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Abstract. It is hard to prove security for practical cryptographic proto-
cols, which involve assumptions and requirements related to concurrency,
delays and synchronization. Current approaches to analyze concurrent
computation, e.g., [12], are too complex and do not support computa-
tional aspects. On the other hand, cryptographic frameworks such as
UC [8] offer only minimal support for concurrency, delays and synchro-
nization. Further, these frameworks use monolithic specifications, which
are hard to extend to support applied-concurrency. Monolithic specifi-
cations have other disadvantages too: they are complex, error-prone and
foil reusability and incremental design.

To address these challenges, we present the Modular Specifications Se-
curity (MoSS) framework, which cleanly separates requirement specifi-
cations (goals) which a protocol should achieve from model specifica-
tions (assumptions) under which the protocol is analyzed. This approach
allows modular design and analysis of practical cryptographic proto-
cols under different, well-defined notions of delays, synchronization and
faults. The resulting specifications and proofs of security are intuitive
and reusable.

1 Introduction

For many years, we have come to expect proposals of new cryptographic con-
structions and schemes to have proofs of security under ‘reasonable’ assumptions.
This expectation is justified as designs based on heuristic and experience, even
those proposed by experts, have repeatedly been broken. While assumptions
may prove incorrect, the classical cryptographic assumptions, such as hardness
of certain problems, so far have proven quite trustworthy. With cryptography
becoming critical to the security of networks and systems, the importance of a
provable design is hard to dispute.

Indeed, most constructions of cryptographic schemes are proven, as a matter
of course, to satisfy rigorous definitions under well-defined and reasonable as-
sumptions. However, in practice, most attacks circumventing the cryptographic
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defense, exploit vulnerabilities related to the concurrency of distributed cryp-
tographic protocols, and not to vulnerabilities of the underlying cryptographic
primitives/functions. It appears that the protocols using cryptography are not
as well analyzed as the underlying cryptographic building blocks, making them
more vulnerable and exploitable.

Unfortunately, analysis of concurrent, distributed computation is notoriously
challenging, especially for realistic models of delays, synchronization and faults.
In the distributed computing community, there exist extensive frameworks al-
lowing analysis of concurrent systems, with non-trivial models of delays and
clock-synchronization. Most notable are the Timed I/O Automata [12] and con-
currency theory [6]. However, these frameworks are designed for distributed com-
puting and are hard to apply to analysis of cryptographic protocols. In particular,
it is hard or impossible to use computational assumptions and different keying
and other security assumptions (shared keys, trusted public keys and more), and
they do not allow for realistic adversary models. Besides, these frameworks are
probably too complex to be applied to the already complex cryptographic proto-
cols. A different approach is taken by game-based proofs of security, e.g. [4, 21],
which are convenient for capturing the computational aspects and for simple,
intuitive definitions and proofs of security. Indeed, game-based definitions and
proofs have facilitated the introduction of provable security, and due to its rela-
tive simplicity, are still the common way to teach cryptography and are widely
used by practitioners. Unfortunately, current game-based definitions do not pro-
vide a precise execution model defining the concurrent execution. This becomes a
serious impediment when trying to define and analyze security for real-life goals
and environments, often involving partial-synchronization and bounded delay.
The MoSS framework, which is presented in this paper, follows the game-based
approach, with simple and intuitive definitions and proofs of security, but it
does provide a well-defined execution process, and supports concurrency, includ-
ing different, well-defined notions of delays, synchronization and faults.

Another alternative approach is taken by simulation-based frameworks for
provable security, including universal composability (UC) [8], its extensions such
as iUC, GNUC, IITM and simplified-UC [7, 9, 11, 14, 22], constructive cryptog-
raphy (CC) [18, 19], and reactive systems [1]. An important feature of these
frameworks is their support for compositions of provably-secure protocols, al-
lowing modular design of protocols. This is a very important property; however,
without handling realistic models of concurrency, delays and clock synchroniza-
tion, we cannot even define or prove security of one (realistic) protocol.

We believe that one challenge in extending simulation-based frameworks to
support realistic models of concurrency, communication (delays) and synchro-
nization, is due to the fact that they use monolithic security specifications. For
example, in UC, security specifications are defined by a monolithic ideal func-
tionality. Such monolithic security specifications have two serious drawbacks.

The first drawback is that, unavoidably, monolithic specifications are
more complex than an equivalent modular specifications. It is hard to under-
stand, compare, validate and extend complex (monolithic) definitions and proofs,
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as well as to apply automated tools that assist in validation. This is a serious
issue: incorrect specifications and incorrect interpretation of specifications may
lead to incorrect usage - which is a major cause of vulnerabilities. The complex-
ity of monolithic specifications often also results in complex, hard-to-validate -
and sometimes incorrect - proofs. Such concerns were raised repeatedly; Koblitz
and Menezes even argue that ‘...a claimed proof may engender a false sense of
security, and may discourage people from further study of the security of a proto-
col’ [13]. Reduction of complexity is also a motivation for iUC, IITM, simplified
UC and CC [7,9,14,18,19,22], and GNUC [11], which even claims that there are
flaws in the UC’s proof of composition, perhaps rooted in its complexity.

The second drawback is that a monolithic specifications foil reusability
and incremental design. A proof of security under such monolithic speci-
fications cannot be used directly in a proof of an extension of that protocol,
designed to address additional goals, or to use more realistic, weaker assump-
tions. Namely, this prevents reuse of definition and analysis efforts from one work
to another, when they use different assumptions, e.g., to extend simple proto-
cols and specification, e.g., assuming the simple synchronous ‘rounds model’, to
handle clock-drift or bounded delays.

To address these challenges, we introduce the Modular Specifications Secu-
rity (MoSS) framework. MoSS supports modular security specifications, in con-
trast to the ‘classical’ approach of monolithic security specifications, using games
(experiments) or ideal-functionalities. Instead of having the model and the re-
quirements integrated into monolithic specifications, in MoSS, the modelM and
the requirements R are each defined by an efficiently-computable predicate, ap-
plied to the transcript of the concurrent execution. The concurrent execution
and its transcript are well-defined by the execution process, a quite simple PPT
algorithm specified in Algorithm 1.

MoSS supports different adversarial models, from ‘honest-but-curious’ to
‘proactive’ and ‘self-stabilizing’ faults and more. This only requires definition
of simple model predicates and execution operations, and allows reuse of speci-
fications and even results across models. Contrast this with monolithic specifi-
cations frameworks, where support for different adversary models is challenging
and limited. Similarly, MoSS supports concrete security, in a way we consider
simple, elegant and precise; concrete security is only partially4 supported in (the
more recent versions) of UC - and in none of the variants mentioned above.

To ease definition and validation of our specifications, we would normally
define each model predicate to reflect a single, focused assumption; similarly,
we define each requirement predicate to reflect a single, focused requirement.
We repeat this until we have all necessary models and requirements. Writing,
understanding and validation are easier for such set of focused models and re-
quirements, compared to a single monolithic specification covering all of the
assumptions and requirements, e.g., as an ideal functionality. We prove several
modularity and monotonicity lemmas (Sec. 5), allowing us to combine models
and requirements into composite models and requirements.

4 UC does not support concrete bounds on the adversary or environment runtime.
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Model and requirement predicates are easy to reuse - in related, and some-
times even unrelated, problems. For example, in this paper we present a sim-
plified instance of an authenticated-broadcast protocol, which assumes - and
ensures - bounded delay, and which allows for bounded clock-drift. The bounded-
delay and bounded-drift models, are both simple to understand and validate -
even without extensive exposure to distributed computing. Furthermore, they
are generic, in the sense that they would be natural for reuse in specifications
and analysis of the many unrelated problems, where bounded-drift and bounded-
delay are appropriate.

The use of these separate, focused predicates, also allow modular protocol de-
velopment and analysis. For example, in our analysis of simplified authenticated-
broadcast protocol, we first analyze it assuming only a model predicate allowing
secure shared-key initialization; this suffice to ensure authenticity but not fresh-
ness. Next, we show that by assuming also bounded clock-drift, we can also
ensure freshness. Then, we show that by additionally assuming bounded-delay
communication, we can ensure bounded delay for the broadcast protocol. The
analysis is thus very modular and easy to perform and understand. Compared
to proving such properties using monolithic specifications, as when using UC -
the analysis using MoSS is like a Lego game!

However, let us clarify that the MoSS framework does not (yet) include a
proof of composition, as provided by UC and other simulation-based frameworks
(see above). This is a serious drawback (shared with other ‘game-based’ ap-
proaches). However, we are quite confident that a composition theorem for MoSS
can and will be proven in the future. In this work, we focus on modularity, and in
particular, support for cuncurrency, synchronization and realistic delay models,
goals which we find a basic necessity for the analysis of many practical crypto-
graphic protocols - and which are achieved for the first time by MoSS.

It is our hope that MoSS may help to bridge the gap between the theory and
practice in cryptography, and facilitate meaningful provable security for practical
cryptographic protocols and systems.

MoSS is not (yet) supported by computer-aided security proof tools, such as [3,
5, 20]. Such tools use formal, machine-checkable approaches, with the promise
of easier, less error prone and automatically generated or verified proofs. While
not without flaws (see [2] for a comprehensive discussion), we view such an
automated approach to proofs as synergistic with MoSS but we leave it to future
work to explore adding automatic verification capabilities.

Example: Provably-secure X.509 PKI. Public Key Infrastructure (PKI)
schemes amply illustrate the above challenges in practice. PKI is a crucial com-
ponent of applied cryptography. Current PKI systems are mostly based on the
X.509 standard [10], but there are many other proposals; the most significant
is Certificate Transparency (CT) [15], which adds significant goals and crypto-
graphic mechanisms. These realistic PKI systems have non-trivial requirements;
in particular, synchronization is highly relevant, to deal with such basic aspects
as revocation (and beyond). Furthermore, while the basic X.509 design is quite
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simple, more advanced PKIs (such as CT) are non-trivial, and definitely require
precise definitions and analysis.

Recently, [16] presented the first rigorous study of practical5 PKI schemes by
using MoSS. Specifically, they define models and requirements for practical PKI
schemes and prove security of the X.509v2 PKI scheme. The analysis in [16]
reuse our bounded-delay and bounded-drift models; similarly, follow-up work is
expected to use the models and requirement predicates defined in [16], to prove
security for additional PKI schemes, e.g., the important certificate transparency
PKI, being standardized by the IETF [15].

Organization. Section 2 introduces Exec, the adversary-driven execution
process. Sections 3 and 4 present the model and requirement specifications, re-
spectively. Section 5 presents the modularity lemmas. Section 7 explains how
MoSS supports concrete security. Section 8 demonstrates how to apply our
framework using a simplified authenticated broadcast protocol. We conclude
and discuss future work in Section 9.

2 Execution Process

In this section, we present the generic adversary-driven execution process, a key
component of MoSS, defining the execution of a given protocol P ‘controlled’ by
a given adversary A. MoSS separates the execution process from the model M
under which the protocol is analyzed and the requirements R defining P’s goals,
both of which are described in the following two sections. This separation allows
different model assumptions using the same execution process, simplifying the
analysis and allowing reusability of definitions and results.

2.1 ExecA,P : An Adversary-Driven Execution Process

The execution process ExecA,P(params), as defined by the pseudo-code in Al-
gorithm 1 and illustrated in Figures 1-2, specifies the details of running a given
protocol P with a given adversary A, both modeled as efficient (PPT) functions,
given parameters params. The parameters consists of two subsets: the adver-
sary’s parameters params.A and the protocol’s parameters params.P. Note that
the model M is not an input to the execution process; it is only applied to the
transcript T of the protocol run produced by ExecA,P , to decide if the adversary
adhered to the model, in effect restricting the adversary’s capabilities. ExecA,P
allows the adversary to have an extensive control over the execution; the adver-
sary decides, at any point, which entity is invoked next, with what operation
and with what inputs.

Notation. To allow the execution process to apply to protocols with mul-
tiple functions and operations, we define the entire protocol P as a single PPT
algorithm and use parameters to specify the exact operations and their inputs.

5 Grossly-simplified PKI ideal functionalities were studied, e.g., in [11], but without
considering even basic aspects such as revocation and expiration.
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Fig. 1: High level overview of MoSS’s execution process.

Specifically, to invoke an operation defined by P over some entity i, we use the
following notation: P[opr](s, inp, clk), where opr identifies the specific ‘opera-
tion’ or ‘function’ to be invoked, s is the local state of entity i, inp is the set
of inputs to opr, and clk is the value of the local clock of entity i. The output
of such execution is a tuple (s′, out), where s′ is the state of entity i after the
operation is executed and out is the output of the executed operation, which is
made available to the adversary. We refer to P as ‘algorithms’ (in PPT) but for-
mally they are mappings from strings to algorithms; this should be interpreted
as a ‘master algorithm’ which accepts the ‘label’ and calls the appropriate ‘sub-
routine’ so that the mapping from strings to PPT algorithms is equivalent to a
single PPT algorithm.

We use index notation to refer to cells of ‘arrays’. For example, out[e] refers
to the value of the eth entry of the array out. Specifically, e represents the index
(counter) of execution events. Note that e is never given to the protocol; every
individual entity has a separate state, and may count the events that it is involved
in, but if there is more than one entity, an entity cannot know the current value
of e - it is not a clock and is not controlled by the adversary. Clocks and time
are handled differently, as we now explain.

In every invocation of the protocol, one of the inputs set by the adversary
is referred to as the local clock and denoted clk. In addition, in every event,
the adversary defines a value τ which we refer to as the real time clock. Thus,
to refer to the local clock value and the real time clock value of event e, the
execution process uses clk[e] and τ [e], respectively. Both clk and τ are included
in the transcript T ; this allows a model predicate to enforce different synchro-
nization models/assumptions - or not to enforce any, which implies a completely
asynchronous model.
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Fig. 2: Illustrative description of MoSS’s execution process.
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Algorithm 1 Adversary-Driven Execution Process ExecA,P(params)

1: (sA,N)← A[‘Init’](params.A, params.P) .
Initialize adversary with
params.A, params.P

2: ∀i ∈ N : si ← P[‘Init’] (⊥, (i, params.P),⊥) . Initialize entities’ local state

3: e← 0 . Initialize loop’s counter

4: repeat

5: e← e+ 1 . Advance the loop counter

6: (ent[e], opr[e], inp[e], clk[e], τ [e])← A(sA) .
A selects entity ent[e], operation
opr[e], input inp[e], clock clk[e], and
real time τ [e] for event e

7:
(
sent[e], out[e]

)
← P [opr[e]]

(
sent[e], inp[e], clk[e]

)
8: (sA, outA, F)← A (sA, out[e]) .

A decides when to terminate the
loop (outA 6= ⊥), based on out[e]

9: until outA 6= ⊥

10: T ← ( outA,e,N,F,ent[·],opr[·],inp[·],clk[·],τ[·],out[·] )

11: Return T . Output transcript of run

Construction. The execution process (Algorithm 1) consists of three main
components: the initialization, main execution loop and termination.

Initialization (lines 1-3). In line 1, we allow the adversary to set their state
sA and to choose the set of entities N; note that we initialize the adversary
with its own parameters params.A as well as with the protocol’s params.P.
In line 2, we set the initial state si for each entity i by invoking the protocol-
specific ‘Init’ operation with inputs (i, params.P), where each entity receives its
identifier i and the security parameters params.P and performs its initialization
operation; note that this implies a convention where protocols are initialized
by this operation - all other operations are up to the specific protocol. The
reasoning behind such convention is that initialization is an extremely common
operation in many protocols; that said, protocols without initialization can use
an empty ‘Init’ operation and protocols with complex initialization process can
use other operations defined in P in the main execution loop (lines 4-9), to
implement initialization process which cannot be performed via single ‘Init’ call.
In line 3, we initialize e, which we use to index the events of the execution, i.e.,
e is incremented by one (line 5) each time we complete one ‘execution loop’
(lines 4-9).

Main execution loop (lines 4-9). The execution process affords the adversary
A extensive control over the execution. Specifically, in each event e, A determines
(line 6) an operation opr[e], along with its inputs, to be invoked by an entity
ent[e] ∈ N. The adversary also selects τ [e], the global, real time clock value.
Afterwards, the event is executed (line 7).

In line 8, the adversary processes the output out[e] of the operation opr[e].
The adversary may modify its state sA, and outputs a value outA; when outA 6=
⊥, the execution moves to the termination phase; otherwise the loop continues.
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Termination (lines 10-11). Upon termination, the process returns the exe-
cution transcript T (line 11), containing the relevant values from the execution.
Namely, T contains the adversary’s output outA, the index of the last event e,
the set of entities N, and the set of faulty entities F (produced in line 8) as well
as the values of ent[·], opr[·], inp[·], clk[·], τ [·] and out[·] for all invoked events. We
allow A to output F to accommodate different fault modes, i.e., an adversary
model can specify which entities are included in F (considered ‘faulty’) which
then can be validated using an appropriate model.

2.2 Extending the Execution Process

In Section 2.1, we described the design of the ExecA,P execution process, pre-
senting a generic execution process which imposes only basic limitations. We now
describe the ExecXA,P execution process, an extension of ExecA,P , which pro-
vides flexibility in accommodating many different models and supports various
applications in a ‘built-in’ manner, without the need for any further modifica-
tions to the execution process, and yet, maintains the appealing simplicity of
ExecA,P . That said, a key advantage of MoSS is that the execution process can
still be further extended to support custom complex properties; we demonstrate
such extension in Section 6.

The ExecXA,P execution process, as defined by the pseudo-code in Algo-
rithm 2, specifies the details of running a given protocol P with a given adversary
A, both modeled as efficient (PPT) functions, given a specific set of execution
operations X and parameters params. The set X is a specific set of extra opera-
tions through which the execution process provides built-in yet flexible support
for various adversarial capabilities. For example, the set X can contain functions
which allow the adversary to perform specific functionally on one of the entities,
functionality which the adversary cannot achieve via the execution of P. We
detail and provide concrete examples of such functionalities in Sec. 2.3.

Changes to the ExecA,P execution process. The input parameters con-
sists of three subsets: the adversary’s parameters params.A, the protocol’s pa-
rameters params.P and the execution process’s parameters params.X . In addi-
tion to the extensive control the adversary had over the execution, the adversary
now can decides not only which entity is invoked next, but also whether the op-
eration is from the set X of execution operations, or from the set of operations
supported by P; while we did not explicitly write it, some default values are
returned if the adversary specifies an operation which does not exist in the cor-
responding set.

To invoke an operation defined by P over some entity i, we use the same
notation as before, but the output of such execution contains an additional
output value sec-out, where sec-out[e][·] is a ‘secure output’ - namely, it contains
values that are shared only with the execution process itself, and not shared with
the adversary; e.g., such values may be used, if there is an appropriate operation
in X , to establish a ‘secure channel’ between parties, which is not visible to A.
In sec-out, the first parameter denotes the specific event e in which the secure
output was set; the second one is optional, e.g., may specify the ‘destination’ of
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the secure output. Similarly, X is also defined as a single PPT algorithm and we
use a similar notation to invoke its operations: X [opr](sX , s, inp, clk, ent), where
opr, s, inp, clk are as before, and sX is the execution process’s state and ent is
an entity identifier.

Algorithm 2 Adversary-Driven Execution Process ExecXA,P(params)

1: (sA,N)← A[‘Init’](params.A, params.P) .
Initialize adversary with
params.A, params.P

2: ∀i ∈ N : si ← P[‘Init’] (⊥, (i, params.P),⊥) . Initialize entities’ local state

3: sX ← params . Initial exec state

4: e← 0 . Initialize loop’s counter

5: repeat

6: e← e+ 1 . Advance the loop counter

7: (ent[e], opr[e], type[e], inp[e], clk[e], τ [e])← A(sA) .
A selects entity ent[e], operation
opr[e], input inp[e], clock clk[e], and
real time τ [e] for event e

8: if type[e] = ‘X ’ then . If A chose to invoke an operation
from X .

9:
(
sX , sent[e], out[e], sec-out[e][·]

)
← X [opr[e]]

(
sX , sent[e], inp[e], clk[e], ent[e]

)
10: else . A chose to invoke an operation

from P.

11:
(
sent[e], out[e], sec-out[e][·]

)
← P [opr[e]]

(
sent[e], inp[e], clk[e]

)
12: end if

13: (sA, outA, F)← A (sA, out[e]) .
A decides when to terminate the
loop (outA 6= ⊥), based on out[e]

14: until outA 6= ⊥

15: T ← ( outA,e,N,F,ent[·],opr[·],type[·],inp[·],clk[·],τ[·],out[·],sec-out[·][·] )

16: Return T . Output transcript of run

Construction. The extended execution process (Algorithm 2) consists of the
following modifications. The initialization phase (lines 1-4) has an additional line
(line 3), where we initialize the ‘execution operations state’ sX to the set of all
parameters params; this state is used by execution operations (in X ), allowing
them to be defined as (stateless) functions. The rest of the initialization lines
are the same.

The main execution loop (lines 5-14) is as before, but with one difference,
where the adversary A determines on line 7 the type of operation type[e] to
be invoked by an entity ent[e] ∈ N. The operation type type[e] ∈ {‘X ’,‘P’}
indicates if the operation opr[e] is protocol-specific (defined in P) or is it one
of the execution process operations (defined in X ). Afterwards, the event is
executed (lines 8-11) based on the operation type, either ‘X ’, if specified, or ‘P’,
otherwise.
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The termination phase (lines 15-16) is the same as before, but also include
in the transcript the type[·] values and the sec-out[·][·] for all invoked events. We
allow A to output F to accommodate different fault modes, i.e., an adversary
model can specify which entities are included in F (considered ‘faulty’) which
then can be validated using an appropriate model. Private values, such as en-
tities’ private keys, are not part of the execution transcript unless they were
explicitly included in the output due to an invocation of an operation from X
that would allow it.

2.3 Using X to Define Specification and Entity-Faults Operations

The ‘default’ execution process is defined by an empty X set. This provides the
adversary A with Man-in-the-Middle (MitM) capabilities, and even beyond: A
receives all outputs, including messages sent, and controls all inputs, including
messages received; furthermore, A controls the values of the local clocks. A
non-empty set X can be used to define entity-fault operations and specification
operations; let us discuss each of these two types of execution-process operations.

Specification-operations. Some model and requirement specifications, re-
quire a special execution-process operation, possibly involving some information
which must be kept private from the adversary. One example are indistinguisha-
bility requirements, which are defined in Sec. 4.3.1 using three operations in
X : ‘Flip’, ‘Challenge’ and ‘Guess’, whose meaning most readers can guess (and
confirm the guess in Sec. 4.3.1).

The ‘Sec-in’ X -operation. As a simple example of a useful specification op-
eration, we now define the ‘Sec-in’ operation, which allows the execution process
to provide a secure input from one entity to another, bypassing the adversary’s
MitM capabilities. This operation can be used for different purposes, such as to
assume secure shared-key initialization - for example, see Sec. 8.2.1.

X [‘Sec-in’] (sX , s, e
′, clk, ent) ≡ [sX ||P[‘Sec-in’] (s, sec-out[e′][ent], clk)] (1)

As can be seen, invocation of the ‘Sec-in’ operation returns the state sX un-
changed (and unused); the other outputs are simply defined by invoking the
‘Sec-in’ operation of the protocol P, with input sec-out[e′][ent] - the sec-out
output of the event e′ intended for entity ent.

Note, that although ‘Sec-in’ facilitates delivery of data from some entity
to another while ensuring that the adversary is unable to access this data, it
does not provide authentication, namely, the receiving entity cannot rely on the
authenticity of the inputted data.

Entity-fault operations. It is quite easy to define X -operations that facili-
tate different types of entity-fault models, such as honest-but-curious, byzantine
(malicious), adaptive, proactive, self-stabilizing, fail-stop and others. Let us give
informal examples of three fault operations:
‘Get-state’: provides A with the entire state of the entity. Assuming no other

entity-fault operation, this is the ‘honest-but-curious’ adversary; note that
the adversary may invoke ‘Get-state’ after each time it invokes the entity, to
know its state all the time.
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‘Set-output’: allows A to force the entity to output specific values. A ‘Byzan-
tine’ adversary would use this operation whenever it wanted the entity to
produce specific output.

‘Set-state’: allows A to set any state to an entity. For example, the ‘self-
stabilization’ model amounts to an adversary that may perform a ‘Set-state’
for every entity (once, at the beginning of the execution).

Comments. Defining these aspects of the execution in X , rather than having
a particular choice enforced as part of the execution process, provides significant
flexibility and makes for a simpler execution process.

Note that even when the set X is non-empty, i.e., contains some non-default
operations, the adversary’s use of these operations may yet be restricted for the
adversary to satisfy a relevant model. We present models specifications in Sec. 3.

The operations in X are defined as (stateless) functions. However, the exe-
cution process provides state sX that these operations may use to store values
across invocations; the same state variable may be used by different operations.
For example, the ‘Flip’, ‘Challenge’ and ‘Guess’ X -operations, used to define
indistinguishability requirements in Sec. 4.3.1, use sX to share the value of the
bit flipped (by the ‘Flip’ operation).

3 Model Specifications

The execution process, described in Sec. 2, specifies the details of running a pro-
tocol P against an adversaryA which has an extensive control over the execution.
In this section, we present the next component of MoSS: the model predicate
π, applied to the execution-transcript T . Intuitively, adversary A satisfies model
predicate π, if for (almost) all execution-transcripts T of A, predicate π holds i.e.:
π(T, params) = true, where params are the parameters used in the execution
process (Sec. 3.1). One may say that the model ensures that the great power of
the adversary over the execution is used ‘with great responsibility’.

The separation between the execution process and the model predicates has
significant advantages to the development and analysis of secure protocols. First,
it allows us to use the same - relatively simple - execution process, for the analysis
of many different protocols. Second, it makes it easy to define multiple simple
models, each focusing on a different assumption or restriction, and require that
the adversary satisfy all of them - by simple conjunction.

The model captures all of the assumptions regarding the environment and
the capabilities of the adversary, including aspects typically covered by (often
informal) communication model, synchronization model and adversary model:

Adversary capabilities: The adversary capabilities (often referred to as the
adversary model), define the computational resources of the adversary, e.g.,
probabilistic polynomial time (PPT), as well as other capabilities, e.g., cipher-
text only (CTO) and chosen ciphertext attacks (CCA) capabilities.

Communication assumptions: The communication assumptions define the
properties of the underlying communication mechanism, such as reliable/unreliable
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communication, FIFO or non-FIFO, authenticated or not, bounded delay,
fixed delay or asynchronous, and so on.

Synchronization assumptions: The synchronization assumptions define the
availability and properties of per-entity clocks. Common models include
purely asynchronous clocks (no synchronization), bounded-drift clocks, and
synchronized clocks.
In Sec. 3.1, we define the notion of a specification - which we use to define both

models and requirements. In Sec. 3.2, we define the notion of a model-satisfying
adversary. Finally, in Sec. 3.3, we give an example of a model specification.

3.1 Specifications

We first define a general notion of a specification, which we use both for (adver-
sary, communication and synchronization) models and for requirements (from a
given protocol).

We define a specification ξ as a pair, ξ = (π, β), where π is the specification
predicate and β is the base function. A specification predicate takes as input
an execution transcript T and parameters params; when π(T, params) = >,
we say that execution satisfies the predicate π for the given value of params.
The base function gives the ‘base’ probability of success for an adversary. For
many integrity specifications, e.g. forgery, the base function is 2−l, where l is the
output block size; and for indistinguishability-based specifications (see Sec. 4.3),
the base function is often 1

2 .
We next define the advantage of adversary A ∈ PPT against protocol P

for specification ξ = (π, β) and the execution-operations set X , as a function of
the parameters params. This is the probability that π(T, params) = ⊥, for the
transcript T of a random execution: T ← ExecXA,P(params).

Definition 1 (Advantage of A against P for specification ξ and execution-
operations set X ). Let A,P,X ∈ PPT and let ξ = (π, β) be a specifica-
tion. The advantage of adversary A against protocol P for specification ξ and
execution-operations set X is defined as:

εξA,P,X (params)
def
= max

{
0,Pr

[
π (T ) = ⊥, where

T ← ExecXA,P(params)

]
− β(params)

}
(2)

3.2 Model-Satisfying Adversary

Models are used to restrict the capabilities of the adversary as well as the events
that can happen in the execution process. This includes limiting of the possible
faults, defining initialization assumptions, and defining the communication and
synchronization models. Hence, we ensure that a given adversary A followed
the restrictions of a given model M = (π, β) in a given execution transcript T
by applying π to T and params. Next, we formally define what it means for
adversary A to satisfy M with negligible advantage.
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Definition 2 (Adversary A satisfies model M with negligible advan-
tage using execution operations X ). Let A,X ∈ PPT , and let M = (π, β)
be a model specification. We say that adversary A satisfies model M with negligi-

ble advantage using execution operations X , denoted as A |=X
poly
M, if for every

protocol P ∈ PPT and params ∈ {0, 1}∗, where params includes a unary
string params.P.1κ whose length is at least half6 of the total params (i.e.,
‖params‖ ≤ 2 · 1κ), the advantage of A against P for M and X is negligi-
ble in params.P.1κ, i.e.: εMA,P,X (params) ∈ Negl(params.P.1κ).

3.3 Example: the Bounded-Clock-Drift Model MDrift
∆clk

To demonstrate a definition of a model predicate, we present theMDrift
∆clk

model,

defined as MDrift
∆clk

= (πDrift
∆clk

, βDrift
∆clk

), where βDrift
∆clk

= 0 (i.e., the base function is

always zero, like for most integrity properties). The predicate πDrift
∆clk

bounds the
clock drift, by enforcing two restrictions on the execution: (1) each local-clock
value (clk[ê]) must be within ∆clk drift from the real time τ [ê], and (2) the
real time values should be monotonically increasing. As a special case, when
∆clk = 0, this predicate corresponds to a model where the local clocks are fully
synchronized, i.e., there is no difference between entities’ clocks. See Algorithm 3.

Algorithm 3 πDrift
∆clk

(T ) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: . For each event

3: |T.clk[ê]− T.τ [ê]| ≤ ∆clk .
Local clock is within ∆clk drift
from real time

4: and if ê ≥ 2 then T.τ [ê] ≥ T.τ [ê − 1] .
And in each consecutive events
the real time difference is mono-
tonically increasing)

4 Requirement Specifications

To complete the final piece of the MoSS framework, we now define and discuss
requirement specifications. A requirement is a pair R = (π, β) of a predicate (π)
and base function (β); it defines a property that a protocol aims to achieve, e.g.,
security, correctness or liveness requirements.

Combining the three components of the framework, the execution process,
model specifications and requirement specifications, brings about the modularity

6 The reason for the ‖params‖ ≤ 2 · 1κ restriction is to prevent a situation where the
adversary receives an input parameter which is much longer than κ bits, e.g., input
whose length is exponential in κ, allowing the adversary to run in time which is expo-
nential in the security parameter and thereby ‘break’ the cryptographic assumptions,
e.g., expose secret keys by exhaustive search.
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and flexibility of the MoSS framework, and allows to easily analyze whether a
given protocol P ensures a specific requirement R, or a set of requirements,
under given model M, interacting with any PPT adversary A.

Namely, different works may reuse the same requirements (and execution
process) but use other, possibly more realistic (and more complex) models, ex-
pressing different adversary capabilities, restrictions on usage, and assumptions
on communication and synchronization. Similarly, different works may reuse the
same models to study additional requirements.

The separation between the definition of the model and of the requirements
also allows definition of generic requirement predicates., which are applicable to
different protocols regardless of their specific functionalities. We identify four
generic requirement predicates that appear relevant to many security proto-
cols. These requirement predicates focus on attributes of messages, i.e., non-
repudiation, and on detection of misbehaving entities (see Appendix B.2).

Our approach is quite different from the current way of defining requirements
for cryptographic schemes and protocols. While it does take some time and effort
to get used to the separate models and requirements, we found that with a bit
of practice, the advantages become clear and the approach becomes natural and
convenient, facilitating modularity and reuse of models and requirements.

4.1 Model-Secure Requirements

A protocol P would typically have multiple properties, i.e., satisfy multiple re-
quirements. Let R = (π, β) be a requirement. Let b be the outcome of π applied
to (T ), where T is a transcript of the execution process (T = ExecXA,P(params))
and params are the parameters, i.e., b← π(T ); if b = ⊥ then we say that require-
ment predicate π was not satisfied in the execution of P, or that the adversary
won in this execution. If b = >, then we say that requirement predicate π was
satisfied in this execution, or that the adversary lost.

Next, we formally define what it means for P to satisfy R with negligible
advantage under model M using execution operations X .

Definition 3 (Protocol P satisfies requirement R with negligible ad-
vantage under model M using execution operations X ). Let X ∈ PPT ,
and let R = (π, β) be a requirement specification. We say that protocol P
satisfies requirement R under model M using execution operations X , denoted

P |=M,X
poly

R, if for every PPT adversary A that satisfies M with negligible ad-
vantage and parameters params ∈ {0, 1}∗, where params includes a unary pa-
rameter params.P.1κ whose length is at least half of the total params (i.e.,
‖params‖ ≤ 2 · 1κ), the advantage of A against P for R and X is negligible in
params.P.1κ, i.e:

P |=M,X
poly

R def
= (
∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=

poly
M
)

:

εRA,P,X (params) ∈ Negl(params.P.1κ)

(3)
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4.2 πAuthComRcv∆ : Freshness and Authenticity Requirement Predicate

To demonstrate a definition of a security specification predicate, we present the
πAuthComRcv∆ predicate, which ensures that in a given protocol only broadcast
messages are received (authentication) and only if they were sent within the
last ∆ real time (freshness). The πAuthComRcv∆ requirement predicate is shown in
Algorithm 4.

Algorithm 4 πAuthComRcv∆
(T ) Predicate

1: return
(

2: ∀êR ∈ {1, . . . , T.e}:

3: if T.out[êR] = (‘Receive’,m): . For each event where a message
is received

4: ∃êB ∈ {1, . . . , êR − 1} . There is a previous event

5: s.t. T.opr[êB] = ‘Broadcast’: . Which was a ‘Broadcast’ event

6: and T.τ [êR]− T.τ [êB] ≤ ∆ . Within the last ∆ real time

7: and T.inp[êB].m = m . Where the input message was m)

4.3 Supporting Confidentiality and Indistinguishability

The MoSS framework is capable of supporting various security goals and models.
We now demonstrate this by showing how to define ‘indistinguishability game’-
based definitions, i.e., confidentiality-related specifications.

4.3.1 Defining Confidentiality-Related Operations

To support confidentiality, we define the set X to include the following three
operations: ‘Flip’, ‘Challenge’, ‘Guess’.

– ‘Flip’: selects a uniformly random bit sX .b via coin flip, i.e., sX .b
R← {0, 1}.

– ‘Challenge’: executes a desired operation with one out of two possible inputs,
according to the value of sX .b. Namely, when A outputs opr[e] = ‘Challenge’,
the execution process invokes:

P[inp[e].opr]
(
sent[e], inp[e].inp[sX .b], clk[e]

)
where inp[e].opr ∈ P (one of the operations in P) and inp[e].inp is an ‘array’
with two possible inputs, of which only one is randomly chosen via sX .b,
hence, the inp[e].inp[sX .b] notation.

– ‘Guess’: checks if a ‘guess bit’, which is provided by the adversary as input,
is equal to sX .b, and returns the result in sec-out[e]. Notice that the result
must be in sec-out, so the adversary would not be able to access it.
These three operations are used as follows. The ‘Flip’ operation provides

Exec with access to a random bit sX .b that is not controlled or visible to A.
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Once the ‘Flip’ operation is invoked, the adversary can choose the ‘Challenge’
operation, i.e., type[e] = X and opr[e] = ‘Challenge’, and A can specify any
operation of P it wants to invoke (inp[e].opr) and any two inputs it desires
(inp[e].inp). However, Exec will invoke P[inp[e].opr] with only one of the inputs,
according to the value of the random bit sX .b, i.e., inp[e].inp[sX .b]; again, since
A has no access to sX .b, A has no knowledge about which input is selected nor
A can influence this selection. (As usual, further assumptions about the inputs
can be specified using a model.) Then, A can choose the ‘Guess’ operation and
provide its guess of the value of sX .b (0 or 1) as input.

4.3.2 πMsgConf
IND: Message Confidentiality for Encrypted Communi-

cation

To illustrate how the aforementioned operations can be used in practice, we
define the indistinguishability requirement predicate πIND in Algorithm 5. πIND

checks that the adversary invoked the ‘Guess’ operation during the last event
of the execution and examines whether the ‘Guess’ operation outputted > in
its secure output and whether the π model was satisfied. The adversary ‘wins’
against this predicate when it guesses correctly during the ‘Guess’ event. Since
an output of ⊥ by a predicate corresponds to the adversary ‘winning’ (see,
e.g., Def. 1), the πIND predicate returns the negation of whether the adversary
guessed correctly during the last event of the execution.

Algorithm 5 πIND(T ) Predicate

1: return ¬
(

2: T.type[T.e] = ‘X ’

3: and T.opr[T.e] = ‘Guess’ and T.sec-out[T.e] = > .
The last event is a ‘Guess’
event and A guessed correctly

4: and π(T ) . The model predicate π was met)

We can use πIND to define more specific predicates; for example, we can
use the πMsgConf predicate, shown below, to define πMsgConf

IND, which can be
used to define message confidentiality for an encrypted communication protocol.
Namely, assume P is an encrypted communication protocol, which includes the
following two operations: (1) a ‘Send’ operation which takes as input a message
m and entity iR and outputs an encryption of m for iR, and a (2) ‘Receive’
operation, which takes as input an encrypted message and decrypts it.

The πMsgConf model predicate (Algorithm 6) ensures that:
– A only asks for ‘Send’ challenges (since we are only concerned with whether

or not A can distinguish outputs of ‘Send’).
– During all ‘Send’ challenges, messages are only sent from one specific entity
iS to one specific entity iR.
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– During each ‘Send’ challenge, A specifies two messages of equal length and
the same recipient in the two possible inputs. This ensures that A does not
distinguish the messages based on their lengths.

– A does not use the ‘Receive’ operation to decrypt any output of a ‘Send’
challenge.

Algorithm 6 πMsgConf (T ) Predicate

1: return
(

2:
∀ê ∈ {1, . . . , T.e} s.t.

T.type[ê] = ‘X ’ and T.opr[ê] = ‘Challenge’:
. Every ‘Challenge’ event

3: T.inp[ê].opr = ‘Send’ . was for ‘Send’ operations only

4: and |T.inp[ê].inp[0].m| = |T.inp[ê].inp[1].m| . with equal length messages

5: and ∃ iS, iR ∈ T.N s.t. .
There is one specific sender iS
and one specific receiver iR

6: T.inp[ê].inp[0].iR = T.inp[ê].inp[1].iR = iR .
iR is the recipient for both mes-
sages

7: and T.ent[ê] = iS . And iS is the sender

8: and @ ê′ s.t. . And there is no event ê′

9:

T.opr[ê′] = ‘Receive’

and T.inp[ê′].c = T.out[ê].c

and T.ent[ê′] = iR

and T.inp[ê′].iS = iS

.
Where A uses the ‘Receive’
event to decrypt the output of
the challenge

)

5 The Modularity Lemmas

In this section we present the model and requirement modularity lemmas as well
as the model and requirement monotonicity lemmas. These lemmas concretely
illustrate and formally prove our framework’s intuitive modularity properties
that facilitate the reuse of models, requirements and protocols.

In the following lemmas, we say that a model M̂ is stronger than a modelM
(and M is weaker than M̂) if the predicate of M̂ includes the predicate of M;

that is, the predicate of M̂ is a conjunction of one or more predicates, and one
of these predicates is the predicate of M. Similarly, we say that a requirement
R̂ is stronger than a requirement R (and R is weaker than R̂) if the predicate of

R̂ includes the predicate of R; that is, the predicate of R̂ is a conjunction of one
or more predicates, and one of these predicates is the predicate of R. Basically,
stronger models enforce more constraints on the adversary or other assumptions,
compared to weaker ones, while stronger requirements represent more properties
achieved by a protocol or scheme, compared to weaker ones.
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5.1 Model Modularity

The model modularity lemmas give the relationships between stronger and weaker
models. They allow us to shrink stronger models (assumptions) into weaker ones
and to expand weaker models (assumptions) into stronger ones as needed - and
as intuitively expected to be possible.

The first model modularity lemma is very straightforward and shows that if
an adversary A satisfies a stronger model M̂, then A satisfies models that are
weaker than M̂ and have the same base function (using the same operations set
X ). Intuitively, this holds because in order to satisfy a conjunction of multiple
predicates, each of the predicates must be individually satisfied.

Lemma 1 (Weaker model satisfaction).
For any set X of execution-process operations, any (weaker) model M =

(π, β), and any predicate π′, if an adversary A satisfies the (stronger) model

M̂ ≡ (π ∧ π′, β) (with negligible advantage) then A satisfies M (with negligible
advantage), namely:

A |=X
poly
M̂ ⇒ A |=X

poly
M (4)

Proof. See Appx. B.3.
The second model modularity lemma shows that if an adversary satisfies two

weaker models, then A satisfies the stronger model that is obtained by taking
the conjunction of the predicates and the addition of the base functions of the
weaker models (using the same operations set X ). Intuitively, this makes sense,
because if an adversary fails some predicate, say π, for at most β fraction of the
time (or negligibly close), and also fails π′ for at most β′ fraction of the time,
then the most it can fail either one is β + β′ fraction of the time (or negligibly
close).

Lemma 2 (Stronger model satisfaction).
For any set X of execution-process operations and any two (weaker) models

M = (π, β),M′ = (π′, β′), if an adversary A satisfies both M and M′ (with

negligible advantage), then A satisfies the ‘combined’ (stronger) model M̂ ≡
(π ∧ π′, β + β′) (with negligible advantage), namely:(

A |=X
poly
M∧A |=X

poly
M′
)
⇒ A |=X

poly
M̂ (5)

Proof. See Appx. B.3.
The third model modularity lemma shows that if a protocol satisfies a re-

quirement under a weaker model, then it satisfies the same requirement under a
stronger model with the same base function (using the same operations set X ).
Of course, this is true, because if we are assuming everything that is included
in the stronger model, then we are automatically assuming everything in the
weaker model with the same base function (by Lemma 1), which implies that
the protocol satisfies the requirement for such adversaries.
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Lemma 3 (Requirement satisfaction under stronger model).

If a protocol P ensures a requirement R (with negligible advantage) under
only M = (π, β) using the execution-process operations set X , then for any
predicate π′, P ensures R (with negligible advantage) under the ‘combined’ model

M̂ ≡ (π ∧ π′, β), using X , namely:

P |=M,X
poly

R ⇒ P |=M̂,X
poly

R (6)

Proof. See Appx. B.3.

5.2 Model Monotonicity

We often may want to use the model modularity lemma to combine two models,
M andM′, but cannot, since they have different base functions β 6= β′. In such
a case, we can first use the following model monotonicity lemma to have the
same base function and then may apply the modularity lemma. Unfortunately,
this requires using the base function β̂, which is defined as the greater of β, β′

for any given input params, i.e.:

(∀params) β̂(params) ≡ max {β(params), β′(params)} (7)

Lemma 4 (Model monotonicity). Let X be any set of execution-process
operations, π be a predicate, and β, β′ be two base functions. Define the function
β̂(params) = max{β(params), β′(params)} for all params. Let M = (π, β)

and M̂ = (π, β̂). Then holds:

(∀A)A |=X
poly
M⇒A |=X

poly
M̂ (8)

Proof. See Appx. B.3.

5.3 Requirement Modularity

The requirement modularity lemmas give relationships between stronger and
weaker requirements, assuming the same model M and operations set X . They
allow us to infer that a protocol satisfies a particular weaker requirement given
that it satisfies a stronger one, or that a protocol satisfies a particular stronger
requirement given that it satisfies weaker ones.

The first requirement modularity lemma shows that if a protocol satisfies a
stronger requirement, then it satisfies a weaker one with the same base function
(under the same model M and using the same operations set X ). That is, if

protocol P satisfies requirement R̂ = (π ∧ π′, β), then P satisfies requirement
R = (π, β). Similarly to Lemma 1, this holds because satisfying a conjunction
of predicates implies satisfying each of the sub-predicates.
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Lemma 5 (Weaker requirement satisfaction).
For any set X of execution-process operations, any model M, any (weaker)

requirement R = (π, β), and any predicate π′, if a protocol P ensures the

(stronger) requirement R̂ ≡ (π ∧ π′, β) (with negligible advantage) under model
M, then P ensures R (with negligible advantage) under model M, namely:

P |=M,X
poly

R̂ ⇒ P |=M,X
poly

R (9)

Proof. See Appx. B.3.
The second requirement modularity lemma shows that if a protocol satis-

fies two weaker requirements, then it satisfies the stronger requirement that is
obtained by taking the conjunction of the predicates and the addition of the
base functions of the weaker requirements (under the same model M and us-
ing the same operations set X ). That is, if protocol P satisfies requirement
R = (π, β) and P satisfies requirement R′ = (π′, β′), then P satisfies require-

ment R̂ = (π ∧ π′, β + β′). Similarly to Lemma 2, the intuition is that if an
protocol fails some predicate, say π, for at most β fraction of the time (or neg-
ligibly close), and also fails π′ for at most β′ fraction of the time, then the most
it can fail either one is β + β′ fraction of the time (or negligibly close).

Lemma 6 (Stronger requirement satisfaction).
For any set X of execution-process operations, any model M, and any two

(weaker) requirements R = (π, β),R′ = (π′, β′), if a protocol P ensures both R
and R′ (with negligible advantage) under model M, then P ensures the ‘com-

bined’ (stronger) requirement R̂ ≡ (π ∧ π′, β + β′) (with negligible advantage)
under model M, namely:(

P |=M,X
poly

R∧ P |=M,X
poly

R′
)
⇒ P |=M,X

poly
R̂ (10)

Proof. See Appx. B.3.

5.4 Requirement Monotonicity

We may want to use the requirement modularity lemma to combine two require-
ments, R and R′, but cannot, since they have different base functions β 6= β′. In
such a case, we can first use the following requirement monotonicity lemma to
have the same base function and then may apply the modularity lemma. Unfor-
tunately, this requires using the base function β̂, which is defined as the greater
of β, β′ for any given input params, as given in Equation 7.

Lemma 7 (Requirement monotonicity). Let X be any set of execution-
process operations, M be a model, π be a predicate, and β, β′ be two base func-
tions. Define the function β̂(params) = max{β(params), β′(params)} for all

params. Let R = (π, β) and R̂ = (π, β̂). Then holds:

P |=M,X
poly

R ⇒ P |=M,X
poly

R̂ (11)

Proof. See Appx. B.3.
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6 Ensuring Polynomial-Time Runtime

In most of this work, as in most works in cryptography, we focus on PPT algo-
rithms. For instance, consider Definition 2, where we require A,X ,P ∈ PPT ,
and the definition uses the concept of negligible advantage to refer to advantage
functions which are smaller than any positive polynomial in the length of the
inputs. However, when analyzing interacting systems as facilitated by MoSS,
there is a concern: each of the algorithms might be in PPT, yet the runtime can
be engineered to be exponential in the number of steps. For example, consider an
adversary A, that whenever it executes at the end of the execution-process loop
(line 8 of Algorithm 1), its output state sA is twice as long as it was in the input.
Namely, if the size of the adversary’s state in the beginning was |sA|, then after
e rounds of the execution-process loop, the length of the outputted state would
be 2e · |sA|. Therefore, as sA is provided as input to A and e is determined by
A, this shows that its runtime may be exponential in the original inputs to A.

To ensure polynomial runtime, we provide the following. First, in Section 6.1,
we present the ExecX ,PPTA,P execution process, which is an extension of the

ExecXA,P execution process that allows specifications to refer to the runtime
of algorithms invoked during the execution. Then, in Section 6.2, we define the
MApolyGrow and MApolySteps model specifications, that enforce polynomial time

restriction on adversary A. In Section 6.3, we define the RPpolyGrow requirement
specification, that require a polynomial runtime from protocol P. Finally, in Sec-
tion 6.4 we show that if A and P satisfy these specifications, the total runtime
in ExecX ,PPTA,P is ensured to be polynomial.

6.1 The ExecX ,PPTA,P execution Process

The ExecX ,PPTA,P execution process (Algorithm 7) is identical to the ExecXA,P
execution process discussed in Section 2.2, but it has two additional variables:
sLog[·] and maxLen[·]. The sLog[·] variable includes sLog[·][1], which stores
the final size of sA in each iteration, and sLog[·][2], which stores the final size
of sent[·] in each iteration. The maxLen[·] variable stores the maximum size of
input given to P; this makes it easy to compare the sizes of the outputs of P
to the maximum input size. The only changes are the addition of line 3 to store
the initial sizes of the states in sLog[0], line 9 to save the maxLen[e] value for
each event e, line 16 to store the sizes of the output states, and the addition of
sLog[·] and maxLen[·] to the execution transcript T in line 18.

6.2 The MA
polyGrow and MA

polySteps Models

We define the MApolyGrow model, defined as MApolyGrow = (πApolyGrow, 0) , where

the πApolyGrow predicate (Algorithm 8) restricts the size of each output of A in
line 8 to be at most T.sLog[0][1] greater than the size of the input to A, and
restricts the size of the new state sA output by A in line 15 to be at most
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Algorithm 7 Adversary-Driven Execution Process ExecXA,P(params)

1: (sA,N)← A[‘Init’](params.A, params.P) .
Initialize adversary with
params.A, params.P

2: ∀i ∈ N : si ← P[‘Init’] (⊥, (i, params.P),⊥) . Initialize entities’ local state

3: sLog[0]← (|sA|,maxi∈N{|si|})

4: sX ← params . Initial exec state

5: e← 0 . Initialize loop’s counter

6: repeat

7: e← e+ 1 . Advance the loop counter

8: (ent[e], opr[e], type[e], inp[e], clk[e], τ [e])← A(sA) .
A selects entity ent[e], operation
opr[e], input inp[e], clock clk[e], and
real time τ [e] for event e

9: maxLen[e]← max{|opr[e]|, |inp[e]|, |clk[e]|, |sent[e]|}

10: if type[e] = ‘X ’ then .
If A chose to invoke an operation
from X .

11:
(
sX , sent[e], out[e], sec-out[e][·]

)
← X [opr[e]]

(
sX , sent[e], inp[e], clk[e], ent[e]

)
12: else . A chose to invoke an operation from

P.

13:
(
sent[e], out[e], sec-out[e][·]

)
← P [opr[e]]

(
sent[e], inp[e], clk[e]

)
14: end if

15: (sA, outA, F)← A (sA, out[e]) .
A decides when to terminate the
loop (outA 6= ⊥), based on out[e]

16: sLog[e]← (|sA|, |sent[e]|) .
Save lengths of sA and sent[e] to
return as part of T

17: until outA 6= ⊥

18: T ←
(
outA,e,N,F,ent[·],opr[·],type[·],inp[·],clk[·],τ[·],out[·],sec-out[·][·]

,sLog[·],maxLen[·]

)
19: Return T . Output transcript of run

T.sLog[0][1] more than the size of the largest input to A, which is either the
initial sA or out[ê], for every event ê of the execution. Note that T.sLog[0][1] is
the length of the initial state sA output by the adversary in line 1 of Algorithm 7,
so A itself defines this value at the beginning of the execution, but the value
remains fixed for that particular execution.
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Algorithm 8 The πApolyGrow (T ) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: . For each event

3: ∀y ∈ {T.ent[ê], T.opr[ê], T.type[ê], T.inp[ê], T.clk[ê], T.τ [ê]}: .
And for each output of
A from its first invoca-
tion during that event

4: |y| ≤ T.sLog[ê − 1][1] + T.sLog[0][1] .

The size is at most
T.sLog[0][1] greater
than the size of sA
input to A

5: and T.sLog[ê][1] ≤ max{T.sLog[ê − 1][1], |T.out[ê]|}+ T.sLog[0][1]

.

The size of the output sA is at
most T.sLog[0][1] greater than
the size of the largest input to
A in its second invocation)

We also define the MApolySteps model as MApolySteps = (πApolySteps, 0), where

πApolySteps simply checks that the number of events in the execution does not
exceed T.sLog[0][1]. As mentioned earlier, T.sLog[0][1] is the length of the initial
state sA output by the adversary in line 1 of Algorithm 7.

Algorithm 9 The πApolySteps (T ) Predicate

1: return T.e ≤ T.sLog[0][1] . Number of steps is at most T.sLog[0][1]

6.3 The RPpolyGrow Requirement

We now define the RPpolyGrow requirement as RPpolyGrow = (πPpolyGrow, 0), where

πPpolyGrow, shown in Algorithm 10, restricts the size of each of the outputs of P
to be, at most, T.sLog[0][2] more than the size of the largest input to P (which
is saved in the execution transcript in T.maxLen[·]), for every event ê of the
execution. Note that T.sLog[0][2] is the length of the largest state si output by
the protocol in line 2 of Algorithm 7, so P defines this value at the beginning of
the execution, but the value remains fixed for that particular execution.

Algorithm 10 The πPpolyGrow (T ) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: . For each event

3: ∀y ∈ {T.sLog[ê].sent, T.out[ê], T.sec-out[ê][·]}: . The size of each output of P

4: |y| ≤ T.maxLen[ê] + T.sLog[0][2] .
Is at most T.sLog[0][2] greater
than the size of the largest input
to P)
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6.4 Polynomial-growth PPT Algorithms and Properties

We now show that if A satisfies MApolyGrow and MApolySteps and P satisfies

RPpolyGrow, then the total running times of A and P will be polynomial - i.e., A
cannot get an overall exponential execution time.

We begin with the definition of a stateful execution of an algorithm.

Definition 4 (Stateful execution of an algorithm Z). Let Z be an algo-
rithm. A stateful execution of Z is a sequence of N = {1, . . . , n} invocations of
Z such that for each i ∈ {2, . . . , n}, the input to Z in the ith invocation includes
the state outputted by Z in the (i − 1)th invocation, where the state is some
well-defined part of each output of Z.

Next, we define a stateful execution in which there is only one initialization,
at the beginning.

Definition 5 (Singly-initialized stateful execution of Z with params).
We define a singly-initialized stateful execution of Z with params as a stateful
execution of Z for N = {1, . . . , n} invocations, where the first invocation ini-
tializes Z with params and for each i ∈ {2, . . . , n}, the ith invocation does not
re-initialize Z. We denote the set of all such possible executions as Esis

Z,params.

Next, we define a stateful execution with a single initialization operation
where all invocations’ outputs are bounded by the size of the first invocation.

Definition 6 (`-bounded singly-initialized stateful execution of Z with
params). Let E ∈ Esis

Z,params be a singly-initialized stateful execution of Z with
params for N = {1, . . . , n} invocations, and let `′ be the length of the state
outputted by Z in its first invocation during E. We say that E is an `-bounded
singly-initialized stateful execution of Z with params, if `′ = ` and for each
i ∈ {2, . . . , n}, the size of each of the outputs in the ith invocation is at most `
greater than the maximum size of any of the inputs.

Lastly, we define a polynomial-growth PPT (PgPPT) algorithm in Defini-
tion 7. Intuitively, PgPPT algorithms are algorithms which commit to a ‘growth
value’ at the beginning of an execution and then, in each subsequent invocation,
only have outputs at most as large as the largest input plus this growth value.

Definition 7 (Polynomial-growth PPT (PgPPT) algorithm). Let Z be a
PPT algorithm. We say that Z is a polynomial-growth PPT (PgPPT) algorithm
if there exists a polynomial p(·) such that for every parameter params, for every
E ∈ Esis

Z,params, E is a p(params)-bounded singly-initialized stateful execution.

We can show that if A is a PgPPT algorithm, then it satisfies theMApolyGrow

model, and if P is a PgPPT algorithm, then it satisfies the RPpolyGrow require-
ment. See Lemmas 8 and 9.

Lemma 8. Let A be a polynomial-growth PPT algorithm, and let X be any
set of execution operations. Then A satisfies model MApolyGrow with negligible
advantage using execution operations X .
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Lemma 9. Let P be a polynomial-growth PPT algorithm, let X be any set of
execution operations, and let M be any model. Then P satisfies requirement
RPpolyGrow with negligible advantage under model M using execution operations
X .

Significantly, as stated in Lemma 10, we can show that if A satisfies the
MApolyGrow model and the MApolySteps model and P satisfies the RPpolyGrow re-
quirement, then the running times of A and P during executions of the MoSS
execution process will be polynomial.

Lemma 10. Let X be a polynomial-growth PPT algorithm, let A be a PPT

algorithm such that A |=X
poly
MApolyGrow, and let P be a PPT algorithm such that

P |=M
A
polyGrow,X

poly
RPpolyGrow. Then, during the execution of ExecXA,P(params), the

total running time of A and the total running time of P are both bounded by a
polynomial in params.

7 Concrete Security

Extending the MoSS framework to support concrete security definitions is rela-
tively simple, as we show next. In concrete security, the adversary’s advantage
is bounded by a specific function in the bounds on the ‘adversary resources’,
which may include different types of resources such as the runtime (in a specific
computational model), length (of inputs, keys, etc.), and the number of differ-
ent operations that the adversary invokes (e.g., ‘oracle calls’). This approach is

compatible with our definition of the advantage εξA,P,X (params) of A against P
for ξ and X (Definition 1), where the advantage is a function of the parameters
params. However, some relatively minor challenges remain.

First, in the existing concrete definitions, the definition of ‘adversary re-
sources’ is an input to the advantage function. We considered adding it to our
definition of the advantage function by defining appropriate functions over the
transcript T ; however, the advantage bounds the probability of executions so it
cannot use a measurement of the value in a particular execution. Instead, we
chose to specify these bounds as additional parameters in params, denoted as
params.A.bounds, and provide these parameters to the adversary. Then, our
model predicates can easily validate that the adversary does not exceed these
bounds. Note that params is already an input to the advantage function, ad-
dressing the first challenge. In Sec. 7.2, we define an appropriate (simple) model
that validates that the adversary does not exceed the bounds. For most bounds,
e.g., on the number of different operations, this can be easily validated by eval-
uating the transcript T .

However, this brings us to the second challenge: bounding the runtime.
Clearly, it is not possible to compute the adversary’s runtime from the transcript
T of the execution process (Algorithm 1). To allow concrete security which also
considers runtime, we needed to extend that execution process. We now describe
this extension, which is simpler than expected.
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7.1 Using StepCount for Runtime-Measuring Execution Process

The advantage function of concrete security reductions may refer to a bound
on the adversary’s runtime (using some fixed computational model). To allow
such bounds, we now define a simple modification to our use of the execution
process. Exec would return, as a part of the transcript T , the actual runtime
of the adversary A. This allows model predicates to validate that the adversary
did not exceed the bound on its runtime, provided in params.A.

The solution uses a well-known technique from the theory of complexity:
run A ‘within’ another algorithm that returns the runtime of A, together with
the ‘regular’ outputs of A. Specifically, let StepCount denote an algorithm that
receives another algorithm, which we conveniently denote A (as we would in fact
use the adversary A as input to StepCount). Namely, in the concrete definitions,
we use ExecXStepCount(A),P(params) instead of ExecXA,P(params). It remains to
describe the operation of StepCount.

Note that StepCount maintains its own state, which contains, as part of it,
the state of the adversary A. This creates a somewhat complex situation, which
may be familiar to the reader from constructions in the theory of complexity (or,
to the practitioner, from the relation between a virtual machine and the program
it is running) - yet a bit confusing. Namely, the execution process received the
algorithm StepCount(A) as the adversary, while StepCount(A) is running the
‘real’ adversary A.

This is especially confusing regarding the state of the adversary; the state sA
maintained by the execution process is now the state of the StepCount function.
This state consists of two parts (variables); one of them is the state of the original
adversary A. We denote this variable by sA.sA; this unwieldy notation is trying
to express the fact that from the point of view of the ‘real’ adversary A, this
is its (entire) state, while it is only part of the state sA of the StepCount(A)
algorithm (run by the execution process).

The other variable in the state sA of StepCount, is a counter sA.StepCount.
Notice that this variable is invisible to A (since it is not part of sA.sA). The
function StepCount uses sA.StepCount to sum-up the total runtime of A. Namely,
whenever the execution process invokes StepCount(A), then StepCount ‘runs’ A
on the provided inputs, measuring the time (number of steps) until A returns
its response, and adding it to sA.StepCount.

WhenA returns a response, StepCount first increments the counter sA.StepCount
by the run-time of A in this specific invocation. Next, StepCount checks if A sig-
naled termination of the execution process. When A signals termination (by
returning outA 6= ⊥), then StepCount sets outA.StepCount← sA.StepCount, i.e.,
adds to outA the computed total run-time of A during this execution7; of course,
we still have outA 6= ⊥ and therefore the execution process terminates - return-
ing the total runtime of A as part of outA. Although the runtime is carried in
outA, the adversary cannot modify it.

7 Note this would override any value that A may write on outA.StepCount, i.e., we
essentially forbid the use of outA.StepCount by A.
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Note that this solution does not requires any changes to the execution pro-
cess ExecXA,P ; we only changed the adversary. For the same reason the use of
StepCount does not change any other property of the execution - including the
runtime of the adversary A.

7.2 Enforcing Concrete Security via Models

We will now illustrate how model predicates can be defined to enforce con-
crete security bounds, following the adjustments discussed in Sec. 7.1. Sup-
pose params includes a structure called params.A.bounds.maxCalls, where
params.A.bounds.maxCalls[type][opr] contains the maximum number of calls to
an operation opr of type type that should not be exceeded by the adversary. Also
suppose params includes a value called params.A.bounds.maxSteps, which is
the maximum number of steps that the adversary is allowed to take. Finally, sup-
pose we are using StepCount, i.e., executing ExecXStepCount(A),P(params). Then,

we can use the πBounds model predicate (Algorithm 11) to ensure that: (1) A
does not exceed the bounds on the number of calls to each operation that is
part of params.A.bounds.maxCalls, and (2) the bound on the number of steps
taken by A is enforced.

Algorithm 11 πBounds(T ) Predicate

1: return
(

2: ∀ type ∈ params.A.bounds.maxCalls:

3: ∀ opr ∈ params.A.bounds.maxCalls[type]: .
The number of calls to each
operation with bounds is not
exceeded

4:

∣∣∣∣∣∣∣
ê

∣∣∣∣∣∣∣
ê ∈ {1, . . . , T.e} and

T.type[ê] = type and

T.opr[ê] = opr


∣∣∣∣∣∣∣ ≤ params.A.bounds.maxCalls[type][opr]

and T.outA.StepCount ≤ params.A.bounds.maxSteps .
The number of steps taken
by A is not exceeded)

7.3 Definitions

Finally, in this section, we adjust Definitions 1, 2 and 3 for concrete security
analysis. To that end, we first describe the MaxAdvantage function ε.

A MaxAdvantage function ε is the maximum advantage probability that
the adversary may have (for a given specification), over the ‘base’ probabil-
ity. Namely, specification ξ = (π, β) is satisfied with MaxAdvantage ε as long
as for every params used in the definition, the adversary’s success probability
minus β(params) is bounded by ε(params). The sum β(params) + ε(params)
for any such params should be in the range [0, 1].

Thus, in the concrete definition, a specification may be satisfied with MaxAd-
vantage ε, where the MaxAdvantage may be a function of any of the parameters
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included in params. Note, however, that if we want to use a MaxAdvantage
function that depends on the bounds restricting the adversary (i.e., the bounds
in params.A.bounds), then we need to assume a model that ensures that the
adversary really does not exceed these bounds.

We now define the ξ-StepCount-advantage for a given specification ξ = (π, β)
and a given value of params as the probability over β(params) that the predicate
π, applied to a random resulting execution transcript T ← ExecXStepCount(A),P(params)
and params, is not satisfied.

Definition 8 (Advantage of A against P for specification ξ and execution-
operations set X using StepCount). Let A,P,X ∈ PPT and let ξ = (π, β) be
a specification. The advantage of adversary A against protocol P for specification
ξ and execution-operations set X using StepCount is defined as

εξ,StepCountA,P,X (params)
def
= Pr

[
π (T ) = ⊥, where
T ← ExecXStepCount(A),P(params)

]
− β(params)

(12)

We now give the concrete definition of model-satisfying adversary; note that
here we use a model M as the specification ξ of Definition 8.

Definition 9 (Adversary A satisfies model M with MaxAdvantage ε
using execution operations X ). Let A be a PPT algorithm, and let M =
(π, β) be a model specification. Let ε be a function ε(params) : {0, 1}∗ → [0, 1],
such that, for any given params, holds β(params)+ε(params) ∈ [0, 1]. Let X be
a set of operations provided by the execution process Exec. We say that adversary
A satisfies modelM with MaxAdvantage ε using execution operations X , denoted as

A |=XεM, if for every protocol P ∈ PPT and params, the εM,StepCount
A,P,X (params)

advantage is bounded by ε(params).

Similarly, we can define requirements with respect to a MaxAdvantage func-
tion. The following is the concrete definition of requirement-satisfying protocol.

Definition 10 (Protocol P satisfies requirement R with MaxAdvantage
ε under model M with advantage εM using execution operations X ).
Let R = (π, β) be a requirement specification. Let ε, εM be functions such that
ε∗ ∈ {ε, εM} is a function ε∗(params) : {0, 1}∗ → [0, 1], and for any given
params, holds β(params) + ε∗(params) ∈ [0, 1]. Let X be a set of operations
provided by the execution process Exec. LetM be a model. We say that protocol
P satisfies requirement R with MaxAdvantage ε under modelM with advantage εM
using execution operations X , denoted P |=M, εM,X

ε R, if for every PPT adversary
A that satisfiesM with advantage εM using execution operations X and for every
params ∈ {0, 1}∗, the εR,StepCountA,P,X (params) advantage is bounded by ε(params).

8 AuthBroadcast: Authenticated Broadcast Protocol

In this section, we present and analyze the AuthBroadcast protocol, as an exam-
ple of the use of MoSS. AuthBroadcast is a simple authenticated broadcasting
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protocol; it is not a contribution by itself, merely an example of the MoSS frame-
work in action - although, the approach can be extended to analyze security of
‘real’ secure-communication protocols. To see the MoSS framework applied to a
more complex protocol, see [16].

The AuthBroadcast protocol enables a set of entities N to broadcast authen-
ticated messages to each other, i.e., to validate that a received message was
indeed sent by a member of N. The protocol uses a standard deterministic mes-
sage authentication scheme MAC which takes as input a tag length, key, and
message and outputs a tag. (See Appendix A for the formal definition of the
authentication scheme along with its security definition.)

The implementation of the AuthBroadcast protocol is detailed in Sec. 8.3.
Briefly, the protocol includes five operations:

– ‘Init’ (Algorithm 17): initializes the local state of the entity.
– ‘Key-Gen’ (Algorithm 18): generates the shared authentication key and sends

it to the rest of the entities.
– ‘Sec-in’ (Algorithm 19): receives a shared-key from another entity.
– ‘Broadcast’ (Algorithm 20): broadcasts an authenticated message.
– ‘Receive’ (Algorithm 21): receives incoming broadcast message, verify its

authenticity and output it (to the application).

We first define the protocol’s model specifications in Sec. 8.2, the desired secu-
rity requirements in Sec. 8.1, and the formal definition of the protocol in Sec. 8.3.
We conclude this section with a formal security analysis of the AuthBroadcast
protocol in Sec. 8.4.

8.1 Security Requirements

We define two security requirements for the AuthBroadcast protocol. The first,
RAuthComRcv∆ , ensures freshness and authenticity of received messages, and the
second, RBroadcast∆com , ensures bounded-delay broadcasting.

We define theRAuthComRcv∆ requirement asRAuthComRcv∆ = (πAuthComRcv∆ , βAuthComRcv∆),
where βAuthComRcv∆(params) = 2−params.P.n and where the RAuthComRcv∆ pred-
icate is defined in Sec. 4.2. The base function is 2−params.P.n, because the
AuthBroadcast protocol is implemented using some message authentication scheme
MAC, which outputs params.P.n-bit tags (i.e., we allow the adversary to have
2−params.P.n probability to forge a tag, which would make πAuthComRcv∆ eval-
uate to ⊥). Of course one could change to negligible probability by using the
params.P.n to be the same as the security parameter.

The RBroadcast∆com = (πBroadcast∆com , βBroadcast∆com ) requirement requires that
all broadcast messages are correctly received at every other entity (except the
sender of the broadcast) within ∆com real time (unless the execution terminates
before that time, of course). In this case, βBroadcast∆com = 0, and the πBroadcast∆com
requirement predicate is shown in Algorithm 12.
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Algorithm 12 πBroadcast∆com
(T ) Predicate

1: return
(

2: ∀êB ∈ {1, . . . , T.e− 1} s.t.

3: (T.opr[êB] = ‘Broadcast’ and . For every ‘Broadcast’ event

4: T.τ [T.e] ≥ T.τ [êB] +∆com): .
That the execution did not ter-
minate ∆com real time after it

5: ∃êR ∈ {êB+1, . . . , T.e}, ∀i ∈ N s.t. i 6= T.ent[êB] .
There is a later event for each
entity except the broadcasting
entity

6: where T.τ [êB] +∆com ≥ T.τ [êR] . Within ∆com real time

7: and T.out[êR] = (‘Receive’, T.inp[êB].m) .
Where the broadcast message
was received correctly

8: and T.ent[êR] = i . By the relevant entity)

8.2 AuthBroadcast Model Specifications

In the following subsections we present theMSecKeyShare andMBroadcast
∆com,∆clk

mod-
els, which are later used in the analysis of AuthBroadcast. In Sec. 8.2.1 we describe
the shared-key setup modelMSecKeyShare, which suffices for AuthBroadcast to en-
sure theRAuthComRcv∞ requirement (i.e., authentication of messages). In Sec. 8.2.2
we present MBroadcast

∆com,∆clk
, a model which suffices for AuthBroadcast to ensure the

RBroadcast∆com requirement (i.e., guaranteed delivery of messages).

8.2.1 The MSecKeyShare Secure Shared-Key Initialization Model

We first describe the secure shared-key initialization model MSecKeyShare. We
define MSecKeyShare = (πSecKeyShare, 0). Notice that MSecKeyShare is a generic
model and may be reused for analysis of other shared-key protocols.

The πSecKeyShare model predicate, shown in Algorithm 13, has two objectives.
First, it ensures that only one entity securely shared a key during the protocol’s
execution. The reasoning behind this objective is simplicity. Namely, by ensuring
that only one entity generated and shared an authentication key, we eliminate
more complex scenarios where multiple entities shared a key or cases of key re-
placements. Obviously, such scenarios can be easily supported, however, it would
introduce extra complexity which is not needed to demonstrate the framework.

The second goal of this predicate is to ensure that before any ‘Broadcast’ or
‘Receive’ operation was invoked on any entity i ∈ N, that entity indeed received
the shared key. To that end, the πSecKeyShare model predicate verifies that there
was a relevant ‘Sec-in’ operation of type ‘X ’ invoked on entity i. As discussed
in Sec. 2.3, the ‘Sec-in’ X -operation invokes the ‘Sec-in’ operation of P with the
secure output of some event. The πSecKeyShare model predicate ensures that this
operation was invoked on entity i with the relevant secure output of the event
where the shared-key was generated.
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Finally, we must also make sure that the adversary does not cause an entity
to receive ‘fake’ securely shared values (using the ‘Sec-in’ operation). To do
this, in line 5 of Algorithm 13, we evaluate the predicate πExcl

P[‘Sec-in’], which is
separately shown in Algorithm 14. This ensures that the adversary cannot invoke
the ‘Sec-in’ operation of P directly; instead, only invocations of the ‘Sec-in’
X -operation are allowed. Consequently, only values that were truly returned
through sec-out can be received using ‘Sec-in’.

Algorithm 13 πSecKeyShare(T ) Predicate

1: return > if
(

2:
∃ ê ∈ {1, . . . , T.e} s.t. T.opr[ê] = ‘Key-Gen’ and

∀ê′ ∈ {1, . . . , T.e} s.t. ê′ 6= ê: T.opr[ê′] 6= ‘Key-Gen’
. Only one key was shared

3: and if T.opr[ê′] ∈ {‘Broadcast’, ‘Receive’} . If the authentication key is used

then ∃ ê′′ ∈ {ê + 1, . . . , ê′ − 1} . Then prior to using the key

4:

s.t. T.type[ê′′] = ‘X ’

and T.opr[ê′′] = ‘Sec-in’

and T.ent[ê′′] = T.ent[ê′]

and T.inp[ê′′] = ê

.

The key was securely delivered
to the relevant entity, i.e., the
‘Sec-in’ operation from X was
invoked on that entity, deliv-
ering the secure output of the
‘Key-Gen’ operation to the rele-
vant entity

5: and πExcl
P[‘Sec-in’] .

And A did not use P[‘Sec-in’]
directly)

Algorithm 14 πExcl
P[‘Sec-in’](T ) Predicate

1: return > if
(
@ ê ∈ {1, . . . , T.e} s.t. T.type[ê] = ‘P′ and T.opr[ê] = ‘Sec-in’

)

8.2.2 The MBroadcast
∆com,∆clk

Model

We now describe the modelMBroadcast
∆com,∆clk

= (πBroadcast
∆com,∆clk

, 0), where the πBroadcast
∆com,∆clk

predicate is a conjunction of πDrift
∆clk

(defined in Sec. 3.3), πSecKeyShare (defined in

Sec. 8.2.1), and additionally πBroadcast
∆com

and πf≤∆∆com,∆clk
, which are defined in this

section. Later, in Sec. 8.4, we claim that the AuthBroadcast protocol satisfies
RBroadcast∆com (described in Sec. 8.1) with negligible advantage under model
MBroadcast

∆com,∆clk
.

The πBroadcast
∆com,∆clk

model predicate is a conjunction of four sub-predicates, i.e.:

πBroadcast
∆com,∆clk

= πSecKeyShare ∧ πDrift
∆clk

∧ πBroadcast
∆com ∧ πf≤∆∆com,∆clk

(13)

Where f(∆com, ∆clk) = ∆com + 2∆clk.
That is, we assume that (1) a key is securely shared once among all entities

(πSecKeyShare), (2) real time is monotonically increasing and local time at all
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entities is always within ∆clk drift from the real time (πDrift
∆clk

), (3) there is reliable,

bounded-delay broadcast communication (πBroadcast
∆com

), and (4) ∆com + 2∆clk ≤
params.P.∆, which is needed for the protocol to ensure receipt of valid packets,
as explained below (πf≤∆∆com,∆clk

). We next define the πBroadcast
∆com

and πf≤∆∆com,∆clk
predicates.

The πBroadcast
∆com

model predicate verifies that every ‘Broadcast’ message is
received as input by every other entity (except the broadcasting one) within
∆com real time (assuming that the execution did not end yet before that time).
See Algorithm 15.

Algorithm 15 πBroadcast
∆com

(T ) Predicate

1: return
(

2: ∀êB ∈ {1, . . . , T.e− 1}:

3: if (T.out[êB] = (‘Broadcast’,m, timeSent, tag) .
If the output includes a broadcast
message (with timestamp and tag)

4: and T.τ [T.e] ≥ T.τ [êB] +∆com .
And execution did not terminate
yet after ∆com real time

5: then ∀i ∈ N s.t. i 6= T.ent[êB]: .
Then for each entity except the
broadcasting entity

6: ∃êR ∈ {êB + 1, . . . , T.e} . There is a later event

7: and T.τ [êB] +∆com ≥ T.τ [êR] . Within ∆com real time

8: and T.ent[êR] = i . Where the entity is i

9: and T.opr[êR] = ‘Receive’ . And which is a receive event

10: and T.inp[êR] = (m, timeSent, tag) .
And where the input is the broad-
cast message, timestamp, and tag)

The πf≤∆∆com,∆clk
model predicate, shown in Algorithm 16, checks that the pa-

rameter params.P.∆ is at least as high as some given function f of ∆com and
∆clk. For the AuthBroadcast protocol, we need to use the function f(∆com, ∆clk) =

∆com + 2∆clk. Thus, for this f , the πf≤∆∆com,∆clk
predicate simply checks that

∆com + 2∆clk ≤ params.P.∆. Intuitively, this is necessary for the ‘Broadcast’
protocol to provide guaranteed delivery, because otherwise, although message
packets may arrive, their timestamps might not be within the params.P.∆ in-
terval of the time at the receiver. Then, they would be considered old by the
protocol and would not be received successfully.

Algorithm 16 π
f≤∆
∆com,∆clk

(T ) Predicate

1: return
(
f(∆com, ∆clk) ≤ params.P.∆

)
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8.3 The AuthBroadcast Protocol

The AuthBroadcast protocol is a PPT algorithm with the operations:

(‘Init’, ‘Key-Gen’, ‘Sec-in’, ‘Broadcast’, ‘Receive’)

described in Algorithms 17-21. The protocol uses the following state variables in
entity i: si .1

κ (key length), si .n (length of tags), si .∆ (maximal allowed delay,
for freshness), and si .k (authentication key).

Algorithm 17 AuthBroadcastMAC [‘Init’](s, inp, clk)

1: (i, params.P)← inp

2: if s = ⊥ then . This is the first call to ‘Init’

3: 1κ ← params.P.1κ . Initialize key length

4: n← params.P.n . Initialize tag length

5: ∆← params.P.∆ . Initialize freshness interval

6: k ← ⊥ . Initialize authentication key

7: return (1κ, n,∆, k)

8: end if

9: return ((1κ, n,∆, k),⊥,⊥)

Algorithm 18 AuthBroadcastMAC [‘Key-Gen’](s, inp, clk)

1: s.k R← {0, 1}|s.1
κ| . Choose a shared key uniformly

at random

2: return (s,⊥, s.k) . Share the key by returning it in
sec-out

Algorithm 19 AuthBroadcastMAC [‘Sec-in’](s, inp, clk)

1: if inp 6= ⊥ then s.k ← inp . Save the shared key

2: return (s,⊥,⊥)

Algorithm 20 AuthBroadcastMAC [‘Broadcast’](s, inp, clk)

1: m← inp

2: if (s.k 6= ⊥) then

3: timeSent← clk

4: tag ← MACs.n(s.k,m || timeSent) .
Compute the tag over mes-
sage and local time

5: out = (m, timeSent, tag) .
Return ‘Broadcast’, the mes-
sage, local time, and tag

6: end if

7: return (s, out,⊥)

34



Algorithm 21 AuthBroadcastMAC [‘Receive’](s, inp, clk)

1: (m, timeSent, tag)← inp ; out = ⊥

2: if (s.k 6= ⊥

3: and MACs.n(s.k,m || timeSent) = tag . Check if the tag is valid

4: and clk − timeSent ≤ s.∆): . Check freshness

5: out = (‘Receive’,m) . If all Ok, output m

6: end if

7: return (s, out,⊥)

8.4 Security Analysis

The MoSS framework allows the analysis of the same protocol under differ-
ent models, as we demonstrate here. Specifically, we present the analysis of
AuthBroadcast in several steps, where in each step, we prove that AuthBroadcast
satisfies additional requirements - assuming increasingly stronger models:

1. We first show that AuthBroadcast ensures authentication of received messages
underMSecKeyShare, the simple model for shared-key initialization described
in Sec. 8.2.1; note thatMSecKeyShare is a generic model - it may be reused for
analysis of other shared-key protocols. Namely, we show that AuthBroadcast
satisfies RAuthComRcv∞ with negligible advantage under model MSecKeyShare.

2. We then show that AuthBroadcast also ensures freshness of received mes-
sages under a stronger model that also assumes a weak-level of clock syn-
chronization (bounded clock drift). Namely, we show that for any freshness
interval ∆, AuthBroadcast satisfies RAuthComRcv∆ with negligible advantage
under modelM = (π, 0), where π is the conjunction of πDrift

∆clk
(Algorithm 3)

and πSecKeyShare (Algorithm 13).
3. Finally, we show that AuthBroadcast also ensures guaranteed bounded-delay

delivery of broadcast messages under MBroadcast
∆com,∆clk

(see Sec. 8.2.2), an even
stronger model, that also assumes a bounded delay of communication. Specif-
ically, we show that AuthBroadcast satisfies RBroadcast∆com with negligible
advantage under model MBroadcast

∆com,∆clk
.

Note that by Lemma 3 (Sec. 5), it automatically follows that AuthBroadcast
also satisfies RAuthComRcv∞ with negligible advantage under the stronger mod-
els in points 2 and 3, and similarly, that AuthBroadcast satisfies RAuthComRcv∆

with negligible advantage under the stronger model in point 3. This is because
all three of the models used in this analysis have the same base function and
the predicates are built up incrementally to correspond to increasingly stronger
assumptions about the adversary, synchronization, and communication chan-
nel. This shows one of the nice characteristics of the MoSS framework - having
proven the above three properties, it is easy to show that, e.g., AuthBroadcast
also satisfies RAuthComRcv∆ with negligible advantage under MBroadcast

∆com,∆clk
.

We present each of the above three points below in Theorem 1, consisting of
three claims, and we give proofs of the three claims in Sec. 8.4.1-8.4.3.
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Theorem 1. AuthBroadcast satisfies the properties given in Claims 1-3. Infor-
mally, this means that AuthBroadcast ensures authentication of received mes-
sages assuming shared-key initialization, ensures freshness and authentication
assuming additionally bounded clock drift, and ensures bounded-delay delivery of
broadcast messages assuming additionally a guaranteed, bounded-delay commu-
nication channel.

Claim 1. Let MAC be an asymptotically UF message authentication scheme, as
defined in Appendix A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation is
defined as in Sec. 2.3). Then:

AuthBroadcastMAC |=MSecKeyShare,X
poly

RAuthComRcv∞

Where MSecKeyShare is defined in Sec. 8.2.1 and RAuthComRcv∆ is described in
Sec. 8.1.

Claim 2. Let MAC be an asymptotically UF message authentication scheme, as
defined in Appendix A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation
is defined in Sec. 2.3). Let ∆ = params.P.∆ + 2∆clk. Let M = (π, 0), where
π = πSecKeyShare ∧ πDrift

∆clk
. Then:

AuthBroadcastMAC |=M,X
poly

RAuthComRcv∆

Where RAuthComRcv∆ is described in Sec. 8.1.

Claim 3. Let MAC be a message authentication scheme, as defined in Appendix
A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation is defined in Sec. 2.3).
Then:

AuthBroadcastMAC |=
MBroadcast

∆com,∆clk
,X

poly
RBroadcast∆com

WhereMBroadcast
∆com,∆clk

is defined in Sec. 8.2.2 andRBroadcast∆com is defined in Sec. 8.1.

8.4.1 Proof of Claim 1

In this section, we prove Claim 1 of Theorem 1 - that AuthBroadcast ensures au-
thentication of received messages assuming shared-key initialization. The claim
is restated below.

Claim 1. Let MAC be an asymptotically UF message authentication scheme, as
defined in Appendix A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation is
defined as in Sec. 2.3). Then:

AuthBroadcastMAC |=MSecKeyShare,X
poly

RAuthComRcv∞

Where MSecKeyShare is defined in Sec. 8.2.1 and RAuthComRcv∆ is described in
Sec. 8.1.

We prove Claim 1 by contradiction - namely, by showing that if AuthBroadcastMAC

does not satisfyRAuthComRcv∞ with negligible advantage under modelMSecKeyShare

using execution operations X , then MAC is not asymptotically UF.
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Sketch of the Proof of Claim 1.

We complete the proof in three steps:
1. We first define an algorithm A′ and describe how it works. This includes

defining a modified version of AuthBroadcastMAC , called AuthBroadcast, which
uses OTag(·) and and OVer(·, ·) instead of MACs.n(s.k, ·) to tag and authen-
ticate messages.

2. Then we show that if AuthBroadcastMAC does not satisfy RAuthComRcv∞ with
negligible advantage under model MSecKeyShare using execution operations

X , then there exists a PPT adversaryA |=X
poly
MSecKeyShare that for some value

of params has non-negligible advantage (for requirement RAuthComRcv∆ and
execution-operations set X ) to ‘win’ against the AuthBroadcast protocol (i.e.,
the AuthBroadcast protocol also does not satisfyRAuthComRcv∞ with negligible
advantage under model MSecKeyShare using execution operations X ).

3. Lastly, we show that A′, using such A as a subroutine, can ‘win’ the game
ExpUF

A′,MAC(params.P.n, params.P.1κ) with non-negligible advantage, which
implies that MAC is not an asymptotically UF message authentication scheme.

The Adversary A′ and the Protocol AuthBroadcast

A′ works as follows:
1. Assume that A′ is given some values of n, 1κ and has access to oracles

OTag(·) and OVer(·, ·). The OTag(·) oracle takes a message m as input and
returns MACn(k,m), where k is a key chosen uniformly from {0, 1}|1κ| and
unknown to A′. The OVer(·, ·) oracle takes inputs m and tag and returns >
if MACn(k,m) = tag and ⊥ otherwise.

2. A′ modifies the code for AuthBroadcastMAC into AuthBroadcast. Specifically,
line 4 in the ‘Broadcast’ function of AuthBroadcast (see Algorithm 20) is
replaced by:

tag ← OTag(m || timeSent)
A′ also changes line 3 in the ‘Receive’ function of AuthBroadcast (see Algo-
rithm 21) to:

and OVer(m || timeSent, tag) = >
3. A′ executes T ← ExecXA,AuthBroadcast(params), where X is {‘Sec-in’}, params.P.n =

n, params.P.1κ = 1κ, and A is a PPT subroutine algorithm (discussed be-
low).

4. A′ searches T for an event êR such that the output of êR is (‘Receive’,m), yet
there is no previous ‘Broadcast’ event êB where the input is m. If A′ finds
such an event, it outputs T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag;

otherwise it outputs a pair of randomly chosen strings x
R← {0, 1}n, tag R←

{0, 1}n.

The Adversary A
Recall, from Definition 3, that if AuthBroadcastMAC does not satisfyRAuthComRcv∞

with negligible advantage under modelMSecKeyShare using execution operations
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X = {‘Sec-in’}, then there exists a PPT adversary A |=X
poly
MSecKeyShare such that

for some value of params ∈ {0, 1}∗ holds:

ε
RAuthComRcv∞
A,AuthBroadcastMAC ,X (params) /∈ Negl(params.P.1κ) (14)

Where:

ε
RAuthComRcv∞
A,AuthBroadcastMAC ,X (params) ≡

Pr

[
πAuthComRcv∞ (T ) = ⊥ :

T ← ExecXA,AuthBroadcastMAC (params)

]
− 2−params.P.n

(15)

We show now that Equation 14 implies Equation 16, as stated in Lemma 11
below. Note that the difference between Eq. 14 and Eq. 16 is the protocol -
AuthBroadcastMAC is changed to AuthBroadcast.

Lemma 11. Suppose that there exists a PPT adversary A |=X
poly
MSecKeyShare

satisfying Equation 14 for some params ∈ {0, 1}∗. Then holds:

ε
RAuthComRcv∞
A,AuthBroadcast,X (params) /∈ Negl(params.P.1κ) (16)

Where:

ε
RAuthComRcv∞ ,StepCount

A,AuthBroadcast,X (params) ≡

Pr

[
πAuthComRcv∞ (T ) = ⊥ :

T ← ExecXA,AuthBroadcast(params)

]
− 2−params.P.n

(17)

Proof of Lemma 11.

From Equation 14, A is a PPT algorithm that, for some params ∈ {0, 1}∗ is able
to cause the AuthBroadcastMAC protocol to correctly receive a message without
previously broadcasting that message (with non-negligible advantage). Recall
that, according to Alg. 20, the ‘Broadcast’ function of the protocol outputs
the message m, local time timeSent, and tag MACparams.P.n(k,m || timeSent),
where k is unknown to A due to secure key sharing (except for only negli-
gible probability, as ensured by M). Also recall that, according to Alg. 21,
the ‘Receive’ function of the protocol, for inputs m, timeSent, tag, verifies that
MACparams.P.n(k,m || timeSent) = tag and that the local time at the receiver
minus the timestamp is ≤ params.P.∆. This means that, with non-negligible
advantage, A is able to output a message m, timestamp timeSent, and tag tag
such that MACparams.P.n(k,m || timeSent) = tag.

The only difference between executions of ExecXA,AuthBroadcastMAC (params) and

executions of ExecXA,AuthBroadcast(params) is that in ExecXA,AuthBroadcast(params),

messages are authenticated using the OTag and OVer oracles instead of using
MACparams.P.n(k, ·), where k is a key chosen uniformly from {0, 1}|params.P.1κ|,
shared securely among the entities, and unknown toA. But OTag(·) uses MACparams.P.n
to compute a tag over a message, OVer(·, ·) uses MACparams.P.n to verify that
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a tag is correct, and both oracles use the same key chosen uniformly from
{0, 1}|params.P.1κ|. This implies that A must also be able to output a message
m, timestamp timeSent, and tag tag such that OVer(m || timeSent, tag) = >
(and moreover the receiver’s local time minus timeSent is ≤ params.P.∆) with
non-negligible advantage, even with only negligible probability of being given
‘correct’ values of tag and timeSent as outputs of a ‘Broadcast’ event or the key
used by the oracles. Therefore, A satisfies Equation 16.

Completing the proof of Claim 1

We can now complete the proof of Claim 2. That is, we show that adversary A′
using A wins the ExpUF

A′,MAC(n, 1κ) game with non-negligible advantage.
For convenience, we restate the claim here:

Claim 1. Let MAC be an asymptotically UF message authentication scheme, as
defined in Appendix A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation is
defined as in Sec. 2.3). Then:

AuthBroadcastMAC |=MSecKeyShare,X
poly

RAuthComRcv∞

Where MSecKeyShare is defined in Sec. 8.2.1 and RAuthComRcv∆ is described in
Sec. 8.1.

Proof. Suppose that AuthBroadcastMAC does not satisfy RAuthComRcv∆ underM.
Then Equation 14 holds (from Definition 3).

Now suppose that we run the game ExpUF
A′,MAC(n, 1κ), where A′ uses the al-

gorithm A discussed above. In the ExpUF
A′,MAC(n, 1κ) game (Def. 22), the OTag(·)

oracle uses the algorithm MACn to compute tags over messages, the OVer(·, ·)
oracle uses the algorithm MACn to verify tags over messages, and both oracles
use the same key chosen uniformly from {0, 1}|1κ|. These are the oracles that A′
uses in the AuthBroadcast protocol.

By Lemma 11, Equation 16 holds. This means that when A′ runs T ←
ExecXA,AuthBroadcast(params), it has non-negligible advantage to find that T con-

tains an event êR such that the output of êR is (‘Receive’,m), yet there is no
previous ‘Broadcast’ event êB where the input is m. Whenever this is the case,
A′ outputs T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag. Notice that there
was no ‘Broadcast’ operation that could correspond to sending m with times-
tamp timeSent, which means that there was no such corresponding query to
the OTag oracle. Recall that the base function of the RAuthComRcv∆ require-
ment is 2−params.P.n. This implies A′ has non-negligible advantage to win the
ExpUF

A,MAC(n, 1κ) game, i.e.:

max{0,Pr
[
ExpUF

A,MAC(n, 1κ) = >
]
− 2−params.P.n} /∈ Negl(1κ) (18)

Therefore, MAC is not asymptotically UF (according to Def. 12 in Appx. A).
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8.4.2 Proof of Claim 2

In this section, we prove Claim 2 of Theorem 1 - that AuthBroadcast ensures
freshness and authentication assuming shared-key initialization and bounded
clock drift. Note that this proof is similar to the proof of Claim 2 of Theorem 1
(see Sec. 8.4.1), with some changes due to the bounded clock drift assumption
and the freshness requirement. We first restate the claim below.

Claim 2. Let MAC be an asymptotically UF message authentication scheme, as
defined in Appendix A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation
is defined in Sec. 2.3). Let ∆ = params.P.∆ + 2∆clk. Let M = (π, 0), where
π = πSecKeyShare ∧ πDrift

∆clk
. Then:

AuthBroadcastMAC |=M,X
poly

RAuthComRcv∆

Where RAuthComRcv∆ is described in Sec. 8.1.

We prove Claim 2 by contradiction - namely, by showing that if AuthBroadcastMAC

does not satisfy RAuthComRcv∆ with negligible advantage under model M using
execution operations X , then MAC is not asymptotically UF.

Sketch of the Proof of Claim 2.

We complete the proof in three steps:
1. We first define an algorithm A′ and describe how it works. This includes

defining a modified version of AuthBroadcastMAC , called AuthBroadcast, which
uses OTag and OVer instead of MACs.n(s.k, ·) to tag and authenticate mes-
sages.

2. Then we show that if AuthBroadcastMAC does not satisfy RAuthComRcv∆ with
negligible advantage under model M using execution operations X , then

there exists a PPT adversary A |=X
poly
M that for some value of params

has non-negligible advantage (for requirement RAuthComRcv∆ and execution-
operations set X ) to ‘win’ against the AuthBroadcast protocol (i.e., the
AuthBroadcast protocol also does not satisfy RAuthComRcv∆ with negligible
advantage under model M using execution operations X ).

3. Lastly, we show that A′, using such A as a subroutine, can ‘win’ the game
ExpUF

A′,MAC(params.P.n, params.P.1κ) with non-negligible advantage, which
implies that MAC is not an asymptotically UF message authentication scheme.

The Adversary A′ and the Protocol AuthBroadcast

A′ works as follows:
1. Assume that A′ is given some values of n, 1κ and has access to oracles

OTag(·) and OVer(·, ·). The OTag(·) oracle takes a message m as input and
returns MACn(k,m), where k is a key chosen uniformly from {0, 1}|1κ| and
unknown to A′. The OVer(·, ·) oracle takes inputs m and tag and returns >
if MACn(k,m) = tag and ⊥ otherwise.

40



2. A′ modifies the code for AuthBroadcastMAC into AuthBroadcast. Specifically,
line 4 in the ‘Broadcast’ function of AuthBroadcast (see Algorithm 20) is
replaced by:

tag ← OTag(m || timeSent)
A′ also changes line 3 in the ‘Receive’ function of AuthBroadcast (see Algo-
rithm 21) to:

and OVer(m || timeSent, tag) = >
3. A′ executes T ← ExecXA,AuthBroadcast(params), where X is {‘Sec-in’}, params.P.n =

n, params.P.1κ = 1κ, and A is a PPT subroutine algorithm (discussed be-
low).

4. A′ searches T for an event êR such that the output of êR is (‘Receive’,m),
yet there is no previous ‘Broadcast’ event êB where the input is m and where
the ‘Broadcast’ event happened within params.P.∆+2∆clk real time of the
event êR (where ∆clk is the value assumed in the model M). If A′ finds
such an event, it outputs T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag;

otherwise it outputs a pair of randomly chosen strings x
R← {0, 1}n, tag R←

{0, 1}n.

The Adversary A
Recall, from Definition 3, that if AuthBroadcastMAC does not satisfyRAuthComRcv∆

with negligible advantage under model M using execution operations X =

{‘Sec-in’}, then there exists a PPT adversary A |=X
poly
M such that for some value

of params ∈ {0, 1}∗ holds:

ε
RAuthComRcv∆

A,AuthBroadcastMAC ,X (params) /∈ Negl(params.P.1κ) (19)

Where ∆ = params.P.∆+ 2∆clk and:

ε
RAuthComRcv∆

A,AuthBroadcastMAC ,X (params) ≡

Pr

[
πAuthComRcv∆ (T ) = ⊥ :

T ← ExecXA,AuthBroadcastMAC (params)

]
− 2−params.P.n

(20)

We show now that Equation 19 implies Equation 21, as stated in Lemma 12
below. Note that the difference between Eq. 19 and Eq. 21 is the protocol -
AuthBroadcastMAC is changed to AuthBroadcast.

Lemma 12. Suppose that there exists a PPT adversary A |=X
poly
M satisfying

Equation 19 for some params ∈ {0, 1}∗. Then holds:

ε
RAuthComRcv∆

A,AuthBroadcast,X (params) /∈ Negl(params.P.1κ) (21)

Where ∆ = params.P.∆+ 2∆clk and:

ε
RAuthComRcv∆

,StepCount

A,AuthBroadcast,X (params) ≡

Pr

[
πAuthComRcv∆ (T ) = ⊥ :

T ← ExecXA,AuthBroadcast(params)

]
− 2−params.P.n

(22)
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Proof of Lemma 12.

From Equation 19, A is a PPT algorithm that, for some params ∈ {0, 1}∗ is able
to cause the AuthBroadcastMAC protocol to correctly receive a message without
previously broadcasting that message within the last params.P.∆+ 2∆clk real
time (with non-negligible advantage). Recall that, according to Alg. 20, the
‘Broadcast’ function of the protocol outputs the message m, local time timeSent,
and tag MACparams.P.n(k,m || timeSent), where k is unknown toA due to secure
key sharing (except for only negligible probability, as ensured byM). Also recall
that, according to Alg. 21, the ‘Receive’ function of the protocol, for inputs
m, timeSent, tag, verifies that MACparams.P.n(k,m || timeSent) = tag and that
the local time at the receiver minus the timestamp is ≤ params.P.∆. This means
that A is able to output a message m, timestamp timeSent, and tag tag such
that MACparams.P.n(k,m || timeSent) = tag. But since M ensures that local
time is always within ∆clk of the real time (except with negligible probability),
this implies that, except with negligible probability, ‘correct’ values of the tag
and timestamp (i.e., values that would allow the message to be received) are only
output at such ‘Broadcast’ events where the real time of the ‘Broadcast’ event
is within params.P.∆+ 2∆clk of the real time of the ‘Receive’ event. Therefore,
except with negligible probability, A is not given such ‘correct’ values or the
key k, yet, with non-negligible advantage, A is able to output a message m,
timestamp timeSent, and tag tag such that MACparams.P.n(k,m || timeSent) =
tag and the receiver’s local time minus timeSent is ≤ params.P.∆.

The only difference between executions of ExecXA,AuthBroadcastMAC (params) and

executions of ExecXA,AuthBroadcast(params) is that in ExecXA,AuthBroadcast(params),

messages are authenticated using the OTag and OVer oracles instead of using
MACparams.P.n(k, ·), where k is a key a key chosen uniformly from {0, 1}|params.P1κ|,
shared securely among the entities, and unknown toA. But OTag(·) uses MACparams.P.n
to compute a tag over a message, OVer(·, ·) uses MACparams.P.n to verify a
tag over message, and both oracles use the same key chosen uniformly from
{0, 1}|params.P1κ|. This implies that A must also be able to output a message m,
timestamp timeSent, and tag tag such that OVer(m || timeSent, tag) = > and
the receiver’s local time minus timeSent is ≤ params.P.∆ with non-negligible
advantage, even with only negligible probability of being given ‘correct’ values
of tag and timeSent as outputs of a ‘Broadcast’ event or the key used by the
oracles. Therefore, A satisfies Equation 21.

Completing the proof of Claim 2

We can now complete the proof of Claim 2. That is, we show that adversary A′
using A wins the ExpUF

A′,MAC(n, 1κ) game with non-negligible advantage.
For convenience, we restate the claim here:

Claim 2. Let MAC be an asymptotically UF message authentication scheme, as
defined in Appendix A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation
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is defined in Sec. 2.3). Let ∆ = params.P.∆ + 2∆clk. Let M = (π, 0), where
π = πSecKeyShare ∧ πDrift

∆clk
. Then:

AuthBroadcastMAC |=M,X
poly

RAuthComRcv∆

Where RAuthComRcv∆ is described in Sec. 8.1.

Proof. Suppose that AuthBroadcastMAC does not satisfy RAuthComRcv∆ underM.
Then Equation 19 holds (from Definition 3).

Now suppose that we run the game ExpUF
A′,MAC(n, 1κ), where A′ uses the al-

gorithm A discussed above. In the ExpUF
A′,MAC(n, 1κ) game (Def. 22), the OTag(·)

oracle uses the algorithm MACn to compute tags over a message, the OVer(·, ·)
oracle uses the algorithm MACn to verify tags over messages, and both oracles
use the same key chosen uniformly from {0, 1}|1κ|. These are the oracles that A′
uses in the AuthBroadcast protocol.

By Lemma 12, Equation 21 holds. This means that when A′ runs T ←
ExecXA,AuthBroadcast(params), it has non-negligible advantage to find that T con-

tains an event êR such that the output of êR is (‘Receive’,m), yet there is no
previous ‘Broadcast’ event êB where the input is m and where the ‘Broadcast’
event happened within params.P.∆+2∆clk real time of the event êR. Whenever
this is the case, A′ outputs T.inp[êR].m || T.inp[êR].timeSent, T.inp[êR].tag. No-
tice that there was no ‘Broadcast’ operation that could correspond to sending m
with timestamp timeSent, which means that there was no such corresponding
query to the OTag oracle. Recall that the base function of the RAuthComRcv∆ re-
quirement is 2−params.P.n. This implies A′ has non-negligible advantage to win
the ExpUF

A,MAC(n, 1κ) game, i.e.:

max{0,Pr
[
ExpUF

A,MAC(n, 1κ) = >
]
− 2−params.P.n} /∈ Negl(1κ) (23)

Therefore, MAC is not asymptotically UF (according to Def. 12 in Appx. A).

8.4.3 Proof of Claim 3

In this section, we prove Claim 3 of Theorem 1 - that AuthBroadcast ensures
bounded-delay delivery of broadcast messages assumingMBroadcast

∆com,∆clk
. The claim

is restated below.

Claim 3. Let MAC be a message authentication scheme, as defined in Appendix
A. Let X be {‘Sec-in’} (where the ‘Sec-in’ X -operation is defined in Sec. 2.3).
Then:

AuthBroadcastMAC |=
MBroadcast

∆com,∆clk
,X

poly
RBroadcast∆com

WhereMBroadcast
∆com,∆clk

is defined in Sec. 8.2.2 andRBroadcast∆com is defined in Sec. 8.1.

We prove Claim 3 by contradiction - we show that if AuthBroadcastMAC does
not satisfy RBroadcast∆com with negligible advantage under modelMBroadcast

∆com,∆clk
us-

ing execution operations X , then MAC does not satisfy the definition of message
authentication scheme.
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Proof. From Definition 3, if AuthBroadcastMAC does not satisfy RBroadcast∆com
with negligible advantage under model MBroadcast

∆com,∆clk
using execution operations

X , then there exists a PPT adversary A |=X
poly
MBroadcast

∆com,∆clk
such that for some

params ∈ {0, 1}∗ holds:

ε
RBroadcast∆com

A,AuthBroadcastMAC ,X (params) /∈ Negl(params.P.1κ) (24)

Where

ε
RBroadcast∆com

A,AuthBroadcastMAC ,X (params) ≡ Pr

[
πBroadcast∆com (T ) = ⊥ :

T ← ExecXA,AuthBroadcastMAC (params)

]
(25)

That is, the adversary A is able to prevent the successful reception of a broadcast
message with non-negligible probability.

However, the modelMBroadcast
∆com,∆clk

ensures that, except for negligible probabil-
ity, if the output of an event is (‘Broadcast’,m, timeSent, tag) (i.e., some entity
i broadcasts a message), then for every other entity j, there is a later ‘Receive’
event at j within ∆com real time where (m, timeSent, tag) is received as input,
(see Alg. 15) and ∆com + 2∆clk ≤ params.P.∆ (see Algorithm 16).

Recall that, according to Alg. 20, the ‘Broadcast’ function of AuthBroadcastMAC ,
for input messagem, outputs (‘Broadcast’,m, timeSent,MACparams.P.n(k,m || timeSent)),
where params.P.n is the length of tags used, timeSent is the local time, and
k is a key shared securely among all entities (except for negligible probability,
as ensured by MBroadcast

∆com,∆clk
). Also recall that, according to Alg. 21, the ‘Receive’

function of the AuthBroadcast protocol, for inputs m, timeSent, tag, verifies that
MACparams.P.n(k,m || timeSent) = tag and that the local time at the receiver
minus the timestamp is ≤ params.P.∆. If this holds, the ‘Receive’ function
outputs (‘Receive’,m).

Thus, sinceA |=X
poly
MBroadcast

∆com,∆clk
, then, with overwhelming probability, for every

‘Broadcast’ event with input m at entity i, for every other entity j, there is a later
‘Receive’ event at j within∆com real time where (m, timeSent,MACparams.P.n(k,m || timeSent))
is received as input. SinceMBroadcast

∆com,∆clk
ensures that ∆com+2∆clk ≤ params.P.∆

and that local time is always within ∆clk of the real time (except with negligi-
ble probability), then the local time at the receiver minus the timestamp is ≤
params.P.∆. Consequently, if some message is broadcast, yet the message is not
successfully received, then there must be some nonzero probability that the rea-
son is that MACparams.P.n(k,m || timeSent) 6= MACparams.P.n(k,m || timeSent)
(in the ‘Receive’ function), which means that MAC returns different values when
evaluated multiple times on the same inputs, which means that it is not a de-
terministic function. This contradicts Definition 11 in Appx. A, implying that
MAC is not a message authentication scheme.

9 Conclusions and Future Work

The MoSS framework allows analysis of applied cryptographic protocols, with
different communication, synchronization and adversary models. Security in MoSS
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is defined with respect to the execution process in Algorithm 1, and given model
and requirement specifications. MoSS allows comparison of protocols based on
the requirements they satisfy and the models they assume. Definitions of models
and requirements may be reused across different protocols and schemes.

Future work includes the important challenges of (1) extending the MoSS
framework to support secure compositions, as in UC, and (2) using computer-
aided proofs with the framework.
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A Message Authentication Scheme

In this section, we provide definitions for message authentication scheme and
unforgeable message authentication scheme.

Definition 11. A message authentication scheme MAC is a deterministic algo-
rithm MACn(k,m) → tag, with inputs tag length n, shared key k, and message
m, and output n-bit tag tag.

Definition 12 (Asymptotically Unforgeable). We call a message authen-
tication scheme MAC asymptotically unforgeable (asymptotically UF) if for
every PPT adversary A, tag length n, and 1κ, the maximum of 0 and probability
that A ‘wins’ the game ExpUF

A,MAC(n, 1κ) minus 2−n is negligible in 1κ, i.e.:

∀ A ∈ PPT, n ∈ N, 1κ :

max{0, P r[ExpUF
A,MAC(n, 1κ) = >]− 2−n} ∈ Negl(1κ)

(26)

where ExpUF
A,MAC(n, 1κ) is defined in Algorithm 22. In the opposite case, if there

exists an adversary A such that max{0, P r[ExpUF
A,MAC(n, 1κ) = >] − 2−n} /∈

Negl(1κ) for some n, 1κ, we say that A wins the game with non-negligible ad-
vantage.

Algorithm 22 ExpUF
A,MAC(n, 1κ)

1: k R← {0, 1}|1
κ|

2: S = ∅

3: define: OTag(m) : tag ← MACn(k,m)

S ← S ∪ {m}

return tag

4: define: OVer(m, tag) : if MACn(k,m) = tag then return >

else return ⊥

5: m′, tag′ ← AOTag(·),OVer(·,·)(n, 1κ)

6: if m′ /∈ S and OVer(m′, tag′) = > then return >

7: else return ⊥

8: end if
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B Additional Specification Predicates

B.1 Model Predicates

B.1.1 π|F|≤f : up to f Byzantine (Malicious) Faults

We next define π|F|≤f , a specific adversary model predicate allowing the adver-
sary to choose, and completely control, up to f of the entities in N. We refer
to such failures, where the adversary is allowed to completely control the entity,
as malicious or Byzantine faults. We use f as a function applied to the total
number of entities |N|. We refer to this particular faults model asM|F|≤f , where
f : N→ N bounds the number of faulty entities as a function of the total num-
ber of entities. Specifically, the adversary may corrupt entities by performing
the ‘Get-state’, ‘Set-state’, and ‘Set-output’ operations of the set X . To enforce
the model predicate, we simply ensure that the ‘Get-state’, ‘Set-state’, and ‘Set-
output’ operations can be applied only to entities in T.F, and that |T.F| ≤ f(|N|).
We define the π|F|≤f predicate in Algorithm 23.

Algorithm 23 π|F|≤f (T ) Predicate

1: return
(

2: (|T.F| ≤ f (|T.N|)) . Max size of T .F is not exceeded

3: and ∀ê ∈ {1, . . . , T.e} : . For each event

4:
if T.opr[ê] ∈ {‘Get-state’, ‘Set-state’, ‘Set-output’} and

T.type[ê] = ‘X ’
.

If the operation means the ad-
versary controls the entity

5: then T.ent[ê] ∈ T.F . Then entity is in T .F)

B.1.2 πAuthCom
∆com

: authentic-sender, bounded-delay communication

We next presentMAuthCom
∆com

, an authentic-sender, bounded-delay communication

model predicate. It is convenient to define πAuthCom
∆com

as a conjunction of two

simpler predicates: πAuthCom-rcv
∆com

, ensuring authentic-sender for message-receive

events, and πCom
∆com

, ensuring reliable, bounded-delay for message-send events.
Namely:

πAuthCom
∆com (T ) = πCom

∆com(T ) ∧ πAuthCom-rcv
∆com (T ) (27)

We first present πAuthCom-rcv
∆com

, which ensures authentic-sender for message-receive
events. The adversary decides on the function opr[êR] to be invoked at every
event êR as well as the input inp[êR]. We assume a convention for send and
receive events as follows. The adversary causes a message receipt event by setting
opr[êR] to ‘Receive’ and inp[êR] to (m, iS) (where m is the message and iS ∈ N is
the purported sender). We use dot notation to refer to the message (inp[êR].m)
and to the sender (inp[êR].iS). Also, we allow the sender ent[êS] to specify, as part
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of its output out[êS], one or more triplets of the form (‘send’,m, iR), indicating
the sending of message m to iR ∈ N.

The authentic-sender property (πAuthCom-rcv
∆com

model predicate) implies that
inp[êR].iS indeed sent this message to ent[êR], during some previous event êS <
êR. The πAuthCom-rcv

∆com
model predicate is shown in Algorithm 24.

Algorithm 24 πAuthCom-rcv
∆com

(T ) Predicate

1: return
(

2: ∀êR ∈ {1, . . . , T.e}:

3: if T.opr[êR] = ‘Receive’: . For each message-receive event

4: and T.ent[êR], T.inp[êR].iS ∈ T.N− T.F . If both receiver and purported
sender are honest

5: then ∃êS ∈ {1, . . . , êR − 1} . Then there is a previous event

6: s.t. (‘send’, T.inp[êR].m, T.ent[êR]) ∈ T.out[êS] .
In which an entity sent the mes-
sage to the receiver

7: and T.ent[êS] = T.inp[êR].iS .
And that entity was the pur-
ported sender)

The πCom
∆com

model predicate ensures reliable, bounded-delay delivery of mes-
sages sent. Assume that at event êS of the execution, the output out[êS] gen-
erated by ent[êS], includes a (‘send’,m, j) triplet, i.e., ent[êS] sends message m
to j ∈ N. If the MCom

∆com
model predicate is true for this execution, then after

at most ∆com, if the execution did not terminate already, then entity j would
receive m from ent[êS]. The πCom

∆com
model predicate is shown in Algorithm 25.

Algorithm 25 πCom
∆com

(T ) Predicate

1: return
(

2: ∀êS ∈ {1, . . . , T.e− 1}:

3: if ( ∃(‘send’,m, iR) ∈ T.out[êS] . If the output includes a send triple

4: and T.τ [T.e] ≥ T.τ [êS] +∆com .
And execution did not terminate yet af-
ter ∆com real time

5: and T.ent[êS] ∈ T.N− T.F ) . And the entity is honest

6: then ∃êR ∈ {êS + 1, . . . , T.e} . Then there is a later event

7: s.t. T.τ [êS] +∆com ≥ T.τ [êR] . Within ∆com real time

8: and T.ent[êR] = iR .
Where the entity is the intended recipi-
ent in the send triple

9: and T.opr[êR] = ‘Receive’ . And which is a receive event

10: and T.inp[êR] = (m,T.ent[êS]) .
And in which the entity receives the
message from the sender)
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We remark that: πAuthCom
∆com

only applies when both sender and recipient are

honest (i.e., in N − F); πAuthCom
∆com

only ensures delivery, sender authentication
and bounded delay. This still allows receipt of duplicate messages, which may
involve unbounded delay. To simplify πCom

∆com
, we use the adversary-controlled

τ [·] values (line 6 of Algorithm 1). For this to be meaningful, we depend on the
synchronization properties of the πCLK

∆clk
model predicate, discussed next.

B.1.3 πCLK
∆clk

: bounded-drift clock synchronization assumptions

We present πCLK
∆clk

, which models the bounded-drift clock synchronization assump-

tions. We split this into two predicates: πDrift
∆clk

, which limits the drift between the
clock values clk[ê] (provided by the adversary as input to the protocol) and the

real time values τ [ê]; and πWake-up
∆clk

, which provides a ‘wake-up service’ to the
protocol. Namely:

πCLK
∆clk

(T ) = πDrift
∆clk

(T ) ∧ πWake-up
∆clk

(T ) (28)

πDrift
∆clk

is presented in Algorithm 3.

πWake-up
∆clk

provides a ‘wake-up service’ allowing the protocol to perform time-
driven activities and ensuring that appropriate functions are invoked properly.
This is ensured by requiring that if (‘Sleep’, x) was part of the output out[ê]
(indicating that entity ent[ê] was ‘put to sleep’ for x time) and execution did
not terminate by ’real’ time τ [ê] + x + ∆clk, then at some event ê′ > ê (where
τ [ê′] was within ∆clk from τ [ê] +x), the same entity (ent[ê]) was indeed ‘Woken

up’. The πWake-up
∆clk

predicate appears in Algorithm 26.

Algorithm 26 πWake-up
∆clk

(T ) Predicate

1: return
(

2: ∀ê ∈ {1, . . . , T.e}: . For each event ê

3: if
(

(‘Sleep’, x) ∈ T.out[ê] . If the output includes a (‘Sleep’, x) tuple

4: and T.τ [T.e] ≥ T.τ [ê]+x+∆clk
)

.
And execution did not terminate yet af-
ter x+∆clk real time

5: then ∃ê′ ∈ {ê + 1, . . . , T.e} . Then there is a later event

6: s.t. |T.τ [ê′]−T.τ [ê]− x| ≤ ∆clk .
With real time x greater than at ê
(within ∆clk)

7: and T.ent[ê′] = T.ent[ê] . In which the entity is the same as in ê

8: and T.opr[ê′] = ‘Wake-up’ . And the operation is ‘Wake-up’)

B.1.4 πr̂-rounds
SecInit : the r̂-rounds Secure Initialization

Cryptographic protocols are often designed assuming a secure initialization pro-
cess, e.g., assuming shared secret keys. However, in the execution process (Al-
gorithm 1), entities can only communicate via the adversary. As a result, we
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cannot simply assume shared secret keys, but the entities can use their local
randomness to generate secret keys, and they can communicate, using cryptog-
raphy, to securely establish shared secret values. We next define a simple secure

initialization model predicate, πr̂-rounds
SecInit . This model predicate ensures r̂ secure

‘rounds’ of |N| events each, where in event ê (where 1 ≤ ê ≤ r̂ · |N|) holds:

– Entities are invoked with the special operation ‘Init’, i.e., opr[ê] = ‘Init’, and
in ‘round robin’, i.e., ent[ê] = ê mod |N| (where N = {1, 2, . . .}). Note, in
particular, that this prevents the adversary, during the initialization, from
invoking the special ‘Set-state’, ‘Set-output’, and ‘Get-state’ operations to
control the state or output of an entity (‘Set-state’ or ‘Set-output’) or to
expose the state of an entity (‘Get-state’).

– Authenticated, reliable communication. Namely, every message received by
entity iR from entity iS at round 2 ≤ r ≤ r̂, was indeed sent by iS in the
previous round to iR; and vice verse, i.e., every message sent by iS to iR at
round 1 ≤ r ≤ (r̂ − 1), is correctly received by iR, from sender iS, in the
next round.

It is convenient to capture each of these two aspects by a separate model
predicate, i.e.:

πr̂-rounds
SecInit (T ) = πr̂-rounds

InitOps (T ) ∧ πr̂-rounds
InitCom (T ) (29)

where πr̂-rounds
InitOps captures the first aspect (‘operations’) and πr̂-rounds

InitCom captures
the second aspect (‘communications’). We now define each of these more pre-

cisely; for convenience, let N = {1, 2, . . .}. The πr̂-rounds
InitOps predicate is shown in

Algorithm 27.

Algorithm 27 πr̂-rounds
InitOps (T ) Predicate

1: return
(

2: ∀i ∈ T.N, r ∈ {0, . . . , r̂ − 1} : . For each entity i and each round r

3: (T.ent[i + r · |T.N|] = i) . ‘Round robin’

4: and (T.opr[i + r · |T.N|] = ‘Init’) . Operation is ‘Init’)

To define the πr̂-rounds
InitCom (sub)model predicate, we assume the following con-

ventions. To cause an entity to receive a message, the adversary includes the
triple (‘auth init recv’,m, iS) (where m is the message and iS ∈ N is the pur-
ported sender) as part of the input inp[êR]. The sender indicates the sending
of message m to iR ∈ N by specifying, as part of its output out[êS], a triplet

(‘auth init send’,m, iR). The πr̂-rounds
InitCom predicate is shown in Algorithm 28.
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Algorithm 28 πr̂-rounds
InitCom (T ) Predicate

1: return
(

2: ∀iS, iR ∈ T.N, r ∈ {0, . . . , r̂ − 2}, m ∈ {0, 1}∗ : .

For pairs of entities in
T .N, for each round ex-
cept the last one, and
for any message m

3: (‘auth init send’,m, iR) ∈ T.out[iS + r′ · |T.N|] . iS sends m to iR

4: if and only if

5: (‘auth init recv’,m, iS) ∈ T.inp[iR+(r′+1)·|T.N|] . iR receives m from iS in
the next round)

B.2 Requirement Predicates

B.2.1 Verifiable Attribution of Statements (VAS)

The output of many protocols may include attributable statements. An attributable
statement is a tuple (m,σ, i), where m is a string, i ∈ N is the purported ori-
gin of the statement, and σ provides evidence (typically, a signature), allowing
attribution of statement m to entity i. We next explain the validation process,
which uses the evidence σ to establish if i has, in fact, originated m.

We focus on the typical case, where attribution is based on the use of a
digital signature scheme S, applied by the protocol P. Namely, σ is the result of
applying the signing algorithm S.Sign to the message m, using some (private)
signing key sk belonging to the origin i. Therefore, we say that the attributable
statement (m,σ, i) is valid, i.e., that σ really ‘proves’ that i is the origin of m, if
S.Ver(pk,m, σ) = >, where pk is the public signature-verification key of i, i.e.,
the public key that validates signatures computed using sk. This attributes the
message m to the ‘owner’ of the public key pk (and the corresponding signing
key sk). To attribute m to i, it remains to establish the association between i
and the public key pk, i.e., to attribute pk, and messages verified by it, to i. We
focus on protocols where this association is known and secure (‘off-band’), e.g.,
CA public keys in PKI schemes.

We formalize this by assuming that each entity i ∈ N identifies its public key
pk by outputting the pair (‘public key’, pk) ∈ out[ê], in some event ê; namely, we
use ‘public key’ as a ‘label’, to identify output of the public key. Typically, entities
output the public key when they generate the key, i.e., ent[ê] = i, possibly as an
initialization operation, i.e. opr[ê] = ‘Init’. Notice that entities may often also
send their public keys to each other using the (‘send’,m, iR) output convention
described in § B.1.2; however, we prefer to keep the two conventions separate,
since we believe that not every protocol that uses verification of attribution
would necessarily send public keys in precisely the same way.

More precisely, the following Key Attribution Predicate Vka outputs > if
entity i has identified pk as its public key in a given transcript T output by an
execution of the protocol P (Algorithm 1):

Vka(i, pk, T ) = {∃ê s.t. T.ent[ê] = i ∧ (‘public key’, pk) ∈ T.out[ê]} (30)
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We now define the Verifiable Attribution of Statements requirement predicate
πVAS. The adversary A ‘wins’ in the experiment if its output outA includes both
a valid attributable statement (m,σ, i) for non-faulty entity i ∈ N − F and a
verification key pk associated with i, yet i did not originate m. To allow us to
identify events ê in which an entity i = ent[ê] intentionally signed message m,
we adopt the following convention: whenever signing a message m, the party
adds the pair (‘signed’,m) as part of its output, i.e., (‘signed’,m) ∈ out[ê]. Since
this is always done, whenever the protocol signs a message, we will not explicitly
include the (‘signed’,m) pairs as part of the output, which would make the
pseudo-code cumbersome. Note that often the entity will also send the signed
message, however, different protocols may send in different ways, hence this
convention makes it easier to define the requirement predicate.

The requirement predicate πVAS is defined with respect to specific signature
scheme S, and the Vka predicate defined above (Eq. 30). For simplicity, and since
S is typically obvious (as part of P), we do not explicitly specify S as a parameter
of the requirement predicate. The πVAS predicate is shown in Algorithm 29.

Algorithm 29 Verifiable Attribution of Statements Predicate πVAS(T )

1: (m,σ, i, pk)← T.outA

2: return ¬
(

3: i ∈ T.N− T.F . i is an honest entity

4: and S.Ver(pk,m, σ) = > . m was signed by the owner of pk

5: and Vka(i, pk, T ) = > . i identified pk as its public key

6: and @ê s.t.: T.ent[ê] = i

and (‘signed’,m) ∈ T.out[ê] .
Yet, i never indicated that it
signed m)

B.2.2 Generic Misbehavior Detection

Many security protocols are required to be resilient to misbehaviors, i.e., to
achieve their goals even if some of the entities, say entities in F ⊂ N, are faulty,
and may misbehave (arbitrarily or in some specified manner). This resiliency to
faulty, misbehaving entities is often based on detection of misbehavior; further-
more, often, many security protocols are required only to detect misbehaviors,
which would be followed by taking some additional measures to deter and/or
neutralize an attack. While misbehavior can be detected in different ways, de-
tection is typically based either on some evidence that a certain entity is dishon-
est, where the evidence should be verifiable by any third party, or based on an
accusation, where one entity (the accuser) accuses another entity (the suspect)
of some misbehavior. Such an accusation may not be true, and therefore, it is
harder to use this approach to deter and/or neutralize the attack; however, many
misbehaviors do not leave any evidence verifiable by a third party, in which case,
accusations may provide some security benefits, e.g., detection of the attack. A
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typical example of such misbehavior that does not leave any evidence is when a
party fails to act in a required way, e.g., to send a required message or response;
such failure may be plausibly blamed on communication issues, or on failure of
the intended recipient. Often, a party, say Alice, detects such failure, say of Mal,
to send a required message, after Alice waits for some maximum delay, and then
Alice issues an ‘accusation’ against Mal, to alert others; for example, see [17].
An honest entity would only accuse a misbehaving party; however, because an
accusation cannot be verified, a misbehaving entity could falsely accuse anyone,
even an honest entity.

To formalize these concepts, we define two requirement predicates: one to
ensure that honest entities cannot be ‘framed’ as misbehaving, i.e., evidences
are always verifiable with correct outcome, and another one to express that
honest entities never accuse other honest entities, i.e., only accuse misbehaving
entities.

The Non-frameability requirement and Proof of Misbehavior. The first secu-
rity requirement predicate is called non-frameability (of honest entities), and en-
sures that a specific protocol would not allow any entity to produce a valid Proof
of Misbehavior of a non-faulty entity. The requirement predicate is therefore de-
fined with respect to a given Proof of Misbehavior Validation Predicate VPoM ,
which receives two inputs: a Proof-Validation Key pk and a purported-proof ζ.
The output of VPoM (pk, ζ) is > if and only if ζ is a valid Proof of Misbehavior,
as indicated by pk; i.e., a misbehavior by an entity who knows the corresponding
private key, typically, the ‘owner’ of pk, which can be validated using the Key
Attribution Predicate Vka. The natural way is to define the Proof of Misbehavior
Validation Predicate VPoM to be protocol specific, as the notions of misbehavior,
and valid proof of misbehavior, depend on the specific protocol specifications.
We specify for P a special stateless operation opr =‘VPoM ’, which does not mod-
ify the state or depend on it, or on the local clock. Abusing notation, we denote
this operation simply as P.VPoM (pk, ζ). The use of a protocol-defined P.VPoM
allows us to define, below, the Non-frameability requirement predicate.

Let VPoM : {0, 1}∗ × {0, 1}∗ → {>,⊥} be a predicate. The Non-frameability
predicate πNF, shown in Algorithm 30, returns ⊥ if the adversary was able to
output a Proof of Misbehavior for an honest entity, and > otherwise.

Algorithm 30 Non-frameability Predicate πNF(T )

1: (i, ζ, pk)← T.outA

2: return ¬
(

3: Vka(i, pk, T ) . i identified pk as its public key

4: and P.VPoM (pk, ζ) .
ζ is a valid Proof of Misbehavior by the
owner of pk

5: and i ∈ T.N− T.F . i is an honest entity)

53



B.2.3 Accusations and the No False Accusations Predicate

Recall that in the execution process, the adversary can use the ‘Set-output’,
‘Set-state’, and ‘Get-state’ operations to set the output and the state of a party
and to learn the state of a party; we refer to such party as faulty, and denote
by F the set of faulty parties in an execution. In many protocols, one party, say
Alice, may detect that another party, say Mal, is faulty, typically, by receiving
an invalid message from Mal - or simply by not receiving a message expected
from Mal by a specific ‘deadline’ (for bounded-delay communication models).

Intuitively, the No False Accusations (NFA) requirement predicate πNFA states
that a non-faulty entity a 6∈ F (Alice), would never (falsely) accuse of a fault,
another non-faulty entity, b 6∈ F (Bob). To properly define this requirement pred-
icate, we first define a convention for one party, say a ∈ N (for ‘Alice’), to output
an Indicator of Accusation, i.e., ‘accuse’ another party, say iM ∈ N (for ‘Mal’), of
a fault. Specifically, we say that at event êA of the the execution, entity ent[êA]
accuses entity iM (Mal), if out[êA] is a triplet of the form (IA, iM, x). The last
value in this triplet, x, should contain the clock value at the first time that Al-
ice accused Mal; we discuss this in section B as the value x is not relevant for
the requirement predicate, and is just used as a convenient convention for some
protocols.

The No False Accusations (NFA) predicate πNFA checks whether the adver-
sary was able to cause one honest entity, say Alice, to accuse another honest
entity, say Bob (i.e., both Alice and Bob are in N−F). Namely, πNFA(T ) returns
⊥ only if T.out[e] = (IA, j, x), for some j ∈ T.N, and both j and T.ent[e] are
honest (i.e., j, T.ent[e] ∈ T.N− T.F). See Algorithm 31.

Algorithm 31 No False Accusations Predicate πNFA(T )

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3: and ∃j ∈ T.N− T.F, x s.t. (IA, j, x) ∈ T.out[T.e] . T.ent[T.e] accused an honest entity)

As noted above, in an accusation, the output out[êA] contains a triplet of the
form (IA, iM, x), where x is a clock value and should be the clock value at the
first time that Alice accused Mal. We found this convenient in the definition of
protocol-specific requirements where a party may accuse another party multiple
times, and the requirement is related to the time of the first accuse event. To
allow the use of this convention, we define the following ‘technical’ requirement
predicate which merely confirms that honest entities always indicate, in any
accuse event, the time of the first time they accused the same entity.

To simplify the predicate, let fc(i, iM, T ) be the value of T.clk[ê], where ê is
the first event in T in which entity i accused entity iM ∈ T.N (or ⊥ if no such
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event exists). The Use First-Accuse Time (UFAT) predicate πUFAT is defined in
Algorithm 32.

Algorithm 32 Use First-Accuse Time Predicate πUFAT(T )

1: return ¬
(

2: T.ent[T.e] ∈ T.N− T.F . T.ent[T.e] is an honest entity

3:
and ∃iM ∈ T.N s.t. (IA, iM, x) ∈ T.out[T.e]

and x 6= fc(T.ent[T.e], iM, T )
.
T.ent[T.e] did not indicate the first time
of accusation in an accusation)

B.2.4 Authenticated-sender Communication

The πAuthComRcv model predicate verifies the authentic-sender property for all ‘In-
coming’ events, which means that out[êR].iS indeed sent this message to ent[êR],
during some previous event êS < êR. The πAuthComRcv model predicate is shown
in Algorithm 33.

Algorithm 33 πAuthComRcv (T ) Predicate

1: return
(

2: ∀êR ∈ {1, . . . , T.e}:

3: if T.opr[êR] = ‘Receive’: . For each ‘Receive’ event

4: and T.out[êR] 6= ⊥ . If the ‘Receive’ event was successful

5: and T.ent[êR], T.out[êR].iS ∈ T.N− T.F . And both receiver and sender are honest

6: then ∃êS < êR . Then there is a previous event

7: s.t. T.opr[êS] = ‘Send’: . Which was a ‘Send’ event

8: and T.inp[êS].m = T.out[êR].m .
Where the input message was
T.out[êR].m

9: and T.inp[êS].iR = T.ent[êR] .
And where the intended recipient was
T.ent[êR]

10: and T.ent[êS] = T.out[êR].iS .
And where the entity was the sender
output in event êR)

Usually, the base function used with the πAuthComRcv model predicate would
be of the form 2−l, where l is the length of some tags or signatures used by the
protocol or scheme for authentication. In other words, we would usually allow the
adversary to have probability 2−l to cause an entity to receive a forged message.

B.3 Proofs of the Modularity Lemmas

In this section, we give proofs of the modularity lemmas introduced in section 5.
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Model Modularity

Lemma 1 (Weaker model satisfaction).

For any set X of execution-process operations, any (weaker) model M =
(π, β), and any predicate π′, if an adversary A satisfies the (stronger) model

M̂ ≡ (π ∧ π′, β) (with negligible advantage) then A satisfies M (with negligible
advantage), namely:

A |=X
poly
M̂ ⇒ A |=X

poly
M (4)

Proof. By Def. 2, if A satisfies model M̂ with negligible advantage using the set

X of execution-process operations, denoted A |=X
poly
M̂, then:

(∀ P, params ∈ {0, 1}∗) :

εM̂A,P,X (params) ∈ Negl(params.P.1κ)

Define f as:

f ≡ Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

Then, by Def. 1, εM̂A,P,X (params) = max{0, f}. Now:

f ≡Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params) =

= Pr

[
(π (T ) = ⊥) ∨ (π′ (T ) = ⊥) :

T ← ExecXA,P(params)

]
− β(params)

≥ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

Define g as:

g ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

Then, by Def. 1, εMA,P,X (params) = max{0, g}. But since, trivially, g ≤ f ,
and since max{0, f} is negligible, then max{0, g} must also be negligible, so
εMA,P,X (params) is negligible. Therefore:

(∀ P, params ∈ {0, 1}∗) :

εMA,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of A |=X
poly
M, according to Def. 2.
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Lemma 2 (Stronger model satisfaction).
For any set X of execution-process operations and any two (weaker) models

M = (π, β),M′ = (π′, β′), if an adversary A satisfies both M and M′ (with

negligible advantage), then A satisfies the ‘combined’ (stronger) model M̂ ≡
(π ∧ π′, β + β′) (with negligible advantage), namely:(

A |=X
poly
M∧A |=X

poly
M′
)
⇒ A |=X

poly
M̂ (5)

Proof. Using Def. 2, the left side implies that for any P, params, we can write:

(
εMA,P,X (params) ∈ Negl(params.P.1κ)

)
∧
(
εM
′

A,P,X (params) ∈ Negl(params.P.1κ)
)

Define f as:

f ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

And define g as:

g ≡ Pr

[
π′ (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β′(params)

Then, by Def. 1, εMA,P,X (params) = max{0, f} and εM
′

A,P,X (params) = max{0, g}.
So we have:

(max{0, f} ∈ Negl(params.P.1κ))

∧ (max{0, g} ∈ Negl(params.P.1κ))

Which implies that max{0, f + g} must also be negligible. But max{0, f + g} is
equivalent to:

Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params) + Pr

[
π′ (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β′(params) =

= Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
+ Pr

[
π′ (T ) = ⊥ :

T ← ExecXA,P(params)

]
− (β(params) + β′(params))

≥ Pr

[
(π (T ) = ⊥) ∨ (π′ (T ) = ⊥) :

T ← ExecXA,P(params)

]
− (β(params) + β′(params)) =

= Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− (β(params) + β′(params))

Define h as:

h = Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− (β(params) + β′(params))
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Since h ≤ f + g, and max{0, f + g} is negligible, then it follows that max{0, h}
must also be negligible. By Def. 1, max{0, h} = εM̂A,P,X (params). Therefore:

(∀ P, params ∈ {0, 1}∗) :

εM̂A,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of A |=X
poly
M̂, according to Def. 2.

Lemma 3 (Requirement satisfaction under stronger model).
If a protocol P ensures a requirement R (with negligible advantage) under

only M = (π, β) using the execution-process operations set X , then for any
predicate π′, P ensures R (with negligible advantage) under the ‘combined’ model

M̂ ≡ (π ∧ π′, β), using X , namely:

P |=M,X
poly

R ⇒ P |=M̂,X
poly

R (6)

Proof. By Def. 3, the left side implies that we can write:(
∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=

poly
M
)

:

εRA,P,X (params) ∈ Negl(params.P.1κ)

LetM′ = (π′, β). By the first part of the Model Modularity lemma, A |=X
poly
M̂ ⇒(

A |=X
poly
M∧A |=X

poly
M′
)

. Therefore, we have:(
∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=

poly
M̂
)

:

εRA,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of P |=̂M,X
poly

R, according to Def. 3.

Lemma 4 (Model monotonicity). Let X be any set of execution-process op-
erations, π be a predicate, and β, β′ be two base functions. Define the function
β̂(params) = max{β(params), β′(params)} for all params. Let M = (π, β)

and M̂ = (π, β̂). Then holds:

(∀A)A |=X
poly
M⇒A |=X

poly
M̂ (8)

Proof. By Def. 2, if A satisfies modelM with negligible advantage using the set

X of execution-process operations, denoted A |=X
poly
M, then:

(∀ P, params ∈ {0, 1}∗) :

εMA,P,X (params) ∈ Negl(params.P.1κ)
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Define f as:

f ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

And define g as:

g ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β̂(params)

Then f ≥ g, because β̂(params) = max{β(params), β′(params)} for all params.

Notice that by Def. 1, εMA,P,X (params) = max{0, f} and max{0, g} = εM̂A,P,X (params).

Since g ≤ f , and max{0, f} is negligible, then max{0, g} = εM̂A,P,X (params)
must also be negligible. This means that:

(∀ P, params ∈ {0, 1}∗) :

εM̂A,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of A |=X
poly
M̂, according to Def. 2.

Requirement Modularity

Lemma 5 (Weaker requirement satisfaction).
For any set X of execution-process operations, any model M, any (weaker)

requirement R = (π, β), and any predicate π′, if a protocol P ensures the

(stronger) requirement R̂ ≡ (π ∧ π′, β) (with negligible advantage) under model
M, then P ensures R (with negligible advantage) under model M, namely:

P |=M,X
poly

R̂ ⇒ P |=M,X
poly

R (9)

Proof. By Def. 3, the left side implies that:(
∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=

poly
M
)

:

εR̂A,P,X (params) ∈ Negl(params.P.1κ)

Define f as:

f ≡Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

And define g as:

g ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)
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Then, by Def. 1, εR̂A,P,X (params) = max{0, f} and max{0, g} = εRA,P,X (params).
Notice that:

Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params) =

= Pr

[
(π (T ) = ⊥) ∨ (π′ (T ) = ⊥) :

T ← ExecXA,P(params)

]
− β(params)

≥ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

So f ≥ g. Since max{0, f} is negligible and g ≤ f , then max{0, g} = εRA,P,X (params)
must also be negligible. Therefore:(

∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=
poly
M
)

:

εRA,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of P |=M,X
poly

R, according to Def. 3.

Lemma 6 (Stronger requirement satisfaction).
For any set X of execution-process operations, any model M, and any two

(weaker) requirements R = (π, β),R′ = (π′, β′), if a protocol P ensures both R
and R′ (with negligible advantage) under model M, then P ensures the ‘com-

bined’ (stronger) requirement R̂ ≡ (π ∧ π′, β + β′) (with negligible advantage)
under model M, namely:(

P |=M,X
poly

R∧ P |=M,X
poly

R′
)
⇒ P |=M,X

poly
R̂ (10)

Proof. Using Def. 3, the left side implies that:(
∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=

poly
M
)

:(
εRA,P,X (params) ∈ Negl(params.P.1κ)

)
∧
(
εR
′

A,P,X (params) ∈ Negl(params.P.1κ)
)

Define f as:

f ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)

And define g as:

g ≡ Pr

[
π′ (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β′(params)
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Then, by Def. 1, εRA,P,X (params) = max{0, f} and εR
′

A,P,X (params) = max{0, g}.
Since max{0, f} is negligible and max{0, g} is negligible, then max{0, f+g}must
also be negligible. Notice that f + g is equivalent to:

Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params) + Pr

[
π′ (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β′(params) =

= Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
+ Pr

[
π′ (T ) = ⊥ :

T ← ExecXA,P(params)

]
− (β(params) + β′(params))

≥ Pr

[
(π (T ) = ⊥) ∨ (π′ (T ) = ⊥) :

T ← ExecXA,P(params)

]
− (β(params) + β′(params)) =

= Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− (β(params) + β′(params))

Define h as:

h ≡ Pr

[
(π ∧ π′) (T ) = ⊥ :

T ← ExecXA,P(params)

]
− (β(params) + β′(params))

Then f + g ≥ h. Since h ≤ f + g and max{0, f + g} is negligible, then max{0, h}
must also be negligible. By Def. 1, max{0, h} = εR̂A,P,X (params) Therefore:(

∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=
poly
M
)

:

εR̂A,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of P |=M,X
poly

R̂, according to Def. 3.

Lemma 7 (Requirement monotonicity). Let X be any set of execution-
process operations, M be a model, π be a predicate, and β, β′ be two base func-
tions. Define the function β̂(params) = max{β(params), β′(params)} for all

params. Let R = (π, β) and R̂ = (π, β̂). Then holds:

P |=M,X
poly

R ⇒ P |=M,X
poly

R̂ (11)

Proof. By Def. 3, if P satisfies requirement R with negligible advantage under

model M using the set X of execution-process operations, denoted P |=M,X
poly

R,
then: (

∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=
poly
M
)

:

εRA,P,X (params) ∈ Negl(params.P.1κ)

Define f as:

f ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β(params)
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And define g as:

g ≡ Pr

[
π (T ) = ⊥ :

T ← ExecXA,P(params)

]
− β̂(params)

Then f ≥ g, because β̂(params) = max{β(params), β′(params)} for all params.

Notice that by Def. 1, εRA,P,X (params) = max{0, f} and max{0, g} = εR̂A,P,X (params).

Since g ≤ f and max{0, f} is negligible, then max{0, g} = εR̂A,P,X (params)
must also be negligible. This means that:(

∀ A ∈ PPT, params ∈ {0, 1}∗ | A |=
poly
M
)

:

εR̂A,P,X (params) ∈ Negl(params.P.1κ)

Which is the definition of P |=M,X
poly

R̂, according to Def. 3.
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