
1

Side-channel Attacks with Multi-thread Mixed Leakage

Yiwen Gao1 and Yongbin Zhou2

1National University of Singapore, 3 Research Link, #03-02 i4.0 Building, Singapore 117602
Email: gaoywin@gmail.com

2SKLoIS, IIE, CAS and School of Cyber Security, UCAS, Beijing, China

Abstract – Side-channel attacks are one of the greatest practical
threats to security-related applications, because they are capable
of breaking ciphers that are assumed to be mathematically
secure. Lots of studies have been devoted to power or electro-
magnetic (EM) analysis against desktop CPUs, mobile CPUs
(including ARM, MSP, AVR, etc) and FPGAs, but rarely targeted
modern GPUs. Modern GPUs feature their special and specific
single instruction multiple threads (SIMT) execution fashion,
which makes their power/EM leakage more sophisticated in
practical scenarios. In this paper, we study side-channel attacks
with leakage from SIMT systems, and propose leakage models
suited to any SIMT systems and specifically to CUDA-enabled
GPUs. Afterwards, we instantiate the models with a GPU AES
implementation, which is also used for performance evaluations.
In addition to the models, we provide optimizations on the
attacks that are based on the models. To evaluate the models
and optimizations, we run the GPU AES implementation on
a CUDA-enabled GPU and, at the same time, collect its EM
leakage. The experimental results show that the proposed models
are more efficient and the optimizations are effective as well.
Our study suggests that GPU-based cryptographic implementa-
tions may be much vulnerable to microarchitecture-based side-
channel attacks. Therefore, GPU-specific countermeasures should
be considered for GPU-based cryptographic implementations in
practical applications.

Index Terms—Multi-Thread Mixed Leakage, GPU-specific At-
tacks, Cache Attacks, Elecro-Magnetic Analysis, Side-Channel
Attacks.

I. INTRODUCTION

S IDE-CHANNEL attacks have been a great concern in
hardware security since it was first proposed more than

20 years ago [1]. The kind of attack draws so much attention
from academia and industry communities because it turns
out to be capable of breaking ciphers that are assumed to
be mathematically secure. A lot of studies have been de-
voted to side-channel attacks against desktop CPUs, mobile
CPUs (such as ARM, MSP and AVR) and FPGAs but rarely
targeted GPUs, which have become one of important high-
performance general-purpose computing platforms. Only re-
cently, researchers studied side-channel attacks against GPU-
based cryptographic implementations, thus having confirmed
the vulnerabilities of GPUs to side-channel attacks. There have
been studies on GPU-based cryptographic implementations,
e.g. [2], [3], [4], [5], which feature their high performance,
but may be susceptible to side-channel attacks.

Luo et al. proposed a power analysis attack against a GPU
AES implementation [6], [7] (called Luo’s attack hereinafter).

Their approach is based on a naive leakage model, and thus
introduces more noise. To reduce the noise, the GPU kernel
has to run in a highly-occupied mode. The attack is simple
and does not require aligned traces, which make their attack
more practical. However, the attack is not efficient in practice
due to the high-level noise. After that, Jiang et al. proposed
timing attacks against GPU AES implementations [8], [9],
[10], [11] (called Jiang’s attacks hereinafter). The timing
attacks, also called time-driven cache attack, make use of the
time differences caused by microarchitectural features, namely
memory issue serialization (MIS) and memory bank conflict
(MBC), of caches equipped on target GPU hardware. Fomin
also proposed a timing attack based on the MBC feature of
GPU (called Fomin’s attack hereinafter), but his attack targeted
the second round encryption of AES, so a chosen-plaintext
technique was employed to reduce practical complexity of
the attack [12]. In addition, Gao et al. proposed an electro-
magnetic attack against a bitsliced GPU AES implementation
[13] (called Gao’s attack hereinafter). Their approaches are
essentially combinational attacks that implicitly use the MIS
feature of GPU.

Although these attacks are effective, it is unfair to compare
their performance, because these attacks were performed in
different settings. All for that, each of them has its own
features, which has given us inspiration. Hence, it is necessary
to further discuss on their proposals, as well as the relation
with our proposal.

a) Attacker’s Capability: Generally speaking, the seri-
ousness of an attack is closely related to the assumptions on
attacker’s capabilities like measuring some data and/or setting
some parameters. In Luo’s attack [6], [7], the attacker is able
to choose maps from the plaintexts to the multiple threads of
GPU and the number of threads to launch the GPU kernel.
The attack is called chosen-thread attack (CTA, explained in
II-D) in the paper. In Jiang’s attacks [8], [9], [10], [11] and
Gao’s attack [13], the attackers also need be able to perform
a CTA, because the attacker primarily used 32 threads (one
GPU warp) to launch the GPU kernel, and then measured the
timing or EM emissions of execution. In Fomin’s timing attack
[12], the attacker not only needs the capability of CTA, but
also needs another capability, that is, choosing the plaintexts
(terminologically, chosen-plaintext attack). Although Fomin’s
attack assumed a more powerful attacker than the others, all of
them require attackers set some parameters for encryption. For
attackers who are only able to obtain random ciphertexts by

2

eavesdropping, they have not performed any successful attacks
so far. In our study, the attacker is also assumed to be one who
is able to perform CTAs.

b) GPU-specific Approach: Although all the attacks tar-
geted GPUs, the approaches they took, to some extent are not
necessarily GPU-specific. In other words, some of them also
work on CPUs. For example, Jiang’s attacks [8], [9], [10], [11]
and Fomin’s attack [12] are GPU-specific, while Luo’s attack
[6], [7] and Gao’s attack [13] are not, because if there were
not MIS or MBC feature, Jiang’s attacks and Fomin’s attack
would not be effective. In our study, we propose GPU-specific
approaches, which also depends on MIS feature of GPU, but
make better use of the feature based on EM traces instead of
timing traces used in previous work.

c) Multi-Thread Leakage: In multi-thread systems, each
thread may generate its individual leakage, say power leakage,
EM leakage. Luo’s attack [6], [7] uses a naive multi-thread
mixed leakage model, which introduces more noise. In the
meantime, a variant (SSM in III-A) of the leakage model is
one of our approaches, and it is primarily for comparison in
the paper. In addition, Gao’s attack [13] is exactly based on the
variant model, as well as combinational analysis techniques.
In our study, the variant is treated as a baseline model, and
we propose more powerful models than the baseline model.

In light of this, our study aims to give a deeper insight
into multi-thread leakage based on the MIS feature of GPU,
and propose more efficient GPU-specific attacks under the
common assumption, namely CTA (II-D). It should be noted
that in previous studies [14], [15], they also presented multi-
thread mixed leakage models, though they did not call them
in this way. However, their studies are too specific and do
not provide much details on their approaches. In this paper,
we present more generic models and optimizations, together
with detailed explanation of rationales behind the approaches.
Besides, we stress on multi-threading, because EM leakage of
multi-threaded execution is always more sophisticated, which
makes it challenging to better use the leakage in order to
perform efficient side-channel attacks.

A. Contributions
In this paper, we propose multi-thread mixed leakage model-

s and optimizations, which are used to mount efficient attacks.
The contributions are summarized as follows:

- We propose multi-thread mixed leakage models, namely
Simple Summation Model (SSM) and Partial Summation
Model (PSM), which apply to side-channel attacks against
general cryptographic implementations on general SIMT
systems. At the same time, we also suggest roadmaps for
further improvements.

- We propose two special PSMs, namely Cacheline Sum-
mation Model (CSM), which is essentially instantiating a
key component called threads partitioner, and Cacheline
Count Model (CCM), which is actually counting the num-
ber of the partitioned parts. Both models are customized
for typical table-based cryptographic implementations on
specific SIMT systems, precisely CUDA-enabled GPUs.

- We employ combination-based approaches for optimiza-
tion. The approaches are respectively named DCA+,

DCA× and DCAmax (Decision Combinational Attack),
which essentially define aggregate functions that com-
bines distinguishers of, say CSMs and/or CCMs.

B. Organization

The rest of this paper is organized as follows. In Section
II, we give a brief introduction to the architecture of CUDA-
enabled GPUs (II-A), side-channel cryptanalysis (II-B), table-
based cryptographic implementations (II-C), as well as defi-
nitions, notations (II-D) and abbreviations (II-E) involved in
the paper. In Section III, we propose our leakage models and
optimizations. Specifically, SSM and PSM are proposed in
III-A, CSM is proposed in III-B, CCM is proposed in III-C,
and the optimizations are proposed in III-D. In Section IV, we
instantiate our methods with a GPU AES implementation. In
Section V, we evaluate the models and optimizations on EM
traces measured from the running GPU AES implementation,
and we also evaluate the models on EM traces mixed with
Gaussian noise to simulate the evaluation on EM traces from
other GPU devices. In Section VI, we make a discussion on
issues about our proposal. Finally, conclusions are given in
Section VII.

II. PRELIMINARY

A. CUDA-enabled GPU

CUDA is a general purpose parallel computing framework
and programming model developed by NVIDIA for its GPUs.
In a physical view, the CUDA-enabled GPU is composed of
M× Streaming Multiprocessors (SM) and a global memory.
Each SM has N× Scalar Processor (SP), a shared memory,
several 32-bits registers, and a shared instruction unit (Fig.1).
In an abstract view, CUDA defines the threading model, calling
conventions and memory hierarchy for programmers.

Warps are the basic unit of execution in an SM. When you
launch a grid of thread blocks, the thread blocks in the grid
are distributed among SMs. Once a thread block is scheduled
to an SM, threads in the thread block are further partitioned
into warps. A warp consists of 32 consecutive threads and all
threads in a warp are executed in single instruction multiple
thread (SIMT) fashion; that is, all threads execute the same
instruction, and each thread carries out that operation on its
own private data.

Global memory resides in device memory and is accessible
via 32-byte, 64-byte, or 128-byte memory transactions. These
memory transactions must be naturally aligned; that is, the first
address must be a multiple of 32 bytes, 64 bytes, or 128 bytes.
When a warp performs a memory load/store, the number of
transactions required to satisfy that request typically depends
on the following two factors. There is one L1 cache per-SM
and one L2 cache shared by all SMs. Both L1 and L2 caches
are used to store data in local and global memory, includ-
ing register spills. On Fermi (compute capability = 2.x)
GPUs, CUDA allows you to configure whether read-s are
cached in both L1 and L2, or only L2. All accesses to global
memory go through the L2 cache. Many accesses also pass
through the L1 cache, depending on the type of access. If both
L1 and L2 caches are used, a memory access is serviced by a

3

128-byte memory transaction. If only the L2 cache is used, a
memory access is serviced by a 32-byte memory transaction.
On architectures that allow the L1 cache to be used for global
memory caching, the L1 cache can be explicitly enabled or
disabled at compiling time.

SP1

SP2

SP3

SP32

SP1

SP2

SP3

SP32

SP1

SP2

SP3

SP32

SP1

SP2

SP3

SP32

Register Files

L1 CacheOther Memory

L2 Cache

DRAM (device memory)

SM

SP1

SP2

SP3

SP32

SP1

SP2

SP3

SP32

SP1

SP2

SP3

SP32

SP1

SP2

SP3

SP32

Register Files

L1 Cache

SM

A
 W

a
rp

Other Memory

Fig. 1: Microarchitecture of CUDA-enabled GPU.

B. Side-Channel Cryptanalysis

A side-channel attack (SCA) is any attack based on infor-
mation gained from the implementation of a computer system,
rather than weaknesses in the implemented algorithm itself. If
the target of an SCA is the implementation of a cryptographic
algorithm, then the SCA is called side-channel cryptanalysis.

For a side channel (e.g. EM) in practice, if the channel is
assumed linear, its leakage l(x, k) is usually formalized as:

l(x, k) = α · f(Z(x, k)) + β + η, (1)
where x is part of the known plaintext or ciphertext, k is a
sub-key in a finite set K, Z(x, k) is a target intermediate value
depending on x and k, α and β are some constants, η is the
noise usually considered to be zero-mean, and f(·) is a data-
dependent leakage function of the channel.

For multiple, say n, inputs with the same k, the leakage can
be rewritten as:

l(x, k) = α · f(Z(x, k)) + β + η, (2)
where x = [x1, x2, ..., xn]T , η = [η1, η2, ..., ηn]T , and
f(Z(x, k)) := [f(Z(x1, k)), f(Z(x2, k)), ..., f(Z(xn, k))]T .

C. Table-based Cryptographic Implementations

For some cryptographic algorithms, some building blocks of
them can be implemented by looking up tables. The tables are
usually loaded into the memory when executing on a processor
and accessed by table look-up (TLU) operations. Formally, a
look-up table (LUT) is defined as an injection:

T : {0, 1}φ → {0, 1}ψ, y = T [x], (3)
where 0 < φ ≤ ψ. So the size of the LUT is ψ ·2φ bits. Table-
based cryptographic implementations are usually vulnerable to
cache attacks, which were studied in papers like [16], [17].

D. Definitions & Notations

Definition 1 (Chosen-Thread Attack): For a side-channel
attack against a (multi-thread) task-level parallel cryptographic
implementation, if an attacker is able to choose some threads
to encrypt the same but random plaintexts and, at the same
time, collect the corresponding ciphertexts and side-channel
leakage, then the attack is called Chosen-Thread Attack (CTA).
Note that attackers of CTA cannot choose specific plaintexts
for any of the threads, which is much different from chosen-
plaintext attack.

In this paper, “·” denotes all as a subscript, superscript or in
[]. For example, if M is a 2× 4 matrix, then M[·, 2] denotes
a column vector composed of the second column of M. “ · ”
also denotes something certain but omitted when it appears in
() and “ · · · ” denotes something uncertain thus being omitted.
Note that “uncertain” does not mean “unknown”, but “known”
and omitted on purpose due to hardness to represent.
• E(X): computes the mathematical expectation of X .
• H(X): computes the Hamming weight of a bit string X .
• ρ(X,Y): computes the Pearson correlation coefficient

(PCC) between every column of X and every column of
Y , where X and Y have the same number of rows, so
ρ(X,Y) is of the same dimension with XTY .

• L(δ,σ2): a set of traces measured in δ-group mode (IV-B),
and then mixed with Gaussian noise of 0-mean and σ2-
variance. Specially, L(δ) := L(δ,0), In addition, it is noted
that the expressions “an attack in δ-group mode” and “an
attack on L(δ)” are always equivalent.

E. Abbreviations & Index

The abbreviations involved in the paper are as follows:

AES Advanced Encryption Standard
CCM∗ Cacheline Count Model III-C
CEMA Correlation Electro-Magnetic Analysis
CSM∗ Cacheline Summation Model III-B
CTA∗ Chosen-Thread Attack II-D
CTP∗ Cacheline-based Thread Partitioner III-B
CUDA Compute Unified Device Architecture
DCA∗ Decision Combinational Attack III-D
DEMA Differential Electro-Magnetic Analysis
DoM Difference-of-Means
EAM∗ Ends Alignment Model IV-D
GPU Graphics Processing Unit
GSR∗ Global Success Rate V-A
LCSM∗ Left Cacheline Summation Model IV-C
LUT Look-Up Table
MAM∗ Middle Alignment Model IV-D
MIS∗ Memory Issue Serialization I[8]
PSM∗ Partial Summation Model III-A
RCSM∗ Right Cacheline Summation Model IV-C
SIMT Single Instruction, Multiple Threads
SNR Signal-to-Noise Ratio
SSM∗ Simple Summation Model III-A
STG∗ Synchronous Thread Group III-A
STP∗ Synchronous Threads Partition III-A
TLU Table Look-Up

4

where “*” means the abbreviation is not commonly used, and
will be explained below in the paper.

III. OUR METHODS

Our research targets the side-channel attacks against single
instruction multiple thread (SIMT) systems, especially CUDA-
enabled GPUs. As one of SIMT systems, GPUs feature their
specific and special multicore architecture, which makes EM
leakage from them more complicated in practice, so the most
important issue in our research is to construct accurate multi-
thread mixed leakage models. In light of this, we propose
multi-thread mixed leakage models, namely SSM, PSM, CSM
and CCM, and optimizations, namely DCA+, DCA× and
DCAmax, that are based on combination of distinguishers. Of
the models, SSM and PSM are generic ones for general SIMT
systems, while CSM and CCM are specific to table-based
cryptographic implementations on CUDA-enabled GPUs. In
addition, CSM and CCM are also involved in the optimizations
with DCA+, DCA× and DCAmax.

It should be noted that our studies are only for systems
of SIMT execution fashion, which means the parallelized
units execute an identical instruction sequence. The identical
instruction sequence does not necessarily mean that each
instruction in the sequence is executed synchronously in all
threads, but dummy instructions are allowed between any two
instructions of the instruction sequence in any threads. Fig.2
presents some examples, i.e. (A) and (B).

A. Simple Summation Model and Partial Summation Model

A lot of literature has studied the modelling of side-channel
leakages in single-thread scenarios [18], [19] but rarely has
been devoted to the studies in multi-thread scenarios. In the
latter, multiple threads run simultaneously, so the leakages of
them are mixed together, hence called mixed leakage in the
paper. The simplest way to model mixed leakage of multiple
threads is to add up their respective leakages. The intuitive
model is named simple summation model (SSM) in this paper
and formalized as:

F (I, k) :=

N∑
j=1

f(Z(x〈j〉, k)) (4)

where N denotes the number of threads executing in parallel,
I is a set of thread identities, I = [1, N] ∩ Z, f(·), Z(·, ·),
k and x· are defined the same as in Eq.1, x〈j〉 denotes the x
in the j-th thread, and F denotes the assumed mixed leakage.
The equation also indicates the leakage of an operation on z〈j〉

synchronize at a moment, where z〈j〉 = Z(x〈j〉, k) for each
j ∈ I.

Intuitively, the model is more accurate when the N threads
are synchronous on the target operation; otherwise, the model
seems somewhat unreasonable. In fact, if the N threads do not
synchronize on the target operation, the asynchronization can
be regarded as introducing more noise. Suppose the N threads,
say th1,th2,...,thN , are synchronous on the target operation in
several subsets, named synchronous thread group (STG), say
I1, I2,..., IH , at the moments t1, t2,...,tH , respectively, where

Algorithm 1 SSM-based CEMA (SSM-CEMA)

Require: LW×M , [x〈1〉,x〈2〉, ...,x〈N〉], K.
Ensure: k̂.

1: m← 1
2: for k ∈ K do
3: F·,m ←

∑N
j=1 f(Z(x〈j〉, k))

4: m← m+ 1

5: k̂ ← argmaxk max |ρ(LEM ,F)|
6: return k̂

the threads in each subset Ii (i ∈ {1, 2, ...,H}) are assumed
synchronous for the target operation, so Eq.4 can be rewritten
as:

F (I, k) =
∑
j∈I

f(Z(x〈j〉, k)) =

H∑
i=1

∑
j∈Ii

f(Z(x〈j〉, k))

=

H∑
i=1

F (Ii, k) = F (I1, k) + F (I2, k) + ...+ F (IH , k).

where {I1, I2, ..., IH} is called a synchronous threads parti-
tion (STP) of the I; that is,

⋂H
i=1 Ii = ∅ and

⋃H
i=1 Ii = I.

Then, the real leakage of the N threads at t1 will be:

Lt1 =
∑
i∈I

Lt1(i) + β + η =
∑
i∈I1

Lt1(i) +
∑

i∈I−I1

Lt1(i) + β + η

= α · F (I1, k) +
∑

i∈I−I1

Lt1(i) + β + η

= α · F (I, k)− α ·
H∑
i=2

F (Ii, k) +
∑

i∈I−I1

Lt1(i) + β + η

= α · F (I, k)−
H∑
j=2

∑
i∈IH

Ltj (i) +
∑

i∈I−I1

Lt1(i) + β + η

= α · F (I, k)− γ1 + χ1 + β + η
(5)

where Lt1(i) denotes the real leakage of the thread thi at
t1, γ1 :=

∑H
j=2

∑
i∈IH Ltj (i), χ1 :=

∑
i∈I−I1 Lt1(i), and

χ1, γ1 are regarded as noise. The equation suggests that the
additional noise γ1, χ1 are introduced if the mixed leakage
of asynchronous threads on the target operation are modeled
by SSM. To deeply understand the transformation (Eq.5), we
give an example as follows:

op1

op1nop

nopnop op1

op2nopop1

nop

nop

op2 op1

op2op1

op3op1 op2

op3op2op1

op2

op3

op3 op1

op1nop

op3op2

nop op2op1

nop

(A) (B) (C)

th
1

th
2

th
3

th
4

op1

nop

nop

t1 t2 t3 t1 t2 t3 t1 t2 t3

Fig. 2: Synchronization of threads at operations.

In Fig.2, it shows three typical cases, namely (A), (B) and
(C), of three operations, namely op1, op2 and op3, in four
threads, namely th1, th2, th3 and th4, where op1 is assumed

5

to be the target operation. In (B), the threads are synchronous
for op1, so an SSM suffices to model the mixed leakage of
op1, and χ1 = γ1 = 0 in this case. However, it is not like
this for (A) or (C), because for op1, it is not synchronous in
all the threads. (A) is more special than (C); i.e., different
operations never execute in the same time slot. That means if
we model the mixed leakage of op1 at t1 (or t2) with an SSM,
i.e. F ({1, 2, 3, 4}, k) in (A), F ({2, 3}, k) (or F ({1, 4}, k)) is
regarded as the additional noise (γ1 6= 0, χ1 = 0), while if
we model with an SSM at t2, i.e. F ({1, 2, 3, 4}, k) in (C),
the additional noise includes not only F ({2, 3}, k) but also
Lt2(3) (the leakage of op2 in th3 at t2). In this case, γ1 =
α · F ({2, 3}, k) 6= 0 and χ1 = Lt2(3) 6= 0. χ1 is often not
computable for attackers if only one target operation (op1) is
considered, so it cannot be removed, while γ1 can be removed
because the STP of the threads has been known from (C);
that is, {{1, 4}, {2}, {3}}. Fortunately, the case (C) does not
happen in SIMT systems, so the noise χ1 is not considered in
our study.

Formally, we define a more generalized model called partial
summation model (PSM):

F (I ′, k) : =
∑
j∈I′

f(Z(x〈j〉, k)), (6)

where I ′ ⊆ I and the threads within the I ′ are syn-
chronous at the target operation. By the definition, SSM is
just a special case of PSM and they are equivalent when
I ′ = I = [1, N] ∩ Z. SSM corresponds to the special STP,
{{1, 2, 3, ..., N}}, which is called the trivial STP of a PSM.
Suppose L = α · F (I, k) − γ + χ + β + η, then if an STP
of the threads for an target operation is known, the γ can be
removed. Hence, the first step of building a PSM is to find an
STP of an target operation. Once an is ready, it comes to the
second step; that is, selecting an STG from the STP. Although
it seems that an STG of larger size will remove more noise
from F (I, k), it is not always true, because the selection of
STG also strongly affects the trace alignment, thus reducing
the effectiveness of distinguishers. Once an STG is chosen,
a PSM is instantiated, and then a PSM-based attack can be
mounted with appropriate distinguishers.

We present the SSM- and PSM-based attacks with Pearson
correlation coefficient (PCC), which is one of the most com-
monly used distinguishers, in Algo.1 and Algo.2, respectively.
In Algo.2, STP(...) denotes extracting an STP, and STG(...)
means selecting an STG from the STP.

Algorithm 2 PSM-based CEMA (PSM-CEMA)

Require: EM traces: LW×M , [x〈1〉,x〈2〉, ...,x〈N〉], K.
Ensure: k̂.

1: for i← 1 to W do
2: I ← STG(STP(...))B partitioning and then selecting
3: m← 1
4: for k in K do
5: Fi,m ←

∑
j∈I f(Z(x

〈j〉
i , k))

6: m← m+ 1

7: k̂ ← argmaxk max |ρ(L,F)|
8: return k̂

B. Cacheline Summation Model

The PSM proposed above is a generic model suited to any
SIMT systems, and it might be more efficient than SSM if an
non-trivial STP for the target operation is available. To find
a non-trivial STP (if exists), constraints must be imposed on
the target SIMT systems and cryptographic implementation.
Specifically, we focus on:

1) the SIMT execution in a thread warp of CUDA-enabled
GPUs, and

2) table-based GPU cryptographic implementations, whose
tables are stored in the global memory of GPUs.

The constraints are reasonable in practice, because warps
are the basic unit of execution in CUDA-enabled GPUs, and
the global memory of a GPU is usually large enough to store
tables of any reasonable cryptographic implementations.

As known from the architecture of CUDA-enabled GPUs, a
warp is usually composed of 32 threads, say th1, th2, ..., th32,
and the 32 threads execute in an SIMT fashion. When the
32 threads access a table stored in the global memory, 32
requests will be coalesced to reduce the total number of
requests. Finally, the 32 original requests are serviced by
loading several cache lines (usually 64/128/256 bytes as an
unit), which is the basic unit of data loading from L1 cache
to registers in a CUDA-enabled GPU. Inspired by this, we
propose a cacheline-based threads partitioner (CTP); that is,
a TLU operation in threads whose requests are coalesced
into the same cache line loading operation is supposed to be
synchronous at the operation in the threads. Obviously, the
CTP implies a non-trivial STP.

Algorithm 3 Cacheline-based Threads Partitioner (CTP)

Require: [y〈1〉, y〈2〉, ..., y〈N〉], L (bytes), ψ.
Ensure: {I1, I2, I3, ...}.

1: G = {G1,G2, ...,GN}
2: S ← L/(ψ/8)
3: for j ← 1 to N do
4: i← by〈j〉/Sc+ 1
5: Gi ⇐ j B put the j into the set Gi
6: j ← 1
7: for i← 1 to N do
8: if Gi 6= ∅ then
9: Ij ← Gi

10: j ← j + 1

11: H ← j − 1
12: return {I1, I2, ..., IH}

Suppose that the table-based cryptographic implementation
refer to an LUT, say T [·], of φ-bit input and ψ-bit output,
and the size of cache line in target GPU be L bytes. Then
the T [·] takes ψ·2φ

8·L cache lines. As the time spent on one
cache line loading operation is constant, the leakages of the
operation on the same cache line are synchronous. In this way,
the non-trivial threads partition, say {Ii, I2, ..., IH}, by CTP

6

is as follows:
I1 = {j|by〈j〉/(L/(ψ/8))c = 0, j ∈ [1, 32]}
I2 = {j|by〈j〉/(L/(ψ/8))c = 1, j ∈ [1, 32]}
· · ·

IH = {j|by〈j〉/(L/(ψ/8))c = H − 1, j ∈ [1, 32]}

(7)

where y〈j〉 = Z(x〈j〉, k) and H ∈ [1,min{ψ·2
φ

8·L , 32}]. Algo.3
shows details of the CTP.

nop

th
1

th
2

th
3

th
4

nop

nop

nop

nopth
1

th
2

th
3

th
4 nop

nop

nop

Trace 1

Trace 2

I1={1,3,4} I2={2}

I1={1} I2={2,3,4}

cacheline 1 cacheline 2

Fig. 3: Trace misalignment on TLU, caused by inappropriate STG selections.

The CTP naturally implies specific PSMs. The H PSMs
are named cacheline summation model (CSM), which literally
means summing up the ones within the same cache line, and
formalized as H independent models:

F (Ii, k) : =
∑
j∈Ii

f(Z(x〈j〉, k)), for each i ∈ [1, H] (8)

It should be noted that it is not trivial to choose a specific I ′
from {I1, I2, , ..., IH}. It is reasonable to select the one of the
largest size, say Iargmaximaxi∈[1,H] |Ii|, in order to make the
best use of the leakage from multiple threads, but sometimes
the selection also causes troubles, such as misalignment of
traces (Fig.3). In Fig.3, I1 is chosen in Trace 1, while I2 is
chosen in Trace 2. Their TLU operations are misaligned just
as the dotted rectangular boxes show. Therefore, the selection
of the I ′ from {I1, I2, , ..., IH} varies from case to case. It
will be further discussed in IV.

C. Cacheline Count Model

As explained before, the threads are grouped with respect
to their synchronization on TLU operations. Suppose the N
threads be partitioned into h groups, say I1, I2, ..., Ih, and
y〈j〉 = f(z〈j〉), z〈j〉 = Z(x〈j〉, k) for each j ∈ [1, N]. Then
we compute the mathematical expectation of real leakage of
PSM when selecting an STG, say I1:

E [L] = E

α ·∑
j∈I

f(Z(X〈j〉, k) + β + Ω

= α · E

∑
j∈I

f(Z(X〈j〉, k)

+ E[β] + E[Ω]

(9)

where α and k are treated as constants, and X〈j〉, Ω, I are
random variables corresponding to x〈j〉, η and I1, respectively.
Since X〈j〉-s (j ∈ I) are pairwise independent, and β is also
a constant, which means E[β] = 0, then we have:

E [L] = α ·
∑
j∈I

E
[
f(Z(X〈j〉, k)

]
+ E[Ω]

= α ·
∑
j∈I

 |X |∑
i=1

(
f(Z($i, k)) · 1

|X |

)+ E[Ω]

= α · E[|I|] · 1

|X |
·
∑
$∈X

f(Z($, k)) + E[Ω].

(10)

where X := {$1, $2, $3, ...} denotes the domain of X〈j〉 for
any j ∈ I . For any I , the mathematical expectation of |I| is:

E[|I|] =

N−h+1∑
n=1

(n · Pr [|I| = n]) =
N

h
(11)

so the mathematical expectation of its real leakage is:

E [L] = α · N
h
· 1

|X |
·
∑
$∈X

f(Z($, k)) + E[Ω] (12)

where N denotes the number of threads in a warp. In a specific
setting, α, N , X and E[Ω] are constants, so E[L] only depends
on the number of cache lines, namely h. Let us reconsider the
CTP proposed in III-B. It is essentially h = |CTP(·)|. Our
multi-thread mixed leakage model is named cacheline count
model (CCM), which literally means counting the number of
STGs, and formalized as:

F (k) =
N

h
=

N

|CTP([y〈1〉, y〈2〉, ..., y〈N〉])|
. (13)

where y〈j〉=Z(x〈j〉, k). The real leakage is also rewritten as:

E(L) = α′ · F (k) + β′, (14)

where α′ and β′ are some constants and easily computed with
Eq.12. The exact values are actually not important at all.

It should be noted that F (k) just models the mathematical
expectation of the real leakage L instead of L itself, so it is rea-
sonable when averaging the measured leakage L with a large
number of traces. In other words, with limited traces the model
may be ineffective at all, so the distinguisher with PCC (also
CEMA) does not work any more. We employ the distinguisher
with difference of means (DoM). Theoretically, h ∈ [1, H],
H := min{ψ·2

φ

8·L , 32}, where φ, ψ and L are defined the same
as in Eq.7, so there are totally

(
H
2

)
= H!

2!·(H−2)! = (H−1)·H/2
choices on which DoMs of corresponding traces are computed.
In the sense, CCM is also formalized as:

F (k) =

{
F1, if h = H1

F2, if h = H2
(15)

where H1, H2 ∈ [1, H] and H1 6= H2, F1 and F2 are random
variables satisfying:

E(F1) =
N

H1
and E(F2) =

N

H2
(16)

so we have the difference of them is non-zero:

|E(F1)− E(F2)| = N ·
∣∣∣∣ 1

H1
− 1

H2

∣∣∣∣ 6= 0 (17)

7

Then, the real leakage, say L1 and L2, should satisfy:
|E(L1)− E(L2)| = |E(α′ · F1 + β′)− E(α′ · F2 + β′)|

= |α′| · |E(F1)− E(F2)|

= |α′| ·N ·
∣∣∣∣H1 −H2

H1 ·H2

∣∣∣∣ 6= 0.

Obviously, |E(L1)− E(L2)| is maximized when H1 = 1 and
H2 = H , or vice versa. However, the choice of H1 and H2

also affects the alignment of traces for target operations in
practice, so H1 = 1 or H2 = H is not necessarily the best
choice. Besides, with limited traces, for some h-s in [1, H],
they may never happen with random plaintexts encryption due
to different probabilities of h = 1, 2, 3, ...,H . For example,
Pr[h = 1] = 1

231 ≈ 0 when H = 2 and N = 32, so there
is theoretically only one trace in which h = 1, with up to
231 measured traces. This also tells that there must be wasted
traces unless H = 2, and the number of averaged traces, which
also affects performance, varies with different selection of H1

and H2. In a word, the selection of H1 and H2 is not a trivial
issue when H is larger than 2.

D. Combination-based Optimizations

In III-B and III-C, special PSMs, namely CSM and CCM,
are investigated. Although they are much efficient, which will
be shown afterwards, there is room for further improvement. In
this subsection, we study optimizations based on combination
techniques, which have been investigated in many papers, e.g.
[20], [21], [22]. With multiple models, the simplest way to
combine them is to build a combined distinguisher based on
their respective distinguishers. In some papers, it is called
decision combinational analysis (DCA) [13]. The procedure
of a DCA is shown in Fig.4. For each i ∈ [1, S], ∆i is
generated with Mi via a distinguisher, and their distinguishers
can be the same or not. In our studies, the models can be CSM
or CCM; that is, M1,M2, ...,MS ∈ {CSM,CCM}, and their
distinguishers are based on PCC and DoM, respectively.

1

Aggregate function

Decision Sets

Models

Decision Set

Key

Fig. 4: Overall procedures of a decision-level combinational analysis.

A DCA is essentially implementing an aggregate function
[21], say Ψ, that returns a single vector/matrix based on
multiple vectors/matrices. The Ψ is usually assigned simple
functions like Sum(·), Prod(·), Max(·). With the functions,

the ∆-s are computed as follows:

∆+ := Sum(∆1,∆2, ...,∆H) =

H∑
i=1

∆i

∆× := Prod(∆1,∆2, ...,∆H) =

H∏
i=1

∆i

∆max := Max(∆1,∆2, ...,∆H) =
H

max
i=1

∆i

(18)

where ∆+, ∆× and ∆max denote the ∆ computed with cor-
responding aggregate functions. A DCA with Sum(·), Prod(·)
or Max(·) is named DCA+, DCA× or DCAmax, respectively.
In addition, it is noted that the ∆i-s should be normalized
before aggregated with Sum(·), Prod(·) or Max(·), if they are
of different metrics. Different distinguishers may generate data
sets of different metrics.

In our studies, CSM-CEMA generates a matrix of Pearson
coefficient C := [ρij], and CCM-DEMA generates a matrix
of DoM D := [dij], where i ∈ [1, |K|], j ∈ [1,M], and M
denotes the number of sampling points in a trace. Suppose we
have S models M1, M2,..., MS in total. If they are of the
same model (CSM or CCM), then the aggregate function of
the DCA is like Eq.18; otherwise, a normalization is required
before using the aggregate function:

∆ = Ψ(N(Ψ(C1, C2, ...)),N(Ψ(D1,D2, ...))) (19)

where N(·) denotes a normalization function on a matrix. The
normalization function can be row-data-based, column-data-
based or all-data-based. Row-data-based (resp. Column-data-
based) matrix normalization means each row (resp. column)
vector is normalized independently, and all-data-based matrix
normalization means all data in the matrix are involved in the
normalization.

The name of a DCA follows a format like M1-M2-M3-...-
DCAF , where Mi is a CSM or a CCM, and F ∈ {+,×,max}.
For example, if two CSMs, say CSM1, CSM2, and one CCM
are used, and their distinguishers are aggregated with Sum(·),
then the DCA is named CSM1-CSM2-CCM-DCA+.

IV. INSTANTIATED WITH A GPU AES IMPLEMENTATION

In III, we propose multi-thread mixed leakage models that
apply to general/specific cases, as well as optimizations. As
we do not assume any specific cryptographic implementation,
the proposals are somewhat hard to understand. In this section,
we instantiate the models and the optimizations with a specific
GPU AES implementation to uncover more details when they
are used in practical attacks.

A. Target GPU-based AES Implementation

There are lots of AES implementations for general purpose
processors or optimized for specific processors. They mainly
fall into three categories: S-Box LUT fashion, T-Table (or
T-Box) fashion [23], and bitsliced [24] implementations, of
which S-Box LUT and T-Table fashion are table-based im-
plementations. As the CSM and CCM proposed are specific
to table-based implementations, we port an S-Box LUT based
AES implementation from an open source crypto library [25]
into our target GPU (detailed in V-A). We choose an S-Box

8

fashion AES instead of a T-Table one because S-Box fashion
is more basic and enough to show the vulnerabilities of GPUs
under EM attacks.

An AES-128-ECB is implemented on the target GPU, where
each thread of the GPU runs a single AES-128 encryption. It
also means all threads execute with identical 128-bit secret key.
Furthermore, due to a more complicated memory hierarchy
in GPUs than that in CPUs, programmers have more control
over the memory to optimize their programs. It is well known
that the execution footprint of CUDA programs varies among
different usage of the memory, so it is necessary for us to
provide more details about our implementation. Specifically,
we follow the most general procedure of a CUDA program.
At first, we copy all data including 16-byte plaintext to be
encrypted, 176-byte subkeys scheduled on the host, and 256-
byte S-box LUT from host memory to global memory. Then,
we launch the kernel with 32 block threads. We feed 32
block threads with the same plaintexts or partially different
plaintexts. They will result in different EM leakages. Finally,
we copy the encrypted data (ciphertexts) from global memory
back to host memory. It is noted that we do not use any shared
memory, constant memory or texture memory in our imple-
mentation, because they need more technical modifications on
the original program.

B. Attacking Modes for Multi-thread Scenarios

For attacking against the target implementation, we consider
an attacker with capability of CTA (Def.1). We assume such
an attacker because the attacker is able to perform attacks in
multiple modes, which has great effects on synchronization
among threads and alignment among traces, thus challenging
the effectiveness of the proposed models. We do need the
challenge to make our proposals more convincing.

As defined in Def.1, an attacker of CTA is able to choose
some threads to encrypt the same plaintexts, so for simplicity
we define several modes with respect to the number of threads
the attacker chooses. The modes are named grouped threads
mode in the paper. In grouped threads modes, the 32 threads
in a thread warp are divided into groups of equal size, and the
threads in the same group are fed with the same plaintext, so
there are six modes in total, namely δ-group mode, where δ ∈
{1, 2, 4, 8, 16, 32} denotes the number of groups, and hence the
size of each group is 32

δ . It should be noted that consecutive
threads are always grouped together in the modes.

The six modes fall into three categories named Category
I, Category II, and Category III (TABLE I), respectively. We
define the categories because they are of different features in,
say threads synchronization and traces alignment. It is noted
that each of the six grouped threads modes actually defines a
degree of parallelism in a sense. For example, δ = 1 simulates
single thread and δ = 4 simulates four threads executing in
parallel.

As known from Algo.3, when N = 32 (thread warp size)
and L = 128 (cache line size), for our target implementation,
the target TLU in the 32 threads is executed in one or two
stages. Specifically, the target TLU in the 32 threads is exe-
cuted in one stage, called one-staged TLU when |CTP(·)| = 1,

Cat. 1δ 2Sync? 3Aligned? Models p1

I 1 Yes Yes SSM (=CSM=CCM) 1

II
2

No No CSM, CCM
1/2

4 1/23

8 1/27

III 16 No Yes CSM 1/215 ≈ 0
32 1/231 ≈ 0

1 δ-group mode.
2 Synchronization on TLU among threads.
3 Alignment on TLU among traces.

TABLE I: A summary of threads synchronization and traces alignment.

and in two stages, called two-staged TLU when |CTP(·)| = 2.
Let us compute probabilities of the occurrences:

p1 := Pr[|CTP(·)| = 1] =
1

2δ−1

p2 := Pr[|CTP(·)| =2] = 1− 1

2δ−1

Obviously, p1 = 1 when δ = 1, so for mode in Category I
all threads are always synchronous on every TLU in the final
round of AES. SSM is suited to mode in the category, and
it is essentially equivalent to CSM for mode in the category.
The same way, p1 = 1

215 ,
1

231 ≈ 0 when δ = 16, 32, so for
modes in Category III, the threads are almost (so regarded as
always) partitioned into two STGs, say I1, I2, within which
the threads are synchronous on TLU. CSM is suited to modes
in the category because |CTP(·)| > 1 in the modes, while
CCM is not suited because |CTP(·)| is (almost) constant (= 2
) in multiple traces. For the modes in Category I and III, the
target TLU is always one-staged (Cat. I) or two-staged (Cat.
III), so the final round of all traces are of the same length
(equivalent to the time spent on loading one cache line for one-
staged TLU or two cache lines for two-staged TLU) in the time
domain. That is to say, traces are always aligned in modes of
both categories. However, for modes in Category II, one-staged
TLU and two-staged TLU happen in comparable probabilities;
that is, p1 = 1

2 ,
1
8 ,

1
128 and p2 = 1

2 ,
7
8 ,

127
128 when δ = 2, 4, 8,

respectively. In the modes, both CSM and CCM are effective,
but traces of the final round are not aligned any more due to
the difference of time spent on one-staged TLU and two-staged
TLU. It seems that the misalignment of traces is unfavourable
to attacks, but not necessarily like this in practice, which will
be elaborated afterwards.

C. Instantiating the Models

In our studies, we consider the final round of AES encryp-
tion. As is known, for a ciphertext byte, say c, it is generated
with the following transformation:

c← SBox[r]⊕ k,
where SBox[·] denotes an S-Box LUT, r denotes an input
byte of the final round, and k denotes a key byte of the final
round key. That means, if the S-Box TLU is regarded as target
operation, for a single thread Z(·) is set as:

Z(c, k) := SBox−1[c⊕ k]. (20)
If the single-thread leakage function, namely f(·), is assumed
to be Hamming weight evaluation, then the leakage model of

9

a single thread is instantiated to:
f(Z(c, k)) := H(SBox−1[c⊕ k]), (21)

where H(·) denotes the Hamming weight of a bit string. Then,
for multi-thread encryption, its SSM (Eq.(4)) is instantiated to:

F ({1, 2, ..., 32}, k) :=

32∑
j=1

H(SBox−1[c〈j〉 ⊕ k]) (22)

Accordingly, the real leakage should be:

L := α ·
32∑
j=1

H(SBox−1[c〈j〉 ⊕ k]) + β + η, (23)

for some α, β and η, if leakage of 32 threads in a warp are
assumed to be synchronous at specified operations. Based on
the SSM (Eq.21) and the linearity assumption of the channel
(Eq.23), it is easy to perform an SSM-CEMA (Algo.1) to
recover the 128-bit secret key of AES.

The SSM-CEMA should be efficient for mode in Category I,
because in this mode each operation is synchronously executed
in the 32 threads, and thus their leakages are also assumed
to be synchronous in the time domain. In addition, SSM is
also equivalent to CSM for the mode. However, it will not be
like this if the 32 threads are not given the same plaintexts
like it does in 1-group mode. In this case, a PSM should be
employed, and we try CSM first.

As the 32 threads execute a TLU in a 256-byte S-Box LUT
(φ = ψ = 8) stored in the global memory of the GPU and
the size of L1 cache line of the target GPU is 128 bytes (L =
128), the TLU should be either one-staged or two-staged. If we
assume the TLU to be a target operation, then the 32 threads
on the TLU are fully synchronous or partially synchronous.

Suppose r〈1〉, r〈2〉, ..., r〈32〉 be the r in the 32 threads th1,
th2 ... th32 respectively, then the threads with their IDs (also
subscripts) in the following two sets are synchronous:

G1 = {j|rj ≡ 1 (mod 128)}
G2 = {j|rj ≡ 0 (mod 128)}

(24)

where r〈j〉 ∈ [0, 255] for each j ∈ [1, 32].
If G1 = ∅ or G2 = ∅, then CTP(·) = {{1, 2, 3, ..., 32}}.

That means the 32 threads are synchronous on the TLU, so
the PSM is actually an SSM; otherwise, the leakage can be
modeled by either of the following two CSMs, namely:

F (G1, k) :=
∑
j∈G1

H(SBox−1[c〈j〉 ⊕ k]); (25)

F (G2, k) :=
∑
j∈G2

H(SBox−1[c〈j〉 ⊕ k]). (26)

That mean that we can use either G1 or G2 in modeling
mixed leakage at the target TLU. As the TLU happens in
G1 earlier than in G2, the CSMs with G1 and G2 are
named left CSM (LCSM) (Eq.25) and right CSM (RCSM)
(Eq.26), respectively. The models actually use chronological
STG selectors, selecting an STG (i.e. G1 or G2) by their
chronological order.

In a broad sense, CSM is suited to any modes including
modes in Category I, II and III. However, CCM is suited to
modes in which both one-staged and two-staged TLU happen
in comparative probabilities. For the purpose, we consider

modes in Category II. The number of STGs (i.e. |CTP(·)|)
is h ∈ {1, 2}, so the only choice is H1 = 1 and H2 = 2 (or
vice versa). Then, the CCM for the target TLU in our target
implementation is:

F (k) =

N
H1

= 32, if G1 = ∅ or G2 = ∅

N
H2

= 16, otherwise
(27)

Since we use a DoM distinguisher, the CCM used is actually:

|E(F1)− E(F2)| = 16 (28)

S
12

S
12

S
13

S
14

S
15

S
16

S
13

S
14

S
14

S
15

S
16

S
16

S
12

S
13

S
14

S
15

S
15

S
16

S
13

S
14

S
15

S
15

S
16

S
16

S
12

S
13

S
14

S
15

S
15

S
16 t

tr1

tr2

tr3

tr4

tr5

A BC
Two-stagedOne-staged

Fig. 5: The layout of trace alignment on S-Box TLU operation.

D. Issues on Misalignment of Traces

With the models (Eq.22,25,26,28), attacks can be performed
by employing PCC distinguisher or DoM distinguisher. As
is known, both distinguishers require aligned traces or, more
precisely, traces aligned on target operation. It is indeed true
for modes in Category I and III, but not for modes in Category
II. Luckily, for modes in Category II, the misalignment of
traces follows some rules instead of completely random, so
the distinguishers still work.

Our explanation is based on two alignment models: middle
alignment model (MAM) and ends alignment model (EAM).
Fig,5 shows the layout of cache line access paradigm in five
traces. The traces are perfectly middle-aligned (MAM) on S16

(the 16th S-Box TLU) at t1 when using RCSM, and tr3, tr5
are middle-aligned on S16 at t3 when using LCSM, while the
traces are perfectly ends-aligned (EAM) on S16 at t2 for both
LCSM and RCSM. The above explanation is suited to CCM
as well. As explained above, of the three positions A, B and
C, A is for LCSM+MAM, B is for RCSM+MAM and C is
for both LCSM+EAM and RCSM+MAM, while both A and
B are for CCM+MAM, and C is for CCM+EAM.

It should be noted that t3 is a moment at which S15 is also
middle-aligned for RCSM on tr1, tr2 and tr4. That means at
some moments t ∈ {t1, t2, t3, ...} (actually most moments),
multiple S-Box TLU operations ({S16, S15, S14, ..., S1}) are
middle/ends-aligned for LCSM/RCSM/CCM on some traces.
That also means, for certain model (CSM or CCM), a certain
S-Box TLU operation (S1, S2,... or S16) is middle/ends-
aligned at multiple moments on several traces, so the moments
at which the most traces are aligned on the operation should
be the best choice for corresponding distinguisher to recover

10

secret key byte. Therefore, we compute the probability that the
(16−j)-th S-Box TLU sj with LCSM/RCSM/CCM happens
at ti+j (MAM) and t′i+j (EAM):

PMAM
RCSM(sj , ti+j) : = Pr[S = sj ,T = ti+j] =

(
j

i

)
pj−i1 pi2

PMAM
LCSM(sj , ti+j) : = Pr[S = sj ,T = ti+j] =

(
j+1

i

)
p1+j−i1 pi2

PEAM
RCSM(sj , t

′
i+j) : = Pr[S = sj ,T = t′i+j]

=

(
j

i−1

)
p1+j−i1 pi−12 +

(
j

i

)
pj−i1 pi2

PEAM
LCSM(sj , t

′
i+j) : = Pr[S = sj ,T = t′i+j]

=

(
j+1

i−1

)
p2+j−i1 pi−12 +

(
j+1

i

)
p1+j−i1 pi2

where p2 = 1− p1, i ∈ {0, 1, ..., 31} for ti, i ∈ {0, 1, ..., 32}
for t′i, j ∈ {0, 1, 2, ..., 15},

(
n
k

)
:= 0 for k /∈ [0, n] ∩ Z and sj

maps to S16−j (Fig.5). The same way,
PMAM
CCM (sj , ti+j) : = max{PMAM

RCSM(sj , ti+j),PMAM
LCSM(sj , ti+j)}

PEAM
CCM (sj , ti+j) : = max{PEAM

RCSM(sj , ti+j),PEAM
LCSM(sj , ti+j)}

By probability theory, for RCSM-CEMA, LCSM-CEMA and
CCM-DEMA with W traces, there are at most W1(j) := W ·
maxi(PMAM

RCSM(sj , ti+j)), W2(j) := W ·maxi(PMAM
LCSM(sj , ti+j))

and W3(j) := W · maxi(PMAM
CCM (sj , ti+j)) traces utilized in

respective attacks if counted under MAM. In the same way,
the corresponding results, namely W ′1(j), W ′2(j) and W ′3(j),
counted under EAM can be drawn.

For modes in Category II, it can be verified by enumeration
that: PMAM

CCM (sj , ti+j) = PMAM
RCSM(sj , ti+j) ≥ PMAM

LCSM(sj , ti+j) and
PEAM
CCM (sj , t

′
i+j) = PEAM

RCSM(sj , t
′
i+j) ≥ PEAM

LCSM(sj , t
′
i+j) for any

i, j in their domains, so we have W3(j) = W1(j) ≥ W2(j)
and W ′3(j) = W ′1(j) ≥ W ′2(j). Combining with the fact that
RCSM and RCSM employ the same distinguisher, we expect
RCSM-CEMA performs no worse than LCSM-CEMA does,
which is confirmed afterwards.

Theoretically, as explained above, MAM and EAM are relat-
ed but different, while MAM and EAM are almost equivalent
in practice, because (1) the time spent on a cache line loading
operation is very short, which means the rectangles in Fig.5
would be much narrower, and (2) the leakage of the target
operation happens in a period of time instead of just a moment
as represented with lines like A, B, C in Fig.5. Hence, more
traces in practical attacks than theoretically computed above
are actually aligned on target operations, in a broader sense
of alignment.

V. EVALUATIONS

A. Setups

In our experiments, we target a NVIDIA GeForce GT 620
GPU connected to the host with a PCI-E bus. The GPU device
has one SM of 48 SPs, a L2 cache of 64 KiB, and it is equipped
with an off-chip device memory of 454 MiB. More hardwares
and softwares used in our experiments are listed in TABLE II

As for evaluation criterion, we employ (global) success rate
and the number of recovered key bytes. They are formalized as
m
n and b

n , respectively, where m denotes the number of tests
that (fully) recover the secret key, b denotes the number of key

Hardware/Software Model/Version
GPU NVIDIA GeForce GT 620[26]
Oscilloscope KeySight DSO9104A
Host ThinkCentre M8400t-N000
EM Probe Rohde Schwarz RF B 3-2
AES source code mbedTLS v2.5.1[25]
CUDA CUDA 7.1

TABLE II: Setups of our experiments.

bytes recovered in the m tests, and n denotes the total number
of tests performed in an evaluation. We set n = 10 for V-B2,
V-C1 and V-C2, and n = 100 for V-B1, V-B3, V-B4 and V-B5
in view of their required precision in the experiments.

B. Experimental Results

1) For Category I
In the mode, 32 threads in a thread warp are given the

same plaintext, so the execution time is constant, which
means the measured traces are aligned on every operation
including the S-Box TLU as target operation. As the TLU
is one-staged for any trace, SSM is employed, and then SSM-
based CEMA (SSM-CEMA) is performed. The experiment
for the category also aims to find an optimal sampling rate
used for oscilloscope to measure traces for the follow-up
experiments. Considering the space requirement for storing
traces, we measure traces at four different sampling rates up
to 2 GSa/s. The experimental results are shown in Fig.6. We
find SSM-CEMA with traces sampled at 2 GSa/s performs just
a little bit better than it does at 500 MSa/s, so 500 MSa/s is
assumed to be a good choice with the consideration of both
efficiency and the size of trace data, and thus applied in the
follow-up experiments. With the traces sampled at 500 MSa/s,
approximately 15,000 traces are required to recover the 128-
bit secret key. Intuitively, the mode may be the easiest one in
which a side-channel attack is performed to recover the secret
key, because in this mode (1) a single plaintext is encrypted
in all 32 threads, so it should produce low noise level; and
(2) only one-staged S-Box TLU happens, so the traces are
aligned on any operation. However, it is actually not like this,
and SSM-CEMA in one-group mode is not the best attack as
expected, which will be proved by introducing more powerful
attacks in the experiments below.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.7

The Number of Traces 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
lo

ba
l S

uc
ce

ss
 R

at
e

(G
S

R
)

100 MSa/s

200 MSa/s

500 MSa/s

2 GSa/s

Sampling Rate

SSM-CEMA, 1-group mode

Fig. 6: The performance of SSM-CEMA for mode in Category I.

11

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5 6.75 7

The Number of Traces 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G

S
R SSM-CEMA, 2/4/8-group mode

CCM-DEMA, 2-group mode
CCM-DEMA, 4-group mode
CCM-DEMA, 8-group mode
CSM-CEMA, 2-group mode
CSM-CEMA, 4-group mode
CSM-CEMA, 8-group mode

Attack Methods and Modes

Fig. 7: The comparison amongst SSM-CEMA, CSM-CEMA (LCSM) and CCM-DEMA of their performance for modes in Category II.

2) For Category III
In the modes, S-Box TLU is two-staged for almost all

traces, so CSM is employed and CSM-based CEMA (CSM-
CEMA) is performed. In the meanwhile, an SSM-CEMA is
used for comparison. Note that CCM does not work for modes
in Category III and Category I, because CCM requires that the
number of STGs be not constant across traces. The constant
also implies that traces are aligned in the modes. As 16 or
32 threads encrypt different plaintexts, a high noise level (η
in Eq.1) is introduced, which increases the number of traces
used in attacks and, at the same time, narrows the performance
gap between SSM-CEMA and CSM-CEMA (LCSM) in the
modes. As showed in Fig.8, both SSM-CEMA and CSM-
CEMA (LCSM) consume more than 150,000 and 300,000
traces in 16-group mode and 32-group mode, respectively.
Nevertheless, CSM-CEMA (LCSM) still outperforms SSM-
CEMA in both modes.

Note that the experimental results are drawn in 10 instead
of 100 tests, namely n = 100 (V-A) adopted in the other
experiments, because the attacks in the modes are much time-
consuming when performed on desktop computers. To remedy
this, we evaluate the number of recovered key bytes rather than
global success rate, because the former is less sensitive to
the number of tests than the latter. In addition to this, it is
also noted that we use LCSM instead of RCSM in the CSM-
CEMA, because RCSM is more powerful than LCSM. Using
the worst case makes performance comparison among different
models more convincing. We also fulfill the principle in V-B3
and V-B4.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

The Number of Traces 105

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

SSM-CEMA, 16-group mode

SSM-CEMA, 32-group mode

CSM-CEMA, 16-group mode

CSM-CEMA, 32-group mode

Attack Methods and Modes

Fig. 8: The comparison between SSM-CEMA and CSM-CEMA (LCSM) of
their performance for modes in Category III.

#Key Enum. SSM-CEMA CSM-CEMA CCM-DEMA
——– ≈ 12,100 traces ≈ 18,100 traces ≈ 5,000 traces

1 byte ≈ 6,100 traces ≈ 2,100 traces ≈ 600 traces
≈ 0.05 ms on key search

2 bytes ≈ 4,600 traces ≈ 1,100 traces ≈ 320 traces
≈ 100.67 ms on key search

3 bytes ≈ 4,100 traces ≈ 820 traces ≈ 280 traces
≈ 120.26 sec on key search

4 bytes ≈ 3,600 traces ≈ 700 traces ≈ 240 traces
≈ 27.79 hr on key search

TABLE III: A summary of the performance in our experiments, of SSM-
CEMA, CSM-CEMA (LCSM) and CCM-DEMA with and without brute-force
search.

δ-group Mode SSM-CEMA CSM-CEMA CCM-DEMA
δ = 1 ≈12,100 -
δ = 2 70,000+ ≈18,100 ≈10,000
δ = 4 70,000+ ≈18,100* ≈5,000*

δ = 8 70,000+ ≈62,000 ≈5,000
δ = 16 ≈170,000 ≈150,000 -
δ = 32 ≈360,000 ≈330,000 -

* Optimal by trend.
TABLE IV: The comparison among SSM-CEMA, CSM-CEMA (LCSM) and
CCM-DEMA of performance in the six modes.

3) For Category II
This is the most complicated one among the categories,

because in these modes, the execution of the 32 threads makes
the measured traces misaligned, which is known to be one of
great challenges for side-channel attacks. The advantage is
both CSM and CCM are applicable, so we evaluate SSM-
CEMA, CSM-CEMA (LCSM) and CCM-DEMA in these
modes. The evaluation results are showed in Fig.7. Obviously,
SSM-CEMA remains ineffective when using up to 70,000
traces, while CSM-CEMA (LCSM) and CCM-DEMA are
able to fully recover the secret key with less traces. CCM-
DEMA outperforms CSM-CEMA (LCSM) in all the modes,
and both perform best in 4-group mode. More precisely, about
3,000 traces are required for CCM-DEMA, and 15,000 traces
for CSM-CEMA (LCSM). This shows that CCM-DEMA
performs much better than CSM-CEMA (LCSM) does, which
is consistent with the theoretical prediction in IV-D.

4) Across Categories
In the above, the comparisons are made among the models

only in the same modes, so it is still unknown that which
model performs better without the consideration of modes.
In other words, it is asking a question like which model(s)

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

The Number of Traces

11

12

13

14

15

16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

SSM-CEMA, 1-group mode
CSM-CEMA, 4-group mode
CCM-DEMA, 4-group mode

Attack Methods and Modes

103

X: 0.82
Y: 13.11

X: 0.24
Y: 12.35

X: 0.7
Y: 12.33

X: 0.28
Y: 13.44

X: 3.6
Y: 12.16

X: 0.32
Y: 14.09

X: 1.1
Y: 14.24

X: 4.1
Y: 13.4

X: 4.6
Y: 14.04

X: 6
Y: 15.25X: 2.1

Y: 15

X: 0.6
Y: 15.04

Fig. 9: The comparison amongst SSM-CEMA, CSM-CEMA (LCSM) and CCM-DEMA with 1, 2, 3 or 4 byte(s) key enumeration, of their best performance
in the six modes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Number of Key Bytes to Search

100

1010

1020

1030

1040

T
he

 N
um

be
r

of
 D

ec
ry

pt
io

ns
 to

 P
er

fo
rm

X: 3
Y: 9.395e+09

X: 2
Y: 7.864e+06

X: 1
Y: 4096

X: 4
Y: 7.817e+12

X: 5
Y: 4.803e+15

The Assumed AES Decryptor Throughput: 10 Gibps0.05 ms

120.26 s

1,706.67 hr

27.79 hr

100.67 ms

Infeasible !Feasible

Fig. 10: The number of decryptions needed for and the time spent on brute-force search.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

The Number of Traces

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

SSM-CEMA, 1-group mode
CSM-CEMA, 4-group mode
CCM-DEMA, 4-group mode

Attack Methods and Modes

Fig. 11: The comparison amongst SSM-CEMA, CSM-CEMA (LCSM) and
CCM-DEMA of their best performance in the six modes.

is(are) more efficient if attackers are able to choose any one
of the six modes as they like? The question is actually quite
practical, because it imposes less constraints on attackers. To
answer the question, more evaluations should be given across
categories. Based on the previous evaluations, the performance
of SSM-CEMA, CSM-CEMA (LCSM) and CCM-DEMA in
the six modes are summarized in TABLE IV. It is obvious
that SSM-CEMA in 1-group mode, CSM-CEMA (LCSM) and
CCM-DEMA in 4-group mode perform best for the respective
method in all the modes, so CCM-DEMA in 4-group mode

should be employed by an attacker. Although that is true, it
is necessary to give a deeper insight into the performance of
CSM-CEMA (LCSM) in 4-group mode and SSM-CEMA in
1-group mode. We evaluate in another criteria; that is, the
number of recovered key bytes mentioned before, because the
performance of recovering less than 16 key bytes is also of
great significance; that is to say, attackers can take a strategy
of recovering some key bytes with distinguishers and the rest
with key enumeration algorithms (KEAs). Brute-force search
is the most basic KEA. The cost for searching partial key
bytes of AES with brute-force search is shown in Fig.10.
The assumed AES decryption throughput (10 Gibps) comes
from a typical performance of AESNI-enabled processors. As
showed, it is practical to brute-force search 1, 2, 3 (or 4)
key bytes, which corresponds to recover any 15, 14, 13 (or
12) of 16 key bytes. As showed in Fig.9,11, especially Fig.9,
summarized in TABLE III, we conclude that CSM-CEMA
(LCSM) does perform better than SSM-CEMA in practice.

5) With Optimizations
The optimizations are based on three decision-level com-

binations, namely DCA+, DCA× and DCAmax, that com-
bine distinguishers of CSMs and/or CCMs. As mentioned
before, two CSMs (LCSM and RCSM) and one CCM are
available for the target AES implementation on the G-
PU, so we evaluate the six combinational attacks named
LCSM-RCSM-DCA+, LCSM-RCSM-DCA×, LCSM-RCSM-
DCAmax, LCSM-RCSM-CCM-DCA+, LCSM-RCSM-CCM-

13

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

The Number of Traces

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

RCSM-CEMA, 4-group mode
LCSM-CEMA, 4-group mode
CCM-DEMA, 4-group mode

LCSM-RCSM-DCA+, 4-group mode
LCSM-RCSM-DCA , 4-group mode

LCSM-RCSM-DCAmax, 4-group mode

LCSM-RCSM-CCM-DCA+, 4-group mode
LCSM-RCSM-CCM-DCA , 4-group mode

LCSM-RCSM-CCM-DCAmax, 4-group mode

Attack Methods and Modes

Fig. 12: The comparison between non-combinational (CSM-CEMAs, CCM-DEMA) and combination-based attacks of their performance in 4-group mode.

0 100 200 300 400 500 600 700 800 900 1000
The Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Recovered 15 Key Bytes

0 100 200 300 400 500 600 700 800 900 1000
The Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Recovered 14 Key Bytes

RCSM-CEMA, 4-group mode LCSM-CEMA, 4-group mode CCM-DEMA, 4-group mode

Attack Methods and Modes

0 100 200 300 400 500 600 700 800 900 1000

The Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Recovered 13 Key Bytes

LCSM-RCSM-DCA+, 4-group mode LCSM-RCSM-DCA , 4-group mode LCSM-RCSM-DCAmax, 4-group mode

0 100 200 300 400 500 600 700 800 900 1000

The Number of Traces

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Recovered 12 Key Bytes

LCSM-RCSM-CCM-DCA+, 4-group mode LCSM-RCSM-CCM-DCA , 4-group mode LCSM-RCSM-CCM-DCAmax, 4-group mode

Fig. 13: The comparison between non-combinational (CSM-CEMAs, CCM-DEMA) and combination-based attacks with 1, 2, 3 or 4 byte(s) key enumeration,
of their performance in 4-group mode.

DCA× and LCSM-RCSM-CCM-DCAmax. Their names fol-
low the naming convention in III-D. Since both CSM-CEMA
(LCSM) and CCM-DEMA hit the best performance in 4-group
mode, the evaluations are also made in the mode. The same
way, we consider the previous attack strategy, i.e. distinguisher
(DCA+, DCA× or DCAmax) plus KEA (brute-force search).
As shown in Fig.12, LCSM-RCSM-DCAmax is not effective,
and it performs almost the same as RCSM-CEMA does,
which suggests LCSM-RCSM-DCAmax makes little/no use
of the decision information from the distinguisher of LCSM.
It also shows that the performance of LCSM-RCSM-DCA+

and LCSM-RCSM-DCA× are almost the same and both are
better than that of LCSM-CEMA, RCSM-CEMA and LCSM-
RCSM-DCAmax with the assistance of brute-force search.
Of the other combination-based attacks, LCSM-RCSM-CCM-
DCAmax is almost ineffective as LCSM-RCSM-DCAmax

does, LCSM-RCSM-CCM-DCA+ and LCSM-RCSM-CCM-
DCA× perform similarly and better than either of the non-
combinational attacks, but become closer to CCM-DEMA with
more traces. The same trends are also shown in Fig.13 for
evaluations in success rate, so we will not repeat them.

14

C. Simulations

Since all the evaluations above are made in a specific GPU
device, we cannot conclude the methods are effective/efficient
to other GPU devices as well. In light of this, we introduce
simulation experiments on σ2-traces under the assumption that
the EM traces from different GPU devices differ only in terms
of Gaussian noise, thus bearing different SNR, where σ2-traces
denote the traces mixed with Gaussian noise of 0-mean and
σ2-variance. More specifically, the simulation experiments are
based on L(·,σ2) (II-D) generated by Algo.4.

Suppose SNR of original (measured) traces L(·) is repre-
sented as ξ = σ2

S/σ
2
N , where σ2

S and σ2
N denote the variance

of the signal part and noise part, respectively. Since we do
not know the exact value of ξ, σ2

S or σ2
N , we try on L(1,σ2)-s

of different σ2 values until we find a σ2 sequence so that
the trend of performance of SSM-CEMA on the L(1,σ2)-
s are clearly distinguishable. As a result, we find the σ2-
s, {0.0001, 0.00025, 0.0005, 0.001, 0.01, 0.1} meets the need-
s. Finally, we generate L(1,0.0001), L(1,0.00025), L(1,0.0005),
L(1,0.001), L(1,0.01), L(1,0.1), L(4,0.001), L(4,0.01) and L(4,0.1)

for the experiments below.
1) For Category I on σ2-traces
The experiment aims to find the upper bound of σ2 with

which SSM-CEMA in 1-group mode works, and then evaluate
SSM-CEMA on L(1,σ2). As Fig.14 shows, the upper bound is
no more than 0.001, because SSM-CEMA is almost ineffective
on L(1,0.001). Also, it shows as expected the performance of
SSM-CEMA in 1-group mode decreases as the σ2 increases.

Algorithm 4 σ2-traces Generation

Require: Original traces: L(·) of W ×M , σ2.
Ensure: σ2-traces: L(·,σ2).

1: for i← 1 to W do
2: for j ← 1 to M do
3: R← N(0, σ2) B generate Gaussian random
4: L

(·,σ2)
i,j ← L

(·)
i,j +R

5: return L(·,σ2)

2) Across Categories on σ2-traces
As known from the above experiment (V-C1), SSM-CEMA

does not work on L(1,σ2) where σ2 ≥ 0.001. Then how about
the performance of CSM-CEMA and CCM-DEMA on L(4,σ2)

when σ2 ≥ 0.001?
We make evaluations on L(4,0.001), L(4,0.01) and L(4,0.1),

and the performance are shown in Fig.15, Fig.16 and Fig.17,
respectively. We find that both methods still work well, even if
SSM-CEMA does not work at all when σ2 = 0.001, 0.01, 0.1.
The experimental results are beyond our expectations, and they
suggest that CSM and CCM are not only more efficient but
also more robust than SSM under CTA.

VI. DISCUSSIONS

A. Synchronization

We can see that CSM and CCM are the key proposals
of this paper, and both of them are based on the threads
partitioner CTP, so we would better verify in some way if

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

The Number of Traces 104

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

SSM-CEMA on L(1,
2
)

2 = 0 (original) 2 = 0.0001 2 = 0.00025

Using L(1, 2)

2 = 0.0005 2 = 0.001 2 = 0.01 2 = 0.1

Fig. 14: The performance of SSM-CEMA on L(1,σ2).

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

The Number of Traces 104

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

2 = 0.001

SSM-CEMA on L(1,0.001)

CSM-CEMA on L(4,0.001)

CCM-DEMA on L(4,0.001)

Attack Methods on L(, 2)

Fig. 15: The comparison among SSM-CEMA on L(1,0.001), CSM-CEMA
(RCSM) on L(4,0.001) and CCM-DEMA on L(4,0.001)of their performance.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

The Number of Traces 104

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es

2 = 0.01

SSM-CEMA on L(1,0.01)

CSM-CEMA on L(4,0.01)

CCM-DEMA on L(4,0.01)

Attack Methods on L(, 2)

Fig. 16: The comparison among SSM-CEMA on L(1,0.01), CSM-CEMA
(RCSM) on L(4,0.01) and CCM-DEMA on L(4,0.01)of their performance.

the CTP is reasonable or not. Actually, we tried leakage
detection method on each single thread, in order to give an
visual presentation of the leakages from multiple threads in
the same time domain, but we found it difficult than expected,
because for multi-thread scenarios the leakage detection to any
one thread also means treating the leakages from the other

15

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

The Number of Traces 104

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

T
he

 N
um

be
r

of
 R

ec
ov

er
ed

 K
ey

 B
yt

es
2 = 0.1

SSM-CEMA on L(1,0.1)

CSM-CEMA on L(4,0.1)

CCM-DEMA on L(4,0.1)

Attack Methods on L(, 2)

Fig. 17: The comparison among SSM-CEMA on L(1,0.1), CSM-CEMA
(RCSM) on L(4,0.1) and CCM-DEMA on L(4,0.1)of their performance.

threads as noise. The high noise makes the leakage detection
rather tricky. In spite of this, there are evidences indicating
the correctness of CTP. On the one hand, previous timing
attacks, such as [8], [10], only depend on the CTP, so the
effectiveness of the timing attacks indicates 1© the threads in
different subsets partitioned by the CTP are not synchronous at
TLU operation. That CSM-CEMA outperforms SSM-CEMA
in 32-group mode (see Fig.8) also indicates the statement,
because SSM always introduces additional noise when the
multiple threads are not synchronous at target operation (see
Eq.5). On the other hand, for the same reason the hardness
of leakage detection on single thread indicates 2© the threads
in the same subset partitioned by the CTP are synchronous
at TLU operation; otherwise, the leakage detection cannot
be harder than CSM-CEMA in 32-group mode, where the
hardness is measured by the number of traces. As a result,
1© plus 2© indicates CTP is reasonable.

B. Countermeasure

Since CSM and CCM are the key proposals of this paper,
we give a brief discussion below on countermeasures to them.
Actually, the papers [27], [28] have investigated countermea-
sures to MIS-based side-channel attacks. The countermeasures
are able to resist CSM-CEMA and CCM-DEMA but require
hardware alternation, so they are not portable in practice. In
addition, as one of generic countermeasures, masking is also
effective to CSM-CEMA and CCM-DEMA, but the naive way
of applying a masking countermeasure to GPU-based cryp-
tographic implementations will consume thousands of times
as many random numbers as the masking countermeasure
to a CPU-based one, thus greatly reducing the performance.
Therefore, it is still an open question and needs further studies.

VII. CONCLUSIONS

In the paper, we investigate side-channel cryptanalysis with
multi-thread mixed leakage. We propose several leakage mod-
els, of which SSM and PSM are for general cryptographic
implementations on general SIMT systems, while CSM and
CCM are for table-based implementations on specific SIMT
systems, precisely CUDA-enabled GPUs. In addition to the

models, combination-based techniques are employed for opti-
mization on CSM- and/or CCM-based attacks. Theoretically,
CSM, CCM and their optimizations apply to attacks in any
δ-group mode against any table-based cryptographic imple-
mentations running on any CUDA-enabled GPU, as long as
the size of the table is larger than the size of the L1 cache
line, but it needs further verifications in practice, because as
explained, if more cache lines are required for storing target
LUT, for some modes the pattern of trace alignment becomes
more sophisticated, which may eventually frustrate the attacks.

To summarize up, our study proposes methodologies and
achieves efficient practical side-channel attacks against a
table-based GPU AES implementation. The research sug-
gests that GPU-based cryptographic implementations may
be much vulnerable to microarchitecture-based side-channel
attacks. Therefore, GPU-specific countermeasures should be
considered for GPU-based cryptographic implementations in
practical applications.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, 1996, pp. 104–113.
[Online]. Available: https://doi.org/10.1007/3-540-68697-5 9

[2] R. Szerwinski and T. Güneysu, “Exploiting the power of gpus for
asymmetric cryptography,” in Cryptographic Hardware and Embedded
Systems - CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10-13, 2008. Proceedings, 2008, pp. 79–99.

[3] X. Kang, B. George, and K. Lueh, “Efficient implementation of rsa using
gpu/cpu architecture,” Feb. 16 2016, uS Patent 9,262,166.

[4] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu, “Implementation
and analysis of AES encryption on GPU,” in 14th IEEE International
Conference on High Performance Computing and Communication & 9th
IEEE International Conference on Embedded Software and Systems,
HPCC-ICESS 2012, Liverpool, United Kingdom, June 25-27, 2012,
2012, pp. 843–848.

[5] O. Hajihassani, S. K. Monfared, S. H. Khasteh, and S. Gorgin, “Fast
AES implementation: A high-throughput bitsliced approach,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 10, pp. 2211–2222, 2019.
[Online]. Available: https://doi.org/10.1109/TPDS.2019.2911278

[6] C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. R. Kaeli, “Side-channel
power analysis of a GPU AES implementation,” in 33rd IEEE Inter-
national Conference on Computer Design, ICCD 2015, New York City,
NY, USA, October 18-21, 2015, 2015, pp. 281–288.

[7] C. Luo, Y. Fei, L. Zhang, A. A. Ding, P. Luo, S. Mukherjee, and
D. R. Kaeli, “Power analysis attack of an AES GPU implementation,”
J. Hardware and Systems Security, vol. 2, no. 1, pp. 69–82, 2018.
[Online]. Available: https://doi.org/10.1007/s41635-018-0032-7

[8] Z. H. Jiang, Y. Fei, and D. R. Kaeli, “A complete key recovery timing
attack on a GPU,” in 2016 IEEE International Symposium on High
Performance Computer Architecture, HPCA 2016, Barcelona, Spain,
March 12-16, 2016, 2016, pp. 394–405.

[9] ——, “A novel side-channel timing attack on GPUs,” in Proceedings of
the on Great Lakes Symposium on VLSI 2017, Banff, AB, Canada, May
10-12, 2017, 2017, pp. 167–172.

[10] E. Karimi, Z. H. Jiang, Y. Fei, and D. R. Kaeli, “A timing
side-channel attack on a mobile GPU,” in 36th IEEE International
Conference on Computer Design, ICCD 2018, Orlando, FL, USA,
October 7-10, 2018, 2018, pp. 67–74. [Online]. Available: https:
//doi.org/10.1109/ICCD.2018.00020

[11] Z. H. Jiang, Y. Fei, and D. R. Kaeli, “Exploiting bank conflict-based
side-channel timing leakage of gpus,” TACO, vol. 16, no. 4, pp.
42:1–42:24, 2020. [Online]. Available: https://doi.org/10.1145/3361870

[12] D.B.Fomin, “A timing attack on CUDA implementations of an AES-
type block cipher,” Mathematical Aspects of Cryptography, 2016, v.7,
No 2, pp.121-130 (Russian), 2016.

[13] Y. Gao, Y. Zhou, and W. Cheng, “Efficient electro-magnetic analysis of
a GPU bitsliced AES implementation,” Cybersecurity, vol. 3, no. 1, p. 3,
2020. [Online]. Available: https://doi.org/10.1186/s42400-020-0045-8

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1109/TPDS.2019.2911278
https://doi.org/10.1007/s41635-018-0032-7
https://doi.org/10.1109/ICCD.2018.00020
https://doi.org/10.1109/ICCD.2018.00020
https://doi.org/10.1145/3361870
https://doi.org/10.1186/s42400-020-0045-8

16

[14] Y. Gao, W. Cheng, H. Zhang, and Y. Zhou, “Cache-collision attacks
on gpu-based AES implementation with electro-magnetic leakages,” in
17th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications / 12th IEEE International Conference
On Big Data Science And Engineering, TrustCom/BigDataSE 2018,
New York, NY, USA, August 1-3, 2018, 2018, pp. 300–306. [Online].
Available: https://doi.org/10.1109/TrustCom/BigDataSE.2018.00053

[15] Y. Gao, H. Zhang, W. Cheng, Y. Zhou, and Y. Cao, “Electro-magnetic
analysis of gpu-based AES implementation,” in Proceedings of the 55th
Annual Design Automation Conference, DAC 2018, San Francisco, CA,
USA, June 24-29, 2018, 2018, pp. 121:1–121:6. [Online]. Available:
https://doi.org/10.1145/3195970.3196042

[16] F. Liu and R. B. Lee, “Security testing of a secure cache
design,” in HASP 2013, The Second Workshop on Hardware
and Architectural Support for Security and Privacy, Tel-Aviv,
Israel, June 23-24, 2013, 2013, p. 3. [Online]. Available: https:
//doi.org/10.1145/2487726.2487729

[17] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, 2015,
pp. 605–622. [Online]. Available: https://doi.org/10.1109/SP.2015.43

[18] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with
a leakage model,” in Cryptographic Hardware and Embedded Systems
- CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings, 2004, pp. 16–29. [Online]. Available:
https://doi.org/10.1007/978-3-540-28632-5 2

[19] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, 1999, pp. 388–397. [Online]. Available:
https://doi.org/10.1007/3-540-48405-1 25

[20] W. Schindler, “A combined timing and power attack,” in Public Key
Cryptography, 5th International Workshop on Practice and Theory
in Public Key Cryptosystems, PKC 2002, Paris, France, February
12-14, 2002, Proceedings, 2002, pp. 263–279. [Online]. Available:
https://doi.org/10.1007/3-540-45664-3 19

[21] Y. Souissi, S. Bhasin, S. Guilley, M. Nassar, and J. Danger, “Towards
different flavors of combined side channel attacks,” in Topics in
Cryptology - CT-RSA 2012 - The Cryptographers’ Track at the
RSA Conference 2012, San Francisco, CA, USA, February 27 -
March 2, 2012. Proceedings, 2012, pp. 245–259. [Online]. Available:
https://doi.org/10.1007/978-3-642-27954-6 16

[22] W. Yang, Y. Zhou, Y. Cao, H. Zhang, Q. Zhang, and H. Wang,
“Multi-channel fusion attacks,” IEEE Trans. Information Forensics and
Security, vol. 12, no. 8, pp. 1757–1771, 2017. [Online]. Available:
https://doi.org/10.1109/TIFS.2017.2672521

[23] P. S. Shastry, N. Somani, A. Gadre, B. Vispute, and M. S. Sutaone,
“Rolled architecture based implementation of aes using t-box,” in 2012
IEEE 55th International Midwest Symposium on Circuits and Systems
(MWSCAS). IEEE, 2012, pp. 626–630.

[24] N. Nishikawa, H. Amano, and K. Iwai, “Implementation of bitsliced
AES encryption on cuda-enabled GPU,” in Network and System Security
- 11th International Conference, NSS 2017, Helsinki, Finland, August
21-23, 2017, Proceedings, 2017, pp. 273–287.

[25] PolarSSL/mbedTLS, “An open source SSL library licensed by ARM
limited,” https://tls.mbed.org.

[26] Wikipedia, “GeForce 500 series,” https://en.wikipedia.org/wiki/
GeForce 500 series.

[27] G. Kadam, D. Zhang, and A. Jog, “Rcoal: Mitigating GPU
timing attack via subwarp-based randomized coalescing techniques,”
in IEEE International Symposium on High Performance Computer
Architecture, HPCA 2018, Vienna, Austria, February 24-28, 2018.
IEEE Computer Society, 2018, pp. 156–167. [Online]. Available:
https://doi.org/10.1109/HPCA.2018.00023

[28] ——, “Bcoal: Bucketing-based memory coalescing for efficient and
secure gpus,” in IEEE International Symposium on High Performance
Computer Architecture, HPCA 2020, San Diego, CA, USA, February
22-26, 2020. IEEE, 2020, pp. 570–581. [Online]. Available:
https://doi.org/10.1109/HPCA47549.2020.00053

https://doi.org/10.1109/TrustCom/BigDataSE.2018.00053
https://doi.org/10.1145/3195970.3196042
https://doi.org/10.1145/2487726.2487729
https://doi.org/10.1145/2487726.2487729
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-45664-3_19
https://doi.org/10.1007/978-3-642-27954-6_16
https://doi.org/10.1109/TIFS.2017.2672521
https://tls.mbed.org
https://en.wikipedia.org/wiki/GeForce_500_series
https://en.wikipedia.org/wiki/GeForce_500_series
https://doi.org/10.1109/HPCA.2018.00023
https://doi.org/10.1109/HPCA47549.2020.00053

	Introduction
	Contributions
	Organization

	Preliminary
	CUDA-enabled GPU
	Side-Channel Cryptanalysis
	Table-based Cryptographic Implementations
	Definitions & Notations
	Abbreviations & Index

	Our Methods
	Simple Summation Model and Partial Summation Model
	Cacheline Summation Model
	Cacheline Count Model
	Combination-based Optimizations

	Instantiated with a GPU AES Implementation
	Target GPU-based AES Implementation
	Attacking Modes for Multi-thread Scenarios
	Instantiating the Models
	Issues on Misalignment of Traces

	Evaluations
	Setups
	Experimental Results
	For Category I
	For Category III
	For Category II
	Across Categories
	With Optimizations

	Simulations
	For Category I on 2-traces
	Across Categories on 2-traces

	Discussions
	Synchronization
	Countermeasure

	Conclusions
	References

