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Abstract

We present a new, simple candidate construction of indistinguishability obfuscation (iO). Our scheme is in-
spired by lattices and learning-with-errors (LWE) techniques, but we are unable to prove security under a standard
assumption. Instead, we formulate a new falsifiable assumption under which the scheme is secure. Furthermore,
the scheme plausibly achieves post-quantum security.

Our construction is based on the recent “split FHE” framework of Brakerski, Döttling, Garg, and Malavolta
(EUROCRYPT ’20), and we provide a new instantiation of this framework. As a first step, we construct an iO
scheme that is provably secure assuming that LWE holds and that it is possible to obliviously generate LWE
samples without knowing the corresponding secrets. We define a precise notion of oblivious LWE sampling that
suffices for the construction. It is known how to obliviously sample from any distribution (in a very strong sense)
using iO, and our result provides a converse, showing that the ability to obliviously sample from the specific LWE
distribution (in a much weaker sense) already also implies iO. As a second step, we give a heuristic contraction of
oblivious LWE sampling. On a very high level, we do this by homomorphically generating pseudoradnom LWE
samples using an encrypted pseudorandom function.

1 Introduction

Indistinguishability obfuscation (iO) [BGI+01, GR07] is a probabilistic polynomial-time algorithm O that takes as
input a circuit C and outputs an (obfuscated) circuit C ′ = O(C) satisfying two properties: (a) functionality: C and
C ′ compute the same function; and (b) security: for any two circuits C1 and C2 that compute the same function
(and have the same size),O(C1) andO(C2) are computationally indistinguishable. Since the first candidate for iO
was introduced in [GGH+13], a series of works have shown that iO would have a huge impact on cryptography.

The state-of-the-art iO candidates with concrete instantiations may be broadly classified as follows:

• First, we have fairly simple and direct candidates based on graded “multi-linear” encodings [GGH15,
BMSZ16, GMM+16, CVW18, CHVW19] and that achieve plausible post-quantum security. These candi-
dates have survived fairly intense scrutiny from cryptanalysts [MSZ16, CLLT16, ADGM17, CLLT17, CGH17,
CVW18, CHL+15], and several of them are also provably secure in restricted adversarial models that cap-
ture a large class of known attacks. However, none of these candidates have a security reduction to a simple,
falsifiable assumption.

• Next, we have a beautiful and remarkable line of works that aims to base iO on a conjunction of simple
and well-founded assumptions, starting from [Lin16, LV16, Lin17, LT17], through [AJL+19, Agr19, JLMS19,
GJLS20], and culminating in the very recent (and independent) work of Lin, Jain and Sahai [JLS20] basing
iO on pairings, LWE, LPN and PRG in NC0. These constructions rely on the prior constructions of iO
from functional encryption (FE) [BV15, AJ15], and proceed to build FE via a series of delicate and complex
reductions, drawing upon techniques from a large body of works, including pairing-based FE for quadratic
functions, lattice-based fully-homomorphic and attribute-based encryption, homomorphic secret-sharing,
as well as hardness amplification.

• A number of more recent and incomparable candidates, including a direct candidate based on tensor prod-
ucts [GJK18] and another based on affine determinant programs (with noise) [BIJ+20]; the BDGM candidate
based on an intriguing interplay between a LWE-based and a DCR-based cryptosystems [BDGM20]; the
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plausibly post-quantum secure candidates in [Agr19, AP20] that replace the use of pairings in the second
line of works with direct candidates for FE for inner product plus noise. All of these candidates, as with the
first line of work, do not present a security reduction to a simple, falsifiable assumption. 1

To the best of our knowledge, none of these existing approaches yields a lattice-inspired iO candidate that is plau-
sibly post-quantum secure and enjoys a security reduction under a simple, falsifiable assumption referring solely
to lattice-based cryptosystems, which is the focus of this work. We further believe that there is a certain aesthetic
and minimalistic appeal to having an iO candidate whose hardness distills to a single source of computational
hardness (as opposed to lattice plus pairing/number-theoretic hardness). Such a candidate is also potentially
more amenable to crypto-analytic efforts as well as further research to reduce security to more standard lattice
problems.

1.1 Our Contributions

Our main contribution is a new candidate construction of iO that relies on techniques from lattices and learning-
with-errors (LWE). We formulate a new falsifiable assumption on the indistinguishability of two distributions,
and show that our construction is secure under this assumption. While we are unable to prove security under a
standard assumption such as LWE, we view our construction as a hopeful step in that direction. To our knowledge,
this is the first iO candidate that is simultaneously based on a clearly stated falsifiable assumption and plausibly
post-quantum secure. Perhaps more importantly, we open up a new avenue towards iO by showing that, under
the LWE assumption, the ability to “obliviously sample from the LWE distribution” (see below) provably implies
iO. Unlike prior constructions of iO from simpler primitives (e.g., functional encryption [AJ15, BV15], succinct
randomized encodings [LPST16b], XiO [LPST16a], etc.), oblivious LWE sampling does not inherently involve any
“computation” and appears to be fundamentally different. Lastly, we believe our construction is conceptually
simpler and more self-contained (relying on fewer disjoint components) than many of the prior candidates.

Our main building block is an “oblivious LWE sampler”, which takes as input a matrix A ∈ Zm×nq and allows
us to generate LWE samples A · s + e with some small error e ∈ Zm without knowing the secrets s, e. We discuss
the notion in more detail below (see the “Our Techniques” section), and provide a formal definition that suffices
for our construction. Our notion can be seen as a significant relaxation of “invertible sampling” (in the common
reference string model) [IKOS10, DKR15], and the equivalent notion of “pseudorandom encodings” [ACI+20].
The work of [DKR15] showed that, assuming iO, it is possible to invertibly sample from all distributions, and
[ACI+20] asked whether it may be possible to do so under simpler assumptions that do not imply iO. As a side
result of independent interest, we settle this question by showing that, under LWE, even our relaxed form of
invertible sampling for the specific LWE distribution already implies iO.

Overall, our candidate iO construction consists of two steps. The first step is a provably secure construction of
iO assuming we have an oblivious LWE sampler and that the LWE assumption holds (both with sub-exponential
security). The second step is a candidate heuristic instantiation of an oblivious LWE sampler. On a very high level,
our heuristic sampler performs a homomorphic computation that outputs a pseudorandom LWE sample gener-
ated using some pseudorandom function (PRF). Security boils down to a clearly stated falsifiable assumption that
two distributions, both of which output LWE samples, are indistinguishable even if we give out the corresponding
LWE secrets. Our assumption implicitly relies on some form of circular security: we assume that the error term in
the pseudorandom LWE sample “drowns out” any error that comes out of the homomorphic computation over
the PRF key that was used to generate it. We also discuss how our construction/assumption avoids some simple
crypto-analytic attacks.

1.2 Technical Overview

Our iO construction is loosely inspired by the “split fully-homomorphic encryption (split FHE)” framework of
Brakerski, Döttling, Garg, and Malavolta [BDGM20] (henceforth BDGM). They defined a new cryptographic prim-
itive called split FHE, which they showed to provably imply iO (under the LWE assumption). They then gave a
candidate instantiation of split FHE by heuristically combining decisional composite residue (DCR) and LWE-
based techniques, together with the use of a random oracle. We rely on a slight adaptation of their framework by

1An independent and concurrent work of Gay and Passs [GP20] presented a variant of the [BDGM20] candidate and proved security under
a circular security assumption pertaining to LWE-based and DCR-based cryptosystems, in the presence of an interactive oracle to which an
adversary may submit queries for circuits f (see OFHE

SRL in Section 3.3) and whose output depends on f and the secret key of the DCR-based
scheme.
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replacing split-FHE with a variant that we call functional encodings. Our main contribution is a new instantiation
of this framework via “oblivious LWE sampling”, relying only on LWE-based techniques.

We first describe what functional encodings are and how to construct iO from functional encodings. Then we
describe our instantiation of functional encodings via oblivious LWE sampling. We defer a detailed comparison
to BDGM to Section 1.3.

1.2.1 iO from Functional Encodings

As in BDGM, instead of constructing iO directly, we construct a simpler a primitive called “exponentially efficient
iO” XiO, which is known to imply iO under the LWE assumption [LPST16a]. We first describe what XiO is, and
then discuss how to construct it from Functional Encodings via the BDGM framework.

XiO. An XiO scheme [LPST16a], has the same syntax, correctness and security requirements as iO, but relaxes
the efficiency requirement. To obfuscate a circuit C with input length n, the obfuscator can run in exponential
time 2O(n) and the size of the obfuscated circuit can be as large as 2n(1−ε) for some ε > 0. Such a scheme is useful
when n is logarithmic in the security parameter, so that 2n is some large polynomial. Note that there is always
a trivial obfuscator that outputs the entire truth table of the circuit C, which is of size 2n. Therefore, XiO is only
required to do slightly better than the trivial construction, in that the size of the obfuscated circuit must be non-
trivially smaller than the truth table. The work of [LPST16a] showed that XiO together with the LWE assumption
(assuming both satisfy sub-exponential security) imply full iO.

Functional Encodings. We define a variant of the “split FHE” primitive from BDGM, which we call “functional
encodings”. A functional encoding can be used to encode a value x ∈ {0, 1}` to get an encoding c = Enc(x; r),
where r is the randomness of the encoding process. Later, for any function f : {0, 1}` → {0, 1}m, we can create
an opening d = Open(f, x, r) for f , which can be decoded to recover the function output Dec(f, c, d) = f(x). We
require many-opening simulation based security: the encoding c = Enc(x; r) together with the many openings
d1 = Open(f1, x, r), . . . , dQ = Open(fQ, x, r) can be simulated given only the functions f1, . . . , fQ and the outputs
f1(x), . . . , fQ(x). In other words, nothing about the encoded value x is revealed beyond the function outputs
fi(x) for which openings are given. So far, we can achieve this by simply setting the opening d to be the function
output f(x). The notion is made non-trivial, by additionally requiring succinctness: the size of the opening d
is bounded by |d| = O(m1−ε) for some ε > 0, and therefore the opening must be non-trivially smaller than the
output size of the function. We do not impose any restrictions on the size of the encoding c, which may depend
polynomially onm. Unfortunately, this definition is unachievable in the plain model, as can be shown via a simple
incompressibility argument. Therefore, we consider functional encodings in the common reference string (CRS)
model and only require many-opening simulation security for some a-priori bound Q on the number of opening
(i.e., Q-opening security). We allow the CRS size, (but not the encoding size or the opening size) to grow with the
bound Q.

XiO from Functional Encodings. We construct XiO from functional encodings. As a first step, we construct XiO
in the CRS model. Let C : {0, 1}n → {0, 1} be a circuit of size ` that we want to obfuscate. We can partition the
input domain {0, 1}n of the circuit into Q = 2n/m subsets Si, each containing |Si| = m inputs. We then define
Q functions fi : {0, 1}` → {0, 1}m such that fi(C) = (C(x1), . . . , C(xm)) outputs the evaluations of C on all m
inputs xj ∈ Si. Finally, we set the obfuscation of the circuit C to be (Enc(C; r),Open(f1, C, r), . . . ,Open(fQ, C, r)),
which is sufficient to recover the value of the circuit at all Q · m = 2n possible inputs. By carefully balancing
between m and Q = 2n/m, we can ensure that the obfuscated circuit size is O(2n(1−ε)) for some constant ε > 0,
and therefore satisfies the non-triviality requirement of XiO. On a high level, we amortize the large size of the
encoding across sufficiently many openings to ensure that the total size of the encoding and all the openings
together is smaller than the total output size.2 The above gives us XiO with a strong form of simulation-based
security (the obfuscated circuit can be simulated given the truth table) in the CRS model, which also implies the
standard indistinguishability-based security in the CRS model.

So far, we only got XiO in the CRS model, where the CRS size can be as large as poly(Q ·m) = 2O(n). As the
second step, we show that XiO in the CRS model generically implies XiO in the plain model. A naive idea would

2In detail, assume we start with a functional encoding where the encoding size is O(ma) and the opening size is O(m1−δ) for some
constants a, δ > 0, ignoring any other polynomial factors in the security parameter or the input size. The size of the obfuscated circuit above is
then bounded by O(ma +Qm1−δ). By choosing m = 2n/(a+δ) and recalling Q = 2n/m, the bound becomes O(2n(1−ε)) for ε = δ/(a+ δ).
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be to simply make the CRS a part of the obfuscated program, but then we would lose succinctness, since the CRS
is large. Instead, we repeat a variant of the previous trick to amortize the cost of the CRS. To obfuscate a circuit
C : {0, 1}n → {0, 1}, we partition the domain {0, 1}n into Q = 2n/m subsets containing m = 2n

′
inputs each,

and we define Q sub-circuits Ci : {0, 1}n
′
→ {0, 1}, each of which evaluates C on the m = 2n

′
inputs in the

i’th subset. We then choose a single CRS for input size n′ and obfuscate all Q sub-circuits separately under this
CRS; the final obfuscated circuit consists of the CRS and all the Q obfuscated sub-circuits. By carefully balancing
between m = 2n

′
and Q = 2n/m, in the same manner as previously, we can ensure that the total size of the final

obfuscated circuit size is O(2n(1−ε)) for some constant ε > 0, and therefore satisfies the non-triviality requirement
of XiO.

1.2.2 Constructing Functional Encodings

We now outline our construction of a functional encoding scheme. We start with a base scheme, which is in-
secure but serves as the basis of our eventual construction. We show that we can easily make it one-opening
simulation secure under the LWE assumption, meaning that security holds in the special case where only a single
opening is ever provided (i.e., Q = 1). Then we show how to make it many-opening secure via oblivious LWE
sampling. Concretely, we obtain a Q-opening secure functional encoding candidate for bounded-depth circuits
f : {0, 1}` → {0, 1}m with CRS size O(Q ·m), encoding size O(m2) and opening size O(1), and where O(·) hides
factors polynomial in the security parameter, input size `, and circuit depth.

Base Scheme. Our construction of functional encodings is based on a variant of the homomorphic encryp-
tion/commitment schemes of [GSW13, GVW15]. Given a commitment to an input x = (x1, . . . , x`) ∈ {0, 1}`,
along with a circuit f : {0, 1}` → {0, 1}m, this scheme allows us to homomorphically compute a commitment to
the output y = f(x). Our variant is designed to ensure that the opening for the output commitment is smaller
than the output size m.

Given a public random matrix A ∈ Zm×nq where m� n, we define a commitment C to an input x via

C = (AR1 + x1G + E1, . . . ,AR` + x`G + E`)

where Ri ← Zn×m log q
q , Ei ← χm×m log q has its entries chosen from the error distribution χ, and G ∈ Zm×m log q

q

is the gadget matrix. Although this looks similar to [GSW13, GVW15], we stress that the parameters are different.
Namely, in our scheme A is a tall/thin matrix while in the prior schemes it is a short/fat matrix, we allow Ri to
be uniformly random over the entire space while in the prior schemes it had small entries, and we need to add
some error Ei that was not needed in the prior schemes. The commitment scheme is hiding by the LWE assump-
tion. We can define the functional encoding Enc(x; r) = (A,C) to consist of the matrix A and the homomorphic
commitment C, where r is all the randomness used to sample the above values.

Although we modified several key parameters of [GSW13, GVW15], it turns out that the same homomorphic
evaluation procedure there still applies to our modified scheme. In particular, given the commitment C to an
input x and a boolean circuit f : {0, 1}` → {0, 1}, we can homomorphically derive a commitment Cf = ARf +

f(x)G + Ef to the output f(x). Furthermore, given a circuit f : {0, 1}` → {0, 1}m with m bit output, we can
apply the above procedure to get commitments to each of the output bits and “pack” them together using the
techniques of (e.g.,) [MW16, BTVW17, PS19, GH19, BDGM19] to obtain a vector cf ∈ Zmq such that

cf = A · rf + f(x) · q2 + ef ∈ Zmq

where f(x) ∈ {0, 1}m is a column vector, rf ∈ Znq , and ef ∈ Zm is some small error term.
Now, observe that rf constitutes a succinct opening to f(x), since |rf | � |f(x)| and rf allows us to easily

recover f(x) from cf by computing roundq/2(cf −A ·rf ). Furthermore, we can efficiently compute rf by applying
a homomorphic computation on the opening of the input commitment as in [GVW15], or alternately, we can
sample A with a trapdoor and use the trapdoor to recover rf . Therefore, we can define the opening procedure of
the functional encoding to output the value rf = Open(f,x, r), and the decoding procedure can recover f(x) =
Dec(f, (A,C), rf ) by homomorphically computing cf and using rf to recover f(x) as above. This gives us our
base scheme (in the plain model), which has the correct syntax and succinctness properties. Unfortunately, the
scheme so far does not satisfy even one-opening simulation security, since the opening rf (along with the error
term ef that it implicitly reveals) may leak additional information about x beyond f(x).
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One-Opening Security from LWE. We can modify the base scheme to get one-opening simulation security (still
in the plain model). In particular, we augment the encoding by additionally including a single random LWE
sample b = A · s + e inside it. We then add this LWE sample to cf to “randomize” it, and release df := rf + s as
an opening to f(x). Given the encoding (A,C,b) and the opening df , we can decode f(x) by homomorphically
computing cf and outputting y = roundq/2(cf + b − A · df ). Correctness follows from the fact that cf + b ≈
A(rf + s) + f(x) · q/2.

With the above modification, we can simulate an encoding/opening pair given only f(x) without knowing x.
Firstly, we can simulate the opening without knowing the randomness of the input commitments or the trapdoor
for A. In particular, the simulator samples df uniformly at random from Znq , and then “programs” the value b as
b := A · df − cf + f(x) · q2 + e. The only difference in the distributions is that in the real case the error contained
in the LWE sample b is e, while in the simulated case it is e− ef , but we can choose the error e to be large enough
to “smudge out” this difference and ensure that the distributions are statistically close. Once we can simulate the
opening without having the randomness of the input commitments or the trapdoor for A, we can rely on LWE to
replace the input commitment to x with a commitment to a dummy value.

Many-Opening Security via Oblivious LWE Sampling. We saw that we can upgrade the base scheme to get
one-opening simulation security by adding a random LWE sample b = A · s + e to the encoding. We could
easily extend the same idea to achieve Q-opening simulation security by adding Q samples bi = A · si + ei to
the encoding. However, this would require the encoding size to grow with Q, which we cannot afford. So far,
we have not relied on a CRS, and perhaps the next natural attempt would be to add the Q samples bi to the CRS
of the scheme. Unfortunately, this also does not work, since the scheme needs to know the corresponding LWE
secrets si to generate the openings, and we would not be able to derive them from the CRS.

Imagine that we had an oracle that took as input an arbitrary matrix A and would output Q random LWE
samples bi = A · si + ei. Such an oracle would allow us to construct Q-opening simulation secure functional
encodings. The encoding procedure would choose the matrix A with a trapdoor, call the oracle to get samples bi
and use the trapdoor to recover the values si that it would use to generate the openings. The decoding procedure
would get A and call the oracle to recover the samples bi needed to decode, but would not learn anything else.
The simulator would be able to program the oracle and choose the values bi itself, which would allow us to prove
security analogously to the one-opening setting. We define a cryptographic primitive called an “oblivious LWE
sampler”, whose goal is to approximate the functionality of the above oracle in the standard model with a CRS.
We can have several flavors of this notion, and we start by describing a strong flavor, which we then relax in
various ways to get our actual definition.

Oblivious LWE Sampler (Strong Flavor). A strong form of oblivious LWE sampling would consist of a de-
terministic sampling algorithm Sam that takes as input a long CRS along with a matrix A and outputs Q LWE
samples bi = Sam(CRS,A, i) for i ∈ [Q]. The size of CRS can grow with Q and the CRS can potentially be chosen
from some structured distribution, but it must be independent of A. We want to be able to arbitrarily “program”
the outputs of the sampler by programming the CRS. In other words, there is a simulator Sim that gets A and
Q random LWE samples {bi} as targets; it outputs a programmed string CRS ← Sim(A, {bi}) that causes the
sampler to output the target values bi = Sam(CRS,A, i). We want the real and the simulated CRS to be indistin-
guishable, even for a worst-case choice of A for which an adversary may know a trapdoor that allows it to recover
the LWE secrets. This notion would directly plug in to our construction to get a many-opening secure functional
encoding scheme in the CRS model. It turns out that this strong form of oblivious LWE sampling can be seen
as a special case of invertible sampling (in the CRS model) as proposed by [IKOS10], and can be constructed from
iO [DKR15]. Invertible sampling is also equivalent to pseudorandom encodings (with computational security in
the CRS model) [ACI+20], and we answer one of the main open problems posed by that work by showing that
these notions provably imply iO under the LWE assumption. Unfortunately, we do not know how to heuristically
instantiate this strong flavor of oblivious LWE sampling (without already having iO).

Oblivious LWE Sampler (Relaxed). We relax the above strong notion in several ways. Firstly, we allow our-
selves to “pre-process” the matrix A using some secret coins to generate a value pub ← Init(A) that is given as
an additional input to the sampler bi = Sam(CRS, pub, i). We only require that the size of pub is independent of
the number of samples Q that will be generated. The simulator gets to program both CRS, pub to produce the
desired outcome. Secondly, we relax the requirement that, by programming CRS, pub, the simulator can cause
the sampler output arbitrary target values bi. Instead, we now give the simulator some target values b̂i and the
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simulator is required to program (CRS, pub)← Sim(A, b̂i) to ensure that the sampled values bi = Sam(CRSpub, i)

satisfy bi = b̂i + b̃i for some LWE sample b̃i = A · s̃i + ẽi for which the simulator knows the corresponding
secrets s̃i, ẽi. In other words, the produced samples bi need not exactly match the target values b̂i given to the
simulator, but the difference has to be an LWE sample b̃i for which the simulator can produce the corresponding
secrets. Lastly, instead of requiring that the indistinguishability of the real and simulated (CRS, pub) holds even
for a worst-case choice of A with a known trapdoor, we only require that it holds for a random A, but the adver-
sary is additionally given the LWE secrets si contained in the sampled values bi = A · si + ei. In other words, we
require that real/simulated distributions of (CRS, pub, {si}) are indistinguishable.

We show that this relaxed form of an oblivious LWE sampling suffices in our construction of functional en-
codings. Namely, we can simply add pub to the encoding of the functional encoding scheme, since it is short. In
the proof, we can replace the real (CRS, pub) with a simulated one, using some random LWE tuples b̂i as target
values. Indistinguishability holds even given the LWE secrets si for the produced samples bi = Sam(CRS, pub, i),
which are used to generate the openings of the functional encoding. The b̂i component of the produced samples
bi = b̂i + b̃i is sufficient to re-randomizes the output commitment cf , and the additional LWE sample b̃i that
is added in does not hurt security, since we know the corresponding LWE secret s̃i and can use it to adjust the
opening accordingly.

Constructing an Oblivious LWE Sampler. We give a heuristic construction of an oblivious LWE sampler, by
relying on the same homomorphic commitments that we used to construct our base functional encoding scheme.
The high level idea is to give out a commitment to a PRF key k and let the sampling algorithm homomorphically
compute a pseudorandom LWE sample bprf := A · sprf + eprf where sprf , eprf are sampled using randomness that
comes from the PRF. The overall output of the sampler is a commitment to the above LWE sample, which is itself
an LWE sample! To allow the simulator to program the output, we augment the computation to incorporate the
CRS. We give a more detailed description below.

The CRS is a uniformly random string, which we interpret as consisting of Q values CRSi ∈ Zmq . To generate
pub, we sample a random key k for a pseudorandom function PRF(k, ·) and set a flag bit β := 0. We creates a com-
mitment C to the input (k, β) and we set the public value pub = (A,C). The algorithm bi = Sample(CRS, pub, i)
performs a homomorphic computation of the function gi over the commitment C, where gi is defined as follows:

gi(k, β): Use PRF(k, i) to sample bprf
i := A · sprfi + eprfi and output b∗i := bprf

i + β · CRSi.

The output of this computation is a homomorphically evaluated commitment to b∗i and has the form bi = A ·
sevali + eevali + b∗i where sevali , eevali come from the homomorphic evaluation.3 Overall, the generated samples bi =
Sample(CRS, pub, i) can be written as

bi = A · (sevali + sprfi ) + (eevali + eprfi ) + β · CRSi

where sprfi , e
prf
i come from the PRF output and sevali , eevali come from the homomorphic evaluation.

In the real scheme, the flag β is set to 0 and so each output of Sample is an LWE sample bi = A · (sevali + sprfi ) +

(eevali +eprfi ). In the simulation, the simulator gets some target values b̂i and puts them in the CRS as CRSi := b̂i. It
sets the flag to β = 1, which results in the output of Sample being bi = A · (sevali +sprfi )+(eevali +eprfi )+ b̂i.Note that
the simulator knows the PRF key k and the randomness of the homomorphic commitment, and therefore knows
the values (sevali + sprfi ), (eevali + eprfi ). This means that the difference between the target values b̂i and the output
samples bi is an LWE tuple for which the simulator knows the corresponding secrets, as required.

We put forth the assumption that the above construction is secure, and argue heuristically why we believe
this to be the case. In particular, if b̂i = A · ŝi + êi are chosen as random LWE samples, then we assume the real
and simulated distributions of (CRS, pub, {si}) are indistinguishable, where si are the secrets corresponding to the
produced samples bi = Asi+ei. Note that the real and simulated distributions of (CRS, pub) are indistinguishable
by the LWE assumption. However, we need them to be indistinguishable even given the LWE secrets si and
we are unable to show this under LWE. The LWE secrets can be written as si = sevali + sprfi in the real case and
si = sevali +sprfi + ŝi in the simulated case. Since CRS, pub completely determine the values bi = A ·si+ei, revealing
si also implicitly reveals ei, where ei = eevali +eprfi in the real case and ei = eevali +eprfi + êi in the simulated case. We

3Recall that previously we relied on a “packed” homomorphic evaluation, where we could evaluate a function f : {0, 1}` → {0, 1}m on a
commitment to x to get a commitment cf = A · sf + ef + f(x) · q

2
. The above relies on a slight variant that’s even further packed and allows

us to homomorphically evaluate a function g : {0, 1}` → Zmq over a commitment to x and derive a commitment cg = A · sg + eg + g(x).
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can show that the distributions would be indistinguishable if we left out the sevali , eevali components, as long as we
choose the noise eprfi to be large enough to smudge out êi. Intuitively, the sevali , eevali terms should also be masked
by the sprfi , e

prf
i terms and therefore should not hurt security. However, we cannot show this since sevali , eevali can

depend on the PRF key and can therefore be correlated with sprfi , e
prf
i . Our assumption essentially says that this

correlation cannot be meaningfully used. Note that there is an implicit circular security aspect to our assumption:
the PRF key k and the bit β are protected by the security of the commitment scheme, but we assume that releasing
the values si doesn’t hurt the security of the commitment, since the value sevali that depends on the commitment
randomness is masked by the PRF output. While this circularity does not easily lend itself to a proof, it also seems
difficult to attack: one cannot easily break the security of the commitment without first breaking the security of
the PRF and vice versa.

1.3 Discussion and Perspectives

1.3.1 Comparison to BDGM

We now give a detailed comparison of our results/techniques with those of Brakerski, Döttling, Garg, and Mala-
volta [BDGM20] (BDGM). BDGM defined a primitive called split FHE, which they show implies iO under the
LWE assumption. They then gave a candidate instantiation of split FHE by heuristically combining decisional
composite residue (DCR) and LWE-based techniques, together with the use of a random oracle. While they gave
compelling intuition for why they believe this construction of split FHE to be secure, they did not attempt to for-
mulate an assumption under which they could prove security. In our work, we define a variant of split FHE that
we call functional encodings. We then provide an entirely new instantiation of functional encodings via oblivious
LWE sampling. The main advantages of our approach are:

• We get a provably secure construction of iO under the LWE assumption along with an additional assumption
that there is an oblivious LWE sampler, where the latter is a clearly abstracted primitive, which we then
instantiate heuristically. In particular, we are able to confine the heuristic portion of our construction to a
single well defined component.

• We can prove security of our overall construction under a falsifiable assumption that is independent of the
function being obfuscated.

• Our construction of iO relies only on LWE-based techniques rather than the additional use of DCR. In our
opinion, this makes the construction conceptually simpler and easier to analyze. Furthermore, the construc-
tion is plausibly post-quantum secure.

• We avoid any reliance on random oracles.

On a technical level, we lightly adapt the split FHE framework of BDGM. In particular, our notion of functional
encodings can be seen as a relaxed form of split FHE, and our result that functional encodings imply iO closely
follows BDGM. The main differences between the two works, lie in the our respective instantiations of split-FHE
and functional encodings. We explain the differences in the framework and the instantiation in more detail below.

Functional Encodings vs Split FHE. There are two differences between our notion of functional encodings ver-
sus the split FHE framework of BDGM. Firstly, our notion of functional encodings has a simplified syntax com-
pared to split FHE (in particular, we do not require any key generation or homomorphic evaluation algorithms
and the opening can depend on all of the randomness r used to generate the encoding rather than just a secret
key). While we find the simplified syntax conceptually easier, it is not crucial, and our candidate construction of
functional encodings can be adapted to also match the syntactic requirements of split FHE. The second difference
is that we explicitly allow for a CRS in functional encodings, and show that the CRS can be removed when we
go to XiO (in particular, we show that XiO in the CRS model implies XiO in the plain model). In contrast, the
work of BDGM considered split FHE in the plain model (with indistinguishability rather than simulation secu-
rity). Their instantiation relies on a random oracle model and they argued heuristically that the random oracle
can be removed. The fact that we explicitly consider the CRS model allows us to avoid random oracles entirely,
and therefore reduce the number of heuristic components in the final construction.4

4We believe that this change could also be applied retroactively to remove the use of a random oracles in BDGM.
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Heuristic Instantiations. Both BDGM and our work provide a heuristic instantiation of the main building block:
split FHE and functional encodings, respectively. These instantiations are concretely very different, and rely on
different techniques. On a conceptual level, they also differ in the role that heuristic arguments play. BDGM
constructs a provably secure instantiation of split FHE under the combination of LWE and DCR assumptions, in
some idealized oracle world (essentially, the oracle samples Damgard-Jurik encryptions of small values). They
then give a heuristic instantiation of their oracle. However, there is no attempt to define any standard-model
notion of security that such an instantiation could satisfy to make the overall scheme secure. In contrast, we con-
struct a provably secure instantiation of functional encodings under the LWE assumption and assuming we have
an “oblivious LWE sampler”, where the latter is a cryptographic primitive in the standard model (with a CRS)
with a well-defined security requirement. We then give a heuristic construction of an oblivious LWE sampler us-
ing LWE techniques. Although the security notion of oblivious LWE sampling involves a simulator, our heuristic
construction comes with a candidate simulator for it. Therefore, the only heuristic component of our construction
is a clearly stated falsifiable assumption that two distributions (real and simulated) are indistinguishable.

We conjecture that the split FHE construction of BDGM could similarly be proven secure under the LWE as-
sumption, DCR assumption, and some type of “oblivious sampler” for Damgard-Jurik encryptions of random
small values. Moreover, the heuristic instantiation of the oracle in BDGM could likely be seen as a heuristic candi-
date for such an oblivious sampler. However, BDGM does not appear to have a plausible candidate simulator for
this instantiation and hence security does not appear to follow fromany simple falsifiable assumption (other than
assuming that the full construction of split FHE is secure).

We note that BDGM (Section 4.4) also presents an alternate construction of split FHE based only the LWE
assumption (without DCR) in some other idealized oracle world. However, they were not able to heuristically
instantiate the oracle for this alternate construction, and hence it did not lead to even a heuristic candidate for
post-quantum secure iO in their work.5 Their construction does yield a one-opening secure split-FHE / functional
encoding under LWE, and our one-opening secure scheme is in part inspired by it (and can be seen as simplifying
it). The main advantage of our scheme is that we can extend it to many-opening security via oblivious LWE
sampling, which we then instantiate heuristically to get a candidate iO.

1.3.2 Comparison with FE

The most promising line of work on constructiong iO from falsifiable assumptions first builds functional encryp-
tion (FE). A functional encryption scheme allows us to encrypt a value x and generate secret keys for functions f
so that decryption returns f(x) while leaking no additional information about x. We also consider Q-key security,
where an adversary given an encryption of x andQ secret keys for functions f1, . . . , fQ should learn nothing about
x beyond f1(x), . . . , fQ(x). A functional encoding scheme can be viewed as a relaxation of a secret-key functional
encryption where we allow the key for f to depend on x.

The state-of-the-art for functional encryption is analogous to that for functional encoding:

• We have one-key secure public-key FE for bounded-depth circuits f : {0, 1}` → {0, 1}m from LWE with
ciphertext size O(m) and key size O(1) [GKP+13, GVW13, BGG+14].

• A construction of iO from one-key secure public-key FE for bounded-depth circuits f : {0, 1}` → {0, 1}m
with ciphertext size O(m1−ε) [BV15, AJ15]. The latter is in turn implied by Q-key secure public-key FE for
f : {0, 1}` → {0, 1}with ciphertext size O(Q1−ε).

• A construction of iO from Q-key secure secret-key FE bounded-depth circuits f : {0, 1}` → {0, 1}m with
ciphertext size Q1−ε · poly(m). Our main candidate is essentially the functional encoding analogue of such a
secret-key FE scheme (in the CRS model).

This analogue raises two natural open problems: Do the techniques in this work also yield non-trivial FE schemes
(that imply iO) with a polynomial security loss, without passing through iO as an intermediate building block?
Can we simplify the constructions or assumptions underlying the FE schemes in [AJL+19, Agr19, JLMS19, GJLS20,
JLS20] by relaxing the requirements from FE to functional encodings (which would still suffice for iO)?

5As stated in BDGM Section 4.4: “We stress that, in contrast with the instantiation based on the Damgard-Jurik encryption scheme (Section
4.3), this scheme does not satisfy the syntactical requirements to apply the generic transformations (described in Section 4.2) to lift the scheme
to the plain model.”
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2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any function f such that f(λ) = λ−ω(1),
and poly(λ) denotes any function f such that f(λ) = O(λc) for some c > 0. For a probabilistic algorithm alg(inputs),
we might explicit the randomness it uses by writting alg(inputs; coins). We will denote vectors by bold lower case
letters (e.g. a) and matrices by bold upper cases letters (e.g. A). We will denote by a> and A> the transposes of a
and A, respectively. We will denote by bxe the nearest integer to x, rounding towards 0 for half-integers. If x is a
vector, bxe will denote the rounded value applied component-wise. For integral vectors and matrices (i.e., those
over Z), we use the notation |r|, |R| to denote the maximum absolute value over all the entries.

We define the statistical distance between two random variablesX and Y over some domain Ω as: SD(X,Y ) =
1
2

∑
w∈Ω |X(w)− Y (w)| . We say that two ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically

indistinguishable, denoted X
s
≈ Y , if SD(Xλ, Yλ) ≤ negl(λ).

We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ} are computationally indistinguishable,
denoted X

c
≈ Y , if, for all (non-uniform) PPT distinguishers Adv, we have |Pr[Adv(Xλ) = 1]− Pr[Adv(Yλ) = 1]| ≤

negl(λ). We also refer to sub-exponential security, meaning that there exists some ε > 0 such that the distinguishing
advantage is at most 2−λ

ε

.

2.2 Learning With Errors

Definition 2.1 (B-bounded distribution). We say that a distribution χ over Z is B-bounded if

Pr[χ ∈ [−B,B] ] = 1.

We recall the definition of the (decision) Learning with Errors problem, introduced by Regev ([Reg05]).

Definition 2.2 ((Decision) Learning with Errors ([Reg05])). Let n = n(λ) and q = q(λ) be integer parameters and
χ = χ(λ) be a distribution over Z. The Learning with Errors (LWE) assumption LWEn,q,χ states that for all polynomials
m = poly(λ) the following distributions are computationally indistinguishable:

(A, s>A + e)
c
≈ (A,u)

where A← Zn×mq , s← Znq , e← χm,u← Zmq .

Just like many prior works, we rely on LWE security with the following range of parameters. We assume that
for any polynomial p = p(λ) = poly(λ) there exists some polynomial n = n(λ) = poly(λ), some q = q(λ) =
2poly(λ) and some B = B(λ)-bounded distribution χ = χ(λ) such that q/B ≥ 2p and the LWEn,q,χ assump-
tion holds. Throughout the paper, the LWE assumption without further specification refers to the above parame-
ters. The sub-exponentially secure LWE assumption further assumes that LWEn,q,χ with the above parameters is
sub-exponentially secure, meaning that there exists some ε > 0 such that the distinguishing advantage of any
polynomial-time distinguisher is 2−λ

ε

.
The works of [Reg05, Pei09] showed that the (sub-exponentially secure) LWE assumption with the above pa-

rameters follows from the worst-case (sub-exponential) quantum hardness SIVP and classical hardness of GapSVP
with sub-exponential approximation factors.

2.3 Lattice tools

Noise smudging.

Definition 2.3 (Noise Smudging). We say that a distribution χ over Z smudges out noise of size B if for any fixed
y ∈ [−B,B] the statistical distance between χ and χ+ y is 2−λ

Ω(1)

.

We will use the following fact.

Lemma 2.4 (Smudging Lemma (e.g., [AJL+12])). LetB = B(λ), B′ = B′(λ) ∈ Z be parameters and and letU([−B,B])
be the uniform distribution over the integer interval [−B,B]. Then for any e ∈ [−B′, B′], the statistical distance between
U([−B,B]) and U([−B,B]) + e is B′/B.

Lemma 2.5. Assume that the LWEn,q,χ assumption holds for someB-bounded χ, and letB′ be some parameter. Then there
exists a distributions χ̂ that is B̂ = B + 2λB′ bounded such that LWEn,q,χ̂ holds and χ̂ smudges out noise of size B′.

Proof. Set χ̂ to be the distribution χ+ U([−2λB′, 2λB]).
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Gadget Matrix [MP12]. For an integer q ≥ 2, define: g = (1, 2, ·, 2dlog qe−1) ∈ Z1×dlog qe
q . The Gadget Matrix G is

defined as G = g⊗In ∈ Zn×mq where n ∈ N andm = ndlog qe. There exists an efficiently computable deterministic
function G−1 : Znq → {0, 1}

m such for all u ∈ Znq we have G ·G−1(u) = u. We let G−1($) denote the distribution
obtained by sampling u← Znq uniformly at random and outputting t = G−1(u).

Lattice Trapdoors. We rely on the fact that we can sample a random LWE matrix A together with a trapdoor td
that allows us to solve the LWE problem: given b = A · s + e for a sufficiently small e, we can use the trapdoor to
recover s (and hence also e) from b.

Theorem 2.6 ([Ajt96, MP12]). There exists a PPT algorithm (A, td)← TrapGen(1n, 1m, q) and a deterministic polynomial
time algorithm LWESolvetd(b) such that the following holds for any n ≥ 1, q ≥ 2, and a sufficiently large m = O(nlogq):

• The statistical distance between (A← Zm×nq ) and (A : (A, td)← TrapGen(1n, 1m, q)) is negligible in n.

• For any b = A · s + e where ||e||∞ ≤ q/O(
√
nm log q) we have LWESolvetd(b) = s.

3 Functional Encodings

3.1 Definition of Functional Encodings

A functional encoding scheme (in the CRS model) for the family F`,m,t = {f : {0, 1}` → {0, 1}m} of depth-t cir-
cuits consists of four PPT algorithms crsGen,Enc,Open,Dec where Open and Dec are deterministic, satisfying the
following properties:

Syntax: The algorithms have the following syntax:

• CRS ← crsGen(1λ, 1Q,F`,m,t) outputs CRS for security parameter 1λ and a bound Q on the number of
openings;

• C ← Enc(CRS, x ∈ {0, 1}`; r) encodes x using randomness r;

• d← Open(CRS, f : {0, 1}` → {0, 1}m, i ∈ [Q], x, r) computes the opening corresponding to i’th function
f ;

• y ← Dec(CRS, f, i, C, d) computes a value y for the encoding C and opening d.

Correctness:
Dec(f,Enc(x, r),Open(f, x, r)) = f(x)

Q-SIM Security: There exists a PPT simulator Sim such that the following distributions for all PPT adversaries
A and all x, f1, . . . , fQ ← A(1λ), the following distributions of (CRS, C, d1, . . . , dQ) are computationally
indistinguishable:

• Real Distribution: CRS← crsGen(1λ, 1Q), C ← Enc(CRS, x; r), di ← Open(CRS, f i, i, x, r), i ∈ [Q].
• Simulated Distribution: (CRS, C, d1, . . . , dQ)← Sim({f i, f i(x)}i∈Q).

Succinctness: There exists a constant ε > 0 such that, for CRS ← crsGen(1λ, 1Q,F`,m,t), C ← Enc(CRS, x; r),
d← Open(CRS, f, i, x, r) we have:

|CRS| = poly(Q,λ, `,m, t), |C| = poly(λ, `,m, t), |d| = m1−εpoly(λ, `, t).

Remark 3.1 (Comparison with split-FHE). One can think of functional encodings as essentially a relaxation of split-
FHE, where we remove the explicit requirements for decryption (and secret keys) and for homomorphic evaluation. This
simplifies both the syntax and the security definition. In the language of BDGM, Open corresponds to a decryption hint
for an encryption of f(x), obtained by applying partial decryption to homomorphic evaluation of f on the encryption of
x. Note that in BDGM, the hint should be computable given the decryption key, whereas we allow the hint to depend on
the encryption/commitment randomness. Finally, BDGM circumvents the impossibility of simulation-based security for
many-time security in the plain model by turning to indistinguishability-based security, whereas we rely on a CRS.

Remark 3.2 (Comparison with functional encryption). Functional encoding is very similar to (secret-key) functional
encryption where given an encryption of x and a secret key for f , we learn f(x) and nothing else about x. A crucial distinction
here is that Open also gets x as input.
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4 Homomorphic Commitments with Short Openings

In this section, we describe a homomorphic commitment scheme with short openings.

Lemma 4.1 (Homomorphic computation on matrices [GSW13, BGG+14]). Fix parameters m, q, `. Given a matrix
C ∈ Zm×`m log q

q and a circuit f : {0, 1}` → {0, 1} of depth t, we can efficiently compute a matrix Cf such that for all
x ∈ {0, 1}`, there exists a matrix HC,f,x ∈ Z`m log q×m log q with |HC,f,x| = mO(t) such that6

(C− x> ⊗G) ·HC,f,x = Cf − f(x)G (1)

where G ∈ Zm×m log q
q is the gadget matrix. Moreover, HC,f,x is efficiently computable given C, f,x.

Using the “packing” techniques in [MW16, BTVW17, PS19], the above relation extends to circuits with m-bit
output. Concretely, given a circuit f : {0, 1}` → {0, 1}m of depth t, we can efficiently compute a vector cf such
that for all x ∈ {0, 1}`, there exists a vector hC,f,x ∈ Z`m log q with |hC,f,x| = mO(t) such that

(C− x> ⊗G) · hC,f,x = cf − f(x) · q2 (2)

where f(x) ∈ {0, 1}m is a column vector. Concretely, let f1, . . . , fm : {0, 1}m → {0, 1} denote the circuits comput-
ing the output bits of f . Then, we have:

cf =

m∑
j=1

Cfj ·G−1(1j · q2 ) (3)

hC,f,x =

m∑
j=1

HC,fj ,x ·G−1(1j · q2 )

where 1j ∈ {0, 1}m is the indicator column vector whose j’th entry is 1 and 0 everywhere else, so that f(x) =∑
j fi(x) · 1j . Here, hC,f,x is also efficiently computable given C, f,x.

Construction 4.2 (homomorphic commitments pFHC). The commitment scheme pFHC (”packed fully homomorphic
commitmeent”) is parameterized by m, ` and n, q, and is defined as follows.

• Gen chooses a uniformly random matrix A← Zm×nq .

• Com(A ∈ Zm×nq ,x ∈ {0, 1}`;R ∈ Zn×`m log q
q ,E ∈ Zm×`m log q) outputs a commitment

C := AR + x> ⊗G + E ∈ Zm×`m log q
q .

Here, R← Zn×`m log q
q ,E← χm×`m log q

• Eval(f : {0, 1}` → {0, 1}m,C ∈ Zm×`m log q
q ) for a boolean circuit f : {0, 1}` → {0, 1}m, deterministically outputs

a (column) vector cf ∈ Zmq . Here, cf is the same as that given in (2).

• Evalopen(f,A ∈ Zm×nq ,x ∈ {0, 1}`,R ∈ Zn×`m log q
q ,E ∈ Zm×`m log q): deterministically outputs (column) vectors

rf ∈ Znq , ef ∈ Zmq .

Lemma 4.3. The above commitment scheme pFHC satisfies the following properties:

• Correctness. For any boolean circuit f : {0, 1}` → {0, 1}m of depth t, any x ∈ {0, 1}`, any A ∈ Zm×nq ,R ∈
Zn×`m log q
q ,E ∈ Zm×`m log q , we have

C := Com(A,x;R,E), cf := Eval(f,C), (rf , ef ) := Evalopen(f,A,x,R,E)

satisfies
cf = Arf + f(x) · q2 + ef ∈ Zmq

where f(x) ∈ {0, 1}m is a column vector and |ef | = |E| ·mO(t).

6 Note that if we write C = [C1 | · · · | C`] where C1, . . . ,C` ∈ Zm×m log q
q and x = (x1, . . . , x`), then

C− x> ⊗G = [C1 − x1G | . . . | C` − x`G]
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• Privacy. Under the LWE assumption, for all x ∈ {0, 1}`, we have:

A,Com(A,x) ≈c A,Com(A,0)

Proof. Correctness follows from substituting C = AR + x> ⊗G + E into (2), which yields

cf = (AR + E) · hC,f,x + f(x) · q2 = A ·R · hC,f,x︸ ︷︷ ︸
rf

+f(x) · q2 + E · hC,f,x︸ ︷︷ ︸
ef

.

The bound on |ef | follows from |hC,f,x| = mO(t). Privacy follows readily from the pseudorandomness of (A,AR+
E), as implied by the LWE assumption.

Handling f : {0, 1}` → Zmq . Next, we observe that we can also augment pFHC with a pair of algorithms
Evalq,Evalqopen to support bounded-depth circuits f : {0, 1}` → Zmq (following [PS19]). That is,

• Correctness II. For any boolean circuit f : {0, 1}` → Zmq of depth t, any x ∈ {0, 1}`, any A ∈ Zm×nq ,R ∈
Zn×`m log q
q ,E ∈ Zm×`m log q , we have

C := Com(A,x;R,E), cf := Evalq(f,C), (rf , ef ) := Evalqopen(f,A,x,R,E)

satisfies
cf = Arf + f(x) + ef ∈ Zmq

where f(x) ∈ Zmq is a column vector and |ef | = |E| ·mO(t).

Concretely, let f1, . . . , fm log q : {0, 1}m → {0, 1} denote the circuits computing the output of f interpreted as bits.
Then, we have:

cf =

m log q∑
j=1

Cfj ·G−1(1j ⊗ g>) (4)

hC,f,x =

m log q∑
j=1

HC,fj ,x ·G−1(1j ⊗ g>)

5 1-SIM Functional Encoding from LWE

We construct a 1-SIM functional encoding scheme for bounded-depth circuits F`,m,t based on the LWE assump-
tion. The scheme does not require a CRS. Such a result is given in [BDGM20, Section 4.4], starting from any FHE
scheme with “almost linear” decryption; we provide a more direct construction that avoids key-switching.

Construction 5.1.

• Enc(x;A,R,E, s, e). Sample

A← Zm×nq ,R← Zn×`m log q
q ,E← χm×`m log q, s← Znq , e← χ̂m

Compute
C := pFHC.Com(A,x;R,E), b := As + e

and output
(A,C,b)

• Open(f,x;A,R,E, s, e): Compute (rf , ef ) := pFHC.Evalopen(f,A,x,R,E) and output

d := rf + s ∈ Znq

• Dec(f, (A,C,b),d): Compute cf := pFHC.Eval(f,C) and output

roundq/2(cf + b−Ad) ∈ {0, 1}m

where roundq/2 : Zmq → {0, 1}
m is coordinate-wise rounding to the nearest multiple of q/2.
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Parameters. Here, χ isB-bounded, and χ̂ is B̂-bounded. The choice of n, q, χ,B comes from the LWE assumption
subject to

n = poly(t, λ), B̂ = B ·mO(t) · 2λ, q = B̂ · 2λ = B ·mO(t) · 22λ

We choose χ̂ to smudge out noise of size B ·mO(t) and rely on Lemma 2.5. In particular, this guarantees that the
size of the encoding/opening is bounded by

|C| = O(`m2 log q) = Õ(`m2), |d| = O(n log q) = Õ(m)

where Õ(·) hides poly(λ, t, logm) factors.

Theorem 5.2. Under the LWEn,q,χ assumption, the construction above is a 1-SIM functional encoding.

Proof. First, we prove correctness. By correctness of pFHC, we have

cf = Arf + f(x) · q2 + ef

where |ef | ≤ B ·mO(t). This means that

cf + b−A(rf + s) = f(x) · q2 + ef + e

Second, we prove security. We start by specifying the simulator Sim, which on input f,y,

• sample d← Znq ,A← Zm×nq ,C← pFHC.Com(A,0);

• compute cf := pFHC.Eval(f,C) and b := A · d− cf + y · q2 + e′

• output ((A,C,b),d).

We prove distinguishability of the Real and Simulated Distributions via a hybrid argument with the following
hybrid distributions:

• Hybrid Distribution 1: Same as the real distribution with the following modifications to b,d: we sample
d← Znq and compute b := A · (d− rf ) + e.

The Real Distribution and Hybrid Distribution 1 are identically distributed, since

(s, rf + s) ≡ (d− rf ,d)

• Hybrid Distribution 2: Same as Hybrid Distribution 1 with the following modification to b: we compute
b := A · d− cf + f(x) · q2 + e′ instead of b := A · d−Arf + e.

Hybrid Distributions 1 and 2 are statistically close, since

−Arf + e = −cf + f(x) · q2 + e− ef ≈s −cf + f(x) · q2 + e′

where the first equality follows from correctness of pFHC and the second ≈s follows from noise smudging.

• Simulated Distribution: Same as Hybrid Distribution 2 with the following modification to C: we sample
C← pFHC.Com(0) instead of C← pFHC.Com(x).

Hybrid Distribution 2 and the Simulated Distribution are computationally indistinguishable via privacy of
pFHC.

Remark 5.3 (An attack given many openings.). We describe an attack strategy on our 1-SIM scheme in the Q-SIM
setting, namely, when the adversary gets openings d1, . . . ,dQ corresponding to many functions f1, . . . , fQ. (We stress that
this does not contradict our preceding security claim.) Observe that we have

di = dfi + s = R · hC,fi,x + s

where hC,fi,x (as defined in (2)) is efficiently computable given x,C, f i. In the case of linear functions, hC,fi,x does not even
depend on x. This gives us Q linear equations in the unknowns R, s, and allows us to recover R and break many-opening
security in both the indistinguishability-based and simulation-based settings as long as we can choose f i’s in such a way that
the equations are linearly independent.
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6 Oblivious Sampling From Falsifiable Assumption

Oblivious LWE sampling allows us to compute Q seemingly random LWE samples bi = Asi + ei relative to some
LWE matrix A, by applying some deterministic function to a long CRS that is independent of A along with a
short public value pub that can depend on A but whose length is independent of Q. We require that there is a
simulator that can indistinguishably program CRS, pub to ensures that the resulting samples bi “almost match”
some arbitrary LWE samples b̂i given to the simulator as inputs. Ideally, the simulator could ensure that bi = b̂i
match exactly. However, we relax this and only require the simulator to ensure that bi = b̂i + b̃i for some
LWE sample b̃i = As̃i + ẽi for which the simulator knows the corresponding secret s̃i. Note that the simulator
does not get the secrets ŝi for the target values b̂i = Aŝi + êi, but indistinguishability should hold even for a
distinguisher that gets the secrets si for the output samples bi = Asi + ei. We show in Appendix A that we
can construct a strong form of oblivious sampling using the notion of invertible sampling (in the CRS model)
from [IKOS10, DKR15, ACI+20], which can be constructed from iO. This highlights that the notion is plausibly
achievable. We then give a heuristic constructions of oblivious LWE sampling using LWE-style techniques and
heuristically argue that security holds under a new falsifiable assumption.

6.1 Definition of Oblivious Sampling

An oblivious LWE sampler consists of four PPT algorithms: CRS← crsGen(1λ, 1Q), pub← Init(A),bi = Sample(CRS, pub, i)

and (CRS, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]). The Sample algorithm is required to be deterministic while
the others are randomized. Let (TrapGen, LWESolve) be the algorithms from Theorem 2.6.

Definition 6.1. An (n,m, q, χ̂, BOLWE) oblivious LWE sampler satisfies the following properties:

Correctness: Let Q = Q(λ) be some polynomial. Let (A, td) ← TrapGen(1n, 1m, q),CRS ← crsGen(1λ, 1Q),pub ←
Init(A). Then, with overwhelming probability over the above values, for all i ∈ [Q] there exists some si ∈ Znq and
ei ∈ Zmq with ||ei||∞ ≤ BOLWE such that bi = Asi + ei.

Security: The following distributions of (CRS,A, pub, {si}i∈[Q]) are computationally indistinguishable:

• Real Distribution: Sample (A, td)← TrapGen(1n, 1m, q), CRS← crsGen(1λ, 1Q), pub← Init(A). For i ∈ [Q]
set bi = Sample(CRS, pub, i), si = LWESolvetd(bi). Output (CRS,A, pub, {si}i∈[Q]).

• Simulated Distribution: Sample (A, td)← TrapGen(1n, 1m, q), ŝi ← Znq , êi ← χ̂m and let b̂i = Aŝi+êi. Sam-
ple (CRS, pub, {s̃i}i∈[Q])← Sim(1λ, 1Q,A, {b̂i}i∈[Q]) and let si = ŝi + s̃i. Output (CRS,A, pub, {si}i∈[Q]).

Observe that the algorithm pub ← Init(A) in the above definition does not get Q as an input and therefore
the size of pub is independent of Q. On the other hand, the algorithm CRS← crsGen(1λ, 1Q) does not get A as an
input and hence CRS must be independent of A. This is crucial and otherwise there would be a trivial construction
where either CRS or pub would consist of Q LWE samples with respect to A.

Note that the security property implicitly also guarantees the following correctness property of the simulated
distribution. Assume we simulate the values (CRS,A, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]) where the sim-
ulator is given LWE samples b̂i = Aŝi + êi as input. Then the resulting (CRS,A, pub) will generate samples
bi = Sample(CRS, pub, i) of the form bi = b̂i + b̃i where b̃i = As̃i + ẽi some small ẽi. This is because, in the
simulation, we must have bi = Asi + ei where ||ei||∞ ≤ B as otherwise it would be trivial to distinguish the
simulation from the real case. But si = ŝi + s̃i and so ei = êi + ẽi. This implies ẽi = ei − êi will be small.

Remark 6.2 (Naive construction fails). Consider the naive construction:

pub := (AS + E), CRS := (r1, . . . , rQ), bi := (AS + E)ri

where
A← Zm×nq , S← Zn×m log q

q , E← χm×m log q ri ← χm log q

We stress that the simulator receives a random A but not the corresponding trapdoor. Indeed, under the LWE assumption,
there does not exist an efficient simulator for the naive construction. In more detail, the simulator is required on input
(A, {b̂i}i∈[Q]) to output ({ri}i∈[Q],B, {s̃i}i∈[Q]) such that

({ri}i∈[Q],AS + E, {Sri}i∈[Q]) ≈c ({ri}i∈[Q],B, {ŝi + s̃i}i∈[Q])
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We claim that checking whether Bri ≈ b̂i + As̃i yields a distinguisher for whether (A, {b̂i}i∈[Q]) is drawn from LWE
versus uniform distribution. The proof relies on the fact that given ({ri}i∈[Q], {Sri}i∈[Q]) for Q � m, we can solve for S
via Gaussian elimination, which means that the matrix B must be of the form AS0 +E0 and therefore any b̂i that passes the
check satisfies b̂i ≈ A(S0ri − s̃i). Note that the LWE distinguisher works even if it does not know S0,E0.

6.2 Heuristic Construction

We now give our heuristic construction of an oblivious LWE sampler. Let n,m, q be some parameters and χ, χprf , χ̂

be distributions over Z that are B,Bprf , B̂ bounded respectively. Let D be an algorithms that samples tuples (s, e)
where s← Znq and e← χmprf . Assume that D uses v random coins, and for r ∈ {0, 1}v define (s, e) = D(r) to be the
output of D with randomness r. Let PRF : {0, 1}λ × {0, 1}∗ → {0, 1}v be a pseudorandom function. We rely on
the homomorphic commitment algorithms Com,Evalq,Evalqopen with parameters n,m, q, χ from Section 4.

Construction 6.3. We define the oblivious LWE sampler as follows:

• CRS← crsGen(1λ, 1Q): CRS := (CRS1, . . . ,CRSQ) where CRSi ← Zmq .

• pub← Init(A): Sample a PRF key k ← {0, 1}λ and set a flag β := 0. Set pub := (A,C) where C← Com(A, (k, β)).

• bi = Sample(CRS, pub, i): Let gi,CRSi,A : {0, 1}λ+1 → Zmq be a circuit that contains the values (i,A,CRSi)
hard-coded and performs the computation:

gi,CRSi,A(k, β) : Let (sprfi , e
prf
i ) = D(PRF(k, i)). Output Asprfi + eprfi + β · CRSi.

Output bi = Evalq(gi,CRSi,A,C).

• (CRS, pub, {s̃i}i∈[Q]) ← Sim(1λ, 1Q,A, {b̂i}i∈[Q]): Set CRS := (b̂1, . . . , b̂Q). Set the flag β := 1 and pub :=

(A,C) for C = Com((k, β);R,E) where R,E is the randomness of the commitment. Let (revali , eevali ) = Evalqopen(gi,CRSi,A,A, (k, β),R,E)

and (sprfi , e
prf
i ) = D(PRF(k, i)). Set s̃i = revali + sprfi .

Form of samples bi. Let us examine this construction in more detail and see what the samples bi look like.
In the real case, where pub ← Init(A), we have pub = (A,C) where C = Com(A, (k, 0); (R,E)). For bi =

Sample(CRS, pub, i) we can write

bi = A (revali + sprfi )︸ ︷︷ ︸
si

+ (eevali + eprfi )︸ ︷︷ ︸
ei

(5)

where (sprfi , e
prf
i ) = D(PRF(k, i)) are sampled using the PRF and (revali , eevali ) = Evalqopen(gi,A, (k, 0),R,E) come

from the homomorphic evaluation.
In the simulated case, where CRS, pub are chosen by the simulator, we have pub = (A,C) where C = Com(A, (k, 1); (R,E))

and CRSi = b̂i = Aŝi + êi. For bi = Sample(CRS, pub, i) we can write

bi = A (

s̃i︷ ︸︸ ︷
revali + sprfi +ŝi)︸ ︷︷ ︸

si

+ (

ẽi︷ ︸︸ ︷
eevali + eprfi +êi)︸ ︷︷ ︸

ei

(6)

where (sprfi , e
prf
i ) = D(PRF(k, i)) are sampled using the PRF and (revali , eevali ) = Evalqopen(gi,CRSi,A,A, (k, 0),R,E)

come from the homomorphic evaluation.

Correctness. Equation 5 implies that the scheme satisfies the correctness of an n,m, q, χ̂, BOLWE oblivious LWE
sampler, where BOLWE is a bound ||ei||∞. In particular, B ≤ Bprf + B ·mO(t), where t is the depth of the circuit
gi,CRSi,A (which is dominated by the depth of the PRF).
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6.3 Security under a New Conjecture

The security of our heuristic oblivious sampler boils down to the indistinguishability of the real and simulated
distributions, which is captured by the following conjecture:

Conjecture 6.4 (HPLS Conjecture). For β ∈ {0, 1}, let us define the distribution DIST(β) over

({Aŝi + êi}i∈[Q],A,C, {si}i∈[Q])

where

• A← Zm×nq , ŝi ← Znq , êi ← χm

• k ← {0, 1}λ, (C = A ·R + E + (k, β)⊗G)← Com(A, (k, β); (R,E))

• (sprfi , e
prf
i ) := D(PRF(k, i)), (revali , eevali ) := Evalqopen(gi,Aŝi+êi,A,A, (k, β),R,E)

• If β = 0 then si := (revali + sprfi ) and if β = 1 then si := (revali + sprfi + ŝi)

The (sub-exponential) homomoprhic pseudorandom LWE samples (HPLS) conjecture with parameters (n,m, q, χ, χ̂, χprf)
and pseduodrandom function PRF says that the distributions DIST(0) and DIST(1) are (sub-exponentially) computationally
indistinguishable.

When we do not specify parameters, we assume the conjecture holds for some choice of PRF and any choices of n, q, χ, χ̂
and any polynomial m, such that LWEn,q,χ and LWEn,q,χ̂ assumptions hold and χprf smudges out error of size B̂ + B ·
mO(t), where t is the depth of the circuit gi,CRSi,A (which is dominated by the depth of the PRF).

Observations. We begin with two simple observations about the conjecture:

• The distribution DIST(β) satisfies the following consistency check for both β = 0 and β = 1, namely

Evalq(gi,Aŝi+êi,A,C) ≈ Asi

This means that we cannot rely on homomorphic evaluation to distinguish between the two distributions.
In addition, note that the distinguisher can compute

Evalq(gi,Aŝi+êi,A,C)−Asi = eevali + eprfi + β · êi

• If we omit revali from si, then indistinguishability follows from standard assumptions. Concretely, under the
LWE assumption and security of PRF, we have:

({Aŝi + êi}i∈[Q],A,C, {sprfi , e
prf
i }i∈[Q])

≈c ({Aŝi + êi}i∈[Q],A,C, {sprfi + ŝi, e
prf
i + ê}i∈[Q])

By privacy of Com, we can replace C with a commitment to 0, and then security follows from PRF security
plus noise smudging. In particular eprfi smudges out êi.

That is, the non-standard nature of Conjecture 6.4 arises from the interaction between revali (which depends on k
the randomness R in Com) and sprfi .

Oblivious LWE sampling from the new conjecture. We now that the conjecture implies the (sub-exponential
security) of our oblivious LWE sampler in Definition 6.1.

Lemma 6.5. Under the homomoprhic pseudorandom LWE samples (HPLS) conjecture (Conjecture 6.4) (with sub-exponenital
security), the oblivious sampler construction is (sub-exponentially) secure.

Proof. Although the distributions DIST(0) and DIST(1) closely resemble the real and simulated distributions re-
spectively in the definition, there are some modifications:

1. In the real/simulated distributions we sample (A, td) ← TrapGen(1n, 1m, q), while in DIST(β) we sample
A← Zm×nq .

16



2. In the real distribution we compute si = LWESolvetd(bi), while in DIST(0) we set si = revali + sprfi .

3. In the real distribution, we sample CRSi ← Zmq while in DIST(0) we sample it as CRSi = Aŝi + êi.

By Equation 5 and the correctness of solving LWE with a trapdoor, we have LWESolvetd(bi) = revali + sprfi in the
real distribution, and therefore modification (2) is purely syntactic and does not change the distributions. Fur-
thermore, the distribution of A sampled via TrapGen is statistically close to uniform and therefore modification
(1) is statistically indistinguishable. Lastly, once we remove the trapdoor with modifications (1),(2) we can rely
on the LWE assumption (which is implied by the conjecture) to argue that modification (3) is computationally
(sub-exponentially) indistinguishable. Therefore DIST(0) is computationally (sub-exponentially) indistinguish-
able from the real distribution assuming the conjecture holds and DIST(1) is statistically indistinguishable from
the simulated distribution in Definition 6.1. This shows that if the the conjecture holds and DIST(0) is com-
putationally (sub-exponentially) indistinguishable from DIST(1) then also the real and simulated distributions in
Definition 6.1 are computationally (sub-exponentially) indistinguishable and therefore the oblivious LWE sampler
is secure.

Zeroizing attacks. As a sanity check, we argue that zeroizing attacks used in cryptanalysis of iO candidates
[CHL+15, ADGM17, CLLT17, CGH17, CVW18, CCH+19] are unlikely to work on Conjecture 6.4. These attacks
start by exploiting consistency checks to obtain small values (so-called “zero encodings”) whichs in turn yield
equations over small secret values over the integers. In our setting, this corresponds to computing:

ei,k,β := Evalq(gi,Aŝi+êi,A,C)−Asi = eevali + eprfi + β · êi ∈ Zm, i = 1, . . . , Q

We can further write eevali = E · hC,i,Aŝi+êi,A,k,β where hC,i,Aŝi+êi,A,k,β depends on C, i, gi,Aŝi+êi,A as in (2).
There are two main variants of zeroizing attacks in the literature. The statistical variant [CCH+19] looks

at {|βi,k,β |}i∈[Q] which in our case leaks no information about β, thanks to noise smudging with our setting of
parameters. The algebraic variant [CVW18] arranges the entries of {ei,k,β}i∈[Q] into a square matrix and outputs
the rank of the matrix; this appears unlikely to work in our setting due to the PRF, which means that the function
gi cannot by a read-once or read-constant branching program [CHVW19]. More generally, the structure of ei,k,β
is quite similar to that of the “zero encodings” in the GGH15-based IO candidate in [CHVW19].7 It seems quite
plausible that a zeroizing attack in our assumption would yield a zeroizing attack on the IO candidate and vice
versa. Given that the latter resists all known zeroizing attacks in the literature, it seems quite plausible that our
conjecture resists all known zeroizing in the literature.

Towards proving the conjecture. As a first step towards proving the conjecture under standard assumptions,
consider the following (weaker) statement, which is implied by our conjecture:

{revali + sprfi }i∈[Q] is pseudorandom.

It is an open problem to construct a PRF for which we could base this weaker statement under standard assump-
tions. The difficulty again arises from the fact that revali depends on the PRF key k used to derive sprfi . A related
open problem is to construct a PRF for which we could base

{eevali + eprfi }i∈[Q] ≈c {eevali + eprfi + êi}i∈[Q]

on standard assumptions. Note that if we could argue that eprfi and eevali are uncorrelated then the above would
hold since eprfi smudges out any uncorrelated error of size eevali + êi.

Relying on weak PRFs. We can also consider a heuristic candidate for oblivious LWE sampling that relies a
weak PRF wPRF, where (sprfi , e

prf
i ) := D(wPRF(k, ui)) and ui is published in the CRS. Under the LWE assumption,

we have a weak PRF given by wPRF(k, ui) = roundq/2(〈k, ui〉). This allows us to realize security under a variant
of Conjecture 6.4 where DIST(β) is the distribution over

({Aŝi + êi}i∈[Q],A,C, {Ui, si}i∈[Q])

where
7Note there are in fact multiple ways to implement homomorphic evaluation in our setting, which in turn yields different expressions for

ei,k,β . The difference arise from the fact we can homomorphically multiply 4 GSW ciphertexts C1,C2,C3,C4 as C1 ·G−1(C2) ·G−1(C3) ·
G−1(C4), or (C1 ·G−1(C2)) ·G−1(C3 ·G−1(C4)), or C1 ·G−1(C2 ·G−1(C3 ·G−1(C4))). Amongst the 3 options, the first is most similar
to GGH15 encodings, whereas the second is the one used in Lemma 4.1.
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• A← Zm×nq , ŝi ← Znq , êi ← χ̂m,Ui ← Zt×nq

• k← Znq , (C = A ·R + E + (k, β)⊗G)← Com(A, (k, β); (R,E))

• (sprfi , e
prf
i ) := D(roundq/2(Uik))

• (revali , eevali ) := Evalqopen(gi,Aŝi+êi,A,A, (k, β),R,E) where

gi,Aŝi+êi,A(k, β) : Let (sprfi , e
prf
i ) = D(roundq/2(Uik)). Output Asprfi + eprfi + β · CRSi.

• If β = 0 then si := (revali + sprfi ) and if β = 1 then si := (revali + sprfi + ŝi)

7 Q-SIM Functional Encodings from Oblivious Sampling

We construct a Q-SIM functional encoding scheme (crsGen,Enc,Open,Dec) for bounded-depth circuits F`,m,t from
LWE and an oblivious LWE sampler (OLWE.crsGen, Init,Sample).

Construction 7.1.

• crsGen(1λ, 1Q,F`,m,t). Output OLWE.crsGen(1λ, 1Q).

• Enc(CRS,x): Sample

(A, td)← TrapGen(1n, 1m, q), pub← Init(CRS,A),R← Zn×`m log q
q ,E← χm×`m log q

Compute
C := pFHC.Com(A,x;R,E)

and output
(pub,A,C)

• Open(f i,x): Compute

(rfi , efi) := pFHC.Evalopen(f
i,A,x,R,E), bi := Sample(CRS, pub, i), si := LWESolvetd(bi)

and output
di := rfi + si ∈ Znq

• Dec(f i, (pub,A,C),di): Compute

cfi := pFHC.Eval(f,C), bi := Sample(CRS, pub, i)

and output
yi := roundq/2(cfi + bi −Adi) ∈ {0, 1}m

Parameters. We rely on the n, q, χ LWE assumption, where χ is B-bounded. We rely on an (n,m, q, χ̂, BOLWE)
oblivious sampler where χ̂ is some distribution that smudges out error of size BmO(t); relying on Lemma 2.5, we
can assume χ̂ is B̂ bounded for B̂ = B ·mO(t) · 2λ. We assume that BOLWE = 2p(λ)B̂ for some polynomial p(λ). We
need BOLWE +BmO(t) ≤ q/4. This is guaranteed by our heuristic construction.

In particular, we can set

n = poly(t, λ), B̂ = B ·mO(t) · 2λ, q = (BOLWE +B ·mO(t)) · 2λ = 2p(λ)+λB ·mO(t)

In particular, this guarantees that the size of the encoding/opening is bounded by

|C| = O(`m2 log q) = Õ(`m2), |d| = O(n log q) = Õ(m)

where Õ(·) hides poly(λ, t, logm) factors.
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Hybrid Commit C Eval cfi Open di Sample bi CRS
real AR+ x> ⊗G Arfi + f i(x) q

2
rfi + si Asi real

1 ↓ ↓ rfi + ŝi + s̃i A(ŝi + s̃i) Sim(Aŝi)
2 ↓ ↓ ŝi + s̃i A(ŝi + s̃i)− cfi + f i(x) q

2
Sim(Aŝi − cfi + f i(x) q

2
)

sim AR+ 0> ⊗G cfi ↓ ↓ ↓

Figure 1: Summary of our security proof. ↓ denotes same as previous hybrid. Here, we suppress the noise terms.
Observe that in each hybrid, we maintain the invariant cfi + bi ≈ Adfi + f i(x) q2 .

Theorem 7.2. Under the LWE assumption and the existence of a (n,m, q, χ,B) oblivious LWE sampler, the construction
above is a Q-SIM functional encoding.

Proof. First, we prove correctness. By correctness of pFHC, we have

cfi = Arfi + f i(x) · q2 + efi

where |efi | ≤ B ·mO(t). By correctness of the oblivious LWE sampler, we also have

bi = Asi + ei

where |ei| ≤ BOLWE. This means that

roundq/2(cfi + bi −A(rfi + s)) = roundq/2(f i(x) · q2 + efi + e) = f i(x)

since ||efi + e||∞ ≤ q/4.
Second, we prove security. We start by specifying the simulator Sim, which relies on the oblivious LWE sampler

simulator OLWE.Sim. On input {f i,yi}i∈[Q],

• sample A← Zm×nq ,C← pFHC.Com(A,0);

• sample ŝi ← Znq , êi ← χm;

• compute cfi := pFHC.Eval(f i,C);

• sample (CRS, pub, {s̃i}i∈[Q])← OLWE.Sim(1λ, 1Q,A, {Aŝi + êi − cfi + yi · q2}i∈[Q]);

• compute di := ŝi + s̃i;

• output ((pub,A,C),di).

We prove distinguishability of the Real and Simulated Distributions via a hybrid argument with the following
hybrid distributions summarized in Fig 1:

• Hybrid Distribution 1: Same as the real distribution with the following modifications to CRS and di:

– (CRS, pub, {s̃i}i∈[Q])← OLWE.Sim(1λ, 1Q,A, {Aŝi + êi}i∈[Q]), for a random ŝi ← Znq , êi ← χm

– di := rfi + ŝi + s̃i

Indistinguishable via oblivious LWE sampling. In more detail, the reduction samples randomness R,E for
pFHC.Com, from which it can compute rfi . In the real/simulated distribution for oblivious LWE sampling,
the distinguisher also gets either si or ŝi+s̃i, which allows the reduction to compute di in the real distribution
and Hybrid Distributions 1 respectively.

• Hybrid Distribution 2: Same as the real distribution with the following modifications to CRS and di:

– (CRS, pub, {s̃i}i∈[Q])← OLWE.Sim(1λ, 1Q,A, {Aŝi + êi − cfi + f i(x) · q2}i∈[Q])

– di := ŝi + s̃i.

Hybrid Distributions 1 and 2 are statistically close. First, we have

(ŝi, rfi + ŝi, êi) ≈s (ŝi − rfi , ŝi, êi + efi)

Next, by correctness of pFHC, we have

cfi = Arfi + efi − f i(x) · q2

19



• Simulated Distribution: Same as Hybrid Distribution 2 with the following modification to C: we sample
C← pFHC.Com(0) instead of C← pFHC.Com(x).

Hybrid Distribution 2 and the Simulated Distribution are computationally indistinguishable via privacy of
pFHC.

8 IO from Functional Encodings

We first recall the definition of XiO from [LPST16a].

Definition 8.1 (XiO [LPST16a]). A pair of algorithms (XiO,Eval) is an exponentially efficient indistinguishability
obfuscator (XiO) scheme if it satisfies the following:

Correctness: For all circuits C : {0, 1}n → {0, 1} and for all inputs x ∈ {0, 1}n we have Pr[Eval(C̃, x) = C(x) : C̃ ←
XiO(1λ, C)] = 1.

(Sub-Exponential) Security: Let {C0
λ}, {C1

λ} be two circuit ensembles such that C0
λ, C

1
λ have the same input size, circuit

size, and compute the same function. Furthermore, the input size is logarithmic n = O(log λ). Then we require that
the distributions XiO(1λ, C0

λ) and XiO(1λ, C1
λ) are (sub-exponentially) computationally indistinguishable.

Efficiency: For a circuit C : {0, 1}n → {0, 1} with input length n and size s:

• The run-time of the obfuscation algorithm XiO(1λ, C) is poly(2n, λ, s).

• There is some constant ε > 0 such that the size of the obfuscated circuit outputted by XiO(1λ, C) is 2n(1−ε)poly(λ, s).

• The run-time of Eval is polynomial in its input size, meaning poly(2n, λ, s).

The work of [LPST16a] shows that XiO + LWE implies iO.

Theorem 8.2 ([LPST16a]). Assuming the sub-exponential security of LWE and a sub-exponentially secure XiO scheme,
there exists indistinguishability obfuscation.

XiO with CRS. We also consider XiO in the common reference string (CRS) model where the scheme is initiated
by generating a CRS← crsGen(1λ, 1n, 1s) that depends on the input length n and the circuit size s. The algorithm
C̃ ← XiO(1λ,CRS, C) nand Eval(CRS, C̃, x) now both take CRS as an input. The security property needs to hold
even if the the distinguisher is given the CRS. For efficiency, in addition to the requirements we had previously,
we also require that the run-time of crsGen and its output size are bounded by poly(2n, λ, s).

From CRS to plain model XiO. Assume (crsGen,XiO,Eval) is an XiO scheme in the CRS model. We define an
XiO scheme (XiO′,Eval′) in the plain model. The scheme is defined as follows:

XiO′(1λ, C): On input a circuit C : {0, 1}n → {0, 1} as a circuit with input length n and size |C| = s.

• Let n1, n2 be parameters (defined later) such that n1 + n2 = n and let Q := 2n1 .

• Define Q = 2n1 circuits Ci : {0, 1}n2 → {0, 1} such that Ci(x) computes C(i||x), where we identify
i ∈ [2n2 ] with a string in {0, 1}n2 .

• Sample CRS← crsGen(1λ, 1n2 , 1s) and for i ∈ [Q] set C̃i ← XiO(1λ,CRS, Ci).

• Define C̃ = (CRS, {C̃i}i∈[Q]).

Eval′(C̃, x) : Parse x = (i, x′) ∈ {0, 1}n1 × {0, 1}n2 . Output Eval(CRS, C̃i, x′).

We know that the length of the CRS ← crsGen(1λ, 1n, 1s) is at most poly(2n, λ, s) ≤ 2a·npoly(λ, s) for some
constant a and the size of the obfuscated circuit outputted by XiO(1λ,CRS, C) is 2n(1−ε)poly(λ, s) for some ε > 0.
Set n2 = n/(a+ ε) and n1 = n− n2 in the above construction.

Theorem 8.3. If (crsGen,XiO,Eval) is a (sub-exponentially secure) XiO scheme in the CRS model, then (XiO′,Eval′) is a
(sub-exponentially secure) XiO scheme in the plain model.
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Proof. Correctness follows immediately and security follows by a simple hybrid argument over the Q = 2n1 =
poly(λ) component circuits Ci. For efficiency, it’s also easy to see that the run-time of XiO′,Eval′ are poly(2n, λ, s).
Therefore the only thing left is to analyze the size of the obfuscated circuit C̃ = (CRS, {C̃i}i∈[Q]). We have |CRS| =
2a·n2poly(λ, s) and |C̃i| = 2n2(1−ε)poly(λ, s). Therefore:

|C̃| = (2a·n2 + 2n1 · 2n2(1−ε)) · poly(λ, s) = 2an2+n−ε·n2 · poly(λ, s) = 2an/(a+ε)poly(λ, s).

This means we can write |C̃| = 2(1−ε′)npoly(λ, s) for a constant ε′ = ε/(a+ ε) > 0.

From Functional Encodings to XiO with CRS. Assume that (crsGen,Com,Open,Dec) is a functional encoding
scheme. We define (crsGen′,XiO,Eval) to be an XiO scheme in the CRS model. Given n , we define n1, n2 to be
parameters (that we set later) such that n1 + n2 = n and let Q := 2n1 and m = 2n2 .

crsGen′(1λ, 1n, 1s) : Output CRS ← crsGen(1λ, 1Q,F`,m,t) where t = poly(s) is an upper bound on the size (and
depth) of the universal circuit that evaluates a circuit of size s and ` = s.

XiO(1λ,CRS, C): Compute c ← Com(CRS, C; r). For i ∈ [Q], define the functions fi : {0, 1}s → {0, 1}m such
that fi(C) = (C(i||1), . . . , C(i||m)) where we identify [Q] with {0, 1}n1 and [m] with {0, 1}n2 . Note that fi
computes m parallel copies of the universal circuit and is therefore of depth t. Let di = Open(CRS, f, i, C, r).
Output C̃ = (c, d1, . . . , dQ).

Eval(CRS, C̃, x): Parse x = (i, j) ∈ [Q]× [m]. Compute y = Dec(CRS, fi, i, c, di). Output the j’th bit of y.

We consider a succinct functional encoding where, for CRS ← crsGen(1λ, 1Q,F`,m,t), the size of the CRS is
poly(λ,Q, `,m, t), the length of C ← Com(CRS, x; r) is at most mapoly(λ, t, `) for some constant a, and that the size
of the opening di = Open(CRS, f, i, C, r) is 2m(1−ε)poly(λ, t, `) for some ε > 0. Set n2 = n/(a+ ε) and n1 = n− n2

in the above construction.

Theorem 8.4. If (crsGen,Com,Open,Dec,Eval) is a (sub-exponentially secure) functional encoding scheme, then (crsGen′,XiO,Eval)
is a (sub-exponentially secure) XiO scheme in the CRS model.

Proof. Correctness and security follow immediately from the definition of functional encodings. For efficiency,
it’s also easy to see that the run-time of crsGen′(1λ, 1n, 1s), XiO(1λ,CRS, C) and Eval(CRS, C̃, x) are poly(2n, λ, s).
Therefore the only thing left is to analyze the size of the obfuscated circuit C̃ = (c, d1, . . . , dQ). We have |c| =
2a·n2poly(λ, s) and |di| = 2n2(1−ε)poly(λ, s). Therefore:

|C̃| = (2a·n2 + 2n1 · 2n2(1−ε)) · poly(λ, s) = 2an2+n−ε·n2 · poly(λ, s) = 2an/(a+ε)poly(λ, s).

This means we can write |C̃| = 2(1−ε′)npoly(λ, s) for a constant ε′ = ε/(a+ ε) > 0.

Combining the above theorems we see that functional encodings imply XiO/iO.

Corollary 8.5. The existence of (sub-exponenitally secure) functional encoding implies (sub-exponenitally secure) XiO. In
particular, sub-exponentially secure functional encodings and sub-exponential security of LWE imply the existence of iO.

9 Summary of Results

We now summarize our main results. By combining the the result (Corollary 8.5) that functional encodings imply
iO and our constructions of functional encodings via oblivious LWE sampling (Theorem 7.2) we get the following.

Corollary 9.1. Assuming that there exists a sub-exponentially secure oblivious LWE sampler and that the sub-exponentially
secure LWE assumption holds, there exists iO.

Using our heuristic instantiation of an oblivious LWE sampler under our new assumption (Lemma 6.5), we
then also get the following.

Corollary 9.2. Assuming the sub-exponential security of Conjecture 6.4 and the sub-exponential security of LWE, there
exists iO.

21



Lastly, as a side result of independent interest, we can rely on the fact that oblivious LWE sampling is possible
via invertible sampling / pseudorandom encodings in the CRS model (Theorem A.1), as defined by [IKOS10,
DKR15, ACI+20], to get the following corollary.

Corollary 9.3. Assuming the existence of a sub-exponentially secure invertible sampling (equivalently pseudorandom en-
codings) in the CRS model for the LWE distribution and the sub-exponential security of LWE, there exists iO.

Note that [ACI+20] explicitly discussed the “pseudorandom encoding hypothesis with setup”, which assumes
that invertible sampling / pseudorandom encodings are possible for all distributions with setup. They noted that
this hypothesis is implied by iO and asked if it can be proven under weaker assumptions without relying on iO.
The above corollary answers this question in the negative, by showing that this hypothesis (+LWE) implies iO.
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A Oblivious LWE Sampling from Invertible Sampling (iO)

The works of [IKOS10, DKR15, ACI+20] define a general notion of invertible sampling in the CRS model (and the
equivalent notion of “pseudorandom encodings”). Below we give a special case of their definition restricted to
the LWE distribution.

Invertible LWE sampler. Let n,m, q, χ be some LWE parameters defined in terms of the security parameter
λ. An invertible (n,m, q, χ)-LWE sampler with setup consists of three PPT algorithms: CRS ← Setup(1λ),b ←
S(CRS,A), r ← S−1(CRS,A,b). We require the following properties:

Distributional Correctness: For any PPT adversaryA, the probability of outputting 1 in the following two games
is negligibly close:

• Standard LWE Sampling: A(1λ) selects a matrix A ∈ Zm×nq . The challenger chooses CRS ← Setup(1λ),
s← Znq , e← χm and gives CRS,b = As + e to A.

• Invertible LWE Sampling: A(1λ) selects a matrix A ∈ Zm×nq . The challenger chooses CRS ← Setup(1λ)
and b← S(CRS,A) and gives CRS,b to A.

Invertibility: Assume that S(CRS,A; r) uses |r| = u(λ) bits of randomness. We require that for any PPT adversary
A, the probability of outputting 1 in the following two games is negligibly close:

• Forward Sample: A(1λ) selects a matrix A ∈ Zm×nq . The challenger chooses CRS ← Setup(1λ), r ←
{0, 1}u(λ), b = S(CRS,A; r) and gives (CRS, r,b) to A.

• Invert Sample: A(1λ) selects a matrix A ∈ Zm×nq . The challenger chooses CRS ← Setup(1λ), b ←
S(CRS,A), r ← S−1(CRS,A,b) and gives (CRS, r,b) to A.

Let (Setup,S,S−1) be an invertible LWE sampler with setup, where S uses u(λ) bits of randomness. We can use
it to construct an oblivious LWE sampler in the CRS model as follows:

• CRS← crsGen(1λ, 1Q): Output CRS = (CRS0, r1, . . . , rQ) where CRS0 ← Setup(1λ), ri ← {0, 1}u(λ).

• pub← Init(A): Set pub = A.

• bi = Sample(CRS, pub, i): Output bi = S(CRS0,A; ri).

• Sim(1λ, 1Q,A, {b̂i}i∈[Q]): Sample CRS0 ← Setup(1λ). For i ∈ [Q] sample ri ← S−1(CRS0,A, b̂i). Set CRS =
(CRS0, r1, . . . , rQ), pub = A and output (CRS, pub, {s̃i = 0}i∈[Q]).

Theorem A.1. Assume that (Setup,S,S−1) is a (sub-exponentially secure) invertible (n,m, q, χ)-LWE sampler for someB-
bounded distribution χ. Then (crsGen, Init,Sample,Sim) is an (n,m, q, χ,B) oblivious LWE sampler (with sub-exponential
security).

Proof. First, we prove correctness. Fix any polynomial Q and any i ∈ [Q] and consider the distribution (A, td) ←
TrapGen(1n, 1m, q),CRS← crsGen(1λ, 1Q),pub← Init(A),bi = Sample(CRS, pub, i). Note that CRS = (CRS0, r1, . . . , rQ)

where CRS0 ← Setup(1λ) and ri ← {0, 1}u(λ), and bi = S(CRS0,A; ri). Let ε be the probability that s =
LWESolvetd(bi) does not satisfy ||bi − Asi||∞ ≤ B. By the distributional correctness of invertible sampling, the
joint distribution of (A, td,CRS0,bi) above is indistinguishable from (A, td,CRS0,b

′
i) where b′i = As′i + e′i for

s′ ← Znq , e′ ← χm. (To see this, note that the definition of correctness for invertibele sampling allows the adversary
to chose A and therefore the above follows by considering an adversary that choose (A, td)← TrapGen(1n, 1m, q)
randomly but remembers td). In the latter distribution, LWESolvetd(b

′
i) = s′ by the correctness of LWE inversion

with a trapdoor (Theorem 2.6) and hence the probability that ||b′i −As′i = e′i||∞ ≤ B does not hold is 0. Since the
distributions are indistinguishable, ε = negl(λ).

Second, we prove security. We do so via a hybrid argument:

• Real Distribution: Sample (A, td) ← TrapGen(1n, 1m, q), CRS ← crsGen(1λ, 1Q), pub ← Init(A). For i ∈ [Q]
set bi = Sample(CRS, pub, i), si = LWESolvetd(bi). Output (CRS,A, pub, {si}i∈[Q]).
Note that CRS = (CRS0, r1, . . . , rQ) where CRS0 ← Setup(1λ) and for i ∈ [Q]: ri ← {0, 1}u(λ), and bi =
S(CRS0,A; ri).
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• Hybrid Distribution 1: Sample (A, td) ← TrapGen(1n, 1m, q), CRS0 ← Setup(1λ), and for i ∈ [Q]: bi ←
S(CRS0,A), ri ← S−1(CRS0,A, b̂i), si = LWESolvetd(bi). Let CRS = (CRS0, r1, . . . , rQ) and output (CRS,A, pub, {si}i∈[Q]).

The only difference between the real and hybrid distributions is that in the former we sample ri ← {0, 1}u(λ),
and bi = S(CRS0,A; ri), while in the latter we sample bi ← S(CRS0,A), ri ← S−1(CRS0,A, b̂i). These are
indistinguishable by the invertibility property.

• Hybrid Distribution 2: Sample (A, td) ← TrapGen(1n, 1m, q), CRS0 ← Setup(1λ). For i ∈ [Q], sample ŝi ←
Znq , ei ← χm and let bi = Aŝi+ei, si = LWESolvetd(bi), ri ← S−1(CRS0,A,bi). Let CRS = (CRS0, r1, . . . , rQ)
and output (CRS,A, pub, {si}i∈[Q]).

The only difference between the hybrid distributions 1 and 2 is that in the former we choose bi ← S(CRS0,A)
and let si = LWESolvetd(bi), while in the latter we choose bi = Aŝi + ei where ŝi ← Znq , ei ← χm and
let si = LWESolvetd(bi). But this is indistinguishable by the correctness of the invertible sampler, which
guarantees that the two distributions of bi are indistinguishable even given CRS0,A, td (and the adversary
can sample si, ri himself).

• Simulated Distribution: Sample (A, td) ← TrapGen(1n, 1m, q), CRS0 ← Setup(1λ). For i ∈ [Q], sample
si ← Znq , ei ← χm and let bi = Asi + ei., ri ← S−1(CRS0,A,bi). Let CRS = (CRS0, r1, . . . , rQ) and output
(CRS,A, pub, {si}i∈[Q]).

It is easy to check that the above matches the simulated distribution with our simulator Sim defined above.
The only difference between hybrid distribution 2 and simulated distribution is that in the former we choose
bi = Aŝi + ei where ŝi ← Znq , ei ← χm and set si = LWESolvetd(bi) while in the latter we set si = ŝi. But
this is indistinguishable by by the correctness of the LWE Solver which guarantees that si = ŝi in the former
distribution.

28


	Introduction
	Our Contributions
	Technical Overview
	iO from Functional Encodings
	Constructing Functional Encodings

	Discussion and Perspectives
	Comparison to BDGM
	Comparison with FE


	Preliminaries
	Notations
	Learning With Errors
	Lattice tools

	Functional Encodings
	Definition of Functional Encodings

	Homomorphic Commitments with Short Openings
	1-SIM Functional Encoding from LWE
	Oblivious Sampling From Falsifiable Assumption
	Definition of Oblivious Sampling
	Heuristic Construction
	Security under a New Conjecture

	Q-SIM Functional Encodings from Oblivious Sampling
	IO from Functional Encodings
	Summary of Results
	Oblivious LWE Sampling from Invertible Sampling (iO)

