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Abstract. Although large numbers of hardware and software implementations have been
proposed to accelerate lattice-based cryptography, Saber, a module-LWR-based algorithm,
which has advanced to second round of the NIST standardization process, has not been ade-
quately supported by the current solutions. Based on these motivations, a high-performance
crypto-processor is proposed based on an algorithm-hardware co-design in this paper. First,
a hierarchical Karatsuba calculating framework, a hardware-efficient Karatsuba scheduling
strategy and an optimized circuit structure are utilized to enable high-throughput polynomial
multiplication. Furthermore, a task-level pipeline and truncated multipliers are proposed to
enable algorithm-specific fine-grained processing. Enabled by all of the above optimizations,
our processor takes 943, 1156, and 408 clock cycles for key generation, encryption, and de-
cryption, respectively. Enabled by these optimizations, our processor takes 943, 1156 and
408 clock cycles for key generation, encryption, and decryption of Saber768, achieving 5.4×,
5.2× and 4.2× reductions compared with the state-of-the-art FPGA solutions, respectively.
The post-layout simulation of our design is implemented with TSMC 40 nm CMOS process
within 0.35 mm2. The throughput for Saber768 is up to 346k encryption operations per second
and the energy efficiency is 0.12 uJ/encryption while operating at 400 MHz, achieving nearly
52× improvement and 30× improvement, respectively compared with current PQC hardware
solutions.

Keywords: lattice · Module-LWR · Saber · ASIC · high-throughput · Karatsuba · hierarchical
calculation framework

1 Introduction
As the only module-learning with rounding (LWR)-based candidate, Saber has been optimized
on the Intel Xeon processors [DKSRV18, Roy19], ARM Cortex-series [KBMSRV18] and FPGA
platforms [Far19, RB20, MTK+20]. For software implementations, a hybrid method combining
Toom-Cook and Karatsuba algorithm is utilized for efficient implementations of polynomial
multiplications [DKSRV18, Roy19, KBMSRV18]. For hardware implementations, simple but
efficient schoolbook multiplication is utilized in [RB20, Far19]. A 4-way Toom-Cook method is
utilized to reduce 43% the number of multiplication operations [MTK+20]. However, the efficiency
of implementing fast-multiplication algorithm to hardware of Saber can be further optimized.

An high-performance crypto-processor is proposed based on the algorithm-hardware co-design
of module-LWR with multiple security levels. The main computational framework is an 8-level
recursive splitting hierarchical Karatsuba framework, which reduces the degree-256 polynomial
multiplication to the coefficient multiplication. Several optimization strategies, including optimized
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pre-/post-process structure, the task-rescheduling-based pipeline and truncated multiplier, are
developed to further improve the energy efficiency. Our processor has been implemented on Xilinx
Virtex UltraScale+ FPGA platform and post-layout simulation on TSMC 40nm process. The key
contributions of this work are summarized as follows:

1. Hierarchical Karatsuba framework is utilized to accelerate the degree-256 polynomial multi-
plication in Saber. Compared with the schoolbook multiplication, more than 90% multiplica-
tion operations are saved through 8-level hierarchical Karatsuba framework.

2. Sequential hardware-efficient Karatsuba scheduling for post-processing and compact input
pre-processing are proposed for the hierarchical Karatsuba framework. Optimization strate-
gies of hierarchical Karatsuba framework, including post-processing and pre-processing
circuits, reduce 90.5% registers and 96.0% adders compared with the existing partial-reusage
solutions.

3. Task-rescheduling based pipelining strategy and truncated multipliers empower our design
to achieve lower latency with small area. From implementation aspect, pipelining strategy
and truncated multipliers empower our design a speed-up of nearly 75× with 42.0% less
resource usage compared with [XHY+20].

4. Multi-parameter components and core modules resuage enable our design configurability
among three security levels to meet different security scenarios.

2 Karatsuba-based Polynomial Multiplication

2.1 Hierarchical Karatsuba Framework
The Karatsuba algorithm consists of three phases: Pre-Add, multiplication and Post-Add. Karatsuba
systolic multiplier array [LHJL05, Meh08, XJHM12, XMM15] utilized three-stage additions and
multiplications to support the Karatsuba algorithm in hardware. However, the calculation scale
of polynomial multiplication in Saber is much larger than ECC or RSA. Applying Karatsuba
algorithm in multiple dimensions is an efficient method to reuse a relatively small Karatsuba
systolic multipliers array [WBW19]. A hierarchical Karatsuba framework is used in [WBW19]
to accelerate the large-number multiplication, including the kernel hardware and the scheduling
strategy. Figure 1 depicts a fully-unfolded hierarchical Karatsuba framework, which illustrates an
example of executing degree-n polynomial multiplication (M × N ) using a kernel hardware and
one level of scheduling strategy. The kernel hardware was a Karatsuba multiplier array that is able
to execute degree-(n/2) polynomial multiplication at one call. The scheduling structure included
pre-process and post-process circuits, before and after the kernel, corresponding to the Pre-Add
and Post-Add phases in the scheduling layer, respectively. The scheduling strategy was a specific
algorithm that follows a finite-state machine to schedule the kernel hardware as the pseudo codes
in Figure 1. The pseudo codes in this Figure obeys to one level of Karatsuba algorithm and the
scheduling strategy can be extended to obey to the Karatsuba algorithm with multiple levels. The
work in [WBW19] utilized a 2-level hierarchical Karatsuba framework similar as fully-unfolded
structure. Similarly, this work did not consider the module reusage of adders and registers in the
input. Differently, there is one layer of registers reusage implemented in the output.

Hierarchical Karatsuba calculating framework is divided into two layers: kernel layer and
scheduling layer. How to balance the weights of two layers is an important topic for the implemen-
tation of Saber. The main computational task in Saber is a degree-256 polynomial multiplication. 8
levels of Karatsuba algorithm are applied in our processor to convert the degree-256 polynomial
multiplication to the coefficient multiplication, reducing from 65536 multiplication operations to
6521 operations. Up to 90% multiplication operations are saved. To achieve a better trade-off
between latency and area, 4 levels of Karatsuba algorithm are arranged in kernel layer and another
4 levels are arranged in scheduling layer. In other words, 81 multipliers and additional adders form
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Figure 1: Hierarchical Karatsuba hardware circuits calculating r = M × N .

the kernel hardware. Kernel layer is able to process degree-16 polynomial multiplication at one
call. Scheduling layer needs to transform from the required job, namely degree-256 polynomial
multiplications, to the processing ability of the kernel hardware, namely degree-16 polynomial
multiplications, in Karatsuba way.

2.2 Sequential Hardware-Efficient Karatsuba Scheduling
In the hierarchical Karatsuba framework, post-process structure is used to temporarily store the
multiplication results to support Post-Add stage in the scheduling layer. Sequential hardware-
efficient Karatsuba scheduling (SHEKS) strategy is proposed to optimize this overhead.

The main goal of SHEKS is to allow each multiplication in the Karatsuba algorithm to com-
pletely affects the final results without additional registers. Some final results are influenced by
additional multiplications. This is due to the effect of Post-Add stage of Karatsuba algorithm in
scheduling layer. If all the addresses in the results of each multiplication are already preassigned
and allow each multiplication result to spread to all affected locations, then additional registers are
no longer needed. The idea of SHEKS can be extended to more levels of Karatsuba algorithm in
scheduling layer.

For the implementation of Saber, 4 levels of Karatsuba algorithm is utilized in scheduling layer
and the number of adders in a direct application of SHEKS is a little higher. Moreover, a subtraction
polynomial operation on the final results is needed because there is a modular polynomial xn + 1,
more adders are needed. So a new layer of registers is inserted in our processor to temporarily
store the degree-64 subpolynomial multiplication results and the values are then mapped to the
final memory one by one. The structure is shown in Figure 2.

2.3 Compact Input Pre-Processing
A compact input pre-processing technique is utilized in our processor to reduce the number of
registers and adders required in pre-processing of scheduling layer. The optimization made in this
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Figure 2: The output side of scheduling layer of Saber with 4-level Karatsuba algorithm.
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Figure 3: Optimized pre-processing design of Saber with 4-level Karatsuba algorithm.

paper is to reuse the registers and adders. Based on these observations, storing some inputs is
enough to reduce the memory accesses and eliminate additional latency of the reading operations.
Moreover, the execution order of the multiplications is reorganized to maximize the reusability
of data stored in the input registers. The pre-processing for the two polynomial multiplication
operands is identical.

For the implementation of Saber, the task of the pre-processing structure is to convert the
multiplication operations with degree-256 polynomials to the operations with degree-16 polynomi-
als that the kernel hardware is able to process. The 4-level pre-processing structure is shown in
Figure 3. Hardware of Part 2 and Part 3 are used to convert polynomial operations in input side
from degree-128 to degree-64 and from degree-256 to degree-128 in Karatsuba way, respectively.
Hardware of Part 3 executes the summation operation of the first degree-128 polynomial and
second degree-128 polynomial during the execution of Part 1 and Part 2. Then Part 3 writes the
sum polynomial calculated to an additional input memory.
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Figure 4: The system architecture of our design crypto-processor.

3 Hardware Architecture

3.1 System Architecture

Figure 4 shows the system architecture of our design. Public-key-related data pass through the DI
and DO ports. Seed and secret-key-related data pass through the SDI port and SDO ports. Public
matrix is generated from Keccak module marked in blue and imported into memory marked in
green after alignment. Secret vector is generated from sampler marked in orange and imported into
input memory. Polynomial multiplications are executed in multiplication part marked in yellow
and the results are exported to output memory marked in green. Before output, the results needs
addition operations in adder array and bits truncation operations in Trunc part.

To achieve a configurable design among the different versions and different stages of Saber,
many components in Figure 4 adopt the idea of multi-parameter design. The data alignment modules
are illustrated in the upper right corner of Figure 4. The four data aligning modules execute different
types of data aligning jobs. At each cycle, BitSelect part chooses the corresponding bits from
InputReg and ReserveReg part to write to ReserveReg and OutReg. The truncation modules adopt
the same idea of multi-parameter. Multiple truncation modules execute different truncation jobs to
output different numbers of bits.

3.2 Task-rescheduling-based pipeline design

Some pipeline tricks are added to reduce the time overheads of data importing before polynomial
multiplication and data exporting after polynomial multiplication as much as possible. Figure 5
shows the circuit design and execution flow of our design. The loading and multiplication order
in our design is similar as [RB20], but the generation order and the corresponding hardware
components are different. The number after MEM in Figure 5 denotes the bank index of the MEM.
Martix-vector and vector-vector polynomial multiplications are both involved in encryption stage.
Vector-vector multiplication is scheduled before matrix-vector multiplication in our design to avoid
the additional timing overhead of loading the vector of the secret key. As shown at the right corner
of Figure 5, the multiplication A1 × B1 during vector-vector polynomial multiplication is started
as long as parts of the operands A1 and B1 have been loaded into the MEM. For key generation,
public matrix is generated in column-major order and it is inconsistent with the matrix-vector
multiplication order. So all four result polynomials of FireSaber needs to be stored in MEMim
temporarily during matrix-vector multiplication in key generation.

While one polynomial of the public key is used in polynomial multiplication, the next poly-
nomial is imported to another bank of MEMpk. This reduces the data importing time of multiple
polynomials and the multiplication hardware keeps running once activated as shown at the bottom
of Figure 5. The same holds for the reduction in data exporting time.
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3.3 Truncated Multiplier

The work in [RB20] utilized addition operations and look-up table to perform multiplication
operations for Saber. However, this method is only suitable for schoolook multiplication. For
Karatsuba multiplications, truncated multipliers for Saber are adopted in our design utilizing the
properties of binomial sampling and LWR algorithms.

Thus, multiplications with secret key can be replaced by signed operations with signed values
after reverse operations. It is noticed that only 4 bits out of all 13 bits are useful in the calculation,
which means that the width of one operand for the multiplier can be reduced to 4 bits. The storage
and transmission of private keys are also benefited from the reduction in effective bits. Instead
of the modular operation of LWE, the round operation of LWR allows us to trim unnecessary
operations. Considering that the parameter q of Saber is 8192, i.e., only the lowest 13 bits in the
result are kept, all multiplication operations unrelated to generating the lowest 13 bits in the result
can be avoided. However, the effectiveness of this technique is limited by the Pre-Add phase in
the kernel hardware and the scheduling layer. This limitation is acceptable because at least 90%
multiplication operations are saved through 8-level Karatsuba algorithm.

4 Implementation and Comparison

4.1 FPGA Implementation

Table 1: Performance comparisons for Saber768 on FPGA.

- Platform Frequency
(MHz)

Time
Encaps/Decaps(us) DSPs LUTs Flip-flops 36kb BRAMs

[Far19]a UltraScale 322 49/48 256 12566 11619 3.5
[BSNK19]b Artix-7 66.7 3550/5472 - 234171 40824 -
[MTK+20] Artix-7 125 4147/3844 28 7400 7331 2

[RB20] UltraScale+ 250 26.5/32.1 - 25079 10750 -
our design UltraScale+ 100 14.0c/16.8c 85 34886 9858 6

a Only the latency of hardware components is listed.
b Only the costs of multiplication hardware and data RAM implemented on FPGA are listed.
c The results are estimated through the existing PKE results and additional hash functions.
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Table 2: Performance of different stages in LightSaber, Saber768 and FireSaber.
Key

Generation Encryption Decryption

Cyc-
les

Power
(mW)

Cyc-
les

Power
(mW)

Cyc-
les

Power
(mW)

Light
Saber 519 36.3 664 39.2 326 25.0

Saber
768 943 42.7 1156 42.0 408 29.2

Fire
Saber 1531 45.7 1811 47.0 490 32.4

The proposed our design crypto-processor is firstly implemented on Xilinx Virtex UltraScale+
FPGA, with its operating frequency of 100 MHz. In terms of resource consumption, 85 DSPs,
34886 LUTs, 9858 Flip-Flops and 6 36-kb-BRAMs are utilized. Among them, the components
calculating the degree-256 polynomial multiplication only includes 85 DSPs, 13735 LUTs and
4486 Flip-Flops. In some studies on Saber, only the numbers of cycles for encapsulation and
decapsulation of one version, Saber768, are provided, while the crypto-processor proposed in this
paper fully supports the PKE scheme of Saber with all three versions. Two additional hash functions,
namely, SHA3-256 and SHA3-512, are needed to support the key encapsulation mechanism (KEM).
Performance of the KEM scheme of Saber in our design is estimated to participate in the comparison
supposing that the Keccak core of the processor is reused.

It is noted that only our design supports all three versions of Saber and other FPGA implemen-
tation works only support Saber768. The comparisons of the resource consumption are listed in
Table 1. Compared with the cycles count of encapsulation without SHA3-256 and SHA3-512 opera-
tions [RB20], our design achieves 5.4×, 5.2× and 4.2× reductions in cycles during key generation,
encryption and decryption, respectively. our design on FPGA is 2.1× faster than [RB20] at the
encryption stage. The works [Far19, MTK+20] are software-hardware co-design implementations
and only the hardware part is included in the comparisons. Compared with the results presented
in [Far19], our design consumes only the 29% and 35% of the latency in the encapsulation and
decapsulation, respectively. However, the utilizations of LUTs and BRAMs are more than those
of [Far19, RB20]. This occurs because our design is mainly designed for the ASIC and there is still
room for optimization in FPGA resource consumption.

4.2 Post-layout implementation

The post-layout implementation of our design is achieved based on TSMC 40nm process in the
worst process corner. The processor occupies 0.35 mm2 after placing and routing, where Pre
and Post denote pre-process and post-process hardware in scheduling layer. Pre-process and post-
process structures consume 20% of area, which supports 3.2× speed-up for degree-256 polynomial
multiplication. The number of equivalent gates of our design is 411.5k, which includes the hardware
components executing logic operations and memory. The maximum operating frequency is up to
400 MHz with an average power consumption of 40 mW. The detailed implementation results are
listed in Table 2.

In Table 3, the results are compared with the works implemented on a mainstream desktop
Intel CPU with the optimization of AVX2 and an embedding CPU. It is observed that our design is
11 - 15× faster than the implementation on Intel Core i7 in [DKSRV18]. Moreover, our design is
approximately 2100 - 2600× faster than the work on Cortex-M4 CPU in [KBMSRV18]. Compared
with the state-of-the-art FPGA implementation [RB20], our design in post-layout platform achieves
8.4× speed improvement.

Table 4 shows the comparison between our design and the state-of-the-art ASIC implemen-
tations of other PQC algorithms.The results show that hardware implementation performs better
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Table 3: Comparisons with other software implementations of Saber768.
- Platform Cycles

Frequency
(Hz) Time(us) Ratio

Keygen/Encap/Decap [DKSRV18] Core i7 101k/125k/129k 2.6G 38.90/48.23/49.67 15.0/13.8/11.8
Keygen/Encap/Decap [KBMSRV18] Cortex M4 1147k/1444k/1543k 168M 6827.4/8595.2/9184.5 2628.4/2462.8/2181.6

our design
Keygen/Encrypt/Decrypt ASIC 943/1156/408 400M 2.36/2.89/1.02 0.91/0.83/0.24

our design
Keypair/Encap/Decap ASIC 1039a/1396a/1684a 400M 2.60a/3.49a/4.21a 1/1/1

a The results are estimated through the existing PKE results and additional hash functions.

Table 4: Comparisons with the hardware implementations of other algorithms.

Algorithm Function
Process

(nm)
Frequency

(MHz)
Area

(mm2) Cycles
Energy

efficiency
(uJ/op)

Post-Quantum
Security(bits)

Newhope1024 [BPC19] encryption 40 72 0.28 106611 12 235
Kyber768 [BPC19] encryption 40 72 0.28 94440 10.31 161

Newhope1024 [XHY+20] encapsulation 28 300 0.51b 85871 7.02 235
Kyber1024 [XHY+20] encapsulation 28 300 0.51b 81569 7.94 218

NTT-512 [STCZ18]
NTT

+DG(Binomial) 40 300 2.05 4196 1.346 -

NTT-1024 [FS19] NTT 65 25 0.33 - - -
NTT-512 [NDBC18] NTT 45 100 1.4 2854 1.016 -
NIST-P256-ECDSA

[BJW+18] sign 65 20 2 180000 14.58 -

our design LightSaber encryption 40 400 0.35 664 0.065 115
our design Saber768 encryption 40 400 0.35 1156 0.121 180
our design FireSaber encryption 40 400 0.35 1811 0.213 245

a The results are shown after the process normalization to TSMC 40nm.
b The area is estimated through equivalent gates and size of SRAM given.

with respect to both speed and energy efficiency. When encapsulation estimated of our design
is compared with the state-of-the-art results [XHY+20] of algorithms with less post-quantum
bits, FireSaber outperforms Newhope1024 and Kyber1024, by 53 and 52× speed, 28 and 32× in
energy efficiency and 77 and 61× higher area efficiency in our design. For equivalent gates, the
work [XHY+20] consumes 979kGE logic gates and 12 kB SRAM, while our design only consumes
411.5kGE. 42.0% equivalent gates are needed in our design when area of SRAM in [XHY+20] is
not in the scope of comparison. Besides, the average power of our design is similar as [XHY+20]
considering the process factor and 4× larger than [BPC19]. This is acceptable because the energy
consumption of one encryption is still at least one order of magnitude less than that in their works.

5 Conclusions

In this manuscript, a high-performance crypto-processor for Saber based on hierarchical Karatsuba
framework is proposed. To the best of our knowledge, we are first to implement Saber in hardware
through 8-level Karatsuba algorithm. We hope that our method have some indications for non
NTT-style calculating framework in hardware. And we hope our results provide some reference for
NIST’s third round evaluation.
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