
Moderated Redactable Blockchains: A
Definitional Framework with an Efficient

Construct

Mohammad Sadeq Dousti1 and Alptekin Küpçü2

1 Johannes Gutenberg University of Mainz, Germany
modousti@uni-mainz.de

2 Koç University, İstanbul, Turkey
akupcu@ku.edu.tr

Abstract. Blockchain is a multiparty protocol to reach agreement on
the order of events, and to record them consistently and immutably with-
out centralized trust. In some cases, however, the blockchain can benefit
from some controlled mutability. Examples include removing private in-
formation or unlawful content, and correcting protocol vulnerabilities
which would otherwise require a hard fork. Two approaches to control
the mutability are: moderation, where one or more designated admin-
istrators can use their private keys to approve a redaction, and voting,
where miners can vote to endorse a suggested redaction. In this paper,
we first present several attacks against existing redactable blockchain so-
lutions. Next, we provide a definitional framework for moderated redact-
able blockchains. Finally, we propose a provable and efficient construct,
which applies a single digital signature per redaction, achieving a much
simpler and secure result compared to the prior art in the moderated
setting.

Keywords: Blockchain · Bitcoin · Moderated Redactable Blockchain ·
Formal Threat Model · Signature Scheme

1 Introduction

The concept of blockchain was pioneered by Bitcoin [16]. It is a distributed pro-
tocol that allows all honest parties to keep a ledger of event logs in a consistent
manner and without any trust assumption. There are various incarnations of
blockchains, which may relax or strengthen some of the conditions. The original
blockchain is permissionless, meaning any party can participate in the protocol.
Permissioned blockchains operate in an authenticated environment, where join-
ing the network is subject to an administrative decision. A private blockchain is
a specific type of permissioned blockchain, where every participant can view the
ledger, but only an authorized set of entities can append. For further discussion,
see [13].

2 M.S. Dousti and A. Küpçü

One of the most important properties of blockchain is the immutability of the
ledger. After all, cryptocurrencies require that once a transaction is recorded, it
cannot be undone. However, this desirable property has its downsides. Criminals
have occasionally appended arbitrary contents to the ledger that is forbidden by
national or international laws—such as child abuse [11,12] and malware [18].
Another use case is where some information about a user is stored in the ledger,
and later the user requests them to be removed [15], exercising the “right to be
forgotten” under privacy laws such as the General Data Protection Regulation
(GDPR) [5]. A third case is when a massive fraud has been made possible due
to a flaw in the blockchain protocol. In immutable blockchains, the only way
to invalidate such fraudulent transactions is by updating the protocol and the
software—a process known as a hard fork. The DAO Attack [4] is an exam-
ple, which resulted in a hard fork in Ethereum [20] back in 2016. For further
discussion, see [1].

To overcome the limitations associated with immutability, several researchers
proposed solutions for controlled mutability. The literature has two approaches
for controlling the mutability: Moderated [1,6,10], where redactions can only be
applied by a designated set of users (known as the administrators), and un-
moderated (or voting-based) [19,8] where suggested redactions are voted on, and
applied only if they receive a quorum of votes within a specific period. Notice that
the terms permissioned and moderated are orthogonal: In permissioned block-
chains, users need administrative permission to join the network. In moderated
blockchains, administrators must approve redactions (changes to the blocks in
the ledger). Even in a blockchain that is both moderated and permissioned, the
administrators in charge of admitting users can be different from the adminis-
trators in charge of approving redactions.

In this paper, four novel attacks are presented against existing redactable
blockchains: Two attacks against moderated constructs, and two against the
unmoderated ones. Learning from the attacks, we suggest the goals for a defi-
nitional framework for redactable blockchains, and put forward an adversarial
model and a security definition satisfying those goals. Finally, two constructs
of redactable blockchains are presented: The former serves as an instrumental
example, and is proven incorrect and insecure. The latter resolves the issues, and
we prove it both correct and secure in our definitional framework.

2 Previous Work

Moderated Redactable Blockchains. In their seminal work, Ateniese et
al. [1] constructed the first redactable blockchain. They proposed a special prim-
itive called an enhanced chameleon hash function. A chameleon hash function
is a collision-resistant hash function, such that finding collisions is easy given a
private (trapdoor) key. The enhanced version satisfies the additional property
that finding collisions (without the private key) is hard, even if the adversary
can get collisions for inputs of her choice from an oracle. The primitive is rather
complex and involved: In the standard model, it requires a witness whose size

Moderated Redactable Blockchains: A Definitional Framework 3

is 18 group elements under the SXDH assumption, or 39 group elements un-
der the DLIN assumption [1]. Derler et al. [7] extended the above idea above
to attribute-based chameleon hashes. Instead of applying redactions freely at
the block level, the administrators are bound by a fine-grained policy on what
attributes they can change. They employ ciphertext-policy attribute-based en-
cryptions and chameleon hashes with ephemeral trapdoors. Recently, Grigoriev
and Shpilrain [10] proposed a simple construct based on textbook RSA. However,
Section 4 shows that it is insecure.

Interestingly, none of the work listed above provides a security model/definition
tailored specifically for redactable blockchains, and therefore their constructs
have no security proofs: While [1,7] focus on proving the security of the underly-
ing cryptographic primitives (e.g., the enhanced chameleon hash function), [10]
has no rigorous proof of security. We also show that all constructs succumb to
reversion attacks.
Unmoderated (Voting-based) Redactable Blockchains. Puddu et al. [19]
defined an idea called µchain for enabling mutability for proof-of-work block-
chains. The mutability is controlled by fiat, imposed by consensus, and is pub-
licly verifiable. It can be used in both moderated and unmoderated settings:
In the moderated setting, the sender can create multiple mutations of a trans-
action, and encrypt all but one (the active transaction). The decryption key
is distributed between miners using a secret-sharing scheme. The sender also
proposes a policy as to how other mutations can be activated, and by whom.
If a mutation request is approved by this policy, miners decrypt the intended
mutation by a multi-party decryption protocol. In the unmoderated setting, the
mutation to be activated is voted on. Deuber et al. [8] discuss various issues
with µchain. They also propose a distributed consensus protocol for redaction.
Their protocol does not require heavy cryptographic operations or trusting a
set of administrators. It starts when a participant proposes a redaction. If the
proposed block satisfies the verification algorithm, it enters a voting phase. If
enough miners vote for it within a certain period of time, the change is applied
to the ledger.

In Section 4, we show that care must be taken when dealing with votes. In
particular, if not properly designed and implemented, it is possible to redact
a block containing a vote for some previous block, which may render the cor-
responding redactions invalid. Furthermore, we explore possible ways where a
minority group can prevent a policy to be applied, or even go against the policy.

3 Preliminaries

Assignment Notation. Assignments are denoted as x← 2. To say something
holds by definition, we use x def= y. The symbol x = y is used for checking or
asserting equality.

List Manipulation. Let L def= [B0, . . . , B`] be a list. The elements of the list
can be addressed by their index: Bi

def= L[i] for 0 ≤ i ≤ `. We use the following

4 M.S. Dousti and A. Küpçü

notation to address sublists: For integers i, j with 0 ≤ i ≤ j ≤ len(L), define
L[i : j] def= [Bi, . . . , Bj]. If j < i, the sublist is empty. If L1 and L2 are two list,
their concatenation is denoted by L1 + L2.
Blocks. A block B is denoted by a tuple, such as (P,C, V,W), containing various
components. Each component can be set to a default value, such as the empty
string ε. Blockchains may add other or remove components of their choice to
the block structure. Here is the description of the most common components:
P is the prefix of the block. It is often a function of previous blocks in the
ledger. C is the content of the block (in cryptocurrency nomenclature, it is
the set of transactions). V is the version of the block. W is the witness of the
block. It is used in redactions. We assume the existence of efficient algorithms
Prefix(B), Content(B), Version(B), and Witness(W), which efficiently extract the
relevant component from block B. If we are interested in a block except one of
its components, we denote it by striking through that component: BW is block
B except its W component.

4 Novel Attacks on Previous Constructs

In this section, we explain several attacks against certain previous constructs,
which carry over their desired security properties from immutable blockchain
models [9,17], to the redactable setting. We stress that most attacks can be easily
prevented by small modifications in the corresponding construct. However, the
mere existence of the attacks in the face of security proofs shows that one should
consider an adversarial model tailored for the redactable blockchains. Due to a
lack of space, we only provide an overview of the attacks.
Moderator Circumvention Attack: The attack is specific to the GS Con-
struct [10], whose block relationship is depicted in Fig. 1. The attacker can craft
two blocks B and B′, append B to the ledger, and at any point in time re-
place it with B′. It works without administrator involvement, since the witness
verification simply holds for both blocks. It works as follows:

1. Pick Z from Zn uniformly at random. Retry this step if Z has order 2.
2. Let e← f(P,C) and e′ ← f(P,C ′).
3. Let W ← Ze

′ (mod n) and W ′ ← Ze (mod n).
4. Output B ← (P,C,W) and B′ ← (P,C ′,W ′).

It can be verified that Pnext = W e = W ′e
′ = Ze·e

′ (mod n). Thus, replacing B
with B′ does not affect the prefix of the next block.
Reversion Attack: The attack can be applied to both the GS [10] and the
AMVA [1] constructs, both of which are in the moderated settings. Consider a
block B, which was later redacted to B′ with the help of the administrators. An
adversary can simply revert a redacted block B′ to its previous state B: Since
no versioning scheme is in place, all versions of a block are valid.
Vote Erasure Attack: The attack is applicable to the DMTS Construct [8],
which is in the voting setting. Here, a redaction is approved if a quorum of

Moderated Redactable Blockchains: A Definitional Framework 5

Wi

Ci

Pi

Wi+1

Ci+1

Pi+1
ei := f(Pi, Ci)

Pi+1 := Wi
ei (mod n)

Fig. 1. The relationship between two consecutive blocks in the GS Construct. Ci is
the content. Wi is the witness, which is picked uniformly from Zn such that it does
not to have order 2. The prefix Pi+1 depends on all parts of block Bi via the relation
Pi+1 ← W

f(Pi,Ci)
i (mod n), where n is an RSA modulus and f is an efficient integer-

valued function.

miners endorse it by including their approval in the blocks they mine. Votes are
recorded as ordinary transactions in the blocks. An attacker can redact blocks
containing votes, essentially reducing the total number of votes for a particular
redaction, putting the ledger in an inconsistent state: An already approved block
is no longer verified.
Miner Corruption Attack: The attack is applicable to the DMTS Con-
struct [8]. Let the approval quorum be ρ def= 3

4 , as suggested by the paper: When
a redaction is proposed, at least three out of the next four mined blocks should
carry a vote approving the redaction. Consider an adversary who controls 49%
of the miners, all of whom abstain from endorsing any redactions. A simple
combinatorial analysis shows that even if all honest miners vote in favor of all
redactions, only

(4
3
)
(0.51)3(0.49)+(0.51)4 ≈ 33% of them are approved. Further-

more, for an adversarially suggested redaction, even if all honest miners refrain
from voting, there is a

(4
3
)
(0.49)3(0.51) + (0.49)4 ≈ 30% chance of approval. In-

creasing ρ decreases the chance of honest redactions, while decreasing it increases
the chance of adversarial redactions.

5 Defining Moderated Redactable Blockchain

5.1 Design Goals
Section 4 demonstrates that adapting existing models and definitions of im-
mutable blockchains to the redactable setting is challenging, as mutability opens
a variety of ways for an adversary to attack the blockchain. We propose decou-
pling the two notions: A challenger is introduced, who enforces most of the
restrictions imposed by an immutable blockchain. On the other hand, we allow
the adversary to control the participants in the network, receive an arbitrary
number of redactions, and install an arbitrary number of blocks in the ledger.
In designing our definitional framework, we pursued the following goals:
– Bitcoin independence: The framework should not impose Bitcoin protocol

or data structures. For instance, the blockchain designer might opt not to
include the hash of the previous block in the current block.

6 M.S. Dousti and A. Küpçü

– Consensus independence: The framework should not impose a specific
consensus mechanism, such as the proof of work (PoW) or the proof of stake
(PoS). Rather, it should depend on an abstraction that provides consensus.

– General content: The framework should not assume that the content of
each block includes a set of transactions. Rather, the content must be treated
as an arbitrary bit string.

– Simplicity: The framework should be as simple as possible. With this aim,
we abstract out the distributed nature of the network by a centralizing chal-
lenger.

– Moderation: The framework should support the moderated setting. This
is by choice rather than merit, meaning a framework for the unmoderated
setting is equally important, but is left as future work.

– Operation segregation: The framework should not combine operations
which are semantically different. For instance, consider redaction and instal-
lation: When an administrator is asked for a redaction, he should merely
return a redacted block, rather than installing the block in the ledger. The
installation must be performed separately.

– Allowing adversarial transformation: The framework should allow the
adversary to append any valid block at the end of the ledger. Also, she must
be able to receive the redaction of as many blocks as she wants. Finally, she
must be able to install any valid redaction.

– Ledger consistency: The ledger must remain consistent at all times. That
is, there should not be a valid transformation that invalidates one or more
blocks already installed in the ledger (cf. Section 4).

5.2 Informal Model

Fig. 2 illustrates our definitional framework informally. Notice that it resembles
a game between a challenger and a single adversary. It is as if she has total
control over the participants in the blockchain: As long as she plays by the rules,
she can append any valid block to the ledger, request any block content to be
redacted to an arbitrary yet valid value, and install any valid redacted block.
Furthermore, no modification is made to the chain without the adversary saying
so. In fact, the challenger is an abstraction of an ideal consensus protocol. The
goal of the adversary is to create a redacted block which is not provided by the
administrators controlled by the challenger, and install it in the ledger.

Observe the similarity with the way signature schemes are modeled: Ob-
taining redactions for arbitrary content are akin to acquiring a signature on
arbitrary messages (the adaptive chosen message attack). Furthermore, the se-
curity definition is similar: Any new redaction constitutes an attack, which is
akin to existential forgery in signature schemes. In fact, as shown in Section 6, a
strongly unforgeable signature scheme can be used to construct a secure redact-
able blockchain in our model.

In what follows, we abstract out a redactable blockchain as a tuple of efficient
algorithms. The abstraction pertains to a centralized setting, where there is a
challenger with a private key, playing against an adversary with the public key

Moderated Redactable Blockchains: A Definitional Framework 7

A
dv

er
sa

ry

Challenger

Ledger

Read Read & Write

pk

INST(i, B)

1 or 0

REDC(i, C)

B or ε

Fig. 2. The proposed adversarial model. The challenger creates a key pair and the
ledger. It gives the public key pk to the adversary, and provides her with read-only
access to the ledger. All write operations (installations) should go through the chal-
lenger’s INST interface, by specifying the location i pointing to a valid block index in
the ledger, and the block B to be installed. The challenger returns 1 if the installation
is successful, and 0 otherwise. The adversary can also request redactions via the chal-
lenger’s REDC interface. She provides the redaction location i, as well as the new block’s
content C. If the operation is successful, the challenger returns a redacted block B,
which can then be installed using its INST interface. Otherwise, the challenger returns
an empty block ε. The adversary is deemed successful if she installs a redacted block
which is not obtained via the REDC interface.

and read-only access to the ledger. The adversary can install blocks by asking the
challenger, who accepts the request as long as the adversary abides by the rules.
The verification algorithm distinguishes valid blocks from invalid ones. Contrary
to previous work such as [1,8], which explicitly use the proof-of-work verification
in their model, we let each construct decide on its own verification algorithm. For
instance, a construct may use separate verification algorithms for normal and
redacted blocks. This simplifies and generalizes the scheme. The adversary can
also ask the challenger to redact block contents, in hope that she learns how to
redact a block without the challenger’s help. The adversary is deemed successful
if she can generate a new redaction.

We realize that block versioning is useful, and therefore incorporate it into
our formalization below. If a solution does not employ versioning, those parts in
the definition may be ignored.

5.3 Definition

The blockchain storage (the ledger) is modeled as a list of blocks L def= [B0, B1,
. . . , B`]. The list starts at index 0, and the block at L[0] is called the genesis

8 M.S. Dousti and A. Küpçü

block. This block is generated initially, and it helps in simplifying the presenta-
tion. We assume that the variable ` always keeps the number of real (non-genesis)
blocks: ` def= len(L) − 1. Initially, ` ← 0, as there is only one block in the ledger
(the genesis block) Upon appending each new block, ` is incremented. The value
` is not an upper bound: L can grow to include any polynomial number of blocks.
The ledger is published as a read-only list. The only way an adversary can modify
L is via a call to the challenger’s INST interface, as depicted by Fig. 2.

Definition 1 defines five efficient algorithms that constitute a moderated re-
dactable blockchain scheme. We then express two syntactical requirements: Ev-
ery block created correctly must be verifiable, and so is every block redacted
correctly. Throughout, the following transformation is used: It expresses the
effect of installing a block B at position i of ledger L, where 1 ≤ i ≤ `+ 1:

Transform(L, i, B) def= L[0 : i− 1] + [B] + L[i+ 1 : `] . (1)

Notice that Transform returns a new ledger, rather than changing L. By list
manipulation rules defined in Section 3, if i+1 > `, the rightmost sublist L[i+1 :
`] is empty. The resulting ledger has the same length as L if 1 ≤ i ≤ `, and is
longer than L by one block if i = `+ 1.

Definition 1. A moderated redactable blockchain scheme is a tuple of proba-
bilistic polynomial time algorithms RBC def= (Gen,Create,Verify,Redact, Install)
satisfying the following:

1. The key-generation algorithm Gen(1λ): Takes as input a unary security
parameter 1λ and outputs (pk, sk,L), where pk is the public key, sk is the
private key, and L is the ledger. We assume that |pk| , |sk| are polynomial in
λ, and λ can be inferred from pk or sk.

2. The block-creator algorithm Create(pk,L, C): Takes as input the public
key pk, the ledger L, and a content C. It generates and returns a block B
containing C, to be appended at the end of L.

3. The block-verifier algorithm Verify(pk,L, i, B): Takes as input the public
key pk, the ledger L, a positive integer i ≤ `+ 1, and a block B. It performs
two verifications, denoted Φ and Ψ, which are specified as part of Verify
description by the blockchain designer. Let:

V ← Version(B) , (2)
~V ←

[
Version(L[0]), . . . ,Version(L[`])

]
, (3)

L∗ ← Transform(L, i, B) . (4)

Verify returns 1 if and only if both Φ(~V , i, V) and Ψ(pk,L∗) return 1. Al-
gorithm Φ prevents reversion attacks by comparing the version of B with
(possibly all) existing block versions. Algorithm Ψ checks the the consistency
of the ledger for L∗ that results from installing B at position i of L.

4. The redaction algorithm Redact(sk,L, i, C): Takes as input the private
key sk, the ledger L, a positive integer i ≤ `, and a content C. It returns a
block B containing C, to replace L[i].

Moderated Redactable Blockchains: A Definitional Framework 9

5. The block-installer algorithm Install(pk,L, i, B): Takes as input the pub-
lic key pk, the ledger L, a positive integer i ≤ ` + 1, and a block B. If
Verify(pk,L, i, B) is 0, it returns 0. Otherwise, it installs B at index i of L
(replacing an existing block in case i ≤ `), and returns 1. Formally, a suc-
cessful installation of B at index i is denoted by L ← Transform(L, i, B), as
defined by Equation (1).
For any moderated redactable blockchain scheme RBC, the following correct-

ness requirements must be satisfied.
Definition 2 (Correctness). It is required that for every λ, every (pk, sk,L)
output by Gen(1λ), and any valid content C:
(a) Anyone can create a valid block to be appended to the ledger: Let

B ← Create(pk,L, C). Then
Content(B) = C ∧ Verify(pk,L, `+ 1, B) = 1 .

(b) The administrator can change any block of the ledger to contain
any valid content: For any positive integer i < `, let B ← Redact(sk,L, i,
C). Then

Content(B) = C ∧ Verify(pk,L, i, B) = 1 .
Let RBC be a moderated redactable blockchain scheme per Definition 1, and

consider Experiment 1 for an adversary A and security parameter λ.

1. Gen(1λ) is run to obtain (pk, sk,L). The set Hist← ∅ is set to empty.
2. Adversary A is given pk, a read-only view of L, and access to oracles REDCsk,L(·, ·)

and INSTpk,L(·, ·).
– The REDC oracle responds to queries of the form (i, C) by returning a redacted

block B ← Redact(sk,L, i, C). It also adds (i, B) to the set Hist, i.e., Hist←
Hist∪{(i, B)}.

– The INST oracle responds to queries of the form (i, B) by returning a bit
b← Install(pk,L, i, B).

3. Finally, A outputs (i∗, B∗). She succeeds, and the experiment returns 1, if and
only if all of the following conditions hold:

(a) 0 < i∗ < `, (b) Verify(pk,L, i∗, B∗) = 1, (c) (i∗, B∗) /∈ Hist .

Experiment 1. The redaction experiment RedactA,RBC(λ). The success conditions can
be explained as: (a) The index i points to an internal block of the ledger (as otherwise
it is not an attack), (b) The block B∗ is valid for position i∗, and (c) The pair (i∗, B∗)
is new, meaning that B∗ is not received from the redaction oracle in response to a
query for index i∗. A particular observation is that the adversary wins if B∗ is received
from REDC, but for another location i′ 6= i∗.

Definition 3. A redactable blockchain scheme RBC is existentially unredactable
under chosen-redaction attacks, or just secure, if for all probabilistic polynomial-
time adversaries A taking part in Experiment 1, there is a negligible function
negl such that Pr

[
RedactA,RBC(λ) = 1

]
≤ negl(λ).

10 M.S. Dousti and A. Küpçü

6 Constructs Based on Signature Schemes

In this section, we first provide a simple construction of redactable blockchains
in the moderated setting (Construct 1). We show that the construct is insecure,
but it serves an illustrative purpose. We then present a variation (Construct 2)
that is proven secure under Definition 3. Both constructs completely delegate
the blockchain functionality to the challenger of Fig. 2: Any write operation
must go through the challenger, and therefore we are not worried about keeping
an immutable total ordering of the blocks. It is similar in nature to the ideal
functionality in a hybrid multi-party setting, except that our model is game-
based rather than simulation-based.

The main primitive used in both constructs is a signature schemes strongly
unforgeable under adaptive chosen-message attack (sUF-CMA). Due to a lack
of space, we define sUF-CMA signatures informally; the interested reader can
consult [3, p. 531]: A signature scheme is sUF-CMA secure if, given public key
and access to the signing oracle, the adversary cannot generate a valid message-
signature pair (m,σ), such that the pair is new. Here, new means σ is not
returned by the signing oracle in response to query m. This gives the adversary
more freedom than the (weak) UF-CMA signatures, where the adversary wins
if m in the output (m,σ) is never queried to the signing oracle.

Boneh et al. [2, p. 230] provide a list of many constructions of efficient sUF-
CMA signatures in the literature, both in the standard and the random oracle
models. There are also efficient transformations that convert any UF-CMA se-
cure signature to an sUF-CMA secure one [14].

6.1 An Incorrect and Insecure Construct

Construct 1 is incorrect and insecure, but helps in understanding the way our
definitional framework works. It uses the following ideas: The adversary can ask
the challenger to append any valid block at the end of the blockchain. Normal
blocks do not include any information about each other (such as the hash of
the previous block). Such information, necessary for the secure operation of an
ordinary blockchain, is abstracted via the ideal functionality in the model: The
adversary is not allowed to make any direct writes to the ledger, and therefore
the challenger can keep the ledger blocks in their total order. The redactability is
achieved with a signature schemes strongly unforgeable under adaptive chosen-
message attack (sUF-CMA), denoted (GenSig,Sign,VerifySig): The challenger
installs a redacted block only if its witness holds the signature of itself and the
next block. The reversion attack (Section 4) is prevented by introducing version
numbers in the block structure: Initially, each block carries version 1. Upon each
redaction, the version number is incremented. The verification function of the
blockchain checks whether the version of a redacted block is strictly greater than
the version of the block being replaced. This way, the adversary cannot reinstall
a previously valid block again.

Moderated Redactable Blockchains: A Definitional Framework 11

Construction 1 (Insecure and Incorrect). The redactable blockchain RBCbad

is defined as follows. The block structure is B def= (C, V,W), where each block con-
tains content C, version V , and witness W .

– Gen(1λ) simply calls the generator for the underlying signature scheme to
obtain the public and private keys: (pk, sk)← GenSig(1λ). It sets L ← [B0],
where B0 ← (ε, 1, ε).

– Create(pk,L, C) returns B ← (C, 1, ε).
– Verify(pk,L, i, B) returns 1 if and only if all of the following conditions hold:
• B has correct structure, and i ≤ `+ 1 is a positive integer.
• Φ(~V , i, V) returns 1: This happens if and only if (i = ` + 1) ∧ (V = 1)
(the block is being appended and has version 1), or (i ≤ `) ∧ (~V [i] < V)
(an existing block is being redacted, and the new version is greater than
the existing one to foil reversion attacks).

• Ψ(pk,L∗) returns 1: This happens if and only if for every pair (B,B′) of
subsequent blocks in L∗, if Version(B) > 1 (i.e., if B is redacted), then

VerifySig(pk,BW ||B′,W) = 1 , (5)

where W def= Witness(B), and BW def= (C, V) (i.e., block B except W). Put
simply, this means that W is a valid signature on C || V ||C ′ || V ′ ||W ′.

– Redact(sk,L, i, C): Creates B ← (C, V,W) using content C, where V ←
Version(L[i]) + 1 and W is a signature on the current block except W itself
(denoted BW), as well as the next block L[i+ 1]:

W ← Sign(sk,BW || L[i+ 1]) .

Notice that incrementing the version number, as well as the computation
of witness by signing the current and next blocks, are consistent with the
requirements of Verify.

– Install(pk,L, i, B): Works exactly as specified in Definition 1.

Correctness Issues. A series of valid actions can put the ledger in a state that
block creation for appending is no longer possible, violating the first requirement
of Definition 2. For instance, let C1, C ′1 and C2 be any valid contents, and
consider the following actions, following (pk, sk,L)← Gen(1λ):

B1 ← Create(pk,L, C1), Install(pk,L, 1, B1)
B′1 ← Redact(sk,L, 1, C ′1), Install(pk,L, 1, B′1)
B2 ← Create(pk,L, C2), Install(pk,L, 2, B2)

The first line creates and appends a block, the second line redacts it, and the
third line tries to append a new block. The last Install fails as it calls Verify, which
in turn calls Ψ: Since the version of B′1 is greater than 1, Ψ requires it to hold
a signature containing information about the next block, as per Equation (5),
which is not the case.

12 M.S. Dousti and A. Küpçü

The underlying reason is that, in this particular construct, it is meaningless
for the last block of the ledger to be redacted, as there is no next block to sign.
It is possible not to increase version number for redacting the last block, or
disallow such redaction by requiring i 6= ` in designing Redact.

One can violate the second requirement of Definition 2 as well, by following a
series of valid actions that put the ledger in a state where redaction of some blocks
are impossible. Let L ← [B0, B1, B2, B3] be a ledger constructed by appending
three blocks, and C ′1 and C ′2 be valid contents. Consider the following actions:

B′1 ← Redact(sk,L, 1, C ′1), Install(pk,L, 1, B′1)
B′2 ← Redact(sk,L, 1, C ′2), Install(pk,L, 1, B′2)

Again, the last install fails: For the pair (B′1, B′2), algorithm Ψ requires B′1 to
hold a signature on B′W1 ||B′2 (see Equation (5)). However, B′1 is redacted prior
to B′2: As a result, B′1 holds a signature on BW1 ||B2, which becomes invalid after
B2 is redacted. Consequently, the second requirement of Definition 2 is violated.

The underlying reason is the indifference in the verification algorithms as to
which block is newer. The next section shows how using unique versions can
resolve this issue.

Security Issues. On the surface, it seems that the adversary cannot succeed
in Experiment 1. An informal (and false) argument is as follows: We use an
adversary who succeeds in the game as a subroutine, to forge a valid signature
on an arbitrary message. The forger simulates the challenger. It gives the public
key of the signature scheme to the adversary, and answers all redaction queries
by using the signing oracle. When the adversary outputs a successful redaction
(i, B), the witness W is a valid signature on the message m ← BW || L[i + 1].
The forger outputs (m,W) as a valid message-signature pair.

The fallacy in the above argument is that the forger must output a new pair
(m,W), as required by sUF-CMA signature forgery. However, the informal proof
does not show that this pair is new. In fact, as is explained below, it is easy for
an adversary to succeed in the game without forging any signature.

Adversary A proceeds as follows: It creates a block B ← (“original”, 1, ε),
and appends it three times by calling the INST interface of the challenger on
queries (1, B), (2, B) and (3, B), respectively. At this point, L = [B0, B,B,B].

Next, A queries the REDC interface of the challenger on (1, “modified”), and
receives B′ ← (“modified”, 2,W), where W is a signature on m ← B′W || B,
where B′W is “modified” || 2.

While the redaction was requested for position 1, the adversary uses position
2: She outputs (2, B′), and halts.

At this point, Hist = {(1, B′)}, and therefore (2, B′) is new. Furthermore,
B′ is a valid redaction for position 2, since L[3] = L[2] = B. We conclude that
the adversary breaks the security by outputting a successful reduction, without
forging a new signature.

The underlying reason for this attack is duplicate blocks in the ledger. In
the next section, we show how to resolve this issue by incorporating unique
versioning.

Moderated Redactable Blockchains: A Definitional Framework 13

6.2 A Correct and Secure Construct

To resolve the issues with Construct 1, we introduce two major modifications
in the construct: First, each block must have a unique version number: The jth

block to be installed (be it appended or redacted) should carry version j. This
guarantees the uniqueness of each block in the ledger, which in turn resolves the
security issues.

To address the correctness issues, the second modification is applied: The
signature is verified only when the block holding it is newer than the next block.
This check is easily conducted due to the unique versioning that we introduced:
For any two consecutive blocks B def= (C, V,W) and B′

def= (C ′, V ′,W ′) in the
ledger, define:

ψ(pk,B,B′) def=
{

1 if V ′ > V ,
VerifySig(pk,C || V || V ′,W) if V ′ < V .

(6)

As we will see, the algorithm Ψ calls ψ for each pair of blocks in the ledger, and
returns the logical AND of their results.

Construction 2 (Secure). The redactable blockchain RBCgood is defined as
follows. The block structure is B def= (C, V,W), where each block contains content
C, version V , and witness W .

– Gen(1λ) simply calls the generator for the underlying signature scheme to
obtain the public and private keys: (pk, sk)← GenSig(1λ). It sets L ← [B0],
where B0 ← (ε, 1, ε).

– Create(pk,L, C) returns B ← (C, V, ε), where V is larger than any version
in the ledger (and is thus unique). Symbolically, V ← MaxV(~V), where ~V is
defined as in Equation (3), and

MaxV(~V) def= 1 + max
0≤i≤`

~V [i] . (7)

– Verify(pk,L, i, B) returns 1 if and only if all conditions below are satisfied:
• B has correct structure, and 0 < i ≤ `+ 1.
• Φ(~V , i, V) returns 1: This happens if and only if V = MaxV(~V).
• Ψ(pk,L∗) returns 1: This happens if and only if for every pair (B,B′)
of subsequent blocks in L∗, it holds that ψ(pk,B,B′) = 1, as per Equa-
tion (6).

– Redact(sk,L, i, C): If i points to an internal block (i.e., 0 < i < `), it creates
a block B ← (C, V,W) using content C, where V ← MaxV(~V) and

W ← Sign
(
sk, C || V || Version(L[i+ 1])

)
.

– Install(pk,L, i, B): Works exactly as specified in Definition 1.

14 M.S. Dousti and A. Küpçü

Notice that for redacting the block at i = `, the private key is not required.
For any C, replacing the existing block L[`] with B ← (C,MaxV(~V), ε) is valid.
This is because there is no next block B′ for which ψ(pk,B,B′) = 1 must hold.
However, the ability to redact the last block without the private key does not
constitute an attack. In our model (Experiment 1), the adversary succeeds only
if she redacts a block inside the ledger (i.e., 0 < i < `).

Theorem 1. RBCgood is correct per Definition 2.

Proof. There are two conditions to check.

Condition (a): Create(pk,L, C) returns B ← (C,MaxV(~V), ε). Clearly, the
content of this block is C. Furthermore, if L is already a valid chain, so
is L∗ ← L + [B]. This is because the version of B is correctly computed as
required by Φ. Moreover, ψ returns 1 on all pairs of blocks in L∗ prior to the
last pair (due to the validity of L). Finally, for the last pair (L[`], B), since
Version(L[`]) < Version(B), the return value of ψ is trivially 1. As a result,
all block pairs verify, and Ψ returns 1 as well.

Condition (b): Redact(sk,L, i, C) returns B ← (C,MaxV(~V),W). Clearly, the
content of this block is C. Furthermore, if L is already a valid chain, so
is L∗ ← Transform(L, i, B). This is because the version of B is correctly
computed as required by Φ. Moreover, ψ returns 1 on all pairs of blocks in
L∗, except perhaps the two special pairs involving B (the validity of other
pairs is due to the validity of L). We show that ψ also returns 1 on those
special pairs, which involve B:
– The first special pair is (L[i−1], B). Since Version(L[i−1]) < Version(B),

the return value of ψ is trivially 1.
– The second special pair is (B,L[i+1]). Since Version(L[i+1]) < Version(B),

algorithm ψ requires the block B to hold a proper witness. This holds
due to the correctness of the underlying signature scheme.

As a result, all block pairs verify, and Ψ returns 1 as well. ut

Theorem 2. If the signature scheme (GenSig,Sign,VerifySig) is strongly un-
forgeable under chosen-message attack (sUF-CMA), then RBCgood is secure per
Definition 3.

Proof. Let A be an adversary who, for infinitely many λ values, succeeds in the
experiment RedactA,RBCgood(λ) with probability at least ε def= ε(λ). We construct
a forger algorithm F which, for infinitely many λ values, forges a signature with
probability ε.

The forger F receives as input the public key pk of the signature scheme, as
well as oracle access to the signing oracle Signsk(·). It sets Hist ← ∅, generates
L ← [B0] as in Construct 2, runs A(pk,L), and answers its queries as follows:

– Installation queries INST(i, B): The forger F simply calls b← Install(pk,
L, i, B), and returns b.

Moderated Redactable Blockchains: A Definitional Framework 15

– Redaction queries REDC(i, C): If i ≤ 0 or i ≥ `, the forger F returns ε.
Otherwise, F creates block B ← (C, V,W), where V ← MaxV(~V), and W is
computed by querying the signature oracle on

(
C ||V ||Version(L[i+ 1])

)
. It

then adds (i, B) to Hist, and returns B.

If the adversary stops but does not succeed in outputting (i, B) as required
in Experiment 1, the forger F outputs ⊥ and halts. Otherwise, parse B def= (C,
V,W). Since B is verified, W is a valid signature on m← (C || V || Vi+1), where
Vi+1

def= Version(L[i+ 1]). Subsequently, F outputs (m,W) as a forgery.
To show that the forgery is new, we must prove that W was never returned

by the signing oracle in response to query m. Since (i, B) /∈ Hist, we consider
the two remaining possibilities:

– (i′, B) ∈ Hist for some i′ 6= i: Impossible because Version(L[i + 1]), which
constitutes a part of m, is unique due to the uniqueness of version numbers
in our solution. Therefore, no other position i′ may correspond to the same
m.

– (i, B′) ∈ Hist for some B′ 6= B, where B can be efficiently computed from
B′

def= (C ′, V ′,W ′), and W ′ is valid on m: For this to happen, it must be the
case that B and B′ are identical except in their witnesses. Then, both W
and W ′ are valid signatures on m. This constitutes a strong forgery on the
signature scheme, and F can output (m,W) as a valid forgery.

We conclude that the success probability of F in producing a valid forgery
is the same as the success probability of A in producing a valid redaction. ut

7 Conclusion

In this paper, we discussed two settings for redactable blockchains: The moder-
ated setting, where redactions are handled by administrators, and the unmod-
erated setting, where redactions are voted on. Four novel attacks were discussed
against previous constructs in both settings. We argued the attacks are the result
of the lack of a definitional framework for redactable blockchains. We suggested
the first attempt at such a framework, and explained our design decisions. Two
simple constructs, both based on signature schemes, were proposed. The first
one was demonstrated to be insecure, while the latter alleviated the security
issues and was provably secure in our definitional framework.

References

1. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable Blockchain–or–
Rewriting History in Bitcoin and Friends. In: EuroS&P. IEEE (2017)

2. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: PKC. Springer (2006)

3. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography. Draft (2020)

16 M.S. Dousti and A. Küpçü

4. CoinDesk: Understanding The DAO Attack (2016), https://tinyurl.com/
dao-attack

5. Council of European Union: Regulation (EU) 2016/679: General Data Protection
Regulation (GDPR) (2016), https://gdpr-info.eu

6. Derler, D., Ramacher, S., Slamanig, D., Striecks, C.: I Want to Forget: Fine-
Grained Encryption with Full Forward Secrecy in the Distributed Setting. IACR
Cryptology ePrint Archive (2019)

7. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-Grained and Controlled
Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based. IACR Cryp-
tology ePrint Archive (2019)

8. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable Blockchain in the Per-
missionless Setting. In: Symposium on Security and Privacy. IEEE (2019)

9. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis
and Applications. In: EUROCRYPT. Springer (2015)

10. Grigoriev, D., Shpilrain, V.: RSA and Redactable Blockchains (2020), arXiv report
2001.10783

11. Hargreaves, S., Cowley, S.: How Porn Links and Ben Bernanke Snuck Into Bitcoin’s
Code (2013), https://tinyurl.com/bitcoin-snuck

12. Hopkins, C.: If You Own Bitcoin, You Also Own Links to Child Porn (2020),
https://tinyurl.com/bitcoin-child

13. Kolb, J., AbdelBaky, M., Katz, R.H., Culler, D.E.: Core Concepts, Challenges, and
Future Directions in Blockchain: A Centralized Tutorial. ACM Computing Surveys
53(1), 1–39 (2020)

14. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Short Generic Transformation to Strongly
Unforgeable Signature in the Standard Model. In: ESORICS. Springer (2010)

15. Lumb, R.: Downside of Bitcoin: A Ledger That Can’t Be Corrected (2016), https:
//tinyurl.com/btc-immutable

16. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009), available
from http://www.bitcoin.org/bitcoin.pdf

17. Pass, R., Shi, E.: FruitChains: A Fair Blockchain. In: Symposium on Principles of
Distributed Computing (2017)

18. Pearson, J.: The Bitcoin Blockchain Could Be Used to Spread Malware, INTER-
POL Says (2015), https://tinyurl.com/bitcoin-malware

19. Puddu, I., Dmitrienko, A., Capkun, S.: µchain: How to Forget Without Hard Forks.
IACR Cryptology ePrint Archive (2017)

20. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger
(2014), Ethereum Project yellow paper

https://tinyurl.com/dao-attack
https://tinyurl.com/dao-attack
https://gdpr-info.eu
https://tinyurl.com/bitcoin-snuck
https://tinyurl.com/bitcoin-child
https://tinyurl.com/btc-immutable
https://tinyurl.com/btc-immutable
http://www.bitcoin.org/bitcoin.pdf
https://tinyurl.com/bitcoin-malware

	Moderated Redactable Blockchains: A Definitional Framework with an Efficient Construct
	1 Introduction
	2 Previous Work
	3 Preliminaries
	4 Novel Attacks on Previous Constructs
	5 Defining Moderated Redactable Blockchain
	5.1 Design Goals
	5.2 Informal Model
	5.3 Definition

	6 Constructs Based on Signature Schemes
	6.1 An Incorrect and Insecure Construct
	6.2 A Correct and Secure Construct

	7 Conclusion

