.

Verify(pp,pk,i,x,Si,πi)→{0,1}: On input pp, pk, i, x, Si
and πi, outputs 1 if Si is a valid solution, otherwise 0.

A tuple (pp,sk,i,x,Si,πi) is honest if (Si,πi) is generated
from evaluating Solve(p, sk,Si−1) and Prove(pp, sk, i,x,Si)
honestly, respectively. A tuple (pp,sk,i,x,Si,πi) is valid if it’s
honest and bi associated to Si from Solve(·) is 1.

SeqPoW satisfies completeness, soundness, hardness and
sequentiality. Completeness ensures that for every honest
tuple (pp,sk,i,x,Si,πi), Verify(pp,pk,i,x,Si,πi) = 1. Sound-
ness ensures that for every non-honest tuple (pp,sk,i,x,Si,πi),
Verify(pp, pk, i, x, Si, πi) = 0. Hardness ensures that each
Solve(·) attempt has the success rate of 1

T . Sequentiality
ensures that even with parallel processors, the fastest way
of computing Si is incrementing Solve(·) for i times, which
takes time σ(i·ψ). Similar to VDFs, sequentiality in SeqPoW
also implies unpredictability: without i sequential Solve(·)
invocations towards Si, the probability of making a correct
guess on Si is negligible.

SeqPoW also has an optional property uniqueness that,
each SeqPoW puzzle only has a single valid solution Si.
Before finding a valid solution Si each Solve(·) attempt
follows the hardness definition, but after finding Si no further
Solve(·) attempt returns a valid solution.

4.4 Constructions
We propose two SeqPoW constructions. Let
H :{0,1}∗→{0,1}κ be a cryptographic hash function. Let G
be a cyclic group. Let HG :{0,1}∗→G be a function mapping
an arbitrary string to an element on G. Let g be a generator
of G. Let sk be the secret key, and pk=gsk be the public key.
SeqPoW from VDFs (Figure 2a). Let ψ be a step param-
eter, x be the input, and T be the difficulty parameter. The
prover runs Init(·), which generates the initial solution S0=
HG(pk‖x). Then, the prover keeps running Solve(·), which
calculates an intermediate output Si=VDF.Eval(pp,Si−1,ψ)

and checks whether H(pk‖Si) ≤ 2κ

T . If true, then Si is a
valid solution, and the prover runs Prove(·), which outputs
proof πi attesting Si = VDF.Evali(pp, S0, ψ). Note that
Si = VDF.Eval(pp, Si−1, ψ) = VDF.Evali(pp, S0, ψ) =
VDF.Eval(pp, S0, i · ψ) when VDF is self-composable.
The verifier runs Verify(·), which checks 1) whether
Si = Evali(pp,S0,ψ) by running VDF.Verify(ppVDF, pk, i ·
ψ,x,Si,πi), and 2) whether Si satisfies the difficulty T .
Unique SeqPoW from Sloth (Figure 2b). SeqPoWVDF

does not provide uniqueness: the prover can keep increment-
ing the ISF to find as many valid solutions as possible. We
construct SeqPoWSloth with uniqueness from Sloth [26], a
slow-timed hash function. In Sloth, the prover calculates the
square root (on a cyclic group G) over the input for t times
to get the output. The verifier calculates the square over the
output for t times to recover the input and checks if the input
is same as the one from the prover. Although the verifica-
tion is linear (and thus do not meet the VDF definition [22]),
verification is faster than computing: on cyclic group G, squar-
ing is O(log|G|) times faster than square rooting. Similar to
SeqPoWVDF, SeqPoWSloth takes each of Si= f (i·ψ,S0) as an

6



Setup(λ, ψ, T )

1 : ppVDF=(G, g)←VDF.Setup(λ)

2 : pp←(ppVDF, ψ, T )

3 : return pp
Gen(pp)

1 : (G, g, ψ, T )← pp

2 : Sample random sk∈N

3 : pk←gsk∈G

4 : return (sk, pk)
Init(pp, pk, x)

1 : (G, g, ψ, T )← pp

2 : S0←HG(pk‖x)
3 : return S0

Solve(pp, pk, Si)

1 : (ppVDF, ψ, T )← pp

2 : Si+1←VDF.Eval(ppVDF, Si, ψ)

3 : bi+1←H(pk‖Si+1)≤
2κ

T
? 1:0

4 : return (Si+1, bi+1)

Prove(pp, pk, i, x, Si)

1 : (ppVDF, ψ, T )← pp

2 : (G, g)← ppVDF

3 : S0←HG(pk‖x)
4 : πVDF←VDF.Prove(ppVDF, S0, Si, i·ψ)
5 : return πVDF

Verify(pp, pk, i, x, Si, πi)

1 : (ppVDF, ψ, T )← pp

2 : (G, g)← ppVDF

3 : S0←HG(pk‖x)
4 : if VDF.Verify(ppVDF, S0, Si, πi, i·ψ)=0 then return 0

5 : if H(pk‖Si)>
2κ

T
then return 0

6 : return 1

(a) SeqPoWVDF.

Setup(λ, ψ, T )

1 : pp←(G, g, ψ, T )

2 : return pp
Gen(pp)

1 : (G, g, ψ, T )← pp

2 : Sample random sk∈N

3 : pk←gsk∈G

4 : return (sk, pk)
Init(pp, pk, x)

1 : (G, g, ψ, T )← pp

2 : S0←HG(pk‖x)
3 : return S0

Solve(pp, pk, Si)

1 : (G, g, ψ, T )← pp

2 : Si+1←S
1

2ψ

i

3 : bi+1←H(pk‖Si+1)≤
2κ

T
? 1:0

4 : return (Si+1, bi+1)

Prove(pp, pk, i, x, Si)

1 : return ⊥

Verify(pp, pk, i, x, Si, πi)

1 : (G, g, ψ, T )← pp

2 : y←Si

3 : if H(pk‖y)> 2κ

T
then return 0

4 : repeat i times

5 : y←y2ψ

6 : if H(pk‖y)≤ 2κ

T
then return 0

7 : if HG(pk‖x) 6=y then return 0

8 : return 1

(b) SeqPoWSloth.

Figure 2: Construction of SeqPoW.

intermediate output and checks if H(pk‖Si)≤ 2κ

T . To make the
solution unique, SeqPoWSloth only treats the first solution sat-
isfying the difficulty as valid. When verifying Si, if the verifier
finds an intermediate output S j ( j< i) satisfying the difficulty,
then Si is considered invalid (line 6 in Verify(·) of Figure 2b).

4.5 Security and efficiency analysis

Security. Appendix C provides full security proofs of
the SeqPoW constructions. The SeqPoW constructions’
completeness and soundness are immediate from Sloth and
VDFs’ completeness, soundness and self-composability.
By pseudorandomness of HG(·) and sequentiality of Sloth
and VDFs, Solve(·) outputs unpredictable solutions. As
H(·) is modelled as a random oracle and Solve(·) produces
an unpredictable solution, the probability that the solution
satisfies the difficulty is 1

T , leading to hardness. The
sequentiality and self-composability of Sloth and VDFs
guarantee the sequentiality of the SeqPoW constructions.

VDFs can be instantiated with any cyclic group, including
the RSA group that requires a trusted setup and the class group
without such requirement. The trusted setup is usually con-
ducted by a trusted party or a multi-party protocol [56], [57].

Efficiency (Table 2). SeqPoWVDF and SeqPoWSloth employ
repeated squaring on an RSA group and repeated square
rooting on a prime-order group as ISFs, respectively. Let s
be the size (in Bytes) of a group element, and ψ be the step
parameter. Each Solve(·) executes ψ steps of the ISF, and the
prover attempts Solve(·) for T times on average to find a valid

Table 2: Efficiency of two SeqPoW constructions.

Solve(·) Prove(·) Verify(·) Proof
size (Bytes)

SeqPoWVDF + Wes19 O(ψ) O(ψT ) O(logψT ) s
SeqPoWVDF + Pie19 O(ψ) O(

√
ψT logψT ) O(logψT ) slog2ψT

SeqPoWSloth O(ψ) 0 O(ψT ) 0

solution. Prove(·) and Verify(·) generate and verify proofs
of ψT consecutive modular squaring operations, respectively.

We analyse SeqPoWVDF with Wesolowski’s VDF
(Wes19) [25] and Pietrzak’s VDF (Pie19) [24] sepa-
rately, without considering optimisation/parallelisation
techniques [24], [25], [58]. According to the existing
analysis [59], the proving complexity, verification complexity
and proof size of Wes19 are O(ψT ), O(log ψT ) and s
Bytes, respectively; and those of Pie19 are O(

√
ψT logψT ),

O(logψT ) and slog2ψT , respectively. When ψT = 240 and
s=32 Bytes, the proof sizes of SeqPoWVDF with Wes19 [25]
and with Pie19 [24] are 32 and 1280 Bytes, respectively.
SeqPoWSloth has the verification complexity of O(ψT ) and
uses the solution itself to represent the proof.

5 RANDCHAIN: DRB from SeqPoW

The SeqPoW puzzles allow us to construct the first scalable
and fair DRB RANDCHAIN. In this section, we provide the
full specification of RANDCHAIN and analyse its correctness
and performance. Appendix E provides the proofs of all
correctness properties for RANDCHAIN.
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Random
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VDF
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Ledger

Ledger

(a) Non-parallelisable mining (b) Nakamoto consensus and random output extraction

Figure 3: The RANDCHAIN protocol. (a) Upon block B`, each participant keeps solving its own SeqPoW puzzle. The participant who first
solves its SeqPoW puzzle (the red one) proposes the next block B`+1 (in red). B`+1 piggybacks B` by including B`’s ID, i.e., B`+1.h−=B`.h.
(b) Each participant maintains a local ledger formed as a DAG of blocks. It considers the longest fork of the DAG as the main chain and
mines over it. For each block B`, the random output B`.R is extracted by a VDF that takes longer than nodes extending (ϒ+1) blocks (in
this case ϒ=1) so that B`.R is learned only after B` becomes irreversible.

mainChain(Ck)

1: M C k←⊥
2: foreach fork C ∗k of Ck do

3: if |C ∗k |>
∣∣M C k

∣∣ then M C k←C ∗k
4: return M C k

randomOutput(pp, B, tVDF)

1: (ppVDF, ·, ·)← pp

2: B.R←VDF.Eval(ppVDF, B.pk‖B.S, tVDF)

3: B.πR←VDF.Prove(ppVDF, B.pk‖B.S, B.R, tVDF)

4: return B.R, B.πR

MainProcedure(pp, skk , pkk)

1: Synchronise ledger as Ck

// The following two lines read/modify Ck concurrently

2 : MineRoutine(pp, skk , pkk , Ck) in a thread
3: SyncRoutine(pp, Ck) in a thread

MineRoutine(pp, skk , pkk , Ck)

1: repeat

2: M C k←mainChain(Ck)

3: B−←M C k [−1]

4: i←0

5: S←SeqPoW.Init(pp, skk , B−.h)

6: repeat
7: if Ck is updated by SyncRoutine(·) then
8: Repeat line 2-5

9: S, b←SeqPoW.Solve(pp, skk , S)

10: i+=1

11: if b=1 then break
12: h←H(pkk‖S)

13: π←SeqPoW.Prove(pp, sk, i, B−.h, S)

14: B←(B−.h, h, i, S, pkk , π)

15: Append B to M C k after B−

16: Propagate B

SyncRoutine(pp, Ck)

1: repeat
2: Wait for a new block as B

3: (h−, h, i, S, pk, π)←B

4: // B should point to an existing block

5: if @B−∈Ck : B−.h=h− then discard B

6: // B should have a valid ID h

7: if h 6=H(pk‖S) then discard B

8: // B should include a valid puzzle solution

9: if SeqPoW.Verify(pp, pk, i, h−, S, π)=0 then discard B

10: Append B to Ck after block B− where B−.h=h−

11: Propagate B

Figure 4: Full specification of RANDCHAIN.

5.1 Overview
Figure 3 provides the intuition of RANDCHAIN, and Figure 4
describes its full specification, including Nakamoto consensus
mainChain(·), random output extraction randomOutput(·),
mining routine MineRoutine(·), synchronisation routine
SyncRoutine(·) and the main function MainProcedure(·). In
RANDCHAIN, participants jointly maintain a sequence of
random outputs as a blockchain, where each random out-
put is derived from a block (§5.2). Specifically, participants
agree on a unique blockchain by executing the Nakamoto con-
sensus, which ensures consistency, liveness, and scalability
(§5.3). RANDCHAIN composes Nakamoto consensus with
our proposed SeqPoW puzzle to achieve non-parallelisable
mining, guaranteeing the fairness (§5.4). Each random output
is extracted from a block by using a Verifiable Delay Func-
tion (VDF) so that the random output is learned only after the
block becomes irreversible in the blockchain, guaranteeing the

uniform distribution, unpredictability and unbiasibility (§5.5).

5.2 DRB structure
Each participant pk locally maintains a ledger Ck formed as a
directed acyclic graph (DAG) of blocks. Following Nakamoto
consensus mainChain(·), pk selects the longest fork in Ck as
the main chain M C k. If there are multiple longest forks at
the same length, pk chooses the one it receives first. M C k
is formed as a blockchain, i.e., a totally ordered sequence of
blocks. We denote

∣∣M C k
∣∣ as the length of M C k.

Each block B is of the format B=(h−,h,i,S,pk,π), where
h− is the previous block ID, h is the current block ID, i is the
SeqPoW solution index, S is the SeqPoW solution, pk is the
public key of this block’s creator, and π is the proof that S is a
valid SeqPoW solution on input h−. Each block B is identified
by its ID B.h=H(B.pk‖B.S), and points to a previous block
B− by setting B.h−=B−.h. One can extract a random output
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B.R from each block B by using a deterministic function
randomOutput(·), which we will describe later in (§5.5).

5.3 Synchronising and agreeing on blocks
Each participant pk synchronises its local ledger Ck with
other participants following the synchronisation routine
SyncRoutine(·). Specifically, participant pk keeps receiv-
ing blocks from other participants, verifying them, and
adding valid blocks to its local ledger Ck. Participant pk
keeps tracking the main chain M C k following Nakamoto
consensus mainChain(·), and executes the mining routine
MineRoutine(·) on M C k.

RANDCHAIN achieves consistency and liveness when the
network is synchronous and the adversary’s mining power
α ≤ 1

1+e , where e is Euler’s number. Same as in Proof-of-
Stake (PoS)-based Nakamoto consensus [60], [61], the op-
timal attack on RANDCHAIN is the grinding attack, where
the adversary allocates a processor to mine on every existing
block. Compared to 51% attacks on PoW-based Nakamoto
consensus, grinding attack amplifies the adversary’s mining
power by up to e, weakening the fault tolerance to α≤ 1

1+e .
RANDCHAIN does not achieve 0-consistency (aka finality). In
Appendix G.3 we analyse two approaches of adding finality
to RANDCHAIN.

RANDCHAIN inherits communication complexity and la-
tency guarantees from Nakamoto consensus. The communi-
cation complexity is O(n) as the only communication is the
leader broadcasting blocks. The latency is tblock +δ, where
tblock is the parameterised block interval and δ is the actual
network delay. Thus, RANDCHAIN achieves scalability.

5.4 Non-parallelisable mining
RANDCHAIN employs the SeqPoW puzzle for the min-
ing routine MineRoutine(·). Specifically, participant pk
keeps solving the latest SeqPoW puzzle S derived from
SeqPoW.Init(pp,skk,B−.h), where pp is the public param-
eter, skk is its secret key, and B−.h is the hash of M C k’s
last block. To solve puzzle S, participant pk keeps executing
SeqPoW.Solve(·) until finding a solution that satisfies the
difficulty. With a valid solution, participant pk constructs a
block B, and appends B to M C k.

RANDCHAIN achieves non-parallelisable mining, leading
to µ-fairness with µ > 1

5 in practice. Each participant has
a unique input deriving a unique SeqPoW puzzle, so can
only use a single processor for mining. By SeqPoW’s se-
quentiality, to accelerate solving SeqPoW puzzles, one can
only increase the processor’s frequency. Processors in laptops
usually achieve the frequency of 2∼3 GHz, and the most ad-
vanced processor achieves the frequency of 8.723 GHz [62].
The voltage limit prevents the frequency to be improved fur-
ther [63]. Hence, the fastest processor can mine at most five
times faster than normal processors, leading to µ> 1

5 . The lim-
ited speedup is evidenced by the recent VDF Alliance FPGA
Contest [64]–[66], where optimised VDF implementations

are about four times faster than the baseline implementation.
The adversary can weaken µ to ≥ µ

2 by selfish mining, i.e.,
withholding and publishing blocks adaptively w.r.t. blocks
from honest miners [44]. To defend against selfish mining
attacks, one can deploy existing countermeasures [67]–[69]
or finality protocols analysed in Appendix G.3.

5.5 Extracting a random output from a block
Function randomOutput(·) is used for extracting a random
output from a block. Given block B, it computes the random
output B.R via VDF.Eval(pp,B.pk‖B.S,tVDF) and the associ-
ated proof B.πR via VDF.Prove(ppVDF,B.pk‖B.S,B.R,tVDF),
where ppVDF and tVDF are VDF’s public parameter and time
parameter known to all participants, respectively. The time
parameter tVDF is chosen so that finishing Eval(·) takes longer
than participants extending (ϒ+1) blocks for a ϒ-consistent
RANDCHAIN.

The time delay in randomOutput(·) ensures the unbiasi-
bility of RANDCHAIN. If the random output is extracted from
a block instantly, then the adversary can withhold its block
if it does not like the extracted random output, compromising
the unbiasibility. With the time delay of extending (ϒ+ 1)
blocks, the adversary has to decide whether to broadcast or
withhold its mined block before learning the random output.
After learning the random output, the block either becomes
irreversible (if the adversary broadcasts the block) or cannot
be accepted anymore (if the adversary withholds the block).

RANDCHAIN satisfies uniform distribution: a λ-bit random
string can be extracted from a block, where λ is SeqPoW
and VDF’s security parameter. RANDCHAIN satisfies unpre-
dictability, as the sequentiality of SeqPoW and VDF implies
their outputs are unpredictable as analysed in §4.1.

6 Implementation and evaluation
We implement SeqPoW and RANDCHAIN, and evaluate their
performance. The evaluation shows that all SeqPoW con-
structions are practical and RANDCHAIN is indeed scalable
and fair. Specifically, on a cluster of 1024 nodes (each as
a participant), RANDCHAIN can produce a random output
every 1.3 seconds (2.3x faster than RandHerd [12] with 1024
nodes, 6.6x faster than HydRand [14] with 128 nodes); utilise
constant bandwidth of about 200 KB/s per node (comparable
with RandHerd with 1024 nodes and HydRand with 128
nodes); and provide nodes with comparable chance of produc-
ing random outputs. We will make all code and experimental
data publicly accessible after the paper is published.

6.1 SeqPoW: benchmarks
We implement and benchmark the proposed two SeqPoW
constructions.

Implementation. We implement the SeqPoW constructions
in Rust. We use rug [70] for big integer arithmetic, and
implement the RSA group with 1024-bit keys and the
group of prime order based on rug. We implement the two
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Figure 5: Evaluation of SeqPoW constructions.

SeqPoWVDF constructions based on the RSA group, and
SeqPoWSloth based on the group of prime order. Our imple-
mentations strictly follow their original papers [24]–[26].

Experimental setting. For each function, we test ψT up
to 256000, where ψ is the step parameter and T is the
difficulty. The code for benchmarking is based on the
cargo-bench [71] and criterion [72] benchmarking
suites. We specify O3-level optimisation for compilation, and
sample ten executions for each benchmarked function with
a unique set of parameters. All experiments were conducted
on a machine with a 2.2 GHz 6-Core Intel Core i7 Processor
and a 16 GB 2400 MHz DDR4 RAM.

Performance (Figure 5). For all SeqPoW constructions,
the running time of Solve(·) increases linearly with ψT .
This is as expected as Solve(·) is dominated by the ISF.
For SeqPoWVDF with Wes19, Prove(·) takes more time
than Solve(·), making it less suitable for instantiating
RANDCHAIN. For SeqPoWVDF with Pie19, Prove(·) and
Verify(·) take negligible time compared to Solve(·).

For SeqPoWSloth, Solve(·) is approximately five times
slower than Verify(·). Although this is far from the theoret-
ically optimal value, i.e., log2|G|=1024 in our setting [73],
the verification overhead is acceptable for the use case where
random outputs are not generated frequently.

6.2 RANDCHAIN: end-to-end evaluation
We implement RANDCHAIN and evaluate it on computer
clusters regarding the following metrics:

• Block propagation delay (BPD) is the time taken for
the majority of nodes to receive a block (§6.2.2).

• Block size is the size of a block. It varies w.r.t. blocktime
(i.e., the average time interval between two blocks) as
the VDF proof size increases with the time parameter.
We also estimate the network overhead of propagating
blocks amortised by time (§6.2.3).

• Network overhead is the average bandwidth utilisation,
i.e., the average amount of data transferred in a time
unit, of a node (§6.2.4).

• Decentralisation is the evenness of nodes’ chance of
producing blocks. It is quantified by the distribution of

Table 3: Experimental settings and results.
Experimental setting Experimental results

#nodes #machines Deployment Network Latency Net. overhead
RandHerd [12] 1024 32 Datacenter Simulated 3 sec 200 KB/s
HydRand [14] 128 128 Worldwide Real 8.6 sec 180∼310 KB/s
RANDCHAIN 1024 128 Worldwide Real 1.3 sec 200 KB/s

nodes in terms of the number of blocks they produce
on the main chain (§6.2.5).

Among the metrics, the former three are the empirical
results of scalability (where BPD infers latency and the rest
two infer network overhead); and decentralisation is the
empirical result of fairness. We also compare RANDCHAIN
with state-of-the-art DRBs that have experimental results,
including RandHerd [12] and HydRand [14]. Table 3
summarises the evaluation results and comparison with
RandHerd and HydRand.

6.2.1 Implementation and experimental settings

We implement RANDCHAIN based on Parity-bitcoin [27],
a Bitcoin implementation in Rust. Each node plays as a
participant of RANDCHAIN. It uses RocksDB [74] for storage,
and Bitcoin’s Wire protocol [75] for the P2P protocol stack.
We adapt the ledger structure, SeqPoW and relevant message
types to RANDCHAIN’s setting specified in §5. Given the
evaluation result in §6.1, we use Pie19 for instantiating
SeqPoW and extracting random outputs from blocks. The
entire project takes approximately 23000 lines of code (LoC),
where the RANDCHAIN implementation adds/changes
approximately 4500 LoC over Parity-bitcoin. We use
dstat [76] for monitoring system resource utilisation.

We specify O3-level optimisation for compilation, and
deploy the project to clusters with {128, 256, 512, 1024}
nodes on Amazon’s EC2 instances. Specifically, we deploy
{16, 32, 64, 128} t2.micro EC2 instances (1 GB RAM,
one CPU core and 60-80 Mbit/s network bandwidth) in
13 regions around the globe1, and each instance runs 8
RANDCHAIN nodes. Each node maintains up to 8 outbound
connections and 125 inbound connections, which is same
as Bitcoin’s setting [75]. When a node starts, it randomly
connects to 8 peers, accepts connections from other peers,
and starts gossiping messages with them. As mining is
not allowed in cloud computing platforms, we simulate
SeqPoW.Solve(·) rather than actually executing it. For our
SeqPoW implementation, the t2.micro EC2 instance can
do squaring operations in SeqPoW.Solve(·) for 233868
times per second on average. We test blocktime of {1,5,10}
seconds by adjusting the SeqPoW difficulty. For each group
of the experiments, we sample 30 minutes of the execution,
collect logs from all nodes, parse the logs and calculate the
metrics. The total size of logs is 1.74 GB.

1The regions include North Virginia, North California, Oregon, Ohio,
Canada, Mumbai, Seoul, Sydney, Tokyo, Singapore, Ireland, Sao Paulo,
London, and Frankfurt.
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(b) 256 nodes.
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(c) 512 nodes.
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(d) 1024 nodes.

Figure 6: Distribution of block propagation delay (BPD), represented as violin plots. The light blue and dark blue parts indicate the distribution
of BPD when blocks are propagated to 50% and 80% of nodes, respectively.
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Figure 7: Block size, network overhead and decentralisation. (a) Block size and estimated network overhead between two nodes amortised
by time v.s. blocktime. The dark blue increasing line is on the block size and the light blue decreasing line is on the overhead. (b) Network
overhead, quantified as the bandwidth utilisation of each node with different blocktimes. (c) Decentralisation level, visualised as the number of
blocks produced by distinct nodes. The blue and black lines are the kernel density estimation and the closest normal distribution, respectively.

6.2.2 Block propagation delay (BPD)

Figure 6 shows the distribution of BPD for different sizes
of clusters. With the increasing number of nodes (from
128 to 1024), the BPD never exceeds 1.3 seconds. In other
words, the system can produce a random output every 1.3
seconds, which is 2.3x faster than RandHerd (∼3 seconds
on a 1024-node cluster) and 6.6x faster than HydRand (∼8.6
seconds on a 128-node cluster). This is expected given the
linear communication complexity.

In addition, BPD is usually either less than 0.4 second or
more than 0.6 second, but is hardly in-between values. This
implies that a block can reach most nodes within 2 hops: the
two peaks around the saddle of 0.4∼0.6s indicate the average
delays for 1-hop and 2-hop block propagation, respectively.

Moreover, the average BPD increases slowly with more
nodes. This is consistent with other linear protocols [77].
In linear protocols, the average BPD is proportional to
the average number of intermediate nodes of two random
nodes. In Bitcoin’s setting where each node connects to k
random peers, the network is structured as an Erdos-Renyi
random graph [78], in which two random nodes have O( logn

logk )
intermediate nodes on average.

As a less important result, BPD increases when blocks
are produced more frequently. This is because a t2.micro
instance only has a single processor and limited network
capacity, making the overhead of verifying and propagating
blocks non-negligible.

6.2.3 Block size

The major part of a block is the SeqPoW proof that takes
s · log2(ψT ) Bytes, where ψT depends on the time taken
to find a solution and the number of iterations executed
in a time unit. Recall that the computer can do squaring
operations for 233868 times per second. Given blocktime t,
the SeqPoW proof size is s·log2(233868·t)≈s·(18+log2t),
and the network overhead between two nodes amortised by
time is s·(18+log2t)

t . Figure 7a shows the relationship between
blocktime, block size and network overhead. When blocktime
is {1,5,10} seconds and s=32 Bytes, the block size is about
{576,1336,1912} Bytes, and the amortised network overhead
is about {576, 267, 191} Bytes/s. When blocktime is 60
seconds (the setting of Drand [79] and the NIST randomness
beacon [80]), the block size is about 3402 Bytes, and the
amortised network overhead is about 57 Bytes/s.

6.2.4 Network overhead

Figure 7b shows the bandwidth utilisation result. It shows
that RANDCHAIN utilises less bandwidth compared to
RandHerd and HydRand: even with blocktime of 1 second,
each node utilises ∼200KB/s bandwidth per second, which
is comparable with RandHerd (∼200KB/s on a 1024-node
cluster) and HydRand (180∼310KB/s on a 128-node cluster).
The bandwidth utilisation remains stable with more nodes,
as RANDCHAIN is linear. These two results are as expected
since RANDCHAIN is linear. The inbound and outbound
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bandwidths are comparable, as the input (i.e., the last block)
and the output (i.e., the new block) are comparable in terms
of size, leading to identical bandwidth utilisation. With longer
blocktime, the node requires less bandwidth, as nodes send
and receive blocks less frequently.

6.2.5 Decentralisation

Figure 7c shows the distribution of nodes w.r.t. the number
of blocks they produce on the main chain, in the experiment
with 1024 nodes and the blocktime of 1 second. The kernel
estimated distribution is close to the normal distribution,
meaning that nodes have comparable chance of producing
blocks, similar to RandHerd and HydRand that are “one-man-
one-vote”. The result is consistent with our experimental
setting where nodes use the same processors.

7 Comparison with existing DRBs

In this section, we develop a unified evaluation framework
for DRBs based on the model in §2, and compare RAND-
CHAIN with existing DRBs. Our evaluation shows that
RANDCHAIN is the only protocol that is secure, scalable and
fair simultaneously, without relying on any trusted party.

7.1 Overview of existing DRBs

We categorise existing DRBs into four types, namely Dis-
tributed Randomness Generation (DRG)-based DRBs, Smart
contract (SC)-based DRBs, DRBs from external entropy, and
Iteratively sequential function (ISF)-based DRBs. Appendix F
provides the details of these DRBs. RANDCHAIN does not
belong to any of these types given its competitive design.

DRG-based DRBs. Participants execute the single-shot
DRG protocol periodically. DRG can be constructed from
various cryptographic primitives, such as threshold cryptosys-
tems [3], [8], [9], Verifiable Random Functions (VRFs) [2],
[10], [11], and Publicly Verifiable Secret Sharing (PVSS) [1],
[12]–[16]. To relax the network model assumptions, reduce
the communication complexity and/or improve the fault
tolerance capacity, these DRBs usually rely on a centralised
dealer [8], [9], [13], [15] and/or combine techniques such
as leader election [1]–[3], [10]–[12], sharding [3], [12],
cryptographic sortition [10], Byzantine consensus [10], [14]
and erasure coding [13], [15].

The rest three types. In SC-based DRBs [81], [82], [87],
participants submit their inputs to an external smart contract,
which combines them to a single random output. In DRBs
from external entropy, participants periodically extract
randomness from real-world entropy, e.g., real-time financial
data [84] and public blockchains [85], [86], [88]. In ISF-based
DRBs [26], [36], [83], participants use intermediate outputs
of an ISF as random outputs, and use succinct proofs for the
ISF to make outputs verifiable.

7.2 Evaluation framework for DRBs
We build an evaluation framework for DRBs. The framework
inherits all aspects concerned by the model in §2, except
for the following differences. For the system model, the
framework concerns the network model and fault tolerance
capacity, while the other aspects in §2.1 are identical in all
DRBs. The framework also concerns trust assumptions that
some proposals assume in order to guarantee correctness
properties. For correctness properties, apart from the ones de-
fined in §2.2, the framework also concerns fairness and public
verifiability: whether a random output is publicly verifiable.

7.3 Evaluation
We apply the framework to evaluate existing DRBs. Table 4
summarises the evaluation results. Let ∆ be the network
latency bound in the synchrony period, δ be the actual
network delay, and GST be the global stabilisation time.

System model. A protocol is synchronous if the adversary
can break the protocol’s safety by delaying messages beyond
∆; partially synchronous if such delay can break the protocol’s
liveness but not safety, and the liveness recovers after GST;
asynchronous if such delay can break the protocol’s liveness
but not safety, and the liveness recovers when participants re-
ceive certain messages. Most DRG-based DRBs employ syn-
chronous leader election protocols, except for the following
proposals. Cachin et al., RandShare and Kogias et al. employ
randomised common coin techniques to achieve asynchrony.
Ouroboros Praos allows “empty slots” (where participants
produce no block) when no leader is elected before GST,
and guarantees an elected leader after GST, leading to partial
synchrony. HERB, SCRAPE, and Albatross employ a dealer
who relays all messages and proceeds the protocol whenever
receiving enough shares, which is guaranteed after GST, lead-
ing to partial synchrony. These DRBs have to trust the dealer,
otherwise a corrupted dealer can selectively multicast mes-
sages to allow a subset of nodes to predict random outputs, or
withhold messages to bias random outputs. While the dealer
can be implemented in a distributed manner [17], it introduces
extra communication overhead. Similarly, SC-based DRBs
employ a trusted blockchain to achieve partial synchrony, and
a corrupted blockchain can censor transactions to bias ran-
dom outputs, which is known as the Miner Extractable Value
(MEV) issue [89]. ISF-based DRBs and DRBs from external
entropy proceed as long as a single participant is honestly exe-
cuting the ISF or sampling the entropy. ISFs require a trusted
setup, otherwise the adversary who previously knows the seed
can learn random outputs earlier than other participants. The
entropy source has to be trusted, otherwise the adversary can
manipulate the entropy and bias random outputs.

In contrast to existing works [81], [82], [85]–[88] that as-
sume an external trustworthy blockchain with desirable prop-
erties, RANDCHAIN integrates a blockchain with all desired
properties as its subprotocol. If RANDCHAIN also makes an
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Table 4: Comparison of RANDCHAIN with existing DRBs.
Protocol System model Correctness Performance
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DRG-based DRBs

Cachin et al. [8] Thr. Sig. Async. Dealer‡ 1/3 3 3 1 3 3 3 3 O(n3) O(δ)
HERB [9] Homo. Thr. Enc. Part. sync. Dealer‡ 1/3 3 3 1 3 3 3 3 O(n) O(δ)
Dfinity [3] VRF + Thr. Sig. Sync. - 1/3 3 3 1 3 3 7† 3 O(cn)�¶ O(∆)∼∞¶

Ouro. Praos [2] VRF Part. sync. - 1/2 3 3 1 3 3 7† 3 O(n)¶ O(∆)∼∞¶

GLOW [11] VRF Sync. - 1/3 3 3 1 3 3 7† 3 O(n)¶ O(δ)∼∞¶

Algorand [10] VRF Sync. - 1/3 3 3 1 3 3 7† 3 O(cn)�¶ O(∆)∼∞¶

Ouroboros [1] PVSS Sync. - 1/2 3 3 1 3 3 3 3 O(n3) O(∆)
SCRAPE [13] PVSS Part. sync. Dealer‡ 1/2 3 3 1 3 3 3 3 O(n3) O(δ)

RandShare [12] PVSS Async. - 1/3 3 3 1 3 3 3 3 O(n3) O(δ)
RandHound [12] PVSS Sync. - 1/3 3 3 1 3 3 7† 3 O(c2n)�¶ O(∆)∼∞¶

RandHerd [12] PVSS Sync. Dealer‡ 1/3 3 3 1 3 3 3 3 O(c2logn)� O(δ)
HydRand [14] PVSS Sync. - 1/3 3 3 1 3 3 3 3 O(n2)∼O(n3) O(∆)
Albatross [15] PVSS Part. sync. Dealer‡ 1/2 3 3 1 3 3 3 3 O(n) O(δ)

Kogias et al. [16] HAVSS Async. - 1/3 3 3 1 3 3 3 3 O(n4) O(δ)

SC-based DRBs RanDAO [81] VDF Part. sync. Blockchain 1/2 3 3 1 3 3 3 3 O(n) tblock+δ

Yakira et al. [82] Escrow-DKG Part. sync. Blockchain 1/3 3 3 1 3 3 3 3 O(n) tblock+δ

ISF-based DRBs
Unicorn [26] Sloth Async. Setup (n-1)/n 3 3 - 3 7? 3 3 O(n) Any +δ

Ephraim et al. [83] Continuous VDF Async. Setup (n-1)/n 3 3 - 3 7? 3 3 O(n) Any +δ

RandRunner [36] Trapdoor VDF Async. Setup (n-1)/n 3 3 1 3 7? 3 3 O(n)∼O(n2) Any +δ

DRBs from ext. entr.
Clark et al. [84] Rand. extractors Async. Data src. (n-1)/n 3 3 - 3 3 3 7 O(n) Any +δ

Bonneau et al. [85] Rand. extractors Async. Blockchain (n-1)/n 3 3 →0⊗ 3 3 3 7 O(n) tblock+δ

Bünz et al. [86] Proof-of-Delay Async. Blockchain (n-1)/n 3 3 →0⊗ 3 3 3 7 O(n) tblock+δ

This work RANDCHAIN SeqPoW
+ Nak. consensus

Sync. - 1/(1+e) 3 3 > 1
5 3 3 3 3 O(n) tblock+δ

‡ The analysis assumes the dealer is a trusted third party. While the dealer can be implemented in a distributed manner [17], it introduces extra communication overhead.
† The corrupted leader can withhold the random output and enforce participants to start a new round, as analysed in [14], [15].
�We use c to denote the size of shards in Dfinity [3], RandHound and RandHerd [12], and the size of the committee in Algorand [10].
¶ The corrupted leader can send the random output and advance the round for a subset of participants, so that participants are executing different rounds. The DRB requires
an extra round synchronisation protocol that suffers from either exponential latency [20] or worst-case communication complexity of ≥O(n2) [18], [19].
? In [26], [83], the fastest participant always learns random outputs earlier than others. In [36], the adversary can always corrupt leaders and produce random outputs via the trapdoor.

Entropy generated by the external source is not verifiable.
⊗ In PoW-based blockchains, mining can be accelerated by using parallel processors. Participants with massive mining machines overwhelmingly outperform normal participants.

assumption on such a blockchain as an external service, then
RANDCHAIN can further reduce the communication complex-
ity to O(1), as every node can compute random outputs locally.
As analysed in §3, existing blockchains do not provide our
desired properties, motivating us to develop a SeqPoW-based
blockchain as a subprotocol for constructing RANDCHAIN.

Correctness properties. All DRG-based DRBs achieve
consistency and liveness. Note that DRG-based DRBs define
liveness as termination (where correct participants eventually
learn the random output at the end of each round), and our
evaluation of DRG-based DRBs follows such definition. All
DRBs achieve the ideal fairness, i.e., µ=1, except for DRBs
from PoW-based blockchains [85], [86] with µ→0 as mining
can be accelerated by massive parallelism, and RANDCHAIN
with µ > 1

5 . All DRBs satisfy uniform distribution and
unpredictability, except that all ISF-based DRBs do not
satisfy unpredictability. For Sloth and Ephraim et al., the
participant with the fastest processor can learn random
outputs earlier than other participants. In RandRunner [36],
the adversary can keep corrupting leaders and computing
random outputs via the trapdoor. In Dfinity, Ouroboros Praos,
GLOW, Algorand and RandHound, the corrupted leader can
withhold the random output and enforce participants to start
a new round, breaking the unbiasibility, as analysed in [14],
[15]. DRBs from external entropy do not satisfy public

verifiability, as the external entropy is not publicly verifiable.

Performance metrics. In all DRG-based DRBs without
a dealer, either the leader election, view change or PVSS
protocol requires the all-to-all broadcast operations, leading
to at least O(n2) communication complexity. To reduce
communication complexity, HERB, RandHerd and Albatross
employ a dealer to relay messages; GLOW allows partic-
ipants to determine a unique leader locally given the last
random output; Dfinity, RandHound and RandHerd apply
sharding techniques to divide participants into different
shards; Algorand samples a subset of participants to execute
the protocol; and SC-based DRBs rely on a smart contract
that relays all messages. RandRunner is linear in the best-case
execution, but requires reliable broadcasts with O(n2)
communication complexity in the worst-case execution. The
other two ISF-based DRBs and DRBs from external entropy
achieve linear communication complexity.

Same as asynchronous consensus protocols [90], asyn-
chronous DRG-based DRBs terminate within O(δ) In HERB,
SCRAPE, RandHerd and Albatross, the random output is
produced once the dealer receives enough shares, leading
to the latency of O(δ). In Ouroboros and HydRand, the
leader election terminates in O(∆), leading to the latency
of O(∆). In GLOW, when the leader is correct, the latency
is O(δ). However, when the leader is corrupted, then it can
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deliver random outputs and advance the round for a subset of
participants, so that participants will execute different rounds.
To re-synchronise the round, nodes have to execute an extra
round synchronisation protocol, which introduces either expo-
nential latency (by using the time doubling mechanisms [20])
or at least O(n2) worst-case communication complexity (by
using the broadcast-based mechanisms [18], [19]). In Dfinity,
Ouroboros Praos, Algorand, and RandHound, the leader
election terminates within O(∆), and a corrupted leader can
cause the round synchronisation issue similar to GLOW.
SC-based DRBs and DRBs from blockchain entropy achieve
the latency of the parameterised block interval tblock plus δ.
ISF-based DRBs and DRBs from other entropy can achieve
any latency plus δ, according to the frequency of sampling
intermediate outputs and entropy, respectively.

8 Conclusion
In this paper, we identified a new design space of De-
centralised Randomness Beacon (DRB) protocols where
participants are competitive, and constructed the first DRB
protocol RANDCHAIN that belongs to this class. RAND-
CHAIN overcomes the scalability limit in the existing DRB
design where participants are collaborative. The theoretical
analysis and experimental evaluation show that RANDCHAIN
is secure, scalable and fair without any trusted party.
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A Definition of VDF
We present the formal definition of Verifiable Delay Functions
(VDFs) [22], [24], [25].

Definition 7 (Verifiable Delay Function). A Verifiable Delay
Function VDF is a tuple of four algorithms

VDF=(Setup,Eval,Prove,Verify)

Setup(λ)→ pp: On input security parameter λ, outputs
public parameter pp. Public parameter pp specifies an
input domain X and an output domain Y . We assume
X is efficiently sampleable.

Eval(pp,x,t)→y: On input public parameter pp, input x∈X ,
and time parameter t∈N+, produces output y∈Y .

Prove(pp,x,y,t)→π: On input public parameter pp, input
x, output y, and time parameter t, outputs proof π.

Verify(pp,x,y,π,t)→{0,1}: On input pp, x, y, π and t,
outputs 1 if y is a correct evaluation, otherwise 0.
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VDF satisfies the following properties

• Completeness: For all λ, x and t,

Pr

 Verify(pp,x,y,
π,t)=1

∣∣∣∣∣∣
pp←Setup(λ)

y←Eval(pp,x,t)
π←Prove(pp,x,y,t)

=1

• Soundness: For all λ and adversary A ,

Pr
[

Verify(pp,x,y,π,t)=1
∧Eval(pp,x,t) 6=y

∣∣∣∣ pp←Setup(λ)
(x,y,π,t)←A(pp)

]
≤negl(λ)

• σ-Sequentiality: For any λ, x, t, A0 which runs in time
O(poly(λ, t)) and A1 which controls any polynomial
amount of processors and runs in less than time σ(t),

Pr

 Eval(x,y,t)=y

∣∣∣∣∣∣
pp←Setup(λ)

A1←A0(λ,t,pp)
y←A1(x)


≤negl(λ)

We formally define self-composability for VDFs as follows.

Definition 8 (Self-Composability). A VDF
(Setup, Eval, Prove, Verify) satisfies self-composability
if for all λ, x, (t1,t2),

Pr
[

Eval(pp,x,t1+t2)
=Eval(pp,y,t2)

∣∣∣∣ pp←Setup(λ)
y←Eval(pp,x,t1)

]
=1

Lemma 1. If a VDF (Setup,Eval,Prove,Verify) satisfies
self-composability, then for all λ, x, (t1,t2),

Pr

 Verify(pp,x,y′,
π,t1+t2)=1

∣∣∣∣∣∣∣∣
pp←Setup(λ)

y←Eval(pp,x,t1)
y′←Eval(pp,y,t2)

π←Prove(pp,x,y′,t1+t2)

=1

B Definition of SeqPoW
We present the formal definition of Sequential Proof-of-Work
(SeqPoW).

Definition 9 (Sequential Proof-of-Work (SeqPoW)). A
Sequential Proof-of-Work SeqPoW is a tuple of algorithms

SeqPoW=(Setup,Gen,Init,Solve,Verify)

Setup(λ,ψ,T )→ pp: On input security parameter λ, step
ψ∈N+ and difficulty T ∈ [1,∞), outputs public parame-
ter pp. Public parameter pp specifies an input domain X ,
an output domain Y , and a cryptographically secure hash
function H :Y →X , where X is efficiently sampleable.

Gen(pp)→(sk,pk): A probabilistic function, which on
input public parameter pp, produces a secret key sk∈X
and a public key pk∈X .

Init(pp,sk,x)→(S0,π0): On input public parameter pp,
secret key sk, and input x ∈ X , outputs initial solution
S0 ∈ Y and proof π0. Some constructions may use
public key pk as input rather than sk. This also applies
to Solve(·) and Prove(·).

Solve(pp,sk,Si)→(Si+1,bi+1): On input public parameter
pp, secret key sk, and i-th solution Si ∈ Y , outputs
(i+1)-th solution Si+1∈Y and result bi+1∈{0,1}.

Prove(pp,sk,i,x,Si)→πi: On input public parameter pp,
secret key sk, i, input x, and i-th solution Si, outputs
proof πi.

Verify(pp,pk,i,x,Si,πi)→{0,1}: On input pp, pk, i, x, Si,
and πi, outputs 1 if Si is a valid solution, otherwise 0.

We define honest tuples and valid tuples as follows.

Definition 10 (Honest tuple). A tuple (pp,sk, i,x,Si,πi) is
(λ,ψ,T )-honest if and only if for all pp←Setup(λ,ψ,T ), the
following holds:

• i=0 and (S0,π0)← Init(pp,sk,x), and

• ∀i ∈ N+, (Si, bi) ← Solve(pp, sk, Si−1) and πi ←
Prove(pp,sk,i,x,Si), where (pp,sk,i−1,x,Si−1,πi−1) is
(λ,ψ,T )-honest.

Definition 11 (Valid tuple). For all λ, ψ, T , and pp ←
Setup(λ,ψ,T ), a tuple (pp,sk,i,x,Si,πi) is (λ,ψ,T )-valid if

• (pp,sk,i,x,Si,πi) is (λ,ψ,T )-honest, and

• Solve(pp,sk,Si−1)=(·,1)

SeqPoW should satisfy completeness, soundness, hardness
and sequentiality, plus an optional property uniqueness.

Definition 12 (Completeness). A SeqPoW scheme satisfies
completeness if for all λ,ψ,T ,

Pr

 Verify(pp,pk,i,
x,Si,πi)=1

∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
(pp,pk,i,x,Si,πi)
is (λ,ψ,T )-valid

=1

Definition 13 (Soundness). A SeqPoW scheme satisfies
soundness if for all λ,ψ,T ,

Pr

 Verify(pp,pk,i,
x,Si,πi)=1

∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)
(pp,pk,i,x,Si,πi)

is not (λ,ψ,T )-valid

≤negl(λ)
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Definition 14 (Hardness). A SeqPoW scheme satisfies
hardness if for all (λ,ψ,T )-honest tuple (pp,sk,i,x,Si,πi),∣∣∣∣Pr

[
bi+1=1

∣∣∣∣ (Si+1,bi+1)←
Solve(pp,sk,Si,πi)

]
− 1

T

∣∣∣∣≤negl(λ)

Definition 15 (σ-Sequentiality). A SeqPoW scheme satisfies
σ-sequentiality if for all λ, ψ, T , i, x, A0 which runs in less
than time O(poly(λ,ψ, i)) and A1 which runs in less than
time σ(i·ψ) with at most poly(λ) processors,

Pr

 (pp,sk,i,x,Si,πi)
is (λ,ψ,T )-honest

∣∣∣∣∣∣∣∣∣∣
pp←Setup(λ,ψ,T )
(sk,pk)←Gen(pp)

A1←A0(pp,sk)
Si←A1(i,x)

πi←Prove(pp,sk,i,x,Si)


≤negl(λ)

Definition 16 (Uniqueness (optional)). A SeqPoW scheme
satisfies uniqueness if for any two (λ, ψ, T )-valid tuples
(pp,sk,i,x,Si,πi) and (pp,sk,i,x,S j,π j), i= j holds.

C Security proofs for SeqPoW
We formally prove the security guarantee of two SeqPoW
constructions.

Lemma 2. SeqPoWVDF satisfies completeness.

Proof. Assuming a (λ,ψ,T )-valid tuple (pp, sk, i,x,Si,πi),
by completeness and Lemma 1, VDF.Verify(·) will pass. As
hash functions are deterministic, difficulty check will pass.
Therefore,

SeqPoWVDF.Verify(pp,pk,i,x,Si,πi)=1

Lemma 3. SeqPoWVDF satisfies soundness.

Proof. We prove this by contradiction. Assuming a tuple
(pp,sk,i,x,Si,πi) that is not (λ,ψ,T )-valid and

SeqPoWVDF.Verify(pp,pk,i,x,Si,πi)=1

By soundness and Lemma 1, if (y,y+,π+,ψ) is generated
by A , VDF.Verify(·) will return 0. As hash functions are
deterministic, if Si>

2κ

T , difficulty check will return 0. Thus,
if (pp,sk,i,x,Si,πi) is not (λ,ψ,T )-valid, then the adversary
can break soundness. Thus, this assumption contradicts
soundness.

Lemma 4. SeqPoWVDF satisfies hardness.

Proof. We prove this by contradiction. Assuming∣∣∣∣Pr
[

bi+1=1
∣∣∣∣ Si+1,bi+1←
Solve(pp,sk,T,Si)

]
− 1

T

∣∣∣∣>negl(λ)

By sequentiality, the value of Si+1 is unpredictable before
finishing Solve(·). By pseudorandomness of hash functions,
H(pk‖Si+1) is uniformly distributed, and the probability
that H(pk‖Si+1)≤ 2κ

T is 1
T with negligible probability. This

contradicts the assumption.

Lemma 5. SeqPoWVDF does not satisfy uniqueness.

Proof. By hardness, each of Si has the probability 1
T to be

a valid solution. As i can be infinite, with (1−ε) probability
where ε is negligible, there exists more than one honest tuple
(pp,sk,i,x,Si,πi) such that H(pk‖Si)≤ 2κ

T .

Lemma 6. If the underlying VDF satisfies σ-sequentiality,
then SeqPoWVDF satisfies σ-sequentiality.

Proof. We prove this by contradiction. Assuming there exists
A1 which runs in less than time σ(i·ψ) such that

Pr

 (pp,sk,i,x,Si,πi)
∈H

∣∣∣∣∣∣∣∣∣∣

pp←Setup(λ,ψ,T )

(sk,pk) R←Gen(pp)
A1←A0(λ,pp,sk)

Si←A1(i,x)
πi←Prove(pp,sk,i,x,Si)


By σ-sequentiality, A1 cannot solve VDF.Eval(ppVDF,y,ψ)
within σ(ψ). By Lemma 1, Si can and only can be computed
by composing VDF.Eval(ppVDF, y, ψ) for i times, which
cannot be solved within σ(i · ψ). This contradicts the
assumption.

The completeness, soundness, hardness and sequentiality
proofs of SeqPoWSloth are identical to SeqPoWVDF’s. We
prove SeqPoWSloth satisfies uniqueness below.

Lemma 7. SeqPoWSloth satisfies uniqueness.

Proof. We prove this by contradiction. Assuming there
exists two (λ, ψ, T )-valid tuples (pp, sk, i, x, Si, πi)
and (pp, sk, i, x, Si, πi) where j < i. According
to SeqPoWSloth.Solve(·), we have H(pk‖Si) ≤ 2κ

T
and H(pk‖S j) ≤ 2κ

T , and initial difficulty check in
SeqPoWSloth.Verify(·) will pass. However, in the for loop
of SeqPoWSloth.Verify(·), if Si is valid, then verification of
S j will fail. Then, SeqPoWSloth.Verify(·) returns 0, which
contradicts the assumption.
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D Applications of SeqPoW
Of independent interest, SeqPoW can be applied to construct
other protocols, such as leader election and Proof-of-Stake
(PoS)-based consensus.

1) Leader election. Mining in PoW-based consensus can
be seen as a way of electing leaders: given a set of
participants, the first participant proposing a valid PoW
solution becomes the leader and proposes a block.
SeqPoW can be a drop-in replacement of PoW for the
leader election purpose. In §5.4, we show that compared
to parallelisable PoW, SeqPoW-based leader election
achieves better fairness.

2) PoS-based consensus. In Proof-of-Stake (PoS)-based
consensus [91], each participant’s chance of mining a
block is in proportion to its stake, e.g, the participant’s
balance. Most PoS-based consensus protocols [1], [2],
[92]–[94] select block proposers in a predictable [43],
[60] way, thus are vulnerable to various prediction-based
attacks and tolerate less Byzantine mining power [43],
[60] than PoW-based consensus, as analysed in §3.
To make PoS-based consensus unpredictable, one can
randomise the process of selecting block proposers.
SeqPoW can provide such functionality: each participant
solves a SeqPoW with its identity, the last block, and the
difficulty parameter inversely proportional to its stake
as input, and the first participant solving its SeqPoW
becomes the block proposer. Two concurrent and
independent works [55] provide concrete constructions
following the similar idea.

E Security proofs for RANDCHAIN

We prove RANDCHAIN (denoted as ΠRandChain throughout
the analysis) achieves all correctness properties defined in §2
when the network is synchronous and the adversary’s voting
power α< 1

1+e .
Consistency and liveness. We prove that ΠRandChain
achieves the same consistency and liveness guarantee as
PoS-based Nakamoto consensus (termed as Nakamoto-PoS)
protocol ΠPoS

Nak [60].

Lemma 8. ΠRandChain satisfies consistency and liveness
when the network is synchronous and the adversary’s voting
power α< 1

1+e .

Proof. ΠPoS
Nak realises Nakamoto consensus ΠNak based on

the PoS puzzle ΠPoS, and is proven [55], [61] to achieve
consistency and liveness when the network is synchronous
and the adversary’s voting power α< 1

1+e . When composed
with ΠNak, ΠPoS and ΠSeqPoW provide the same guarantee
on generating blocks: the adversary has an mining rate α

on every existing block, which is independent with each
other. Thus, ΠRandChain achieves the same security guarantee
as ΠPoS

Nak, i.e., achieves consistency and liveness when the
network is synchronous and α< 1

1+e .

Uniform distribution. We prove that each block derives
a λ-bit uniformly distributed random string, where λ is the
security parameter of SeqPoW and VDF.

Lemma 9. ΠRandChain satisfies uniform distribution.

Proof. Each random output B.R of ΠRandChain is extracted
from a block B via the VDF. By VDF’s sequentiality,
each VDF output contains non-negligible entropy that is
unpredictable. A hash function can be applied to the VDF
output to extract a λ-bit uniform random string [22].

Unpredictability. In the prediction game, the (` + 1)-th
block is either produced by correct participants or the adver-
sary’s participants. If the adversary’s advantage is negligible
for both cases, then ΠRandChain satisfies unpredictability.
When the (`+1)-th block is produced by correct participants,
the adversary’s best strategy is guessing, leading to negligible
advantage. When the (` + 1)-th block is produced by the
adversary’s participants, the adversary’s best strategy is to
produce as many blocks as possible before receiving a new
block from the correct participants. First, consider ΠRandChain
using SeqPoW without uniqueness.

Lemma 10. Assuming all messages are delivered instantly
and participants agree on a blockchain of length `. If the
(`+1)-th block is produced by a correct participant, then the
adversary’s advantage on the prediction game is 1

2κ .

If the next output is produced by the adversary’s partic-
ipants, the adversary’s best strategy is to produce as many
blocks as possible before receiving a new block from the
correct participants. First, consider ΠRandChain using SeqPoW
without uniqueness.

Lemma 11. Consider ΠRandChain using SeqPoW without
uniqueness. Assuming all messages are delivered instantly
and participants agree on a blockchain of length `. If the
(` + 1)-th block is produced by the adversary, then the
adversary’s advantage on the prediction game is k

2κ with

probability (eα)kβ

(eα+β)k+1 .

Proof. With grinding attacks, the adversary amplifies its
mining rate by factor e [60], [61]. Thus, the probability that
the adversary and correct participants mine the next block are

eα

eα+β
and β

eα+β
, respectively. Note that α≤ 1

1+e for satisfying
consistency, and α+β=1.

Let Vk be the event that “the adversary mines k blocks
at height (`+1) before correct participants mine a block at
height (`+1)”. When SeqPoW is not unique, a participant
can mine unlimited number of blocks after a single block.
Thus, we have

Pr [Vk ]=(
eα

eα+β
)k · β

eα+β
=

(eα)kβ

(eα+β)k+1
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When Vk happens, the adversary’s advantage is k
2κ .

Therefore, with probability (eα)kβ

(eα+β)k+1 , the adversary mines
k blocks before correct participants mine a block, leading to
the advantage of k

2κ .

Then, we analyse ΠRandChain using SeqPoW with
uniqueness. Without the loss of generality, we assume all
participants share the same mining rate.

Lemma 12. Consider ΠRandChain using SeqPoW with
uniqueness. Assuming all participants share the same mining
rate, all messages are delivered instantly and participants
agree on a blockchain of length `. If the (`+1)-th block is
produced by the adversary, then the adversary’s advantage
on the prediction game is k

2κ with probability Pr
[
V ′k
]
, where

Pr
[
V ′k
]
=

k−1

∏
i=0

(αn−i)e
(αn−i)e+βn

· β

eα+β

Proof. Similar to Lemma 11, the adversary and the correct
participants control mining rate eα

eα+β
and β

eα+β
, respectively.

When all participants share the same mining rate, the
adversary and the correct participants control αn and βn
participants, respectively. Let V ′k be the event that “the
adversary mines k blocks at height (` + 1) before correct
participants mine a block at height (`+1)”, where k≤αn. By
uniqueness, each participant can only mine a single block at
height (`+1), and the adversary can mine at most αn blocks
at height (`+1). Then, we have

Pr
[
V ′0
]
=

β

eα+β
(1)

Pr
[
V ′1
]
=

eα

eα+β
· β

eα+β
(2)

Pr
[
V ′2
]
=

αn−1
αn eα

αn−1
αn eα+β

· eα

eα+β
· β

eα+β
(3)

... (4)

Pr
[
V ′k
]
=

k−1

∏
i=0

αn−i
αn eα

αn−i
αn eα+β

· β

eα+β
(5)

=
k−1

∏
i=0

(αn−i)e
(αn−i)e+βn

· β

eα+β
(6)

When V ′k happens, the adversary’s advantage is k
2κ .

Therefore, with probability Pr
[
V ′k
]
, the adversary mines k

blocks before correct participants mine a block, leading to
the advantage of k

2κ (where k≤αn).

Remark 1. The adversary’s advantage in ΠRandChain with
unique SeqPoW is always smaller than in ΠRandChain with
non-unique SeqPoW. That is, for every k, Pr

[
V ′k
]
<Pr [Vk ].

Given k, we have

Pr
[
V ′k
]

Pr [Vk ]
=

∏
k−1
i=0

(αn−i)e
(αn−i)e+βn ·

β

eα+β

( eα

eα+β
)k · β

eα+β

(7)

=
∏

k−1
i=0

(αn−i)e
(αn−i)e+βn

( eα

eα+β
)k (8)

=
k−1

∏
i=0

(αn−i)e
(αn−i)e+βn

eα

eα+β

(9)

As 0≤ i<αn, it holds that
Pr [V ′k ]
Pr [Vk ]

<1 for all k.

Unbiasibility. ΠRandChain achieves unbiasibility by realising
the output-independent-abort notion [37]. With a VDF with
time parameter long than a new block becoming irreversible,
the adversary has to decide whether to broadcast or withhold
a block before learning the random output.

Lemma 13. ΠRandChain satisfies unbiasibility.

Proof. The proof is by contradiction. Assuming participants
agree on an `-long blockchain, and the adversary learns the
random output B`+1.R in the (`+1)-th block B`+1 when every
correct participant’s main chain contains less than (`+ϒ+1)
blocks, where ϒ is the consistency degree. Recall that extract-
ing B`+1.R from B`+1 is by evaluating a VDF with a time pa-
rameter longer than participants extending (ϒ+1) blocks on
the blockchain. By VDF’s sequentiality, to learn B`+1.R, the
adversary has to learn B`+1 first. By SeqPoW’s sequentiality,
the adversary can learn B`+1 only after learning its previous
block B`, which is already agreed by participants. Thus, the ad-
versary extracts B`+1.R from B`+1 only after a correct partic-
ipant grows its main chain from ` blocks to (`+ϒ+1) blocks
if the adversary withholds B`+1, and to (`+ϒ+2) blocks if
the adversary publishes B`+1, leading to a contradiction to the
assumption. Therefore, ΠRandChain achieves unbiasibility.

F Details of existing DRBs
We categorise existing DRBs into four types, namely Dis-
tributed Randomness Generation (DRG)-based DRBs, Smart
contract (SC)-based DRBs, DRBs from external entropy, and
Iteratively sequential function (ISF)-based DRBs.
DRG-based DRBs. Participants execute the single-shot
DRG protocol periodically. DRG can be constructed
from various cryptographic primitives, such as threshold
cryptosystems [3], [8], [9], Verifiable Random Functions
(VRFs) [2], [10], [11], and Publicly Verifiable Secret Sharing
(PVSS) [1], [12]–[16].

Cachin et al. [8], Dfinity [3] are constructed from threshold
signatures, and HERB [9] is constructed from homomorphic
threshold encryption. Cachin et al. and HERB assume a
trusted dealer who relays all messages, and Dfinity allows
participants to decide a leader locally according to the last
random output. To work in asynchronous networks, Cachin
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et al. employs common coin techniques where participants
share a unique input (e.g., the round number). To reduce
communication complexity, Dfinity divides participants into
different shards and avoids all-to-all broadcast operations.

Ouroboros Praos [2], Algorand [10] and GLOW [11] are
constructed from VRFs. In these designs, participants first
execute a leader election protocol to determine a leader. In
Ouroboros Praos and Algorand, the leader executes VRF over
the current blockchain state to produce the random output
solely. In GLOW, participants jointly execute the Distributed
VRF (DVRF) over the last random output to produce the cur-
rent random output, and all messages are relayed by the leader.

In PVSS-based DRG protocols (Ouroboros [1], Rand-
Hound/RandHerd [12], SCRAPE [12], HydRand [14], Alba-
tross [15], Kogias et al. [16]), each participant chooses a local
random input and uses PVSS to share it to other participants,
aggregates all received shares on different random inputs into
a single one, broadcasts aggregated shares, and aggregating
received shares again to recover the final random output. To
tolerate corrupted participants, HydRand, RandHound and
RandHerd enforce participants to execute consensus to agree
on a subset of shares; and SCRAPE and Albatross use erasure
codes to encode shares. To reduce communication complexity,
RandHound and RandHerd apply sharding techniques similar
to Dfinity; and SCRAPE and Albatross employ a trusted
dealer relaying messages. To tolerate network asynchrony,
Kogias et al. employs an asynchronous PVSS variant.
SC-based DRBs. Participants employ a smart contract as
the bulletin board. RANDAO [81] allows anyone to submit
their random inputs to the smart contract, and the smart
contract combines submitted inputs to a single random output.
Yakira et al. [82] construct SC-based DRBs from Escrow
Distributed Key Generation (DKG) [87], a DKG variant with
game-theoretical security against rational adversaries.
DRBs from external entropy. Participants periodically
extract randomness from real-world entropy, e.g., real-time
financial data [84] and public blockchains [85], [86], [88].
ISF-based DRBs. Participants use intermediate outputs of
an ISF as random outputs, and succinct proofs for the ISF
to make outputs verifiable. Such ISFs include Sloth [26] and
Ephraim et al. [83]. RandRunner [36] extends this paradigm
by allowing participants to execute the ISF in turn.

G Limitations and resolutions
We discuss three limitations and the corresponding reso-
lutions for RANDCHAIN, including the energy-efficiency,
churn tolerance and finality support. We consider the concrete
resolutions and analysis as future work.

G.1 Energy efficiency
As RANDCHAIN requires all nodes to solve SeqPoW puzzles
to produce a random output, RANDCHAIN seems to be
less energy-efficient than existing DRG-based DRBs. In
fact, whether RANDCHAIN is less energy-efficient than

existing DRG-based DRBs remains arguable. In terms of
communication, RANDCHAIN costs strictly less energy than
DRG-based DRBs, which require at least O(n2) communi-
cation complexity. The energy cost of communication is not
always less than that of computation, as shown by existing
literature [95]. In terms of computation, it remains arguable
whether computing a random output through threshold
cryptographic primitives (which can involve computationally
intensive operations such as pairing, Lagrange interpolation,
and Zero Knowledge Proofs) is more energy-efficient than
non-parallelisable mining, where every node executes a
single SeqPoW instance. In addition, with shorter block
intervals, the energy cost by computing a random output in
RANDCHAIN reduces linearly, while that in collaborative
DRBs remains constant. We consider the energy efficiency
analysis and improvement of RANDCHAIN as future work.

G.2 Churn tolerance
Similar to existing DRBs, RANDCHAIN does not tolerate
churn, i.e., nodes joining and leaving. However, with
little modifictaions, RANDCHAIN can tolerate churn like
PoW-based consensus protocols. To tolerate churn [96], PoW-
based blockchains adjust difficulty parameters adaptively
to the rate of new blocks. In RANDCHAIN, the difficulty
adjustment mechanism can use the number i of iterations
running SeqPoW.Solve(·) to infer the historical block rate.
If historical values of i are large, then this means that mining
is too hard and the difficulty should be reduced, and vice
versa. We consider a concrete construction and analysis on
the difficulty adjustment mechanism as future work.

G.3 Finality
Due to the probabilistic Nakamoto consensus, RANDCHAIN
does not achieve finality, and an appended block may be
reverted later. A block being reverted does not lead to
financial loss, as the random output is revealed only after
the block becomes stable, guaranteed by the unbiasibil-
ity property. However, when a block is reverted, some
randomness-based applications may abort the execution.
We consider two approaches to achieve finality, namely
the quorum mechanism and herding-based consensus, and
consider concrete constructions and analysis as future work.
Quorum mechanism. Quorum [97] is the minimum
number of votes that a proposal has to obtain for being
agreed by nodes. A vote is usually a digital signature with
some metadata, and a quorum of votes is called a quorum
certificate. The quorum size is n− f , where n and f be the
number of nodes and faulty nodes in the system, respectively.
Achieving agreement in synchronous networks and partially
synchronous networks require n ≥ 2 f + 1 and n ≥ 3 f + 1,
respectively [28], [97].

RANDCHAIN can employ the quorum mechanism as fol-
lows. A node signs a block to vote it. A node’s view is repre-
sented as the latest block hash. Nodes proactively propagate
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their votes, i.e., signatures on blocks. A node finalises a block
if collecting a quorum certificate, i.e., ≥2 f +1 votes, on this
block. The fault tolerance assumption changes to n≥3 f +1.
RANDCHAIN still keeps Nakamoto consensus as a fallback
solution. If there are multiple forks without quorum certifi-
cates, nodes mine on the longest fork. A block can be consid-
ered finalised with a sufficiently long sequence of succeeding
blocks, even without a quorum certificate.
Herding-based consensus. Herding is a social phenomenon
where people make choices according to the choices of other
people. Herding-based consensus allows nodes to decide
proposals according to neighbour nodes’ votes only, rather

than a quorum of votes. Existing research [98], [99] shows
that, herding-based consensus can achieve agreement with
overwhelming probability in a short time period.

RANDCHAIN can employ herding-based consensus as fol-
lows. Upon a new block, nodes execute a herding-based con-
sensus on it. If a block is the only block in a long time period,
then nodes will agree on this block directly. If there are multi-
ple blocks within a short time period, then nodes will agree
on the most popular block among them with overwhelming
probability. This approach has also been discussed in Bitcoin
Cash community, who seeks to employ Avalanche [99] as a
finality layer for Bitcoin Cash [100].
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