
The Modular Specifications Security Framework

Hemi Leibowitz1, Amir Herzberg2, Ewa Syta3, and Sara Wrótniak2

1 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel
2 Dept. of Computer Science and Engineering, University of Connecticut, Storrs, CT

3 Dept. of Computer Science, Trinity College, Hartford, CT??

Abstract. We present the Modular Specifications Security (MoSS) frame-
work, where security specifications are defined with respect to a specific
model predicate M. This allows analysis of even complex schemes and
protocols, e.g., PKI schemes, under well-defined adversary, communica-
tion and synchronization models, in a modular and flexible way, and
allows to analyze such schemes in both simplified and realistic models.
The framework facilitates reuse of definitions, and, indeed, several of the
model predicates and security specifications we define, seem ‘generic’ and
reusable in analysis of other practical protocols.

1 Introduction

Cryptographic protocols are traditionally designed and analyzed under different
assumptions, where the expected outcome is to achieve provable security. Most
commonly, cryptographic protocols are specified and analyzed under specific
adversary models. Other assumptions, related to communication and synchro-
nization models are not always relevant, but when they are, highly simplified
models are often applied, e.g., perfect synchronization (‘rounds model’). Under-
standably, since often there are no (relatively) simple tools that can be used to
achieve stronger evaluation against more realistic models, such simplifications
are used. However, this should serve as a motivation towards developing better
evaluation frameworks, and should not be considered as ‘good enough’.

In particular, it is an established challenge to apply provable security on to
applied cryptographic protocols, especially due to the realistic communication
and synchronization models which such protocols operate under. A motivational
example of such schemes are PKI schemes, which these aspects have crucial
implications on their security. When considering the use of existing rigorous
frameworks for analysis of distributed algorithms, e.g., the I/O automata [3] or
reactive systems [5], the results are usually overly complex, even when focusing
on relatively simple algorithms and requirements; applying them to complex
tasks, such as PKI schemes and to cryptographic protocols, appears prohibitively
challenging.

?? The work was partially completed during a visiting position at the Dept. of Computer
Science and Engineering, University of Connecticut, Storrs, CT

Instead, we present the Modular Specifications Security (MoSS) framework,
which is a significant (positive) deviation from the ‘classical’ approach of defin-
ing security using games (experiments), with a given protocol and adversary.
Namely, while in the ‘classical’ game-based approach, the model is an integral
part of the game/experiment, in our framework, the model M is a well-defined
‘standalone’ PPT algorithm, separated from the actual experiment. This ap-
proach taken by the MoSS framework, yields an important result. The MoSS
framework allows a clear and concise method to take any well-defined security
specification ξ and formally prove whether a given protocol P satisfies specifi-
cation ξ (with negligible advantage or with advantage ε) under model M.

The Modular Specifications Security (MoSS) framework cleanly separates the
specification and analysis of security into three components: the execution pro-
cess, model and specifications. The first component is a well-defined, and rela-
tively straightforward, adversary-driven execution process (Algorithm 1). This
execution process defines precisely the process of executing a protocol P un-
der adversary A, giving the adversary extensive control over the operation of
the environment, including communication, local-clock values, inputs from the
application, and faults. (The execution process only imposes some basic limita-
tions, e.g., events are ordered, rather than potentially only partially-ordered, as
allowed in [3, 5].)

The second component of the framework is the definition of models, where
a model M is a pair consisting of a model predicate M.π and a base function
M.β. A model predicate M.π classifies the execution of a protocol P under
adversary A as ‘valid’ (>) or ‘invalid’ (⊥), effectively enforcing one or multiple
restrictions on the adversarial control of the execution, including initialization
assumptions, limitations on number and type of faults, maximal delay and/or
maximal clock drift. Furthermore, a model predicate may enforce restrictions
on the use of resources by the adversary, such as numbers of queries or running
time. The base function specifies the ‘base’ probability that a model predicate
M.π outputs ⊥. The sum of the base functionM.β and the advantage function
ε (or in the asymptotic definitions,M.β and a polynomial) limits the maximum
probability that the predicate outputs ⊥ for any given parameters p.

The third component of the framework is the definition of specifications,
which are similar to models except that they are used to define what is provided
by a protocol or scheme, given some model. A specification ξ is a pair, ξ =
(ξ.π, ξ.β), where the specification predicate ξ.π and the base function ξ.β are
used in the same way as model predicates and base functions.

We believe that this approach is not only likely to be beneficial for many
cryptographic protocols and distributed systems, but would also make it easier
to compare models and specifications between different works. Furthermore, we
expect the separation between the model aspects and the problem-specific as-
pects of security definitions to allow cleaner definitions, as well as to allow the
reuse of well-defined models M.

Organization. Section 2 presents the basic integrity and availability (IA)
execution model of the framework and asymptotic definitions for models and

2

specifications. Section 3 discusses the CIA execution process, which is an exten-
sion of the IA execution process which additionally allows confidentiality (and
other indistinguishability-based) models and specifications. Section 4 extends
the framework to allow concrete security (rather than asymptotic) definitions
for models and specifications. Section 5 provides further model and specification
predicates. We conclude and discuss future work in Section 6.

2 The MoSS Framework Building Blocks

Traditionally, research onto cryptographic schemes and protocols tend to focus
on the adversary’s capabilities and whether some properties can be achieved
under a specific adversary model or not. This is acceptable, when the analyzed
system is not concerned with other assumptions. For example, when defining
the security of encryption schemes or zero-knowledge proofs, there is no signif-
icance to the properties of the communication between the parties, or to the
synchronization of their clocks. However, communication and synchronization
assumptions are crucial factors in the operation and security of distributed sys-
tems. For instance, in PKI schemes, some of the properties are time related,
and as such, the scheme’s security strongly depends on the communication and
synchronization assumptions. Therefore, there is a clear need to bootstrap the
communication and synchronization assumptions into the analysis of such sys-
tems; otherwise, analysis that overlooks them completely misses its purpose, and
it is therefore, incomplete.

One way to address this challenge would be to adopt a specific, simple model
for communication and synchronization, e.g., the synchronous ‘rounds model’,
where all parties operate in lockstep, round by round, and messages sent at
round i are delivered in round i + 1. Using such a fixed model has the benefit
of making it easy to focus on the cryptographic aspects, e.g., present rigorous
definitions and prove security (by reductions). However, real systems are more
complex; clocks are not fully synchronized, and communication is rarely, if ever,
perfectly synchronous. This creates a key dilemma in the design and analysis
of cryptographic protocols; should the design and analysis assume a simplified
model and focus on the cryptographic aspects of the protocol, or should it use
a more realistic model, one that takes into account communication and clock
synchronization and allows a genuine analysis of practical systems?

The reader might consider this dilemma as a ‘no-brainer’; obviously, an anal-
ysis should always be with respect to a genuine (as possible) model. Unfortu-
nately, in many cases, it is extremely non-trivial, and as a result, many designs
and analyses do choose to focus on the cryptographic, ignoring some key-aspects
along the way. We now details how the MoSS framework solves that by splitting
the design into three components: a generic adversary-driven execution process,
models, and security specifications. We begin with how the framework’s basic
execution process works.

3

2.1 Exec IA: An Adversary-Driven Execution Process

We now present the adversary-driven execution process Exec IAA,P(1κ) as de-
fined by the pseudo-code in Algorithm 1. The execution process specifies the
details of running a given protocol P with a given adversary A, both modeled
as efficient (PPT) functions. The execution process does not enforce any as-
sumptions or model on the communication, synchronization, or inputs to the
protocol; all of that is controlled entirely by the adversary A. Furthermore, the
execution allows the adversary to set and retrieve the state of any entity as well
as messages sent and received, allowing for different failure models.

Notation. To allow the process to apply to protocols with multiple functions
and operations, we define the entire protocol P as a single PPT algorithm and
use parameters to specify the exact operations and their inputs. Specifically,
execution of an operation defined by P over entity i, is expressed using the
following notation: P(s, opr, inp, clk), where s is the local state of entity i, opr
identifies the specific ‘operation’ or ‘function’ to be invoked, inp is the set of
inputs to that operation/function, and clk is the current value of the local clock
of entity i. The output of such execution is a tuple (s, out, sec-out), where s is
the state of entity i after the operation’s execution, out is the regular output of
the executed function, and sec-out is ‘secure output’ - namely, sec-out contains
values to be shared with entities through a secure channel, which is not accessible
to A.

The execution process reserves three specific strings, ‘Set-state’, ‘Set-output’
and ‘Get-state’, to define generic operations, which are not part of P. We use
these reserved operations to express specific adversarial capabilities which are
allowed by some adversarial models. Namely, an adversary can expose the local
state (‘Get-state’) of an entity, e.g., corresponding to a ‘honest but curious’
adversary; an adversary can control the state (‘Set-state’) of an entity; and an
adversary can control the output (‘Set-output’), including the secure output, of
an entity, e.g., corresponding to a ‘malicious’ adversary (‘byzantine’ fault model).

Additionally, we assume that P includes an operation ‘Sec-in’. The execution
process uses this operation to securely give values to an entity. Specifically, an ad-
versary can set the operation to ‘Sec-in’ and choose some previous secure output
(without seeing it - i.e., A can only choose the eventduring which it was output),
which will be given as input to P. This provides a way to assume that certain
information is securely shared, which may be used, e.g., if anonymous or con-
fidential channels must be assumed without providing appropriate mechanisms
at the protocol level.

We use the index notation to refer to cells of ‘arrays’. For example, out[e]
refers to the value of the eth entry of the array out. Specifically, e represents the
index execution events within the execution process. Note, however, that e does
not represent any clock value and is independent of any clock synchronization
model, and specifically, is not controlled by the adversary. Rather, e allows us
to index a sequence of operations performed within one execution loop, and pre-
cisely refer to each event of the execution. The local clock clk and real time clock
τ are used to represent and model different clock assumptions. Thus, to refer

4

to the local clock value and the real time clock value of event e, the execution
process uses clk[e] and τ [e], respectively. The execution process does not place
any restrictions on these values and enforcing any constraints is left to the ap-
propriate clock synchronization model. The specific clock synchronization model
provided in this work ensures that τ [e] is monotonously increasing and uses this
property to enforce other communication and clock properties (see Sections 5.1.3
and 5.1.4).

Construction. We now discuss the three main components of the execu-
tion process (Algorithm 1), that is, the initialization, main loop execution and
termination.

Initialization. In line 1, we allow the adversary to set its state and to choose
the set of entities N. In line 2, we set the initial state for each entity i by
invoking the ‘Init’ operation of the protocol P with inputs (i, p); in other words,
each entity receives its identifier i and the security parameters p and performs its
initialization operation. In line 3, we initialize e, which we use to index the events
of the execution, i.e., e is incremented by one (line 5) each time we complete one
‘execution loop’ (lines 4-14).

Main execution loop (lines 4-14). The design allows the adversary A to have
a generous control over the execution. Specifically, in each event e, A determines
(line 6) an operation opr[e] to be applied to an entity ent[e] ∈ N, with input
inp[e] and its local clock value clk[e]. Additionally, the adversary selects the
global, real time clock value set to τ [e].

After the adversary defines the specific operation and inputs (line 6), the
event is executed (lines 7-11). There are five options for each event specified as
an operation opr[e]. More concretely, if A sets opr[e] = ‘Set-state’ (line 7), then
the state sent[e] of entity ent[e] is set to inp[e]; if A sets opr[e] = ‘Set-output’
(line 8) then the outputs out[e], sec-out[e][·] are set to values chosen by A as
inp[e]; and if A sets opr[e] = ‘Get-state’ (line 9), then the output of the state
sent[e] of entity ent[e], including any private state, e.g., private keys, is exposed
to A and saved as out[e].

Alternatively, if A sets opr[e] = ‘Sec-in’ (line 10), then entity ent[e] can
receive values securely from another entity. This is done through the sec-out
mechanism. Specifically, A chooses some event ê = inp[e], and the protocol
receives ent[ê], sec-out[ê][ent[e]] as input, which is the identifier of the ‘sender’
(ent[ê]) along with the value(s) that were securely sent in event ê to entity ent[e].
Note that A is never given the contents of sec-out during the execution process.

Otherwise, if opr[e] is set to any other operation (line 11), then the process
invokes the protocol P specific function over the state sent[e] of entity ent[e], with
inputs opr[e], inp[e], clk[e]. This results in a new state sent[e] and output out[e]
for entity ent[e]. The execution process allows the adversary to set and get the
state of any entity; however, a specific execution model M may forbid such
operations, e.g., return ⊥ for executions where the adversary performs them. In
line 13, the adversary processes the output out[ê] of the operation opr[ê]. The
adversary may modify its state sA, and outputs a value outA; when outA 6= ⊥,
the execution moves to the termination phase; otherwise the loop continues.

5

Algorithm 1 Adversary-Driven Execution Process Exec IAA,P(p)

1: (sA,N)← A(p) . Initialize adversary

2: ∀i ∈ N : si ← P (⊥, ‘Init’, (i, p),⊥) . Initialize entities’ local state

3: e← 0 . Initialize loop’s counter

4: repeat

5: e← e+ 1 . Advance loop’s counter

6: (ent[e], opr[e], inp[e], clk[e], τ [e])← A(sA) .

A selects entity ent[e], opera-
tion opr[e], input inp[e], clock
clk[e], and real time τ [e] for
event e

7: if opr[e] =‘Set-state’ then .
When A wants to change the lo-
cal state of entity ent[e]

sent[e], out[e], sec-out[e][·]← inp[e],⊥,⊥

8: else if opr[e] =‘Set-output’ then .
When A wants to change the
output of entity ent[e]

out[e], sec-out[e][·]← inp[e]

9: else if opr[e] =‘Get-state’ then .
When A wants to get the cur-
rent local state of entity ent[e]

out[e], sec-out[e][·]← sent[e],⊥

10: else if opr[e] =‘Sec-in’ then .
When A wants entity ent[e] to
receive secure output

.

A specifies a previous event in
inp[e] and then the process uses
(ent[inp[e]], sec-out[inp[e]][ent[e]])
as input to P

(
sent[e], out[e], sec-out[e][·]

)
← P

(
sent[e], ‘Sec-in’, (ent[inp[e]], sec-out[inp[e]][ent[e]]), clk[e]

)

.
P returns the state of entity
ent[e], the output, and the se-
cure output

11: else .

Otherwise, A wants to execute
operation opr[e] of P with input
inp[e] over entity ent[e] with lo-
cal clock of clk[e](

sent[e], out[e], sec-out[e][·]
)
← P

(
sent[e], opr[e], inp[e], clk[e]

)
12: end if

13: (sA, outA, F)← A (sA, out[e]) .

Inform A of the value of out[e]
and allow A to decide whether
to continue (outA = ⊥), or to
terminate the loop (outA 6= ⊥)

14: until outA 6= ⊥

15: T ← (outA, e,N, F, ent[·], opr[·], inp[·], clk[·], τ [·], out[·], sec-out[·][·]) . Output

16: Return T

6

Termination (lines 15-16). Upon termination, the process returns the ex-
ecution transcript T (line 16), containing the relevant values from the execu-
tion. Namely, T contains the values of ent[ê], opr[ê], inp[ê], clk[ê], τ [ê], out[ê] and
sec-out[ê][·] for each of the events ê ≤ e, where e is the index of the last event,
as well as the adversary’s output outA, the index of the last event e, the set
of entities N, and the set of faulty entities F (produced in line 13). Private val-
ues such as entities’ private keys are not part of the execution transcript unless
provided as inp[ê] for opr[ê] = ‘Set-state’ or properly extracted using opr[ê] =
‘Get’. We allow A to output F, so an adversary model can specify which entities
are included in F (i.e., which entities are considered ‘faulty’).

Limitations. The execution process supports a large variety of models. For
example, the adversary may control the state (‘Set-state’), learn the state (‘Get-
state’), and directly control the output (‘Set-output’) of every party ent[ê] ∈ N,
but this may be restricted (or fully prohibited) by specific model M, allowing
different fault models (honest-but curious, threshold, adaptive, proactive, etc.).
However, Exec IA allows the adversary to control all inputs events, while typ-
ical definitions of confidentiality and indistinguishability specifications provide
randomized inputs which are not directly observable by the adversary. To allow
such definitions, we extend the Exec IA process to the Exec CIA process in
section 3.

2.2 Specifications

To describe both the model assumed by a protocol or scheme (i.e., different ad-
versary, communication, clock-synchronization assumptions, etc.) and the prop-
erty/ies (relating to security, communication, etc.) provided by the protocol or
scheme, we define specifications and advantage functions. Specifications are used
to describe both the assumptions (referred to as the models) and the goals for
protocols or schemes. We define a specification as a pair containing the specifi-
cation predicate and the base function. Namely, a specification ξ is:

ξ = (ξ.π, ξ.β) (1)

where ξ.π is the specification predicate and ξ.β is the base function.
A specification predicate takes an execution transcript T and a parameter p

as input, and it returns > if T satisfies the predicate π for the given value of
p and ⊥ otherwise. (In the asymptotic definitions, the parameter p is a single
unary value which we refer to as the security parameter.)

The base function gives the ‘base’ probability of success for an adversary; for
example, for collision- or forgery-preventing specifications, the base function may
be 2−l, where l is the output block size of a hash function or a key length; for
indistinguishability-based specifications (see section 3), the base function may
be 1

2 (a constant).
An advantage function ε is the maximum advantage probability that the ad-

versary may have (under the specifications), over the ‘base’ probability. Namely,
intuitively, a specification is satisfied with advantage ε as long as the adversary’s

7

success probability is below ξ.β(p) + ε(p). The sum ξ.β(p) + ε(p) for any given
p should be in the range [0, 1]. However, for the asymptotic definitions, we do
not use specific functions ε but rather say that a specification is satisfied with
negligible advantage (definitions are given in the next subsections).

As mentioned above, specifications are used to describe both the assumptions
and the goals of protocols or schemes - namely, there are two ‘types’ of specifica-
tions. The first are model specifications (referred to as models), which describe
assumptions about adversary capabilities, clocks, communication channels, etc.
The second are specifications which describe the qualities provided by the pro-
tocol or scheme. Note that specifications can easily be combined or defined in
terms of each other; e.g., multiple sub-model predicates may be combined into
a model predicate which is the conjunction of the sub-model predicates.

In the following subsections, we further describe specifications. First, we focus
on models. We define what it means for an adversary to IA-satisfy a model with
negligible advantage, and we give an example of a model predicate, namely, the
predicate MCom

∆com
. Later, we define what it means for a protocol to IA-satisfy

a specification with negligible advantage under some model, and we give an
example of a specification predicate, namely, the predicate AuthComRcv.

2.3 Models

The execution process described in subsection 2.1 specifies the details of run-
ning a protocol P against an adversary A; however, it does not, on its own,
restrict the adversary, nor it considers the adversary model, i.e., the exact ca-
pabilities of the adversary. Furthermore, other assumptions, i.e., communication
and synchronization assumptions are also decoupled from the execution process.
The rationale behind this design is that the security of distributed systems and
cryptographic protocols should be stated and analyzed with respect to a spe-
cific model. Therefore, by separating the execution process from the model, this
separation allows to take a transcript T of any execution of protocol P with
adversary A, and examine whether transcript T satisfies the predicate M.π of
a specific model M. By the term model, we mean a combination of adversary
capabilities, communication assumptions and clock-synchronization assumptions:
Adversary capabilities: The adversary capabilities (often referred to as the

adversary model), define the computational resources of the adversary, e.g.,
probabilistic polynomial time (PPT), as well as other capabilities, e.g., from
cipher-text only (CTO) to chosen ciphertext attacks (CCA) (for encryption
schemes).

Communication assumptions: The communication assumptions define the
properties of the underlying communication mechanism, such as reliable/unreliable
communication, FIFO or non-FIFO, authenticated or not, bounded/fixed
delay or asynchronous, and so on.

Clock-synchronization assumptions: The clock-synchronization assumptions
define the availability and properties of per-entity clocks. Common mod-
els include purely asynchronous clocks (no synchronization), bounded-drift
clocks, and synchronized clocks.

8

This section is structured as follows. We begin with the definitions of what
it means to IA-satisfy a model M with negligible advantage in §2.3.1. Then, in
§5.1.3, we give theMCom

∆com
predicate as an example. In §5.1.1, §5.1.2, §5.1.3, and

§5.1.4, we present additional examples of model predicates representing various
assumptions.

2.3.1 Model Satisfying Adversary

Models are used to restrict the capabilities of the adversary as well as the events
that can happen in the execution process. This includes limiting of the possible
faults, defining initialization assumptions, and defining the communication and
synchronization models. Hence, we ensure that a given adversary A followed a
given modelM’s restrictions in a given execution transcript T by applyingM.π
to T and p, where p is a unary value p = 1κ for some κ ∈ N. We say that A IA-
satisfiesM with negligible advantage if for every constant c, there is some κ′ ∈ N
such that the probability that M.π(T, 1κ) returns ⊥ is less than M.β(1κ) + κc

for all κ > κ′, as defined next.

Definition 1 (Adversary A IA-satisfies model M with negligible ad-
vantage). Let A be a PPT algorithm, and let M = (M.π,M.β) be a model,
whereM.π is a predicate (i.e., outputs > or ⊥) andM.β is a functionM.β(1κ) :
{1}∗ → [0, 1]. We say that adversary A IA-satisfies model M with negligible ad-

vantage, denoted as A |=
poly
M, if for every protocol P and every constant c, there

is some κ′ ∈ N such that for all κ > κ′, the probability that the model predi-
cate M.π, applied to a random resulting Exec IA execution transcript T and
security parameter 1κ, is not satisfied, is less than M.β(1κ) + κc,

A |=
poly
M def

= ∀ P, c,∃ κ′ ∈ N s.t. ∀ κ > κ′ :

Pr

[
M.π (T, 1κ) = ⊥ :
T ← Exec IAA,P(1κ)

]
<M.β(1κ) + κc

(2)

2.3.2 MCom
∆com

: bounded-delay communication model predicate

As an example of a model predicate, we present the MCom
∆com

model predicate,
which ensures reliable, bounded-delay delivery of messages. (Further model pred-
icates can be found in section 5.) The base function used with theMCom

∆com
model

predicate would usually be β(1κ) = 0, since an adversary should have no sig-
nificant advantage to prevent the timely delivery of messages (regardless of the
value of the security parameter).

The adversary decides on the function opr[êR] to be invoked at every event êR

as well as the input inp[êR]. We assume a convention for send and receive events
as follows. The adversary causes a message receipt event by setting opr[êR] to
‘Incoming’ and inp[êR] to (m, iS) (where m is the message and iS ∈ N is the
purported sender). We use dot notation to refer to the message (inp[êR].m) and
to the sender (inp[êR].iS). Also, we allow the sender ent[êS] to specify, as part

9

of its output out[êS], one or more triplets of the form (‘send’,m, iR), indicating
the sending of message m to iR ∈ N.

TheMCom
∆com

model predicate ensures reliable, bounded-delay delivery of mes-
sages sent. Assume that at event êS of the execution, the output out[êS] gen-
erated by ent[êS], includes a (‘send’,m, j) triplet, i.e., ent[êS] sends message m
to j ∈ N. If the MCom

∆com
model predicate is true for this execution, then after

at most ∆com, if the execution did not terminate already, then entity j would
receive m from ent[êS]. The MCom

∆com
model predicate is shown in Algorithm 11.

Algorithm 2 MCom
∆com

(T , p) Predicate

1: return
(

2: ∀êS s.t 1 ≤ êS < T.e:

3: if (∃(‘send’,m, iR) ∈ T.out[êS] .
If the output includes a send
triple

4: and T.τ [T.e] ≥ T.τ [êS] +∆com .
And execution did not termi-
nate yet after ∆com real time

5: and T.ent[êS] ∈ T.N− T.F) . And the entity is honest

6: then ∃êR > êS . Then there is a later event

7: s.t. T.τ [êS] +∆com ≥ T.τ [êR] . Within ∆com real time

8: and T.ent[êR] = iR .
Where the entity is the intended
recipient in the send triple

9: and T.opr[êR] = ‘Receive’ . And which is a receive event

10: and T.inp[êR] = (m,T.ent[êS]) .
And in which the entity receives
the message from the sender)

We remark that MCom
∆com

only applies when both sender and recipient are

honest (i.e., in N − F), and MCom
∆com

only ensures delivery and bounded delay.
This still allows receipt of duplicate messages, which may involve unbounded
delay, and receipt of messages that were never sent. To simplifyMCom

∆com
, we use

the adversary-controlled τ [·] values (line 6 of Algorithm 1).

2.4 Security Specifications

The execution process and the model facilitate precise definition of security
specifications, using predicates (‘experiments’) over the results of the execution.
This is separate from the validation of the model, allowing modular specification
of security specifications. Namely, different works may reuse the same security
specifications (and execution process) but use other, possibly more realistic (and
more complex) models, expressing different adversary capabilities, restrictions on
usage, and assumptions on communication and synchronization. Similarly, differ-
ent works may reuse the same models to study additional security specifications.
The separation between the definition of the model and of the specifications also
allows definition of generic specification predicates. Generic specification predi-
cates are applicable to different protocols and problems. We identify four generic
specification predicates, that appear relevant to many security protocols. These
specification predicates focus on attributes of messages, i.e., non-repudiation,

10

and on detection of misbehaving entities (see §5.1.7). This approach is quite dif-
ferent from the current way of defining security for cryptographic schemes and
protocols; it takes some time and effort to get used to the separate model and
security definitions. However, we found that with a little use, the advantages be-
come clear and the approach becomes natural and convenient, facilitating mod-
ularity and reuse of specification predicates and model predicates, and allowing
for proper comparison of security guarantees between different schemes.

2.4.1 Model-Secure Specifications

To complete the presentation of the execution process, we now discuss how it
is used to define specific security specifications and properties and to analyze
whether these properties are ensured by a given protocol P, under given model
M, interacting with any PPT adversary A. While we present game/experiment-
based definitions, future work may consider other forms of definitions, such as
simulation-based.

A protocol P would typically have multiple security properties, i.e., sat-
isfy multiple security specifications. We define a security specification ξ as a
pair (ξ.π, ξ.β), where ξ.π a predicate and ξ.β is the base function. Again, the
parameter p is a unary security parameter, p = 1κ. Let b be the outcome
of ξ.π applied to (T, 1κ), where T is the transcript of the execution process
(T = Exec IAA,P(1κ)) and p are the parameters, i.e., b ← ξ.π(T, 1κ); if b = ⊥
then we say that specification predicate ξ.π was not satisfied in this execution of
P, or that the adversary won in this execution; and if b = >, then we say that
specification predicate ξ.π was satisfied in this execution, or that the adversary
lost. We say that P IA-satisfies ξ with negligible advantage under model M if
for every PPT adversary A which IA-satisfies M with negligible advantage, for
every constant c, there is some κ′ ∈ N such that the probability that ξ.π(T, 1κ)
returns ⊥, where T ← Exec IAA,P(1κ), is less than ξ.β(1κ) + κc for all κ > κ′,
as given in the next definition.

Definition 2 (Protocol P IA-satisfies specification ξ with negligible ad-
vantage under model M). Let ξ = (ξ.π, ξ.β) be a specification, where ξ.π is
a predicate and ξ.β is a function ξ.β(1κ) : {1}∗ → [0, 1]. We say that protocol

P IA-satisfies specification ξ under model M, denoted P |=M
poly

ξ, if for every PPT
adversary A that IA-satisfies M with negligible advantage, for every constant c,
there is some κ′ ∈ N such that for all κ > κ′, the probability that the specification
predicate ξ.π, applied to a random resulting Exec IA execution transcript T and
security parameter 1κ, is not satisfied, is less than ξ.β(1κ) + κc, i.e.:

P |=M
poly

ξ
def
= ∀ A ∈ PPT, c, if A |=

poly
M then ∃ κ′ ∈ N s.t. ∀ κ > κ′ :

Pr

[
ξ.π (T, 1κ) = ⊥ :
T ← Exec IAA,P(1κ)

]
< ξ.β(1κ) + κc

(3)

11

2.4.2 AuthComRcv : authenticated-sender communication specifica-
tion predicate

As an example of a specification predicate, we give the AuthComRcv predicate.
For more specification predicates, see section 5.

The AuthComRcv model predicate verifies the authentic-sender property for
all ‘Incoming’ events, which means that out[êR].iS indeed sent this message to
ent[êR], during some previous event êS < êR. The AuthComRcv model predicate
is shown in Algorithm 3.

Algorithm 3 AuthComRcv (T , p) Predicate

1: return
(

2: ∀êR s.t. 1 ≤ êR ≤ T.e:

3: if T.opr[êR] = ‘Receive’: . For each ‘Receive’ event

4: and T.out[êR] 6= ⊥ .
If the ‘Receive’ event was suc-
cessful

5: and T.ent[êR], T.out[êR].iS ∈ T.N− T.F . And both receiver and sender
are honest

6: then ∃êS < êR . Then there is a previous event

7: s.t. T.opr[êS] = ‘Send’: . Which was a ‘Send’ event

8: and T.inp[êS].m = T.out[êR].m .
Where the input message was
T.out[êR].m

9: and T.inp[êS].iR = T.ent[êR] .
And where the intended recipi-
ent was T.ent[êR]

10: and T.ent[êS] = T.out[êR].iS .
And where the entity was the
sender output in event êR)

Usually, the base function used with the AuthComRcv model predicate would
be β = 2−l, where l is the length of some tags or signatures used by the protocol
or scheme for authentication. In other words, we would usually allow the adver-
sary to have probability 2−l to cause an entity to receive a forged message, but
not (significantly) more than 2−l.

3 Confidentiality, Integrity, and Availability Models and
Specifications

The execution process Exec IAA,P(p) allows the adversary to choose all of the
inputs to P during the execution process. However, definitions of properties such
as confidentiality often include randomized inputs (for instance, to allow ‘indis-
tinguishability game’-based definitions). Thus, we define an extended execution
process, Exec CIAA,P(p, b), which allows such indistinguishability-based defi-
nitions and specifications. Note that the only difference between Exec IAA,P(p)
and Exec CIAA,P(p, b) is the additional input bit and an additional special op-
eration ‘Challenge’ which uses this bit. Consequently, we can use Exec CIAA,P(p, b)
also to run executions equivalent to those of Exec IAA,P(p) (i.e., simulate

12

Exec IAA,P(p)) simply by using an adversary model in which A does not in-
voke the ‘Challenge’ operation. Therefore, Exec CIAA,P(p, b) is an extension
of Exec IAA,P(p).

3.1 The Exec CIA Process

Exec CIAA,P(p, b), shown in Algorithm 4, takes an additional input bit b that
is not controlled or visible to A. Secondly, as part of Exec CIA, we define an
additional special operation ‘Challenge’. A can chose the ‘Challenge’ operation
and specify two values in inp[ê] (line 11 of Algorithm 4). The first value, inp[ê][0],
should be one of the operations of P. The second input, inp[ê][1], should be
a tuple of two lists, where each list contains possible inputs to the operation
specified in inp[ê][0]. (As usual, further assumptions about the inputs can be
specified using a model.) Then Exec CIAA,P(p, b) invokes P with inp[ê][0] as
the operation, the bth component of inp[ê][1] (indexed from 0) as the input, and
the state and clock values specified by A as before. Note that A does not know
which element of inp[ê][1] was sent to P as the input.
A can use the output of this operation, as well as the outputs of other opera-

tions executed during the process, to guess the value of b (0 or 1). (For example,
P might output the encryption of inp[ê][1][b], and A might try to guess b based
on this encryption.) As before, A sets the value of outA at the end of each event,
and the final value of outA is returned as part of the execution transcript T . Con-
sequently, we can define specifications in terms of the probability that T .outA
equals b. (Usually, we do not want Pr[T.outA = b] to be significantly better than
for a random guess of the value of b.)

3.2 Specifications

Specifications are the same as defined in subsection 2.2, except that the speci-
fication predicates take three inputs (including a bit b). We give an example of
such a specification predicate in subsection 3.4.

3.3 Models

In definition 3, we define adversary A CIA-satisfies model M with negligible
advantage. The differences between the asymptotic definitions of ‘IA-satisfying’
and ‘CIA-satisfying’ a model are that in the ‘CIA-satisfying’ definition, the model
predicate takes the additional input bit b, and the probability is taken over a
transcript returned by Exec CIAA,P(p, b) (instead of Exec IAA,P(p)), for a
random bit b.

Definition 3 (Adversary A CIA-satisfies model M with negligible ad-
vantage). Let A be a PPT algorithm, and let M = (M.π,M.β) be a model,
whereM.π is a predicate over (T, p, b) andM.β is a functionM.β(1κ) : {1}∗ →
[0, 1]. We say that adversary A CIA-satisfies model M with negligible advantage,

denoted as A |=
poly
M (note that we reuse the IA notation for simplicity), if for

13

Algorithm 4 Exec CIAA,P(p, b)
Adversary-Driven Execution Process with Challenge Bit

1: (sA,N)← A(p) . Initialize adversary

2: ∀i ∈ N : si ← P (⊥, ‘Init’, (i, p),⊥) . Initialize entities’ local state

3: e← 0 . Initialize loop’s counter

4: repeat

5: e← e+ 1 . Advance loop’s counter

6: (ent[e], opr[e], inp[e], clk[e], τ [e])← A(sA) .

A selects entity ent[e], opera-
tion opr[e], input inp[e], clock
clk[e], and real time τ [e] for
event e

7: if opr[e] =‘Set-state’ then .
When A wants to change the lo-
cal state of entity ent[e]

sent[e], out[e], sec-out[e][·]← inp[e],⊥,⊥

8: else if opr[e] =‘Set-output’ then .
When A wants to change the
output of entity ent[e]

out[e], sec-out[e][·]← inp[e]

9: else if opr[e] =‘Get-state’ then .
When A wants to get the cur-
rent local state of entity ent[e]

out[e], sec-out[e][·]← sent[e],⊥

10: else if opr[e] =‘Sec-in’ then .
When A wants entity ent[e] to
receive secure output

.

A specifies a previous event in
inp[e] and then the process uses
(ent[inp[e]], sec-out[inp[e]][ent[e]])
as input to P

(
sent[e], out[e], sec-out[e][·]

)
← P

(
sent[e], ‘Sec-in’, (ent[inp[e]], sec-out[inp[e]][ent[e]]), clk[e]

)

.
P returns the state of entity
ent[e], the output, and the se-
cure output

11: else if opr[e] = ‘Challenge’ then .

When A wants a challenge,
A specifies the operation in
inp[e][0] and two inputs in

inp[e][1], but only the bth com-
ponent of inp[e][1] (indexed
from 0) is used as input to P(

sent[e], out[e], sec-out[e][·]
)
← P

(
sent[e], inp[e][0], inp[e][1][b], clk[e]

)
12: else .

Otherwise, A wants to execute
operation opr[e] of P with input
inp[e] over entity ent[e] with lo-
cal clock of clk[e](

sent[e], out[e], sec-out[e][·]
)
← P

(
sent[e], opr[e], inp[e], clk[e]

)
13: end if

14: (sA, outA, F)← A (sA, out[e]) .

Inform A of the value of out[e]
and allow A to decide whether
to continue (outA = ⊥), or to
terminate the loop (outA 6= ⊥)

15: until outA 6= ⊥

16: T ← (outA, e,N, F, ent[·], opr[·], inp[·], clk[·], τ [·], out[·], sec-out[·][·]) . Output

17: Return T

14

every protocol P, every constant c, and b
$← {0, 1}, there is some κ′ ∈ N such

that for all κ > κ′, the probability that the model predicate M.π, applied to a
random resulting Exec CIA execution transcript T , security parameter 1κ, and
b ∈ {0, 1}, is not satisfied, is less than M.β(1κ) + κc,

A |=
poly
M def

= ∀ P, c, b $← {0, 1},∃ κ′ ∈ N s.t. ∀ κ > κ′ :

Pr

[
M.π (T, 1κ, b) = ⊥ :
T ← Exec CIAA,P(1κ, b)

]
<M.β(1κ) + κc

(4)

3.4 Security Specifications

In definition 4, we define protocol P CIA-satisfies specification ξ with negligible
advantage under model M. Similarly to CIA models, the specification predicate
takes the additional input bit b, and the probability is taken over a transcript
returned by Exec CIAA,P(p, b), for a random bit b.

Definition 4 (Protocol P CIA-satisfies specification ξ with negligible
advantage under model M). Let ξ = (ξ.π, ξ.β) be a specification, where ξ.π
is a predicate over (T, p, b) and ξ.β is a function ξ.β(1κ) : {1}∗ → [0, 1]. We
say that protocol P CIA-satisfies specification ξ with negligible advantage under

model M, denoted P |=M
poly

ξ (note that we reuse the IA notation for simplicity),

if for every PPT adversary A that CIA-satisfies M and b
$← {0, 1}, for every

constant c, there is some κ′ ∈ N such that for all κ > κ′, the probability that the
specification predicate ξ.π, applied to a random resulting Exec CIA execution
transcript T , security parameter 1κ, and b ∈ {0, 1}, is not satisfied, is less than
ξ.β(1κ) + κc, i.e.:

P |=M
poly

ξ
def
= ∀ A ∈ PPT, b $← {0, 1}, c, if A |=

poly
M then ∃ κ′ ∈ N s.t. ∀ κ > κ′ :

Pr

[
ξ.π (T, 1κ, b) = ⊥ :
T ← Exec CIAA,P(1κ, b)

]
< ξ.β(1κ) + κc

(5)

As mentioned previously, we can now define specifications in terms of the
probability that T .outA equals b. In this way, we define the Indistinguishability
Specification Predicate INDπ in Algorithm 5.

Algorithm 5 INDπ(T, p, b) Predicate

1: return ¬
(

2: T.outA = b .
A guessed the value of b cor-
rectly

3: and π(T, p, b))

By using specific predicates π, we can use the INDπ specification predicate
to define more specific specification predicates; for example, we use the MsgConf

15

predicate, shown below, to define INDMsgConf, which is used to define message
confidentiality for the SecCom protocol.

The MsgConf Predicate

The MsgConf model predicate is given in Algorithm 6. The model ensures that:
– A only asks for ‘Send’ challenges (since we are only concerned with whether

or not A can distinguish outputs of ‘Send’). We assume that P includes a
‘Send’ operation, which takes as input a message and the identifier of the
recipient.

– During all ‘Send’ challenges, messages are only sent from one specific entity
iS to one specific entity iR

– During each ‘Send’ challenge, A specifies two messages of equal length and
the same recipient in the two possible inputs. That is, A specifies inp[ê][1] =
((m0, iR), (m1, iR)), where |m0| = |m1|. This ensures that A does not distin-
guish the messages based on their lengths.

– A does not use the ‘Receive’ operation to decrypt any output of a ‘Send’
challenge.

Algorithm 6 MsgConf (T , p, b) Predicate

1: return
(

2: ∃ iS, iR s.t. : .
There is one specific sender iS
and one specific receiver iR

3: ∀ê s.t. 1 ≤ ê ≤ T.e:

4: if T.opr[ê] = ‘Challenge’ then . S.t. in any ‘Challenge’ event

5: T.inp[ê][0] = ‘Send’ . It is a ‘Send’ challenge

6: and T.ent[ê] = iS . The entity is iS

7: and |T.inp[ê][1][0].m| = |T.inp[ê][1][0].m| .
A chose two messages of equal
length

8: and T.inp[ê][1][0].iR = T.inp[ê][1][0].iR = iR .
And the recipient for both mes-
sages is iR

9: and @ ê′ s.t. T.opr[ê′] = ‘Receive’ .
And A did not use a ‘Receive’
event to decrypt the output of
the challenge

10: and T.inp[ê′].c = T.out[ê].c

11: and T.ent[ê′] = iR

12: and T.inp[ê′].iS = iS)

4 Concrete Security Models and Specifications

We extend the framework to allow concrete security definitions.

4.1 The Exec Process

The execution transcripts returned by Exec IA and Exec CIA already allow
for specifications that refer to the concrete security parameters such as block

16

length, key length, and number of queries; however, they do not provide infor-
mation about the time (number of steps) taken by the adversary when it is
invoked during the execution. For this reason, we define an execution process
Exec, which runs Exec CIA but additionally ensures that the total number of
steps taken by A is returned as part of the execution transcript.

To count the number of steps of A, we use StepCount, which runs A and
counts the number of steps taken by A. Namely:

ExecA,P(p, b) = Exec CIAStepCount(A),P(1κ, b) (6)

Whenever Exec CIA invokes the adversary with some input, e.g. sA, then
StepCount(A)(sA) is called. Then, StepCount gives sA as input to A, runs A,
and adds the number of steps taken by A to a counter that keeps track of the
total number of steps taken by A. If A outputs ⊥, StepCount(A) also outputs ⊥.
When A finally outputs a value 6= ⊥ to end the execution, then StepCount(A)
returns this value and the total number of steps taken by A. Consequently, the
resulting execution transcript T is the same as if Exec CIAA,P(1κ, b) had been
run, except that T.outA additionally contains the total number of steps taken
by A.

4.2 Specifications

Specifications are defined as before, but now we finally use the advantage func-
tion as well, and we no longer assume that the parameter p is a unary security
parameter. Instead, depending on the particular protocol or scheme under con-
sideration, p may contain, e.g., numbers of queries, block length, and key length.
Notice that this allows specifications to include restrictions on various param-
eters, including numbers of queries and the number of steps that A takes. We
use Params to indicate the set of possible (allowed) values for p. This is also the
domain of both the base function and the advantage function.

We say that (a protocol or an adversary) satisfies ξ with advantage ε if, for

a random resulting execution transcript T , b
$← {0, 1}, and p ∈ Params, the

probability that ξ.π(T, p, b) returns ⊥ is bounded by ξ.β(p) + ε(p).

4.3 Models

Definition 5 (Adversary A satisfies model M with advantage ε). Let
A be a PPT algorithm, and let M = (M.π,M.β) be a model, where M.π is
a predicate (i.e., outputs > or ⊥) and M.β is a function M.β(p) : Params →
[0, 1], where Params is the set of possible values of the parameters. Furthermore,
let ε also be a function ε(p) : Params → [0, 1], such that, for any given p,
holds M.β(p) + ε(p) ∈ [0, 1]. We say that adversary A satisfies model M with

advantage ε, denoted as A |=ε M, if for every protocol P, every p ∈ Params,

and b
$← {0, 1} the probability that the model predicateM.π, applied to a random

17

resulting execution transcript T , p ∈ Params, and b
$← {0, 1} is not satisfied, is

bounded by ξ.β(p) + ε(p), i.e.:

A |=ε M
def
= ∀ P, p ∈ Params, b

$← {0, 1} :

Pr

[
M.π (T, p, b) = ⊥ :
T ← ExecA,P(p, b)

]
≤M.β(p) + ε(p)

(7)

4.4 Security Specifications

Definition 6 (Protocol P satisfies specification ξ with advantage ε un-
der model M). Let ξ = (ξ.π, ξ.β) be a specification, where ξ.π is a predicate
over (T, p, b) and ξ.β is a function ξ.β(p) : Params→ [0, 1], where Params is the
set of possible values of the parameters. Furthermore, let ξ.ε also be a function
ξ.ε(p) : Params → [0, 1], such that, for any given p, holds ξ.β(p) + ε(p) ∈ [0, 1],
and let M be a model. We say that protocol P satisfies specification ξ with ad-

vantage ε under model M, denoted P |=Mε ξ, if for every PPT adversary A that

CIA-satisfies M, every p ∈ Params, and b
$← {0, 1}, the probability that the

specification predicate ξ.π, applied to a random resulting execution transcript T ,
p ∈ Params, and b ∈ {0, 1}, is not satisfied, is bounded by ξ.β(p) + ε(p), i.e.:

P |=Mε ξ
def
= ∀ A ∈ PPT, p ∈ Params, b

$← {0, 1}, if A |=M then :

Pr

[
ξ.π (T, p, b) = ⊥ :
T ← ExecA,P(p, b)

]
≤ ξ.β(p) + ε(p)

(8)

5 Further Specification Predicates

5.1 Model Predicates

5.1.1 Mr̂-rounds
SecInit : the r̂-rounds secure initialization model predicate

Cryptographic protocols are often designed assuming a secure initialization pro-
cess, e.g., assuming shared secret keys. However, in the execution process (Al-
gorithm 1), entities can only communicate via the adversary. As a result, we
cannot simply assume shared secret keys, but the entities can use their local
randomness to generate secret keys, and they can communicate, using cryptog-
raphy, to securely establish shared secret values. We next define a simple secure

initialization model predicate,Mr̂-rounds
SecInit . This model predicate ensures r̂ secure

‘rounds’ of |N| events each, where in event ê (where 1 ≤ ê ≤ r̂ · |N|) holds:
– Entities are invoked with the special operation ‘Init’, i.e., opr[ê] = ‘Init’, and

in ‘round robin’, i.e., ent[ê] = ê mod |N| (where N = {1, 2, . . .}). Note, in
particular, that this prevents the adversary, during the initialization, from
invoking the special ‘Set-state’, ‘Set-output’, and ‘Get-state’ operations to
control the state or output of an entity (‘Set-state’ or ‘Set-output’) or to
expose the state of an entity (‘Get-state’).

18

– Authenticated, reliable communication. Namely, every message received by
entity iR from entity iS at round 2 ≤ r ≤ r̂, was indeed sent by iS in the
previous round to iR; and vice verse, i.e., every message sent by iS to iR at
round 1 ≤ r ≤ (r̂ − 1), is correctly received by iR, from sender iS, in the
next round.
It is convenient to capture each of these two aspects by a separate model

predicate, i.e.:

Mr̂-rounds
SecInit (T, 1κ) =Mr̂-rounds

InitOps (T, 1κ) ∧Mr̂-rounds
InitCom (T, 1κ) (9)

whereMr̂-rounds
InitOps captures the first aspect (‘operations’) andMr̂-rounds

InitCom captures
the second aspect (‘communications’). We now define each of these more pre-

cisely; for convenience, let N = {1, 2, . . .}. The Mr̂-rounds
InitOps predicate is shown in

Algorithm 7.

Algorithm 7 Mr̂-rounds
InitOps (T, p) Predicate

1: return
(

2: ∀i ∈ T.N, r ∈ {0, . . . , r̂ − 1} : . For each entity i and each
round r

3: (T.ent[i + r · |T.N|] = i) . ‘Round robin’

4: and (T.opr[i + r · |T.N|] = ‘Init’) . Operation is ‘Init’)

To define theMr̂-rounds
InitCom (sub)model predicate, we assume the following con-

ventions. To cause an entity to receive a message, the adversary includes the
triple (‘auth init recv’,m, iS) (where m is the message and iS ∈ N is the pur-
ported sender) as part of the input inp[êR]. The sender indicates the sending
of message m to iR ∈ N by specifying, as part of its output out[êS], a triplet

(‘auth init send’,m, iR). The Mr̂-rounds
InitCom predicate is shown in Algorithm 8.

Algorithm 8 Mr̂-rounds
InitCom (T, p) Predicate

1: return
(

2: ∀iS, iR ∈ T.N, r ∈ {0, . . . , r̂ − 2}, m ∈ {0, 1}∗ : .
For pairs of entities in T .N, for
each round except the last one,
and for any message m

3: (‘auth init send’,m, iR) ∈ T.out[iS + r′ · |T.N|] . iS sends m to iR

4: if and only if

5: (‘auth init recv’,m, iS) ∈ T.inp[iR+(r′+1)·|T.N|] . iR receives m from iS in the next
round)

5.1.2 M|F|≤f : up to f Byzantine (malicious) faults model predicate

We next define M|F|≤f , a specific adversary model predicate allowing the ad-
versary to choose, and completely control, up to f of the entities in N. We refer

19

to such failures, where the adversary is allowed to completely control the entity,
as malicious or Byzantine faults. We use f as a function applied to the total
number of entities |N|. We refer to this particular faults model asM|F|≤f , where
f : N→ N bounds the number of faulty entities as a function of the total num-
ber of entities. Specifically, the adversary may corrupt entities by performing
the ‘Get-state’, ‘Set-state’, and ‘Set-output’ operations. To enforce the model
predicate, we simply ensure that the ‘Get-state’, ‘Set-state’, and ‘Set-output’
operations can be applied only to entities in F, and that |F| ≤ f(|N|). We define
the M|F|≤f predicate in Algorithm 9.

Algorithm 9 M|F|≤f (T , p) Predicate

1: return
(

2: (|T.F| ≤ f (|T.N|)) . Max size of T .F is not exceeded

3: and ∀ê s.t. 1 ≤ ê ≤ T.e: . For each event

4: if T.opr[ê] ∈ {‘Get-state’, ‘Set-state’, ‘Set-output’} .
If operation is ‘Get-state’, ‘Set-
state’, or ‘Set-output’

5: then T.ent[ê] ∈ T.F . Then entity is in T .F)

PoC-PKI, our proof-of-concept PKI, uses M|F|≤f with f defined as: f(n) =
b(n/3)c. Namely, the faulty entities can arbitrarily misbehave so long the ad-
versary controls at most a third of all entities. Note that M|F|≤f only restricts
the set F of faulty entities, which does not yet restrict the adversary’s ability
to interfere with the communication, clock, and local inputs of any entity - in-
cluding non-faulty entities (i.e., in N− F). By usingM|F|≤f in conjunction with
additional model predicates, e.g., MAuthCom

∆com
and MCLK

∆clk
(described next), we

can also restrict the adversary in such additional ways, as desired for a partic-
ular analysis. Notice, in particular, that MAuthCom

∆com
, which defines restrictions

on the communication events, completely excludes events where the sender or
recipient are faulty (i.e., in F). This allows the adversary to completely control
all of faulty entities.

5.1.3 MAuthCom
∆com

: authentic-sender, bounded-delay communication
model predicate

We next presentMAuthCom
∆com

, an authentic-sender, bounded-delay communication

model predicate. It is convenient to define MAuthCom
∆com

as a conjunction of two

simpler predicates:MAuthCom-rcv
∆com

, ensuring authentic-sender for message-receive

events, and MCom
∆com

, ensuring reliable, bounded-delay for message-send events.
Namely:

MAuthCom
∆com (T, 1κ) =MCom

∆com(T, 1κ) ∧MAuthCom-rcv
∆com (T, 1κ) (10)

We first present MAuthCom-rcv
∆com

, which ensures authentic-sender for message-
receive events. The adversary decides on the function opr[êR] to be invoked at

20

every event êR as well as the input inp[êR]. We assume a convention for send and
receive events as follows. The adversary causes a message receipt event by setting
opr[êR] to ‘Receive’ and inp[êR] to (m, iS) (where m is the message and iS ∈ N is
the purported sender). We use dot notation to refer to the message (inp[êR].m)
and to the sender (inp[êR].iS). Also, we allow the sender ent[êS] to specify, as part
of its output out[êS], one or more triplets of the form (‘send’,m, iR), indicating
the sending of message m to iR ∈ N.

The authentic-sender property (MAuthCom-rcv
∆com

model predicate) implies that
inp[êR].iS indeed sent this message to ent[êR], during some previous event êS <
êR. The MAuthCom-rcv

∆com
model predicate is shown in Algorithm 10.

Algorithm 10 MAuthCom-rcv
∆com

(T , p) Predicate

1: return
(

2: ∀êR s.t. 1 ≤ êR ≤ T.e:

3: if T.opr[êR] = ‘Receive’: . For each message-receive event

4: and T.ent[êR], T.inp[êR].iS ∈ T.N− T.F . If both receiver and purported
sender are honest

5: then ∃êS < êR . Then there is a previous event

6: s.t. (‘send’, T.inp[êR].m, T.ent[êR]) ∈ T.out[êS] .
In which an entity sent the mes-
sage to the receiver

7: and T.ent[êS] = T.inp[êR].iS .
And that entity was the pur-
ported sender)

TheMCom
∆com

model predicate ensures reliable, bounded-delay delivery of mes-
sages sent. Assume that at event êS of the execution, the output out[êS] gen-
erated by ent[êS], includes a (‘send’,m, j) triplet, i.e., ent[êS] sends message m
to j ∈ N. If the MCom

∆com
model predicate is true for this execution, then after

at most ∆com, if the execution did not terminate already, then entity j would
receive m from ent[êS]. The MCom

∆com
model predicate is shown in Algorithm 11.

Algorithm 11 MCom
∆com

(T , p) Predicate

1: return
(

2: ∀êS s.t 1 ≤ êS < T.e:

3: if (∃(‘send’,m, iR) ∈ T.out[êS] .
If the output includes a send
triple

4: and T.τ [T.e] ≥ T.τ [êS] +∆com .
And execution did not termi-
nate yet after ∆com real time

5: and T.ent[êS] ∈ T.N− T.F) . And the entity is honest

6: then ∃êR > êS . Then there is a later event

7: s.t. T.τ [êS] +∆com ≥ T.τ [êR] . Within ∆com real time

8: and T.ent[êR] = iR .
Where the entity is the intended
recipient in the send triple

9: and T.opr[êR] = ‘Receive’ . And which is a receive event

10: and T.inp[êR] = (m,T.ent[êS]) .
And in which the entity receives
the message from the sender)

21

We remark that:MAuthCom
∆com

only applies when both sender and recipient are

honest (i.e., in N − F); MAuthCom
∆com

only ensures delivery, sender authentication
and bounded delay. This still allows receipt of duplicate messages, which may
involve unbounded delay. To simplify MCom

∆com
, we use the adversary-controlled

τ [·] values (line 6 of Algorithm 1). For this to be meaningful, we depend on the
synchronization properties of the MCLK

∆clk
model predicate, discussed next.

5.1.4 MCLK
∆clk

: bounded-drift clock synchronization assumptions

Finally, We present MCLK
∆clk

, which models the bounded-drift clock synchroniza-

tion assumptions. We split this into two predicates:MDrift
∆clk

, which limits the drift
between the clock values clk[ê] (provided by the adversary as input to the pro-

tocol) and the real time values τ [ê]; and MWake-up
∆clk

, which provides a ‘wake-up
service’ to the protocol. Namely:

MCLK
∆clk

(T, 1κ) =MDrift
∆clk

(T, 1κ) ∧MWake-up
∆clk

(T, 1κ) (11)

We begin withMDrift
∆clk

, which bounds the clock drift. It enforces two require-
ments on the execution: each local-clock value (clk[ê]) must be within ∆clk drift
from the real time τ [ê], and the real time values should be monotonously in-
creasing. See Algorithm 12.

Algorithm 12 MDrift
∆clk

(T , p) Predicate

1: return
(

2: ∀ê s.t 1 ≤ ê ≤ T.e: . For each event

3: |T.clk[ê]− T.τ [ê]| ≤ ∆clk .
Local clock is within ∆clk drift
from real time

4: and

5: if ê ≥ 2 . And if ê is not the first event

6: then T.τ [ê] ≥ T.τ [ê − 1] .
Then the real time is ≥ the real
time at the previous event)

As a special case, when ∆clk = 0, this function defines a model where the
local clocks are fully synchronized, i.e., there is no difference between entities’
clocks. Finally, MWake-up

∆clk
provides a ‘wake-up service’ allowing the protocol to

perform time-driven activities and ensuring that appropriate functions are in-
voked properly. This is ensured by requiring that if (‘Sleep’, x) was part of the
output out[ê] (indicating that entity ent[ê] was ‘put to sleep’ for x time) and
execution did not terminate by ’real’ time τ [ê] + x + ∆clk, then at some event
ê′ > ê (where τ [ê′] was within ∆clk from τ [ê] + x), the same entity (ent[ê]) was

indeed ‘Woken up’. The MWake-up
∆clk

predicate appears in Algorithm 13.

22

Algorithm 13 MWake-up
∆clk

(T , p) Predicate

1: return
(

2: ∀ê s.t. 1 ≤ ê ≤ T.e: . For each event ê

3: if
(

(‘Sleep’, x) ∈ T.out[ê] .
If the output includes a
(‘Sleep’, x) tuple

4: and T.τ [T.e] ≥ T.τ [ê] + x+∆clk
)

.
And execution did not termi-
nate yet after x+∆clk real time

5: then ∃ê′ > ê . Then there is a later event

6: s.t. |T.τ [ê′]− T.τ [ê]− x| ≤ ∆clk .
With real time x greater than at
ê (within ∆clk)

7: and T.ent[ê′] = T.ent[ê] . In which the entity is the same
as in ê

8: and T.opr[ê′] = ‘Wake-up’ . And the operation is ‘Wake-up’)

5.1.5 Securely shared keys (MSecKeyShare) specification predicate

Sometimes, especially when analyzing shared-key protocols, it may be useful to
assume that the entities securely share keys before communicating with each
other - i.e., to assume that the keys are correctly shared without the interference
of the adversary. For this purpose, we define the model MSecKeyShare, shown
in Algorithm 14, which ensures that values (keys) are securely shared (using
the sec-out mechanism in the execution process) before entities send or receive
messages. Specifically, before any ‘Send’ or ‘Receive’ event, the sender of the
message must have securely shared values with the receiver, and the receiver of
the message must have securely shared values with the sender. We assume that
the operation ‘Sec-channel-setup’ is used to share these values.

5.1.6 Verifiable Attribution of Statements (VAS) specification pred-
icate

The output of many protocols may include attributable statements. An attributable
statement is a tuple (m,σ, i), where m is a string, i ∈ N is the purported ori-
gin of the statement, and σ provides evidence (typically, a signature), allowing
attribution of statement m to entity i. We next explain the validation process,
which uses the evidence σ to establish if i has, in fact, originated m.

We focus on the typical case, where attribution is based on the use of a
digital signature scheme S, applied by the protocol P. Namely, σ is the result of
applying the signing algorithm S.Sign to the message m, using some (private)
signing key sk belonging to the origin i. Therefore, we say that the attributable
statement (m,σ, i) is valid, i.e., that σ really ‘proves’ that i is the origin of m, if
S.Ver(pk,m, σ) = >, where pk is the public signature-verification key of i, i.e.,
the public key that validates signatures computed using sk. This attributes the
message m to the ‘owner’ of the public key pk (and the corresponding signing
key sk). To attribute m to i, it remains to establish the association between i
and the public key pk, i.e., to attribute pk, and messages verified by it, to i. We
focus on protocols where this association is known and secure (‘off-band’), e.g.,
CA public keys in PKI schemes.

23

Algorithm 14 MSecKeyShare(T , p) Predicate

1: return > if
(

2: ∀ê′′ s.t. T.opr[ê′′] = ‘Send’ or T.opr[ê′′] = ‘Receive’: .
For each message ‘Send’ event
and each message ‘Receive’
event

3: if T.opr[ê′′] = ‘Send’ .
Determine the sender and re-
ceiver of the message

then iS, iR ← T.ent[ê′′], T.inp[ê′′].iR

else if T.opr[ê′′] = ‘Receive’

then iS, iR ← T.inp[ê′′].iS, T.ent[ê
′′]

4: ∃ ê, ê′

s.t. ê < ê′ < ê′′ .
Previously (before the ‘Send’ or
‘Receive’ event)

5: and T.opr[ê] = ‘Sec-channel-setup’ . Keys were securely sent

and T.ent[ê] = iS . From the sender of the message

and T.sec-out[ê][iR] 6= ⊥ . To the receiver of the message

6: and T.opr[ê′] = ‘Sec-in’ . And they were securely received

and T.ent[ê′] = iR . By the receiver of the message

and T.inp[ê′] = ê

7: and ∃ ê, ê′

s.t. ê < ê′ < ê′′ .
And also previously (before the
‘Send’ or ‘Receive’ event)

8: and T.opr[ê] = ‘Sec-channel-setup’ . Keys were securely sent

and T.ent[ê] = iR .
From the receiver of the mes-
sage

and T.sec-out[ê][iS] 6= ⊥ . To the sender of the message

9: and T.opr[ê′] = ‘Sec-in’ . And securely received

and T.ent[ê′] = iS . By the sender of the message

and T.inp[ê′] = ê)

24

We formalize this by assuming that each entity i ∈ N identifies its public key
pk by outputting the pair (‘public key’, pk) ∈ out[ê], in some event ê; namely, we
use ‘public key’ as a ‘label’, to identify output of the public key. Typically, entities
output the public key when they generate the key, i.e., ent[ê] = i, possibly as an
initialization operation, i.e. opr[ê] = ‘Init’. Notice that entities may often also
send their public keys to each other using the (‘send’,m, iR) output convention
described in § 5.1.3; however, we prefer to keep the two conventions separate,
since we believe that not every protocol that uses verification of attribution
would necessarily send public keys in precisely the same way.

More precisely, the following Key Attribution Predicate Vka outputs > if
entity i has identified pk as its public key in a given transcript T output by an
execution of the protocol P (Algorithm 1):

Vka(i, pk, T) = {∃ê s.t. T.ent[ê] = i ∧ (‘public key’, pk) ∈ T.out[ê]} (12)

We now define the Verifiable Attribution of Statements specification predi-
cate. The adversary A ‘wins’ in the experiment if its output outA includes both
a valid attributable statement (m,σ, i) for non-faulty entity i ∈ N − F and a
verification key pk associated with i, yet i did not originate m. To allow us to
identify events ê in which an entity i = ent[ê] intentionally signed message m, we
adopt the following convention: whenever signing a message m, the party adds
the pair (‘signed’,m) as part of its output, i.e., (‘signed’,m) ∈ out[ê]. Since this is
always done, whenever the protocol signs a message, we will not explicitly include
the (‘signed’,m) pairs as part of the output, which would make the pseudo-code
cumbersome. Note that often the entity will also send the signed message, how-
ever, different protocols may send in different ways, hence this convention makes
it easier to define the specification predicate.

The specification predicate is defined with respect to specific signature scheme
S, and the Vka predicate defined above (Eq. 12). For simplicity, and since S is
typically obvious (as part of P), we do not explicitly specify S as a parameter
of the specification predicate. The VAS predicate is shown in Algorithm 15.

Algorithm 15 Verifiable Attribution of Statements Predicate VAS(T, p)

1: (m,σ, i, pk)← T.outA

2: return ¬
(

3: i ∈ T.N− T.F . i is an honest entity

4: and S.Ver(pk,m, σ) = > . m was signed by the owner of pk

5: and Vka(i, pk, T) = > . i identified pk as its public key

6: and @ê s.t.:

T.ent[ê] = i

and (‘signed’,m) ∈ T.out[ê] .
Yet, i never indicated that it
signed m)

25

5.1.7 Generic misbehavior detection specification predicates

Many security protocols are required to be resilient to misbehaviors, i.e., to
achieve their goals even if some of the entities, say entities in F ⊂ N, are faulty,
and may misbehave (arbitrarily or in some specified manner). This resiliency to
faulty, misbehaving entities is often based on detection of misbehavior; further-
more, often, many security protocols are required only to detect misbehaviors,
which would be followed by taking some additional measures to deter and/or
neutralize an attack. While misbehavior can be detected in different ways, de-
tection is typically based either on some evidence that a certain entity is dishon-
est, where the evidence should be verifiable by any third party, or based on an
accusation, where one entity (the accuser) accuses another entity (the suspect)
of some misbehavior. Such an accusation may not be true, and therefore, it is
harder to use this approach to deter and/or neutralize the attack; however, many
misbehaviors do not leave any evidence verifiable by a third party, in which case,
accusations may provide some security benefits, e.g., detection of the attack. A
typical example of such misbehavior that does not leave any evidence is when a
party fails to act in a required way, e.g., to send a required message or response;
such failure may be plausibly blamed on communication issues, or on failure of
the intended recipient. Often, a party, say Alice, detects such failure, say of Mal,
to send a required message, after Alice waits for some maximum delay, and then
Alice issues an ‘accusation’ against Mal, to alert others; for example, see [4].
An honest entity would only accuse a misbehaving party; however, because an
accusation cannot be verified, a misbehaving entity could falsely accuse anyone,
even an honest entity.

To formalize these concepts, we define two specification predicates: one to
ensure that honest entities cannot be ‘framed’ as misbehaving, i.e., evidences
are always verifiable with correct outcome, and another one to express that
honest entities never accuse other honest entities, i.e., only accuse misbehaving
entities.

The Non-frameability specification and Proof of Misbehavior. The first se-
curity specification predicate is called non-frameability (of honest entities), and
ensures that a specific protocol would not allow any entity to produce a valid
Proof of Misbehavior of a non-faulty entity. The specification predicate is there-
fore defined with respect to a given Proof of Misbehavior Validation Predicate
VPoM , which receives two inputs: a Proof-Validation Key pk and a purported-
proof ζ. The output of VPoM (pk, ζ) is > if and only if ζ is a valid Proof of
Misbehavior, as indicated by pk; i.e., a misbehavior by an entity who knows the
corresponding private key, typically, the ‘owner’ of pk, which can be validated
using the Key Attribution Predicate Vka. The natural way is to define the Proof
of Misbehavior Validation Predicate VPoM to be protocol specific, as the notions
of misbehavior, and valid proof of misbehavior, depend on the specific protocol
specifications. We specify for P a special stateless operation opr =‘VPoM ’, which
does not modify the state or depend on it, or on the local clock. Abusing notation,
we denote this operation simply as P.VPoM (pk, ζ). The use of a protocol-defined
P.VPoM allows us to define, below, the Non-frameability specification predicate.

26

Let VPoM : {0, 1}∗ × {0, 1}∗ → {>,⊥} be a predicate. The Non-frameability
predicate, shown in Algorithm 16, returns ⊥ if the adversary was able to output
a Proof of Misbehavior for an honest entity, and > otherwise.

Algorithm 16 Non-frameability Predicate NF(T, p)

1: (i, ζ, pk)← T.outA

2: return ¬
(

3: Vka(i, pk, T) . i identified pk as its public key

4: and P.VPoM (pk, ζ) .
ζ is a valid Proof of Misbehavior
by the owner of pk

5: and i ∈ T.N− T.F . i is an honest entity)

5.1.8 Accusations and the No False Accusations specification predi-
cate

Recall that in the execution process, the adversary can use the ‘Set-output’,
‘Set-state’, and ‘Get-state’ operations to set the output and the state of a party
and to learn the state of a party; we refer to such party as faulty, and denote
by F the set of faulty parties in an execution. In many protocols, one party, say
Alice, may detect that another party, say Mal, is faulty, typically, by receiving
an invalid message from Mal - or simply by not receiving a message expected
from Mal by a specific ‘deadline’ (for bounded-delay communication models).

Intuitively, the No False Accusations (NFA) specification predicate states
that a non-faulty entity a 6∈ F (Alice), would never (falsely) accuse of a fault,
another non-faulty entity, b 6∈ F (Bob). To properly define this specification
predicate, we first define a convention for one party, say a ∈ N (for ‘Alice’), to
output an Indicator of Accusation, i.e., ‘accuse’ another party, say iM ∈ N (for
‘Mal’), of a fault. Specifically, we say that at event êA of the the execution, entity
ent[êA] accuses entity iM (Mal), if out[êA] is a triplet of the form (IA, iM, x). The
last value in this triplet, x, should contain the clock value at the first time that
Alice accused Mal; we discuss this in section 5 as the value x is not relevant for
the specification predicate, and is just used as a convenient convention for some
protocols.

The No False Accusations (NFA) predicate NFA checks whether the adversary
was able to cause one honest entity, say Alice, to accuse another honest entity,
say Bob (i.e., both Alice and Bob are in N− F). Namely, NFA(T, 1κ) returns ⊥
only if T.out[e] = (IA, j, x), for some j ∈ T.N, and both j and T.ent[e] are honest
(i.e., j, T.ent[e] ∈ T.N− T.F). See Algorithm 17.

27

Algorithm 17 No False Accusations Predicate NFA(T, p)

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3: and ∃j ∈ T.N− T.F, x s.t. (IA, j, x) ∈ T.out[T.e] .
T.ent[T.e] accused an honest
entity)

As noted above, in an accusation, the output out[êA] contains a triplet of the
form (IA, iM, x), where x is a clock value and should be the clock value at the
first time that Alice accused Mal. We found this convenient in the definition of
protocol-specific specifications where a party may accuse another party multiple
times, and the specification is related to the time of the first accuse event. To
allow the use of this convention, we define the following ‘technical’ specification
predicate which merely confirms that honest entities always indicate, in any
accuse event, the time of the first time they accused the same entity.

To simplify the predicate, let fc(i, iM, T) be the value of T.clk[ê], where ê is
the first event in T in which entity i accused entity iM ∈ T.N (or ⊥ if no such
event exists). The Use First-Accuse Time (UFAT) predicate UFAT is defined in
Algorithm 18.

Algorithm 18 Use First-Accuse Time Predicate UFAT(T, p)

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3:
and ∃iM ∈ T.N s.t. (IA, iM, x) ∈ T.out[T.e]

and x 6= fc(T.ent[T.e], iM, T)
.
T.ent[T.e] did not indicate the
first time of accusation in an
accusation)

6 Conclusions and Future Work

In this work, we discussed the lack of appropriate framework that allows rigorous
analysis of applied, stateful cryptographic protocols, with different communica-
tion, synchronization and adversary models. We addressed this challenge by pre-
senting the Modular Specifications Security framework, where security is defined
with respect to a specific model predicate M. The framework appears useful for
various tasks; it allows comparison of protocols based on the specifications they
satisfy and the models they assume. Definitions of models and specifications may
be reused across different types of protocols and schemes; we identified several
‘generic’ specifications, which appear to be applicable to many different tasks.

We see this work as only the stepping stone to further research into the Modu-
lar Specifications Security framework. Specifically, into applying the framework
onto various schemes, e.g., PKI schemes, in a way that will meet all desired
specifications, minimizing or avoiding simplifications.

28

Another important challenge is to extend the Modular Specifications Secu-
rity framework to support secure compositions, possibly following UC [1]. Specif-
ically, it would be interesting to extend [2], which presents a UC definition for a
simplified basic PKI (a reduced functionality of the X.509 PKI).

References

1. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on. pp. 136–145. IEEE (2001), online at https://eprint.iacr.org/2000/
067.pdf, last updated Dec. 2018.

2. Canetti, R., Shahaf, D., Vald, M.: Universally Composable Authentication and Key-
exchange with Global PKI. Cryptology ePrint Archive, Report 2014/432 (2014),
https://eprint.iacr.org/2014/432

3. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The theory of timed i/o au-
tomata. Synthesis Lectures on Distributed Computing Theory 1(1), 1–137 (2010)

4. Leibowitz, H., Piotrowska, A.M., Danezis, G., Herzberg, A.: No Right to Remain
Silent: Isolating Malicious Mixes. In: 28th USENIX Security Symposium (USENIX
Security 19). pp. 1841–1858 (2019)

5. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: Security and Privacy, 2001. S&P
2001. Proceedings. 2001 IEEE Symposium on. pp. 184–200. IEEE (2001)

29

https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2014/432

	The Modular Specifications Security Framework

