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Abstract. In this paper, we revisit the difference enumeration techniques
for LowMC and develop new algebraic techniques to achieve efficient
key-recovery attacks with negligible memory complexity. Benefiting from
our technique to reduce the memory complexity, we could significantly
improve the attacks on LowMC when the block size is much larger than
the key size and even break LowMC with such a kind of parameter.
On the other hand, with our new key-recovery technique, we could
significantly improve the time to retrieve the full key if given only a single
pair of input and output messages together with the difference trail that
they take, which was stated as an interesting question by Rechberger et
al. in ToSC 2018. Combining both the techniques, with only 2 chosen
plaintexts, we could break 4 rounds of LowMC adopting a full S-Box
layer with block size of 129, 192 and 255 bits, respectively, which are
the 3 recommended parameters for Picnic3, an alternative third-round
candidate in NIST’s Post-Quantum Cryptography competition. We have
to emphasize that our attacks do not indicate that Picnic3 is broken as
the Picnic use-case is very different and an attacker cannot even freely
choose 2 plaintexts to encrypt for a LowMC instantiation. However, such
parameters are deemed as secure in the latest LowMC. Moreover, much
more rounds of seven instances of the backdoor ciphers LowMC-M as
proposed by Peyrin and Wang in CRYPTO 2020 can be broken without
finding the backdoor by making full use of the allowed 264 data. The
above mentioned attacks are all achieved with negligible memory.

Keywords: LowMC, LowMC-M, linearization, key recovery, negligible
memory

1 Introduction

LowMC [5], a family of flexible Substitution-Permutation-Network (SPN) block
ciphers aiming at achieving low multiplicative complexity, is a relatively new



design in the literature and has been utilized as the underlying block cipher
of the post-quantum signature scheme Picnic [3], which is an alternative third-
round candidate in NIST’s Post-Quantum Cryptography competition [1]. The
feature of LowMC is that users can independently choose the parameters to
instantiate it, from the number of S-boxes in each round to the linear layer, key
schedule function and round constants.

To achieve low multiplicative complexity, the construction adopting a partial
S-box layer (only partial state bits will go through the S-boxes and an identical
mapping is applied for the remaining state bits) together with a random dense
linear layer is most used. As such a construction is relatively new, novel
cryptanalysis techniques are required. Soon after its publication, the high-order
attack and interpolation attack on LowMC are proposed [13,11], which require
a large number of plaintexts. To resist these attacks, LowMC v2 is proposed, i.e.
new formulas are used to determine the secure number of rounds. To analyse
one of the most useful settings, namely a few S-boxes in each round with low
allowable data complexities, the so-called difference enumeration technique [26],
which we call difference enumeration attack, is proposed, which makes LowMC
v2 move to LowMC v3. The difference enumeration attack is a chosen-plaintext
attack. The basic idea is to encrypt a pair (or more) of chosen plaintexts and then
recover the difference evolutions between the plaintexts through each component
in each round, i.e. to recover the differential characteristic. Finally, the secret key
is derived from the recovered differential characteristic. As a result, the number
of the required plaintexts can be as low as 4. For simplicity, LowMC represents
LowMC v3 in the remaining part of this paper.

Recently, Picnic3 [17] has been proposed and alternative parameters have
been chosen for LowMC. Specifically, different from Picnic2 where a partial S-box
layer is adopted when instantiating LowMC, a full S-box layer is used when
generating the three instances of LowMC in Picnic3. By choosing the number of
rounds as 4, the designers found that the cost of signing time and verifying time
can be reduced while the signature size is almost kept the same with that of
Picnic2 [3]. By increasing the number of rounds to 5 for larger security margin,
the cost is still lower than that of Picnic2. Consequently, 4-round LowMC is
recommended and 5-round LowMC is treated as an alternative choice.

As can be found in the latest source code [2] to determine the secure number
of rounds, the 3 instances of 4-round LowMC used in Picnic3 are deemed as
secure. However, there is no thorough study for the constructions adopting a
full S-box layer and low allowable data complexities (as low as 2 plaintexts).
Therefore, it is meaningful to make an investigation in this direction.

Moreover, a family of tweakable block ciphers called LowMC-M [23] was
proposed in CRYPTO 2020, which is built on LowMC and allows to imbed a
backdoor in the instantiation. It is natural to ask whether the additional available
degrees of freedom of the tweak can give more power to an attacker. Based on
the current cryptanalysis [13,11,26], the designers claim that all the parameters
of LowMC-M are secure even if the tweak is exploitable by an attacker.
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Related Techniques. The algebraic technique seems to be a prominent tool
to analyze designs that use low-degree S-boxes. The recent progress made
in the cryptanalysis of Keccak is essentially based on algebraic techniques,
including the preimage attacks [15,18,19,22], collision attacks [10,24,27,14] and
cube attacks [12,16,20].

A pure algebraic attack is to construct a multivariate equation system to
describe the target problem and then to solve this equation system efficiently.
When the equation system is linear, the well-known Gauss elimination can
be directly applied. However, when the equation system is nonlinear, solving
such an equation system is NP-hard even if it is quadratic. For the design
of block ciphers, there may exist undesirable algebraic properties inside the
design which can simplify the equation system and can be further exploitable
to accelerate the solving of equations. Such an example can be found in the
recent cryptanalysis of the initial version of MARVELLOUS [6] using Gröbner
basis attacks [4]. Indeed, there was once a trend to analyze the security of
AES against algebraic attacks after Courtois and Pieprzyk demonstrated how to
express AES as an overdefined system of multivariate polynomial equations over
GF(2) where the equations are quadratic and very sparse [9]. In addition, they
also showed how to solve such a quadratic equation system efficiently with the
Extended Sparse Linearization (XSL) technique [9]. However, it is still unknown
or even questionable whether the so-called XSL technique [9] can work as
expected to find the secret key of AES. In the literature, the simple linearization
technique and guess-and-determine technique are also common techniques to
solve a nonlinear multivariate equation system.

Recently in CRYPTO 2020, a method is proposed to automatically verify
a specified differential characteristic [21]. The core technique is to accurately
capture the relations between the difference transitions and value transitions.
We are inspired from such an idea and will further demonstrate that when
the relations between the two transitions are special and when the difference
transitions are special, under the difference enumeration attack framework [26],
it is possible to utilize algebraic techniques to efficiently recover the differential
characteristic for a single pair of (plaintext, ciphertext) and then to efficiently
retrieve the full key from the recovered differential characteristic.

Our Contributions. This work is based on the difference enumeration attack
framework and we developed several non-trivial techniques to significantly
improve the cryptanalysis of LowMC. Our results are detailed as follows:

1. We developed an algebraic technique to reduce the memory complexity to
recover the unknown differential characteristics, which allows us to break
one parameter of LowMC where the block size is much larger than the key
size and to significantly improve the key-recovery attacks on LowMC.

2. By studying the S-box of LowMC, we developed an efficient algebraic
technique to retrieve the full key if given only a single pair of (plaintext,
ciphertext) along with the corresponding differential characteristic that they
take, which was stated as an interesting question by Rechberger et al. in
ToSC 2018.
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3. We further developed a new difference enumeration attack framework to
analyze the constructions adopting a full S-box layer and low allowable data
complexities.

4. Combining our techniques, we could break the 3 recommended parameters
of 4-round LowMC used in Picnic3, which are treated as secure against the
existing cryptanalysis techniques, though it cannot lead to an attack on
Picnic3. In addition, much more rounds of 7 instances of LowMC-M can be
broken without finding the backdoor, thus violating the security claim of the
designers.

All our key-recovery attacks on LowMC only require 2 chosen plaintexts and
negligible memory. It is easy to achieve more rounds once more data and huge
(impractical) memory are allowed5. For our attack on LowMC-M, we will make
full use of the allowed data to achieve more rounds. More details are displayed
in Table 2, Table 3 and Table 4.

Organization. A brief introduction of LowMC and LowMC-M is given in
section 2. We then revisit the difference enumeration attack framework in
section 3. In section 4, we make a study on the S-box of LowMC. The techniques
to reduce the memory complexity and to reduce the cost to retrieve the secret
key from a differential characteristic are detailed in section 5 and section 6,
respectively. The application of the two techniques to LowMC with a partial
S-box layer and LowMC-M can be referred to section 7. The attack on LowMC
with a full S-box layer is explained in section 8. Finally, we conclude the paper
in section 9.

2 Preliminaries

2.1 Notation

As there are several instances for both LowMC and LowMC-M, we use the
following notations to describe the parameters of LowMC [5] and LowMC-M [23].

1. n represents the block size.
2. k represents the size of the master key.
3. m represents the number of S-boxes in each round.
4. D represents log2(D′), where D′ is the number of the allowed data for each

instantiation.
5. R represents the total number of rounds.

In addition, the following notations will also be used in this paper.

1. Pr[ω] represents the probability that the event ω happens.
2. Pr[ω|χ] represents the conditional probability, i.e. the probability that ω

happens under the condition that χ happens.
3. x >> y represents that x is much greater than y.

5 We omit this simple work as it is trivial.
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2.2 Description of LowMC

LowMC [5] is family of SPN block ciphers proposed by Albrecht et al. in
Eurocrypt 2015. Different from conventional block ciphers, the instantiation
of LowMC is not fixed and each user can independently choose parameters to
instantiate LowMC.

LowMC follows a common encryption procedure as most block ciphers.
Specifically, it starts with a key whitening (WK) and then iterates a round
function by R times. The round function at the (i+ 1)-th (0 ≤ i ≤ R− 1) round
can be described below:

1. SBoxLayer (SB): A 3-bit S-box S(x0, x1, x2) = (x0⊕x1x2, x0⊕x1⊕x0x2, x0⊕
x1 ⊕ x2 ⊕ x0x1) will be applied on the first 3m bits of the state in parallel,
while an identical mapping is applied on the remaining n− 3m bits.

2. LinearLayer (L): A regular matrix Li ∈ Fn×n2 is randomly generated and
multiply the n-bit state with Li.

3. ConstantAddition (AC): An n-bit constant Ci ∈ Fn2 is randomly generated
and is XORed to the n-bit state.

4. KeyAddition (AK): A full-rank n × k binary matrix Mi+1 is randomly
generated. The n-bit round key Ki+1 is obtained by multiplying the k-bit
master key with Mi+1. Then, the n-bit state is XORed with Ki+1.

The whitening key is denoted by K0 and it is also calculated by multiplying the
master key with a random n× k binary matrix M0.

It has been studied that there is an equivalent representation of LowMC by
placing (AK) between (SB) and (L). In this way, the size of the round key
Ki (i > 0) becomes 3m, which is still linear in the k-bit master key and can
be viewed as multiplying the master key with a 3m× k random binary matrix.
Notice that K0 is still an n-bit value. We will use this equivalent representation
throughout this paper for simplicity.

Moreover, for convenience, we denote the plaintext by p and the ciphertext
by c. The state after WK is denoted by A0. In the (i + 1)-th round, the input
state of (SB) is denoted by Ai and the output state of (SB) is denoted by ASi ,
as shown below:

p
WK−→ A0

SB−→ AS0
AK−→ L−→AC−→ A1 → · · · → AR−1

SB−→ ASR−1
AK−→ L−→AC−→ AR.

In addition, we also introduce the notations to represent the xor difference
transitions, as specified below:

∆p
WK−→ ∆0

SB−→ ∆S
0

AK−→ L−→AC−→ ∆1 → · · · → ∆R−1
SB−→ ∆S

R−1
AK−→ L−→AC−→ ∆R.

Specifically, in the (i + 1)-th round, the difference of the input state of (SB) is
denoted by ∆i and the difference of the output state of (SB) is denoted by ∆S

i .
The difference of plaintexts is denoted by ∆p, i.e. ∆p = ∆0.

Definition 1. A differential characteristic ∆0 → ∆i+1 → · · · → ∆r is called
a r-round compact differential characteristic when all (∆t, ∆

S
t ) (0 ≤ t ≤ r − 1)

and ∆r are known.
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2.3 Description of LowMC-M

LowMC-M [23] is a family of tweakable block ciphers built on LowMC, which is
introduced by Peyrin and Wang in CRYPTO 2020. The feature of LowMC-M is
that backdoors can be inserted in the instantiation. The only difference between
LowMC and LowMC-M is that there is an addition operation AddSubTweak
(AT) after AK and WK. In other words, the round function in the (i + 1)-
round (0 ≤ i ≤ R− 1) can be described as follows:

1. SBoxLayer (SB): Same with LowMC.

2. LinearLayer (L): Same with LowMC.

3. ConstantAddition (AC): Same with LowMC.

4. KeyAddition (AK): Same with LowMC.

5. AddSubTweak (AT): Add an n-bit sub-tweak TWi+1 to the n-bit state.

For the state after WK, it will also be XORed with an n-bit sub-tweak TW0.

To strengthen the security of the backdoors, TWi (0 ≤ i ≤ R) are generated
via an extendable-output-function (XOF) function. SHAKE-128 and SHAKE-
256 are used as the XOF functions in LowMC-M for 128-bit and 256-bit security
respectively. Specifically, the tweak TW is the input of the XOF function and
the corresponding n(R+1)-bit output will be split into (R+1) sub-tweaks TWi,
i.e. (TW0, TW1, · · ·, TWR)← XOF(TW ).

2.4 Standard Difference and d-Difference

The differential attack [8] was first proposed by Biham and Shamir with its
application to DES. Since then, the resistance against the differential attack
has become the criteria to design a new symmetric primitive. For the common
differential attack, the XOR difference between two values will be considered,
i.e. δ = u⊕ u′.

However, when it comes to d-difference [28], d XOR differences will be
simultaneously taken into account. Specifically, for a tuple of (d + 1) values
(u0, u2, · · ·, ud), its d-difference is defined as (δ0, δ1, · · ·, δd−1) = (u0 ⊕ u1, u0 ⊕
u2, · · ·, u0 ⊕ ud). If the ordered tuple (u0, u2, · · ·, ud) is transformed by a (linear
or nonlinear) function F , supposing the ordered tuple after transformation is

(ν0, ν2, · · ·, νd), i.e. ui
F−→ νi (0 ≤ i ≤ d), (u0⊕u1, u0⊕u2, · · ·, u0⊕ud) is defined

as the input d-difference of F while (ν0 ⊕ ν1, ν0 ⊕ ν2, · · ·, ν0 ⊕ νd) is defined as
the output d-difference of F . Obviously, one could also define the differential
characteristic for d-difference, which we call d-differential characteristic in this
paper. Similarly, we could also define the compact d-differential characteristic
for LowMC, i.e. all the input and output d-differences of each component in each
round are fully known.

In this paper, we will use the terminology ”d-difference” only when d > 1.
Otherwise, we simply use ”difference” or ”standard difference” to represent the
XOR difference between two values.
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3 The Difference Enumeration Techniques

In this section, we briefly revisit the difference enumeration techniques in [25].
The overall procedure can be divided into three phases, as depicted in Figure 1.

Phase 1: Determine an input difference ∆0 such that it will not activate any
S-boxes in the first t0 rounds, i.e. Pr[∆0 → ∆t0 ] = 1.

Phase 2: Compute the corresponding∆t0 from∆0 obtained at Phase 1. Enumerate
forwards all reachable values for ∆t0+t1 and store them in a table
denoted by Df .

Phase 3: Encrypt a pair of plaintexts whose difference equals ∆0 and compute
the difference ∆r of the corresponding two ciphertexts. Enumerate
backwards all reachable differences of ∆t0+t1 and check whether it is
in Df .

ROUNDS

1 to t0

ROUNDS

1 to t0

ROUNDS

t0 + 1 to t0 + t1

∆t0
∆0

ROUNDS

t0 + 1 to t0 + t1

ROUNDS

t0 + t1 + 1 to r

t0 + t1 + 1 to r

ROUNDS

∆t0+t1
∆r

No active S-boxes Meet-in-the-middle

Fig. 1: The framework of the difference enumeration techniques

For convenience, suppose the reachable differences of ∆t0+t1 by computing
backwards are stored in a table denoted by Db, though there is no need to store
them. To construct a distinguisher, one should expect that |Df | × |Db| < 2n.
In this way, one could only expect at most one solution that can connect the
difference transitions in both directions. Since there must be a solution, the
solution found with the above difference enumeration techniques is the actual
solution. After the compact differential characteristic is determined, i.e. the
difference transitions in each round are fully recovered, the attacker launches
the key-recovery phase.

To increase the number of rounds that can be attacked, the authors exploited
the concept of d-difference, which can increase the upper bound for |Df | × |Db|,
i.e. |Df | × |Db| < min(2k, 2nd). It should be noted that |Df | = λmt1d and |Db| =
λmt2d , where λd denotes the average number of reachable output d-differences
over the S-box for a uniformly randomly chosen input d-difference. For the 3-bit
S-box used in LowMC, λ1 ≈ 3.62 ≈ 21.86 and λ2 ≈ 6.58 ≈ 22.719. Therefore,
more number of attacked rounds can be covered by using d-difference (d > 1)
when k ≥ n. As for n > k, it is thus more effective to use the conventional
difference rather than d-difference (d > 1).
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Another benefit from the d-difference (d ≥ 2) is that the master key can be
efficiently determined when the compact d-differential characteristic is known.
For example, consider a non-zero 2-difference transition denoted by (δ0, δ1) →
(δ2, δ3) through the 3-bit S-box of LowMC, where (δ0, δ2) 6= (δ1, δ3). Then,
the first element of the three inputs to the S-box can be uniquely determined.
However, for the standard non-zero difference transition (d = 1), one could only
derive the values for the two unordered inputs.

Since the candidates for the round key cannot be uniquely determined with
only one pair of chosen plaintexts, two pairs of plaintexts are used in [25]. In
addition, an interesting problem was proposed in the conclusion section [25],
i.e. how to retrieve the full key if only given a single pair of inputs and
outputs along with the compact differential characteristic that they take. An
efficient method for this problem will bring several benefits. First of all, the data
complexity can be further reduced. Most importantly, imagine the case when
|Df |× |Db| > 2n, i.e. there are many solutions which can achieve the connection
of difference transitions between the backward and forward directions. In this
case, reducing the time complexity to recover the full key for each compact
differential characteristic becomes quite meaningful as the attacker needs to
launch a key-recovery phase after each solution achieving a connection is found.

3.1 The Extended Framework

It is stated in [25] that the above framework can be extended to more rounds if
the allowed data are increased. Indeed, as can be found in the latest reference
code [2] of LowMC (LowMC v3), the designers have already taken several
extensions of the framework in [25] into account to determine a secure number
of rounds with the parameters (n, k,D,m). The extended framework is depicted
in Figure 2. On the whole, the procedure can be divided into the following five

r0 rounds

r0 rounds

r1 rounds

∆r0
∆0

r1 rounds

r2 rounds

r2 rounds

∆r0+r1
∆r0+r1+r2

No active S-boxes Meet-in-the-middle

r3 rounds

r3 rounds

∆r

No active S-boxes

Fig. 2: The extended framework of the difference enumeration techniques

phases:

Phase 1: Iterate all possible d satisfying 1 ≤ d ≤ (2k/n+1) and log2(d+1) ≤ D.
For each valid d, compute r0 + r1 + r2 + r3 as follows and choose its
maximal value as the secure number of rounds.
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Phase 2: Determine the maximal value of r0 such that one could always construct
a probability 1 d-differential characteristic in the first r0 rounds.

Phase 3: Determine the maximal value of r1 such that λmr1d < min(2k, 2nd).
Phase 4: Determine the maximal value of r2 such that λmr2d < min(2k, 2nd).
Phase 5: Determine the maximal value of r3 such that one could always construct

a probability 1 d-differential characteristic in the last r3 rounds with
the allowed number of data.

For convenience, let Df and Db still denote the set of reachable d-differences
of ∆r0+r1 backwards and forwards, respectively. Compared with the framework
introduced in [25], there are three different points in the extended framework.

Point 1: |Df | is much larger when considering the standard difference (d = 1)
for n = k.

Point 2: |Db| is much larger when considering the standard difference (d = 1)
for n = k.

Point 3: There are extra r3 rounds where the difference transitions can be
determined by using the available plaintexts.

Specifically, when considering the standard difference for n = k, there is a
constraint that |Df | × |Db| < 2n in the original framework [25]. However, the
constraint becomes |Df | < 2n and |Db| < 2n in the extended framework, thus
significantly increasing the value of r1 + r2. In addition, after choosing a good

starting input d-difference in the plaintexts, the attacker could construct b 2D

d+1c
different tuples of plaintexts satisfying the chosen input d-difference. For each
tuple of plaintexts, the attacker can obtain the corresponding d-difference in the
ciphertexts and check whether it will activate the S-boxes in the last r3 rounds.

In addition, when n = k, d-difference (d > 1) is adopted in [25] to
increase the maximal number of rounds that can be analyzed and the constraint

is λ
m(r1+r2)
d < 22n. However, in the extended framework, we have λmr1d <

min(2k, 2nd) = 2k = 2n and λmr21 < min(2k, 2nd) = 2k = 2n, i.e. λ
m(r1+r2)
d <

22n. Since λd will increase as d increases, to maximize r1 + r2, d should be 1
and the maximal value is r1 = r2 = b n

m·log2λ1
c. However, the maximal value

is r1 = r2 = b n
m·log2λd

c (d > 1) in [25]. Therefore, for n = k, we have that

b n
m·log2λ1

c > b n
m·log2λd

c for d > 1. More specifically, for n = k = 128, we have

b 128
m·log2λ1

c ≈ b 86m c and b 128
m·log2λ2

c ≈ b47m c.
It is not difficult to derive from the above explanation that the secure number

of rounds are determined by only considering the standard difference for n = k.

However, there will be about λ
m(r1+r2)
1 × 2−n possible solutions for the compact

differential characteristics. When r1+r2 takes the maximal value, λ
m(r1+r2)
1 ×2−n

is only slightly smaller than 2n. However, costs for recovering the key which can
conform one compact differential characteristic is relatively high. Based on the
method mentioned in [25], without the aid of additional pairs of plaintexts, the
cost to retrieve the full key is lower bounded by 2k/3 as each non-zero difference
transition through the 3-bit S-box will suggest two solutions and the master key
is a k-bit value. The reason why it is a lower bound is that there may exist
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inactive S-boxes in the differential characteristics and the attacker has to try
all the 8 values. Thus, an efficient method to retrieve the full key will allow us

to enlarge λ
m(r1+r2)
1 × 2−n, thus increasing the number of rounds that can be

attacked.
Apart from the high cost of key recovery, it seems to be inevitable that the

attacker needs to store Df in advance for efficient checking. In other words, the
memory complexity is rather high as Df = λmr11 . We believe that attacks with
negligible memory are more effective and meaningful if compared with a pure
exhaustive key search.

4 Observations on the S-box

Before introducing our linearization-based techniques for LowMC, it is necessary
to describe our observations on the 3-bit S-box used in LowMC. Supposing the
3-bit input and output of the S-box are (x0, x1, x2) and (z0, z1, z2), respectively.
Based on the definition of the S-box, the following relations hold:

z0 = x0 ⊕ x1x2
z1 = x0 ⊕ x1 ⊕ x0x2
z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1

Based on the specification of the S-box, we observed the following property
of the S-box.

Observation 1 For each valid non-zero difference transition (∆x0, ∆x1, ∆x2)→
(∆z0, ∆z1, ∆z2), the inputs conforming such a difference transition will form an
affine space of dimension 1. In addition, (z0, z1, z2) becomes linear in (x0, x1, x2),
i.e. the S-box is freely linearized for a valid non-zero difference transition.

A full list of the all valid non-zero difference transitions along with the
corresponding conditions on (x0, x1, x2) as well as the updated expressions for
(z0, z1, z2) is given in Table 1. For example, when (∆x0, ∆x1, ∆x2) = (0, 0, 1)
and (∆z0, ∆z1, ∆z2) = (0, 0, 1), it can be derived that x0 = 0 and x1 = 0.
Therefore, the expressions of (z0, z1, z2) become z0 = 0, z1 = 0 and z2 = x2.

Indeed, the same property also hold for the inverse of the S-box. The inverse
of the S-box can be written as follows:

x0 = z0 ⊕ z1 ⊕ z1z2
x1 = z1 ⊕ z0z2
x2 = z0 ⊕ z1 ⊕ z2 ⊕ z0z1

Similarly, based on Table 1, it can be derived that the following property also
holds for the inverse of the S-box.

Observation 2 For each valid non-zero difference transition (∆z0, ∆z1, ∆z2)→
(∆x0, ∆x1, ∆x2), the inputs conforming such a difference transition will form an
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affine space of dimension 1. In addition, (x0, x1, x2) becomes linear in (z0, z1, z2),
i.e. the inverse of the S-box is freely linearized for a valid non-zero difference
transition.

Table 1: The full list for all valid non-zero difference transitions
(∆x0,∆x1,∆x2) (∆z0,∆z1,∆z2) Conditions z0 z1 z2

(0,0,1)

(0,0,1) x0 = 0, x1 = 0 0 0 x2
(0,1,1) x0 = 1, x1 = 0 1 1 ⊕ x2 1 ⊕ x2
(1,0,1) x0 = 0, x1 = 1 x2 1 1 ⊕ x2
(1,1,1) x0 = 1, x1 = 1 1 ⊕ x2 x2 1 ⊕ x2

(0,1,0)

(0,1,0) x0 = 1, x2 = 0 1 x1 + 1 1
(0,1,1) x0 = 0, x2 = 0 0 x1 x1
(1,1,0) x0 = 1, x2 = 1 1 ⊕ x1 x1 0
(1,1,1) x0 = 0, x2 = 1 x1 x1 1 ⊕ x1

(1,0,0)

(1,0,0) x1 = 1, x2 = 1 1 ⊕ x0 1 0
(1,0,1) x1 = 0, x2 = 1 x0 0 1 ⊕ x0
(1,1,0) x1 = 1, x2 = 0 x0 1 ⊕ x0 1
(1,1,1) x1 = 0, x2 = 0 x0 x0 x0

(0,1,1)

(0,0,1) x1 = x2 ⊕ 1, x0 = 1 1 0 x1
(0,1,0) x1 = x2 ⊕ 1, x0 = 0 0 x1 1
(1,0,1) x1 = x2, x0 = 1 1 ⊕ x1 1 1 ⊕ x1
(1,1,0) x1 = x2, x0 = 0 x1 x1 0

(1,1,0)

(0,1,0) x0 = x1 ⊕ 1, x2 = 1 1 x1 0
(0,1,1) x0 = x1, x2 = 1 0 x1 1 ⊕ x1
(1,0,0) x0 = x1 ⊕ 1, x2 = 0 x1 1 1
(1,0,1) x0 = x1, x2 = 0 x1 0 x1

(1,0,1)

(0,0,1) x1 = 1, x0 = x2 0 1 1 ⊕ x2
(1,0,0) x1 = 0, x0 = x2 x2 0 0
(0,1,1) x1 = 1, x0 = x2 ⊕ 1 1 1 ⊕ x2 1 ⊕ x2
(1,1,0) x1 = 0, x0 = x2 ⊕ 1 1 ⊕ x2 1 ⊕ x2 1

(1,1,1)

(0,0,1) x1 = x2, x0 = x2 ⊕ 1 1 1 x0
(0,1,0) x1 = x2, x0 = x2 0 x0 0
(1,0,1) x1 = x2 ⊕ 1, x0 = x2 ⊕ 1 x0 0 1
(1,1,0) x1 = x2 ⊕ 1, x0 = x2 x0 1 ⊕ x0 1 ⊕ x0

The above two observations will be used to recover the master key from a
compact differential characteristic in an efficient way. Apart from the relations
between the difference transitions and value transitions, we could also observe
the relations inside the input difference and output difference from Table 1, as
summarized below:

Observation 3 For each non-zero input difference (∆x0, ∆x1, ∆x2), the corresponding
valid output differences form an affine space of dimension 2.
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Observation 4 For each non-zero output difference (∆z0, ∆z1, ∆z2), the corresponding
valid input differences form an affine space of dimension 2.

For instance, when the input difference is (0, 1, 1), the corresponding valid
output differences satisfy ∆z1⊕∆z2 = 1. When the output difference is (0, 1, 1),
the corresponding valid input differences satisfy ∆x1 ⊕∆x2 = 1.

In addition, for an inactive S-box, i.e. (∆x0, ∆x1, ∆x2) = (∆z0, ∆z1, ∆z2) =
(0, 0, 0), the S-box can be linearized by guessing two input bits or two output
bits, which can be formalized as follows:

Observation 5 For an inactive S-box, the input becomes linear in the output
after guessing two output bits. If guessing two input bits, the output also becomes
linear in the input.

Such an observation can be easily proved by considering the specification of the
3-bit S-box and its inverse.

5 Reducing the Memory Complexity

As mentioned in the previous section, it seems to be inevitable to use a
sufficiently large amount of memory to store some reachable differences to
achieve efficient checking for the reachable differences computed backwards. It
is commonly believed that attacks requiring too much memory indeed cannot
compete with a pure exhaustive key search. Therefore, we aim to significantly
reduce the memory complexity in both the original and extended frameworks.
Specifically, for each reachable difference computed backwards, we try to construct
an equation system whose solutions can correspond to the difference transitions
in the forward direction.

As illustrated in Figure 3, after we determine the differential characteristic
in the first r0 rounds, ∆r0 is known and there should be at least one active
S-box when taking ∆r0 as inputs, otherwise we could extend the deterministic
differential characteristic for one more round.

d0

d1

d2

· · ·

d3m−3

d3m−2

d3m−1

L L

S

S

∆r0
d3m

d3m+1

d3m+2

d6m−3

d6m−2

d6m−3

L

∆r0+1

· · ·

∆r0+l

L

S

S

KnownKnown

S

S

Fig. 3: Constructing the affine subspace of reachable differences
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Let us introduce 3m variables (d0, · · ·, d3m−1) to denote the output difference
of the m S-boxes for the input difference ∆r0 . Then, there will be at least m linear
relations inside (d0, · · ·, d3m−1). It can be found that when there is an inactive
S-box, the output difference is (0, 0, 0), i.e. three linear relations. When there is
an active S-box, the valid output differences form an affine space of dimension 2
according to Observation 3, i.e. 1 linear relation. In other words, we only need
to introduce at most 3m −m = 2m variables to denote the output differences
for ∆r0 . For the next l − 1 rounds, since the input difference of the S-box is
uncertain due to the diffusion of a random linear layer, we directly introduce
3m(l−1) variables (d3m, · · ·, d3ml−1) to represent the output differences for each
S-box. In this way, ∆r0+l is obviously linear in the introduced 3m(l− 1) + 2m =
3ml −m = m(3l − 1) variables. In other words, ∆r0+l can be written as linear
expressions in terms of the introduced m(3l − 1) variables.

Then, for the difference enumeration in the backward direction, after we
obtain the output difference of the S-box for ∆r0+l, we start to construct the
equation system to connect the output difference. Specifically, once the output
difference of the m S-boxes becomes known, it will leak at least m linear relations
for the input difference. Specifically, when the S-box is inactive, the input
difference is 0, i.e. three linear relations. When the S-box is active, according
to Observation 4, one linear relation inside the input difference can be derived.
In other words, we could collect at least m+(n−3m) = n−2m linear equations
in terms of the introduced m(3l − 1) variables. When

m(3l − 1) ≤ n− 2m→ n ≥ m(3l + 1), (1)

we can expect at most one solution of the equation system. Once a solution
is found, all output differences of the S-box in the middle l rounds become
known and we can easily check whether the difference transitions are valid
by computing forwards. If the transitions are valid, a connection between the
difference transitions in both directions are constructed. Otherwise, we need to
consider another enumerated output difference of the S-box for ∆r0+l in the
backward direction. We have to stress that when enumerating the differences
backwards for r2 rounds, there are indeed l + 1 + r2 rounds in the middle, i.e.
r1 = l + 1 if following the extended framework as shown in Figure 2.

However, in some cases where m is large, there is no need to make such a
strong constraint as in Equation 1. Even with n < m(3l + 1), at the cost of
enumerating all the solutions of the constructed linear equation system, more
rounds can be covered. In this way, the time complexity to enumerate differences
become 21.86mr2+m(3l+1)−n. Thus, the constraint becomes

1.86mr2 +m(3l + 1)− n < k. (2)

As l = r1 − 1, it can be derived that

m(1.86r2 + 3r1 − 2) < n+ k (3)

In addition, the following constraint on r2 should hold as well.

1.86mr2 < k (4)
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Therefore, when r1 +r2 is to be maximized, the above two inequalities should be
taken into account. In this way, the time complexity of difference enumeration
becomes

max(21.86mr2 , 2m(1.86r2+3r1−2)−n). (5)

6 Efficient Algebraic Techniques for Key Recovery

In this section, we describe how to retrieve the full key from a compact differential
characteristic with an algebraic method. Following the extended framework, we
assume that there is no active S-box in the last r3 rounds. As illustrated in
Figure 4, we could introduce 3mr3 variables to represent all the input bits of
the S-boxes in the last r3 rounds. Since Ar is the known ciphertext, we could
know that Ar−1 will be linear in (v0, · · ·, v3m−1). Similarly, it can be derived that
Ar−r3 is linear in all the introduced 3mr3 variables (v0, · · ·, v3mr3−1).

L L

· · ·

Ar

L

S

S

Known

AS
r−1

v0

v1

v2

v3m−3

v3m−2

v3m−1

Ar−1

v3m

v3m+1

v3m+2

v6m−3

v6m−2

v6m−1

· · ·

AS
r−2AS

r−r3

S

S
v3mr3−1

v3mr3−2

v3mr3−3

v3mr3−3m

v3mr3−3m+1

v3mr3−3m+2

L

Ar−r3

go back r3 rounds

S

S

Ar−r3+1

Fig. 4: Linearizing the last r3 rounds

6.1 Exploiting the Leaked Linear Relations

Since all the S-boxes in the last r3 rounds are inactive, we have to introduce
3mr3 variables to achieve linearization. However, we have not yet obtained any
linear equations in terms of these variables. Therefore, we will focus on how to
construct a sufficient number of linear equations such that there will be a unique
solution of these introduced variables.

It should be noticed that the difference enumeration starts from ∆r−r3 in
the backward direction. For a valid r2-round differential propagation (∆r−r3 →
∆r−r3−1 → ··· → ∆r−r3−r2) enumerated in the backward direction, there should
be one valid r1-round differential propagation (∆r0 → ∆r0+1 → · · · → ∆r0+r1)
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enumerated in the forward direction such that ∆r0+r1 = ∆r−r3−r2 . Once such
a sequence is identified, i.e. (∆r0 → · · · → ∆r−r3) is fully known, we start
extracting linear equations from the difference transitions inside the S-boxes in
the middle r1 + r2 rounds.

Specifically, for each active S-box, there will be two linear equations inside
the 3-bit output according to Observation 2. In addition, the 3-bit S-box is freely
linearized once it is active according to Observation 2, i.e. the 3-bit input can
be written as linear expressions in terms of the 3-bit output. Note that Ar−r3 is
linear in (v0, · · ·, v3mr3−1).

⊕

⊕

⊕

S

L

2 equations

· · ·

e3m−3 e3m−2 e3m−1

⊕

⊕

⊕

e0 e2e1

S

2 equations

Ar−r3
Ar−r3−1

L

go back b rounds

Ar−r3−b

· · ·L

Fig. 5: Extract linear equations from the inactive S-boxes

As depicted in Figure 5, denote the equivalent round key bits used in the
(r− r3)-th round by (e0, · · ·, e3m−1). For simplicity, assume that all the S-boxes
are active when going back b rounds starting from Ar−r3 . The case when there
are inactive S-boxes will be discussed later. Under such an assumption, we could
derive 2m linear equations in terms of (v0, · · ·, v3mr3−1, e0, · · ·, e3m−1) based
on Observation 2. In addition, since the input becomes linear in the output
for each active S-box, Ar−r3−1 becomes linear in (v0, · · ·, v3mr3−1, e0, · · ·, e3m−1).
Similarly, denote the equivalent round key bits used in the (r−r3−i)-th round by
(e3mi, ···, e3mi+3m−1) (0 ≤ i ≤ b−1). Then, one could derive 2m linear equations
in terms of (v0, · · ·, v3mr3−1, e0, · · ·, e3mi+3m−1) in the (r − r3 − i)-th round and
Ar−r3−i−1 will be linear in (v0, · · ·, v3mr3−1, e0, · · ·, e3mi+3m−1). Repeating such a
procedure for b rounds backwards, we could collect in total 2mb linear equations
in terms of 3mr3 + 3mb variables (v0, · · ·, v3mr3−1, e0, · · ·, e3mb−1). Since each
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equivalent round key bit is linear in the k-bit master key according to the linear
key schedule function, we indeed succeed in constructing 2mb linear equations
in terms of (v0, · · ·, v3mr3−1) and the k-bit master key. To ensure that there is a
unique solution to the equation system, the following constraint should holds:

2mb ≥ k + 3mr3. (6)

As 2m linear equations will be leaked when going back 1 round, there may exist
redundant linear equations, i.e. 2mb > k + 3mr3. Indeed, only

h = d (k + 3mr3)− 2m(b− 1)

2
e (7)

active S-boxes are needed in the (r− r3− b)-th round. In this way, we only need
in total

H = h+m(b− 1) (8)

S-boxes to ensure that there exists a unique solution of the constructed equation
system.

6.2 Linearizing the Inactive S-boxes

After discussing the case when all the S-boxes are active when going back b
rounds starting from Ar−r3 , let us consider the case when there are q inactive
S-boxes among the required H S-boxes in these b rounds (0 ≤ q ≤ H).
Specifically, we want to compute the probability as well as the time complexity
to recover the full key for such a case.

For an inactive S-box, it can be linearized by guessing two bits of its input or
output according to Observation 5. In other words, even for an inactive S-box,
we could guess two linear relations for its output. Therefore, the number of
equations remain the same as in the case when all the S-boxes are active. The
only cost is that we need to iterate 22q times of guessing. If Equation 6 satisfies,
for each time of guessing, one could only expect 1 unique solution for the k-bit
master key. Therefore, the expected time to recover the full key from one random
compact differential characteristic can be evaluated as follows:

T0 =

H∑
q=0

(
7

8
)H−q × (

1

8
)q ×

(
H

q

)
× 22q

=

H∑
q=0

(
7

8
)H−q × (

1

2
)q ×

(
H

q

)
= (

7

8
+

1

2
)H = 1.375H ,

where H = h+m(b− 1).
The above formula shows the expected time to recover the full key from one

compact differential characteristic. It can not be ensured that the recovered key
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is the actual one and one has to further verify it by checking the plaintext-
ciphertext pair. If there are N valid compact differential characteristics left in
the extended framework, the total time complexity to recover the correct master
key is therefore

T1 = N × 1.375H . (9)

Similar to the above method, we could also give a formula to compute the
expected time to recover the correct key if following the simple method as
discussed in [25]. It should be noted that there is no extra strategy used in the
key-recovery phase in [25]. Specifically, when the S-box is active, the attacker
needs to try the two possible values. When the S-box is inactive, the attacker
needs to try all the 8 possible values. However, since the attacker could always
derive 3-bit information of the master key from one S-box in this way, he only
needs to go back b′ = dk−mr33m e rounds and the needed number of S-boxes is

H ′ = dk3 e−mr3 in these b′ rounds. Thus, the expected time T ′ can be formalized
as follows:

T2 = N × 8mr3 ×
H′∑
q=0

(
7

8
)H
′−q × (

1

8
)q ×

(
H ′

q

)
× 8q × 2H

′−q

= N × 23mr3 ×
mb∑
q=0

(
7

8
× 2)H

′−q × (
1

8
× 8)q ×

(
H ′

q

)
= N × 23mr3 × (

7

4
+ 1)H

′
.

To explain the significant improvement achieved by our linearization techniques
to recover the matser key, we make a comparison between T1 and T2 as shown
below:

T2
T1

=
23mr3( 7

4 + 1)H
′

1.375H
.

Since H = dk+3mr3
2 e and H ′ = dk3 e −mr3, we have

T2
T1

=
23mr3( 7

4 + 1)H
′

1.375H
≈ 23mr3+1.46( k

3−mr3)

20.46(0.5k+1.5mr3)
≈ 20.256k+0.85mr3 .

Obviously, our new key-recovery technique is much faster if compared with the
method as in [25].

6.3 Further Improvement

Indeed, one could further reduce the cost to retrieve the full key from a compact
differential characteristic. Specifically, we first upper bound b as in Equation 6.
Then, when going back r3 + b − 1 rounds from the ciphertext, there will be
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2m(b − 1) leaked equations and the last r3 + b − 1 rounds are fully linearized.
Since only k + 3mr3 equations are needed and each active S-box will leak 2
equations, we only need to use

h = d (k + 3mr3)− 2m(b− 1)

2
e

active S-boxes in the (r − r3 − b)-th round.
Therefore, in the (r− r3− b)-th round, when there are more than h active S-

boxes, there is no need to guess extra equations but we still need to construct the
equation system. However, when there are i (i < h) active S-boxes, it is necessary
to guess 2h − 2i extra equations. Therefore, the expected time complexity can
be refined as:

T3 = N × T4 ×
h∑
i=0

(
m

i

)
× (

7

8
)i × (

1

8
)m−i × 22h−2i

+ N × T4 ×
m∑

i=h+1

(
m

i

)
× (

7

8
)i × (

1

8
)m−i

≈ N × T4 × 22h ×
h∑
i=0

(
m

i

)
× (

7

32
)i × (

1

8
)m−i

+ N × T4 × (1−
h∑
i=0

(
m

i

)
× (

7

8
)i × (

1

8
)m−i)

< N × T4 × (1 + 22h ×
h∑
i=0

(
m

i

)
× (

7

32
)i × (

1

8
)m−i)

where

T4 =

m(b−1)∑
q=0

(
7

8
)m(b−1)−q × (

1

8
)q ×

(
m(b− 1)

q

)
× 22q

=

m(b−1)∑
q=0

(
7

8
)m(b−1)−q × (

1

2
)q ×

(
m(b− 1)

q

)
= (

7

8
+

1

2
)m(b−1) = 1.375m(b−1).

There is no simple approximation for T3 and we therefore provide a loose upper
bound which can be easily calculated, as specified below:

T3 < N × T4 × (1 + 22h ×
m∑
i=0

(
m

i

)
× (

7

32
)i × (

1

8
)m−i) = N × T4 × (1 + 22h−1.54m).

Hence, in general, we can use the following formula Equation 10 to calculate
the time complexity to retrieve the full key fromN compact differential characteristics.

T3 ≈ N × 1.375m(b−1) × (1 + 22h−1.54m). (10)
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It is not surprising that one could go back more than b+ r3 rounds to obtain
more leaked linear equations if b ≤ r1 + r2. However, the cost of linearization
cannot be neglected, i.e. it is necessary to introduce more variables to represent
the 3 input bits of an inactive S-box. In other words, although more linear
equations can be derived, more variables are involved into the equation system.
Note that we need to introduce 3 extra variables to linearize an inactive S-box
and only 2 linear equations can be derived from an active S-box. For such a case,
it is difficult to give a simple formula describing the expected time complexity to
retrieve the full key. Thus, the formula Equation 10 can be viewed as an upper
bound.

7 Applications

The above two algebraic techniques can be utilized to further understand the
security of LowMC as well as LowMC-M. LowMC is the underlying block cipher
used in Picnic, which is an alternative third-round candidate in NIST’s post-
quantum cryptography competition. For LowMC-M, it is a family of block
ciphers based on LowMC which allows to insert a backdoor.

7.1 Applications to LowMC with a Partial S-Box Layer

In this section, we describe how to apply our techniques to instantiations with
a partial S-box layer. The result can be summarized in Table 2. All these
attacks only require 2 chosen plaintexts and negligible memory. For better
understanding, we take (n, k,m,D,R) = (128, 128, 10, 1, 20), (n, k,m,D,R) =
(256, 256, 1, 1, 380) and (n, k,m,D,R) = (1024, 128, 1, 1, 776) as examples.

Attack on (128, 128, 10, 1). When (n, k,m,D) = (128, 128, 10, 1), as explained
in the extended framework, we have r3 = 0 as there are only two allowed
plaintexts for each instantiation and r0 = b 12830 c = 4. According to Equation 6,
b = 7. Therefore, the time complexity to retrieve the master key becomes T3 ≈
21.86m(r1+r2)−128 × 20.46m(b−1) = 218.6(r1+r2)−81.8 < 2128 based on Equation 10.
The time complexity to enumerate differences is max(1.86mr2,m(1.86r2 +3r1−
2) − n) = max(18.6r2, 18.6r2 + 30r1 − 148) < 2128 based on Equation 5 while
18.6r2 < 128 (Equation 4) and 18.6r2 + 30r1 < 276 (Equation 3) should hold.
Therefore, we have r1 + r2 ≤ 11, r2 ≤ 6, 18.6r2 + 30r1 ≤ 276. To maximize
r1 + r2 and minimize the total time complexity, we can choose r1 = 5 and
r2 = 6. In this way, the time complexity to recover the master key is 2122.8 while
the time complexity to enumerate differences is max(2111.6, 2111.8) = 2111.8.
Therefore, we could break 15 (out of 20) rounds of LowMC taking the parameter
(n, k,m,D) = (128, 128, 10, 1) with time complexity 2122.8 and only 2 chosen
plaintexts.

Attack on (256, 256, 1, 1). When (n, k,m,D) = (256, 256, 1, 1), we have r0 =
b 2563 c = 85, r3 = 0. According to Equation 6, Equation 7, b = 128 and h = 1. In
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addition, based on Equation 10, the time complexity to retrieve the master key
is T3 ≈ 21.86(r1+r2)−197.12 < 2256. Based on Equation 5, the time complexity to
enumerate differences is max(1.86r2, 1.86r2 + 3r1 − 258) < 2256. In addition, we
have 1.86r2 < 256 and 1.86r2 + 3r1 < 514. Therefore, we have r1 + r2 ≤ 243,
r2 ≤, 137 and 1.86r2 + 3r1 ≤ 514. Therefore, we choose r2 = 137 and r1 = 86
to maximize r1 + r2 while minimizing the total time complexity. In this way,
we could break 85 + 86 + 137 = 308 (out of 363) rounds of LowMC taking the
parameter (n, k,m,D) = (256, 256, 1, 1) with time complexity 2254.82.

Attack on (1024, 128, 1, 1). Similarly, when (n, k,m,D) = (1024, 128, 1, 1),
we have r3 = 0, r0 = b 10243 c = 341, b = 64 and h = 1. In addition,
1.86r2 < 128, 1.86r2 + 3r1 < 1154 and we want to maximize r1 + r2 while
minimizing max(1.86r2, 1.86r2 + 3r1 − 1026) < 2128. Therefore, to mount an
effective attack, r2 = 66 and r1 = 342 is chosen and the time complexity of
difference enumeration is 2122.76. As 1.86(r1 + r2) − 1028 < 0, we can expect
only one solution of the compact differential characteristic, thus resulting in
T3 ≈ 229.44. Therefore, we could break 341 + 342 + 66 = 749 (out of 776)
rounds of LowMC taking the parameter (n, k,m,D) = (1024, 128, 1, 1) with time
complexity 2122.76. Indeed, as can be found in latest code to determine a secure
number of rounds of LowMC [2], 481 rounds is deemed as secure against the
difference enumeration attack, while we could break 749 rounds. As an extreme
example, we could break (n, k,m,D) = (1024, 256, 1, 1), as displayed in Table 2.

Remark. It is not surprising to further extend r1 by using a huge amount of
memory when n = k. However, such attacks are indeed less effective compared
with a pure exhaustive search. Therefore, we omit the simple extension of how
to attack more rounds using huge memory. It can be found that we could attack
more rounds when n = k even with only 2 chosen plaintexts and negligible
memory compared with the results in [25], which most benefits from our efficient
key-recovery technique. It also shows that the standard difference can outperform
the d-difference (d > 1) for n = k, which is different from that statement in [25]
that d-difference (d > 1) outperforms the standard difference for n = k.

On the other hand, when n >> k, we could significantly improve r1 as the
constraint becomes 3r1 < n when using our efficient technique to reduce the
memory complexity, while the constraint is λr11 < min(2nd, 2k) in the extended
framework. For example, when attacking (n, k,m,D) = (1024, 128, 1, 1), r1
cannot reach 342 without our technique to reduce the memory complexity since
21.86r1 < 2128 has to be satisfied if simply enumerating the reachable differences.

7.2 Applications to LowMC-M

The only difference between LowMC and LowMC-M is that there is an additional
operation after the key addition, i.e. the sub-tweak addition. Since the sub-
tweaks are generated with an XOF function, the attacker loses the capability to
directly control the difference of sub-tweaks. However, the additional degree of
freedom provided by the tweak can still be utilized to further extend r0.
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Table 2: The results for LowMC with a partial S-box layer, where the success
probability is recorded in the last column

n k m D R r0 r1 r2 r3 r Data Time Memory Pro.

128 128 1 1 182 42 43 67 0 152 2 2124.62 negligible 1
128 128 10 1 20 4 5 6 0 15 2 2122.8 negligible 1
192 192 1 1 273 64 64 101 0 229 2 2187.86 negligible 1
192 192 10 1 30 6 7 10 0 23 2 2186 negligible 1
256 256 1 1 363 85 86 137 0 306 2 2254.82 negligible 1
256 256 10 1 38 8 9 13 0 30 2 2241.8 negligible 1
1024 128 1 1 776 341 342 66 0 749 2 2122.76 negligible 1
1024 256 1 1 819 341 342 136 0 819 2 2253 negligible 1

Maximizing r0 based on [7]. A very recent work [7] shows how to compute the
maximal value of r0 with a birthday search method. In brief, when there is no
active S-box in the first r0 rounds, an attacker can construct a linear equation
system of size 3mr0 and in terms of ∆0 as well as the difference of sub-tweaks
(∆TW0, · · ·, ∆TWr0−1). When the sub-tweaks are fixed, the equation system is
thus only in terms of∆0, i.e. n variables. Therefore, when 3mr0 > n, the equation
system is consistent with probability 2n−3mr0 . Thus, the attacker needs to find
an assignment for (∆TW0, · · ·, ∆TWr0−1) such that the constructed equation
system is consistent.

To achieve this goal, the equation system will be first re-organized by placing
(∆TW0, · · ·, ∆TWr0−1) on the right-hand of the equation system and placing
∆0 on the left-hand of the equation system. In other words, the equation system
becomes

A ·∆0 = B · (∆TW0, · · ·, ∆TWr0−1),

where A is a binary matrix of size 3mr0 × n and B is a binary matrix of size
3mr0×3mr0. To ensure that there is a solution to ∆0, one can derive an equation
system of size 3mr0−n and only in terms of (∆TW0, · · ·, ∆TWr0−1). Specifically,
apply a transform A′3mr0×3mr0 to both A and B such that the first n rows of A′ ·A
is an identity matrix and the remaining (3mr0−n) rows of A′ ·A are all zero. In
this way, we only need to focus on the last (3mr0−n) rows of A′ ·B, i.e. a linear
equation system of size 3mr0 − n and in terms of (∆TW0, · · ·, ∆TWr0−1) can
be derived to ensure that there is always a solution to ∆0. Thus, with a parallel
collision search [29], it is expected to find (∆TW0, · · ·, ∆TWr0−1) with time

complexity 2
3mr0−n

2 and negligible memory satisfying such an equation system.
Therefore, the constraint for r0 becomes

3mr0 − n
2

< k. (11)

In this way, one could find the desirable pair of tweaks as well as the plaintext

difference ∆0 with time complexity 2
3mr0−n

2 . This is the method given in [7] to
maximize r0 and we will use it in our attacks.
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Since the allowed data complexity is 264 for all instances of LowMC-M, we can
also construct a differential characteristic in the last r3 rounds where no active
S-boxes exist with 23mr3+1 attempts, i.e. 3mr3 ≤ 63. Similar to the cryptanalysis
of LowMC, we could compute (r0, r1, r2, r3) and the corresponding total time
complexity, as summarized in Table 3.

Table 3: The results for LowMC-M, where the success probability is recorded in
the last column

n k m D R r0 r1 r2 r3 r Data Time Memory Pro.

128 128 1 64 208 122 43 64 21 250 264 2120 negligible 1
128 128 2 64 104 61 22 32 10 125 261 2120 negligible 1
128 128 3 64 70 40 15 21 7 83 264 2118.18 negligible 1
128 128 10 64 23 12 5 6 2 25 261 2118 negligible 1
256 256 1 64 384 253 86 136 21 496 264 2252.96 negligible 1
256 256 3 64 129 83 29 45 7 164 264 2250.1 negligible 1
256 256 20 64 21 12 5 6 1 24 261 2232 negligible 1

Attack on (256, 256, 1, 64, 384). For this example, we explain how to maximize
the number of rounds that can be attacked. We first assume the total time
complexity is about 2252. Based on Equation 11, we choose the maximal value
r0 ≈ 253. In this way, the time complexity of the offline phase is 2251.5. Then,
we have r3 = b 633 c = 21. Therefore, b = d 256+3×21

2 e = 160 and h = 1.

Therefore, based on Equation 10, we have T3 = 21.86(r1+r2)−256+0.46×160 =
21.86(r1+r2)−182.4. Then, we try to maximize r1 + r2. Based on Equation 3,
Equation 4 and Equation 5, we can choose r1 = 86 and r2 = 136. In this way, the
time complexity to enumerate differences ismax(2136×1.86, 2136×1.86+3×86−2−256) =
2252.96 and the time complexity to retrieve the key is T3 = 2230.52. Therefore, we
could break 253 + 86 + 136 + 21 = 496 rounds with time complexity 2252.96.

Remark. Based on our new key-recovery attacks, it seems that LowMC-M should
add extra 2×d k3me rounds to have the same security margin as that of LowMC. In
addition, compared with the attack in [7], our attacks require negligible memory
and therefore are much more meaningful compared with a pure exhaustive key
search. In addition, there are many valid compact differential characteristics
left in their attack when using the difference enumeration technique while they
claimed that they could efficiently recover the secret key with 2 plaintext pairs,
which we think are questionable6.

6 For example, there are 2ρ valid compact differential characteristics for one plaintext
pair. In this way, it is expected that there will also be 2ρ valid compact differential
characteristics for another plaintext pair. In other words, to retrieve the correct
key, it is necessary to try 22ρ combinations. Therefore, the time complexity is never
dominated by difference enumeration when r1 and r2 become large.

22



8 A Refined Attack Framework for the Full S-Box Layer

The above two techniques are quite general and therefore they can be applied
to arbitrary instantiations of LowMC. However, when it comes to a full S-Box
layer, we need to make extra efforts to improve the extended attack framework
developed by the designers of LowMC. Specifically, it is impossible to construct
a probability-1 differential characteristic anymore in the first few rounds. On
the other hand, the cost of difference enumeration becomes rather high as a full
S-box layer is applied.

To overcome the obstacle that there is no probability-1 differential characteristic,
we turn to consider how to choose a desirable input difference such that it
will activate a small number of S-boxes as possible in the first two rounds.
However, since the linear layer is randomly generated, it is difficult to provide
an accurate answer. Thus, similar to the method to calculate the time complexity
to retrieve the full key, the general case is taken into account and we calculate
the expectation of the number of inactive S-boxes in the first two rounds and
verify it via experiments.

To reduce the cost of difference enumeration, we still use the linearization
technique. However, as will be explained in the following, a different setting
needs to be taken into account where the number of variables is larger than
the number of equations. In other words, instead of enumerating the reachable
differences for each S-boxes in each round, we construct a linear equation system
and enumerate the solutions of this equation system, which can significantly
reduce the time complexity as some incompatible difference transitions can be
avoided in advance.

8.1 Maximizing the Number of Inactive S-boxes

To maximize the number of inactive S-boxes in the first two rounds, we consider
the case when there is only one active S-box in the first round, which can
obviously reduce the total number of reachable differences after two rounds.

First of all, consider a simple related problem, as stated below:

Suppose there are two vectors µ = (µ0, µ1, µ2) ∈ F 3
2 and γ = (γ0, γ1, γ2) ∈

F 3
2 . For a random binary matrix M of size 3× 3 satisfying

γ = M × µ,

calculate the probability that such a matrix M is used such that γ = (0, 0, 0) for
(µ0, µ1, µ2) = (0, 0, 1), (0, 1, 0), · · ·, (1, 1, 1), respectively.

For (µ0, µ1, µ2) = (0, 0, 1), when M [i][j] = 0 (j = 2), γ = (0, 0, 0) can always
hold. Thus,

Pr[(γ0, γ1, γ2) = (0, 0, 0)|(µ0, µ1, µ2) = (0, 0, 1)] = 2−3.

Similarly, we have Pr[(γ0, γ1, γ2) = (0, 0, 0)|(µ0, µ1, µ2) 6= (0, 0, 0)] = 2−3.
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Note that ∆1 = L0 ×∆S
0 , where ∆1 and ∆S

0 are two Boolean vectors of size
n and L0 is a n × n invertible binary matrix. When there is only one active
S-box in the first round, we can know that there is only one non-zero triple
(∆S

0 [3i], ∆S
0 [3i+ 1], ∆S

0 [3i+ 2]) (0 ≤ i < n
3 ).

Consider a randomly generated L0 and a fixed value of ∆S
0 with only one

non-zero triple (∆S
0 [3i], ∆S

0 [3i + 1], ∆S
0 [3i + 2]). Denote the event by α that

(∆S
0 [3i], ∆S

0 [3i+ 1], ∆S
0 [3i+ 2]) 6= (0, 0, 0). Denote by IA the number of inactive

S-boxes in the second round. In this way, we could calculate the conditional
probability that there are q inactive S-boxes under α happens, as specified below:

Pr[IA = q|α] =

(n
3

q

)
× 2−3q × (

7

8
)

n
3−q,

Since that there are 7 assignments for a non-zero triple (∆S
0 [3i], ∆S

0 [3i+1], ∆S
0 [3i+

2]) and there are n
3 such triples, there are in total 7 × n

3 assignments for ∆S
0

satisfying that there is only one active S-box in the first round. Hence, we can
expect to find

V (n, q) =
n

3
× 7Pr[IA = q|α]. (12)

required assignments for ∆S
0 which can ensure q inactive S-boxes in the second

round. In other words, when V (n, q) > 1, it is expected to always find more than
1 assignments for ∆S

0 such that there are q inactive S-boxes in the second round.
For instance, V (129, 11) > 1. In other words, we could always expect to find an
assignment for ∆S

0 such that there is 1 active S-box in the first round and 11
inactive S-boxes in the second round, which has been confirmed via experiments.

8.2 Enumerating Differences Via Solving Equations

For the instantiations adopting a full S-box layer, even enumerating the difference
backwards for 1 round from the ciphertext, it costs at most 4

n
3 time when all

the n
3 S-boxes are active. In the following, we will show how to reduce the time

complexity from 4
n
3 to less than 2

n
3 under the worst case, i.e. all the S-boxes are

active. Obviously, when there are fewer active S-boxes, the time can be further
reduced. Therefore, we also provide a formula to calculate the expected time to
enumerate all the differences via solving equations.

As depicted in Figure 6, we aim to enumerate the differences for two
consecutive rounds. Specifically, assuming ∆i and ∆S

i+1 are fixed and known,
our aim is to enumerate all the solutions for ∆S

i such that they can reach ∆S
i+1.

First of all, consider the case where all the S-boxes in the (i + 1)-th round
and (i+2)-th round are active, i.e. all the 2× n

3 S-boxes are active in Figure 6. In
this case, there are 4

n
3 possible reachable differences for ∆i+1 and each reachable

difference of ∆i+1 can reach ∆S
i+1 with probability 2−

n
3 as each output difference

can correspond to 4 different input differences through the 3-bit S-box of LowMC.
Thus, it is expected to find the valid 2

n
3 solutions of ∆i+1 in 4

n
3 time using the

simple difference enumeration.
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Fig. 6: Enumerating differences via solving equations

However, similar to our technique to reduce the memory complexity, based
on Observation 3, we could introduce 2 × n

3 variables to represent the possible
values of ∆S

i . In this way, ∆i+1 will be linear in these variables. Furthermore,
based on Observation 4, there will be n

3 linear constraints on ∆i+1. Therefore,
an equation system of size n

3 in terms of 2× n
3 variables is constructed and each

solution of the equation system will correspond to a valid connection between
∆i and ∆S

i+1. Thus, we could find the valid 2
n
3 solutions in only 2

n
3 time.

After discussing the case where all the S-boxes are active, we consider the
general case. Specifically, assume there are w random pairs (∆i, ∆

S
i+1). The

expected time complexity to enumerate all the valid difference transitions ∆i →
∆S
i+1 for these w random pairs using our techniques can be formalized as follows.

T5 = (

b0.5mc∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t ×

b0.5mc−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w

+ (1−
b0.5mc∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t ×

b0.5mc−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j)w

≈ (

b0.5mc∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t ×

b0.5mc−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w + w.

Specifically, when there are t and j inactive S-boxes in the (i+ 2)-th round and
(i+1)-th round, respectively, the equation system is of size 3t+(m− t) = m+2t
and in terms of 2(m − j) variables. Thus, for the case 2(m − j) − (m + 2t) =
m− 2j− 2t < 0→ 2j+ 2t > m, there is no need to enumerate the solutions and
we only need to construct the equation system with time 1. However, for the

25



case 2j+2t ≤ m, we need to construct the equation system as well as enumerate
the 2m−2j−2t solutions.

As m > 1, a loose upper bound for T5 can be as follows:

T5 < w + w × 2m × (
29

32
)m × (

29

32
)m ≈ w × 20.716m (13)

A fixed random ∆S
i+1. We also feel interested in that ∆S

i+1 takes a fixed
random value while ∆i takes w random values, which is exactly the case in our
attack on 4-round LowMC with a full S-box layer.

When there are t ≤ b0.5mc inactive S-boxes in the (i+ 2)-th round, the time
complexity T5 to enumerate all the valid difference transitions can be refined as
below:

T5 = (

b0.5mc−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w

+ (1−
b0.5mc−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j)w

= (

b0.5mc−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w + w.

Similarly, a bound for T5 can be as follows:

T5 < w + w × 2m−2t × (
29

32
)m ≈ w + w × 20.858m−2t. (14)

When there are t > b0.5mc inactive S-boxes in the (i+ 2)-th round, the time
complexity T5 to enumerate all the valid difference transitions can be refined as
below:

T5 = (

m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j)w = w (15)

Combining Equation 14 and Equation 15, we can know that whatever value
t takes, the following bound for T5 holds

T5 < w + w × 20.858m−2t. (16)

8.3 Applications to 4-Round LowMC with a Full S-box Layer

As can be found in the latest released Picnic3 document, three recommended
parameters (n, k,m,D,R) ∈ {(129, 128, 43, 1, 4), (192, 192, 64, 1, 4), (255, 256, 85, 1, 4)}
are adopted to achieve the required security. By increasing the number of
rounds by 1, i.e. R = 5, the designers claim that Picnic3 will provide stronger
security. Anyway, 4-round LowMC with a full S-box layer is the recommended
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instantiation and such three parameters are deemed as secure against the
difference enumeration attack [2]. In the following, we explain how to break such
3 parameters with our linearization techniques under the difference enumeration
attack framework. Our attacks only apply to LowMC and the security of Picnic3
will never be influenced.
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Fig. 7: The attack framework for 4-round LowMC with a full S-box layer

As depicted in Figure 7, our attack procedure can be divided into 4 steps as
follows:

Step 1: According to Equation 12, we find a suitable assignment for ∆S
0 such

that the number of inactive S-boxes in the 2nd round can be maximized
and there is only one active S-box in the first round. Denote the number
of inactive S-boxes in the 2nd round by q.

Step 2: Choose a value for ∆0 such that it can reach ∆S
0 and encrypt two

arbitrary plaintexts whose difference equals∆0. Collect the corresponding
ciphertexts and compute ∆S

3 .
Step 3: Enumerate 4m−q possible difference transitions from ∆1 to ∆2. For each

possible difference transition, move to Step 4.
Step 4: For each obtained ∆2, we enumerate the possible difference transitions

from ∆2 to ∆S
3 via solving a linear equation system, as detailed above.

For each solution of the equation system, a compact differential characteristic
is obtained and we retrieve the full key from it using our linearization
techniques.

Although the formula to calculate the time complexity to retrieve the full
key has been given, we should refine it for the attack on 4-round LowMC with a
full S-box layer. As can be observed in our attack procedure, once guessing ∆S

0
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from its 4 possible values, we already collect two linear equations in terms of the
master key and the plaintexts which can ensure that ∆0 → ∆S

0 is deterministic
based on Observation 1.

On the other hand, due to a sufficiently large number of S-boxes in each
round, for the last round, we can introduce extra variables to represent the
output bits of the inactive S-boxes. In this way, it is required to extract more than
k − 2 linear equations when a compact differential characteristic is confirmed.
Specifically, assuming that there are t inactive S-boxes in the 4th round, the
required number of equations become 3t + k − 2. Therefore, we try to extract
linear equations from the active S-boxes in the 3rd round and 2nd round, which
requires that all the S-boxes in the 3rd are linearized. Therefore, the following
formula can be used to estimate the expected time complexity to retrieve the
full key from all compatible differential characteristics:

T6 = 4m−q × (

b 6m−k+2−2q
5 c∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t

×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j × 2m−2j−2t

+

m∑
t=b 6m−k+2−2q

5 c+1

(
m

t

)
× (

1

8
)t × (

7

8
)m−t

×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j

× 2(3t+k−2)−(2(m−t)+2m+2(m−q)) × 2m−2j−2t)

Specifically, when there are t and j inactive S-boxes in the 4th and 3rd round,
respectively, the equation system used to retrieve the master key will be of size
2 + 2(m− t) + 2m+ 2(m− q) and in terms of 3t+ k variables. More specifically,
from the assumed difference transition ∆0 → ∆S

0 , two linear equations in terms
of the master key and the plaintext can be obtained. From the 4th round, as
there are (m − t) active S-boxes, 2(m − t) equations are obtained. For the 3rd
round, we linearize all the j inactive S-boxes by guessing two extra equations
based on Observation 5, i.e. guessing two output bits of each inactive S-box. In
this way, there will always be 2m equations derived from the 3rd round. For the
2nd round, as the 4th round and 3rd round are fully linearized and there are
(m−q) active S-boxes, we can obtain 2(m−q) linear equations in the 2nd round.
Thus, if 3t + k − (2 + 2(m − t) + 2m + 2(m − q)) < 0 → 5t < 6m − k + 2, the
cost is to establish the equation system. When 5t ≥ 6m− k + 2, it is necessary
to enumerate all the 2(3t+k−2)−(2(m−t)+2m+2(m−q)) solutions and check them via
the plaintext-ciphertext pair.

There is no simple approximation for T6, we thus provide a loose upper
bound:

T6 < 4m−q × 2m × ((
29

32
)m + 2−6m+k−2+2q × (

29

32
)m)
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≈ 23m−2q × (2−0.142m + 2−6m+k−2+2q × 2−0.142m)

= 23m−2q × (2−0.142m + 2k−2+2q−6.142m)

= 22.858m−2q + 2k−2−3.142m

When the key size is almost equal to the block size, i.e. the parameters (k ≈ n =
3m) recommended for Picnic3, we have

T6 < 20.9527k−2q

To ensure 22.858m−2q < 2k−2, it is required that

2.858m− 2q < k − 2⇒ 2q > 2.858m− k + 2 (17)

∆S
3 is a fixed random value. One may observe that in our attack using only

two chosen plaintexts, ∆S
3 is a random fixed value while ∆S

2 behaves randomly.
Similar to computing the upper bound for the time complexity to enumerate
differences for this case, i.e. Equation 14 and Equation 15, we also try to deal
with the time complexity T6 to retrieve the master key for this case. Similarly,
we assume that there are t inactive S-boxes in the 4th round.

When t ≤ b 6m−k+2−2q
5 c, we have

T6 = 4m−q ×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j × 2m−2j−2t = 23m−2q−2t (18)

When t > b 6m−k+2−2q
5 c, we have

T6 = 4m−q ×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j (19)

× 2−6m+k−2+2q+5t × 2m−2j−2t = 2−3m+3t+k−2 (20)

Attacks on (129, 128, 43, 1, 4). For (n, k,m,D,R) = (129, 128, 43, 1, 4), we have
V (129, 11) > 1 based on Equation 12, i.e. we can expect to always find an
assignment to ∆S

0 such that there will be q = 11 inactive S-boxes in the 2nd
round. After such a ∆S

0 is chosen, we randomly choose ∆0 such that ∆0 → ∆S
0 is

valid. There are 4 different values of ∆S
0 for such a ∆0 and one of ∆S

0 is expected
to inactive 11 S-boxes.

The time complexity to retrieve the master key from all valid 4-round
compact differential characteristics is related to the value of (t, q). As t ∼
B(m, 18 ), we can expect t = 5. In this way, we have 5t = 25 < 6m− k+ 2− 2q =
132 − 2q whatever value q (0 ≤ q ≤ m) takes. In other words, for the expected
case q = 11, the time complexity to retrieve the master key is 23m−2q−2t = 297

based on Equation 18. By taking the remaining 3 different possible values of ∆S
0

into account, even for the worst case (q = 0), the total time complexity to retrieve
the master key for all 4 possible values of ∆S

0 will not exceed 3×23m−2t = 2120.6,
i.e. less than exhaustive key search.
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For the time complexity to enumerate the difference, for the expected case
q = 11, we have T5 < 22m−2q×(1+20.858m−2t) = 22.858m−2q−2t+22m−2q = 290.9

based on Equation 16. For the worst case q = 0, we have T5 < 22.858m−2t = 2112.9.
Therefore, the total time complexity to enumerate the difference will not exceed
3× 2112.9 ≈ 2114.5. i.e. less than exhaustive key search.

As t increases, T5 will become smaller. However, when 5t ≥ 6m−k+2−2q =
132 − 2q, we need to use another formula to calculate the time complexity
to retrieve the master key, i.e. T6 = 2−3m+3t+k−2 = 23t−3 as shown in
Equation 19. Thus, only when t = m = 43 which holds with probability 2−129,
T6 = 2128. Otherwise our key-recovery attack is always exponentially faster than
an exhaustive key search.

As Pr[t ≥ 2] ≈ 0.97 and Pr[t = 43] ≈ 0, we conclude that with success
probability 0.97, the total time complexity to retrieve the master key will be
max(3×23m−2t, 4×23×42−3) = 2126.6 and the total time complexity to enumerate
differences will not exceed 3 × 22.858m−2t < 2120.5. Thus, we can break the
parameter (n, k,m,D,R) = (129, 128, 43, 1, 4) with time complexity less than
2126.6 and success probability 0.97.

As Pr[t ≥ 4] ≈ 0.62 and Pr[42 ≤ t ≤ 43] ≈ 0, we conclude that with
success probability 0.62, the total time complexity to retrieve the master key
will be max(3 × 23m−2t, 4 × 23×41−3) = 2122.6 and the total time complexity
to enumerate differences will not exceed 3 × 22.858m−2t < 2117.5. Thus, we can
break the parameter (n, k,m,D,R) = (129, 128, 43, 1, 4) with time complexity
less than 2122.6 and success probability 0.627.

As Pr[36 ≤ t ≤ 43] ≈ 0, if further reducing the success probability to
0.97× 0.25 = 0.24, i.e. ∆0 → ∆S

0 is assumed to be deterministic and we expect
q = 11, the time complexity to enumerate the difference will not exceed 22m−2q+
22.858m−2q−2t ≈ 296.9 and the time complexity to retrieve the master key be
max(23m−2q−2t, 23t−3) < 2103.

Attacks on (192, 192, 64, 1, 4). Similar to the above analysis, we first confirm
q. As V (192, 16) > 1 based on Equation 12, we can expect to always find an
assignment to ∆S

0 such that there will be q = 16 inactive S-boxes in the 2nd
round.

As Pr[t ≥ 3] ≈ 0.99 and Pr[62 ≤ t ≤ 64] ≈ 0, based on Equation 18 and
Equation 19, the time complexity to retrieve the master key will be max(3 ×
23m−2t, 4× 2−3m+3t+k−2 = 4× 23t−2) < 2187.6. Based on Equation 16, the time
complexity to enumerate the difference is less than 3× (22m + 22m−2t+0.858m) =
3 × (22m + 22.858m−2t) < 2178.5. Therefore, we could break (n, k,m,D,R) =
(192, 192, 64, 1, 4) with time complexity less than 2187.6 and success probability
0.99.

As Pr[t ≥ 6] = 0.82 and Pr[61 ≤ t ≤ 64] ≈ 0, the time complexity to
retrieve the master key will be max(3×23m−2t, 4×23t−2) = 2180, while the time

7 Obviously, we can achieve lower time complexity by further reducing the success
probability. We omit this simple work as our aim is to violate the 128-bit security
claim.
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complexity to enumerate the differences will not exceed 3× (22m+22.858m−2t) <
2170.9. Therefore, we could break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time
complexity less than 2180 and success probability 0.82.

To further reduce the success probability, we focus on the expected case
q = 16 and 3 ≤ t ≤ 52. As Pr[t ≥ 3] ≈ 0.99 and Pr[53 ≤ t ≤ 64] ≈ 0, we
have Pr[3 ≤ t ≤ 52] ≈ 0.99. The time complexity to retrieve the master key
becomes max(23m−2t−2q, 23t−2) < 2154. The time complexity to enumerate the
difference is less than 22m−2q + 22.858m−2t−2q < 2144.9. Therefore, we could
break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time complexity less than 2154

and success probability 0.99× 0.25 = 0.247.

Attacks on (255, 256, 85, 1, 4). For (n, k,m,D,R) = (255, 256, 85, 1, 4), we have
V (256, 20) > 1 based on Equation 12, i.e. we can expect to always find an
assignment to ∆S

0 such that there will be q = 20 inactive S-boxes in the 2nd
round.

As Pr[t ≥ 5] ≈ 0.986 and Pr[79 ≤ t ≤ 85] ≈ 0, based on Equation 18 and
Equation 19, the time complexity to retrieve the master key will be max(3 ×
23m−2t, 4× 2−3m+3t+k−2 = 4× 23t−1) < 2246.6. Based on Equation 16, the time
complexity to enumerate the difference is less than 3× (22m + 22m−2t+0.858m) =
3 × (22m + 22.858m−2t) < 2234.53. Therefore, we could break (n, k,m,D,R) =
(255, 256, 85, 1, 4) with time complexity less than 2246.6 and success probability
0.986.

As Pr[t ≥ 8] = 0.848 and Pr[79 ≤ t ≤ 85] ≈ 0, the time complexity to
retrieve the master key will be max(3×23m−2t, 4×23t−1) < 2240.6, while the time
complexity to enumerate the differences will not exceed 3× (22m+22.858m−2t) <
2228.53. Therefore, we could break (n, k,m,D,R) = (255, 256, 85, 1, 4) with time
complexity less than 2240.6 and success probability 0.848.

To further reduce the success probability, we focus on the expected case
q = 20 and 5 ≤ t ≤ 85. As Pr[t ≥ 5] ≈ 0.986 and Pr[69 ≤ t ≤ 85] ≈ 0, we
have Pr[5 ≤ t ≤ 68] ≈ 0.986. The time complexity to retrieve the master key
becomes max(23m−2t−2q, 23t−1) < 2205. The time complexity to enumerate the
difference is less than 22m−2q + 22.858m−2t−2q < 2192.93. Therefore, we could
break (n, k,m,D,R) = (255, 256, 85, 1, 4) with time complexity less than 2205

and success probability 0.986× 0.25 = 0.2465.

Remark. In the above, attacks with success probability of about 0.25 but with a
rather low time complexity are introduced when we assume that the transition
∆0 → ∆S

0 is deterministic. Such attacks can be applied to a multi-target setting.
Specifically, when there are 5 users with 5 different master keys, the attacker can
recover the master key for one of the 5 users with time complexity significantly
less than an exhaustive search. All the above attacks only require 2 chosen
plaintexts and negligible memory, which are summarized in Table 4.
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Table 4: The results for 4-round LowMC with a full S-box layer, where the
success probability is recorded in the last column

n k m D R Data Time Memory Pro.

129 128 43 1 4 2 2126.6 negligible 0.97
129 128 43 1 4 2 2122.6 negligible 0.62
129 128 43 1 4 2 2103 negligible 0.24
192 192 64 1 4 2 2187.6 negligible 0.99
192 192 64 1 4 2 2180 negligible 0.82
192 192 64 1 4 2 2154 negligible 0.247
255 256 85 1 4 2 2246.6 negligible 0.986
255 256 85 1 4 2 2236.6 negligible 0.848
255 256 85 1 4 2 2205 negligible 0.2465

9 Conclusion

Benefiting from the low-degree S-box and the linear key schedule function of
LowMC, we developed an efficient algebraic technique to solve a general problem
of how to retrieve the key if given a single pair of (plaintext, ciphertext) along
with its compact differential characteristic. Such a technique is quite meaningful
as much more differential characteristic candidates are allowed to exist under
the difference enumeration attack framework. As a result, we could significantly
extend the number of rounds that can be attacked even with only two allowed
plaintexts.

On the other hand, by exploiting the fact that only a few S-boxes are
applied to the state, we could simulate the difference transitions over rounds
by constructing a linear equation system, thus requiring negligible memory
complexity. However, such a technique cannot be simply used for the construction
adopting a full S-box layer. Therefore, we turn to use 2 special properties of
the S-box, i.e. both the output differences of a fixed input difference and the
input differences of a fixed output difference form an affine space. In this way,
even for constructions with a full S-box layer, it is still feasible to constrain
all the valid difference transitions over rounds with a linear equation system,
thus significantly reducing the time to enumerate all valid difference transitions
compared with a simple difference enumeration where invalid difference transitions
cannot be filtered in advance.

Combining all our techniques, we violate the security claim for some instances
of LowMC. Especially, the 3 recommended parameters of LowMC used in Picnic3
are shown to be insecure against our attacks, though it cannot threaten the
security claim for Picnic3. As the backdoor cipher LowMC-M is built on LowMC,
making progress in the cryptanalysis of LowMC directly threatens the security
claim for 7 instances of LowMC-M even without finding the backdoor.
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